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Abstract

A critical and long-standing need within the petroleum industry is the specification of suit-

able petrophysical properties for mathematical simulation of fluid flow in petroleum reservoirs

(i.e., reservoir characterization). The development of accurate reservoir characterizations is ex-

tremely challenging. Property variations may be described on many scales, and the information

available from measurements reflect different scales. In fact, experiments on laboratory core

samples, well-log data, well-test data, and reservoir-production data all represent information

potentially valuable to reservoir characterization, yet they all reflect information about spatial

variations of properties at different scales.

Nuclear magnetic resonance (NMR) spectroscopy and imaging (MRI) provide enormous

potential for developing new descriptions and understandings of heterogeneous media. NMR

has the rare capability to probe permeable media non-invasively, with spatial resolution, and

it provides unique information about molecular motions and interactions that are sensitive

to morphology. NMR well-logging provides the best opportunity ever to resolve permeability

distributions within petroleum reservoirs.

We develop MRI methods to determine, for the first time, spatially resolved distributions of

porosity and permeability within permeable media samples that approach the intrinsic scale:

the finest resolution of these macroscopic properties possible. To our knowledge, this is the first

time that the permeability is actually resolved at a scale smaller than the sample.

In order to do this, we have developed a robust method to determine of relaxation distri-

butions from NMR experiments and a novel implementation and analysis of MRI experiments

to determine the amount of fluid corresponding to imaging regions, which are in turn used to

determine porosity and saturation distributions. We have developed a novel MRI experiment to

determine velocity distributions within flowing experiments, and developed methodology using

that data to determine spatially resolved permeability distributions.

We investigate the use of intrinsic properties for developing improved correlations for pre-

dicting permeability from NMR well-logging data and for obtaining more accurate estimates

of multiphase flow properties–the relative permeability and capillary pressure–from displace-

ment experiments. We demonstrate the use of MRI measurements of saturation and relaxation

for prediction wetting-phase relative permeability for unstable experiments. Finally, we devel-

oped an improved method for determining surface relaxivity with NMR experiments, which can

provide better descriptions of permeable media microstructures and improved correlations for

permeability predictions.
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Executive Summary

Nuclear magnetic resonance (NMR) spectroscopy and imaging (MRI) provide exceptional oppor-

tunity for developing new descriptions and understandings of heterogeneous media. NMR has the

rare capability to probe permeable media non-invasively, with spatial resolution, and it provides

unique information about molecular motions and interactions that are sensitive to morphology.

NMR well-logging provides the best opportunity ever to resolve permeability distributions within

petroleum reservoirs.

The overall goal of this project was to fully develop MRI methods for improved characterizations

of properties used to describe flow through permeable media. This work was organized along three

stages. The first stage was to develop advanced core analysis methods for fully characterizing

complete porosity and absolute permeability distributions, saturation distributions, and relative

permeability and capillary pressure functions from laboratory samples. The second stage was to

use these methods to resolve properties on a set of samples. The third stage was to develop and

test improved methods for predicting permeability, and test a novel method for predicting relative

permeability, from well-log observable data.

We developed methodology to fully resolve spatial distributions of the porosity and absolute

permeability, and saturations for two-phase situations, within samples of permeable media and

to account for spatial variations in permeability and porosity for the determination of relative

permeability and capillary pressure functions. We believe this provides a major breakthrough for the

study of heterogeneous media in that, for the first time, we can resolve all the basic properties at, or

near, the most fundamental (intrinsic) scale for macroscopic properties: the minimum local volume-

averaging element. Previous attempts to understand or predict properties to describe heterogeneous

media have been based on the core sample as the most fundamental element, with the assumption

that the associated properties within are uniform (homogeneous).

We applied these methods to experiments with samples of Bentheimer sandstone and to actual

sandstone reservoir samples provided by a major petroleum company. We resolved the porosity

distributions and, with multiphase experiments performed on a subset of the samples, saturation

distributions. We determined the permeability distributions for the Bentheimer sandstone samples.

Due to the fast relaxation rates for water saturating the sandstone reservoir samples, we were unable

to resolve the velocity distributions with MRI, and thus were unable to determine the permeability

distributions. Our method can be applied to such samples if a saturating fluid with sufficiently long
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relaxation time is identified. Also, the method should be successful with most carbonate samples,

since the relaxation rates associated with water within such samples are typically smaller than

sandstones.

We advanced the use of full, three-dimensional mathematical models for use in determining mul-

tiphase flow properties from displacement experiments. We recommend including intrinsic porosity

and permeability, dynamic one-dimensional saturation profiles, and three-dimensional saturation

distributions corresponding to steady states within the process to estimate multiphase flow prop-

erties. Using MRI, we have determined the boundary conditions conventionally used to model

displacement experiments may not accurately match the experiments, and thus recommend future

attention to this aspect. The problem was not solved in the course of this work.

We demonstrated the use of spatially resolved property distributions for determining improved

correlations for predicting permeability, and demonstrated the use of spatially resolved saturation

and relaxation distributions for predicting wetting-phase relative permeability.

Several additional projects, not identified within the original proposal, were taken up. While

these projects all supported the original scope of the work, their necessity was recognized as we

worked with actual reservoir samples. We developed a new method for determining relaxation

distributions from NMR data, since existing methods were not sufficiently accurate or robust for

analyzing three-dimensional imaging data. In addition to its use for determining saturation and

porosity, this method will provide better estimates of pore-size distributions from NMR experi-

ments. We developed a new method for estimating surface relaxivities with NMR experiments.

Surface relaxivity will be important for developing better predictions of permeability. It is also

necessary to determine pore-size distributions from relaxation distributions. We implemented an

imaging method to measure spatially-resolved longitudinal relaxation (T1) distributions. This be-

came necessary when we determined transverse relaxation (T2) distributions measured at high field

would not suitable for developing predictive equations. Finally, we demonstrated the use of rela-

tive permeability prediction with unstable displacement experiments, and noted the potential use

of MRI measurements of saturation distributions to advance the modeling and understanding of

unstable displacements.
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1 Introduction

Reliable simulation of fluid flow in petroleum reservoirs is necessary for meaningful evaluations of

production potentials, design of effective recovery strategies, and selection of production operations.

A critical and long-standing need within the oil industry is the specification of suitable petrophysical

properties for such simulations, i.e., reservoir characterization.

The development of accurate reservoir characterizations is extremely challenging. Petroleum

reservoirs are heterogeneous so that properties required to simulate reservoir behavior vary spatially.

This is further complicated by the fact that the property variations may be described on many scales,

and the information available from measurements reflect different scales. In fact, experiments on

laboratory core samples, well-log data, well-test data, and reservoir-production data all represent

information potentially valuable to reservoir characterization, yet they all reflect information about

spatial variation of properties at different scales.

We believe that the most valuable characterization of reservoir property heterogeneities begins

at the most fundamental scale, we call the intrinsic scale. For porosity and permeability, this

corresponds to the basic continuum scale associated with the existence of those properties, typ-

ically on the size of tens of hundreds of “pores”. The intrinsic scale associated with multiphase

flow properties may be somewhat larger, although accurate determination of those properties often

depends upon knowledge of the intrinsic porosity and permeability. Traditionally, the finest reso-

lution of properties has been at the reservoir core sample scale. This is insufficient for developing

relationships that may link heterogeneous properties across scales. Furthermore, the determination

of these properties may have significant errors associated with them, as discussed in the following

section.

Nuclear magnetic resonance (NMR) spectroscopy and imaging (MRI) provide exceptional op-

portunity for improved characterization of fluid and flow in permeable media. MRI provides the

rare opportunity for determining, non-invasively, spatially resolved data within permeable media.

We develop methods utilizing MRI to determine, for the first time, porosity and permeability at

the intrinsic scale. We develop methodology to determine spatial distributions of fluid saturations

for multiphase situations. We have also developed a method to determine multiphase flow prop-

erties (relative permeability and capillary pressure) for heterogeneous media, utilizing the intrinsic

porosity and permeability so that errors associated with spatial variations in those properties can

be avoided. We believe that resolution of these properties at the intrinsic scale can lead to: 1.
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improved understanding and mathematical models of complex displacement processes within het-

erogeneous media, 2. methods for scale-up that can provide effective properties at coarser scales

that are suitable for reservoir simulation, 3. methods for reconciliation of data that represent dif-

ferent scales of heterogeneity, and 4. improved methods for predicting important properties from

well-log measurements. This latter point is addressed further in this work.

NMR well logging provides the best opportunity ever to obtain reliable predictions of per-

meability and relative permeability in the near-well bore region. Unlike traditional well-logging

measurements, NMR is sensitive to solid-liquid molecular interactions, and can thus provide infor-

mation about media morphology, which controls permeability. Vertical resolution of permeability

around wells can provide important opportunities for extrapolating property variations throughout

the reservoir. Determination of the intrinsic properties, as well as spatial variations of NMR-

relaxation, can provide the means for developing much more powerful correlations for property

prediction. In this work, we demonstrate the use of intrinsic properties for developing correlations

for predicting absolute and relative permeability. Finally, we demonstrate the use of MRI to de-

termine predictions of relative permeability for unstable displacement processes, and to determine

information that can be valuable for studying and simulating unstable processes.

2 Background

In this section, we develop the intrinsic scale associated with properties used to describe the flow of

single or multiple fluid phases through permeable media. We summarize the basic approach required

to determine media properties, and the principles for developing methods to predict properties from

indirect observations.

2.1 Modeling flow in permeable media

To describe flow in permeable media, one could in principle use the well-established mass and mo-

mentum conservation equations, with constitutive equations relating velocity gradients and shear

stresses, for the fluids within the pore space, together with associated boundary conditions at the

solid/fluid interface. We refer to this as the “microscopic” approach. However, the actual geometry

of permeable media essentially defies precise description. Even if it were available, the size of the

associated computational problem would exceed our ability to solve it for any useful size of spatial

domain. Consequently, “macroscopic” models are used to describe flow within permeable media.
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The macroscopic equations correspond to a continuum representation at a larger scale than that

for the fluid. The continuum represents local averages over many “pores”, as compared to the

microscopic description, for which the continuum represents averages over many molecules. Many

models, initially developed empirically, are now firmly established using local volume-averaging of

the associated molecular-scale continuum equations, or other homogenization methods (Slattery

1967; Whitaker 1969). These models firmly establish the functional relationships relating fluid

states and the means for predicting the response to various inputs, given the fluid and media prop-

erties. However, the media properties represent local effective empiricisms, and their determination

remains an outstanding problem.

The flow of a single fluid phase through a rigid permeable media is the most basic physical

situation of interest. In this case, the volume-averaged mass balance provides the equation of

continuity:
∂(φρ)
∂t

= −∇ · (ρv) . (1)

where v is the superficial velocity, ρ the density, and φ the porosity. Volume averaging the differ-

ential momentum balance for the same physical situation yields Darcy’s law:

v = −k
µ
· (∇p− ρg), (2)

where p is the pressure, µ the viscosity, g the acceleration of gravity, and k the permeability. The

flow of a single fluid phase through permeability media can be simulated for any particular situation

by solving Eqs. 1 and 2 with the pertinent boundary and initial conditions and fluid and media

properties.

The velocity and pressure are system states which depend explicitly on position and time. Each

represents an average over a volume element centered at the position at which they are specified.

The porosity and permeability are properties of the media, similarly defined relative to a local

volume element. A tenet of local volume-averaging is that it is not necessary to specify the actual

size of the volume element, provided it is relatively large compared to a pore, but relatively small

compared to the sample. The power of these equations is that the functional relationships among

the properties and states are specified, and the detailed configuration of the solid surface is not

required to describe the pressure and flow associated with a scale that is larger than the pore scale,

yet is resolved spatially within the sample. However, the media properties are effective properties

that must be determined. The finest resolution available for the properties, which we refer as the

intrinsic scale, will be that corresponding to the minimum size of the averaging volume. This must
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necessarily include a number of “pores”–nominally, tens, or perhaps hundreds, of pores. While

the minimum size for the averaging volume cannot really be stated precisely, it is clear that it

must be much smaller that the typical size of a core sample. We believe that our measurements of

porosity and permeability, which are resolved to the millimeter or sub-millimeter scale, are good

representations of intrinsic properties.

To describe the flow of two immiscible fluid phases, we write a continuity and Darcy equation

for each fluid phase:
∂(φρisi)

∂t
= −∇ · (ρivi) (3)

vi = −kkri
µi

(

∇pi − ρig
)

(4)

where si is the saturation of phase i and kri is the relative permeability to phase i. The fluid

saturations are related by:

s1 + s2 = 1. (5)

Locally, pressures for the two fluid phases are related by the capillary pressure:

pc(s1) = p1 − p2 (6)

where phase 1 is taken as the nonwetting phase.

The relative permeability and capillary pressure, to which we will refer collectively as multi-

phase flow functions, are properties of the media and fluids. They are primarily functions of fluid

saturation. In principle, they could vary with position. However, it is presumed that the primary

spatial variations are taken into account through the porosity and permeability, so that it is usual to

assume the multiphase flow properties are uniform over a larger spatial region, perhaps as defined

by distinct geological units. At any rate, we will take them to be uniform within any core sample.

2.2 Determination of properties

The porosity and permeability are effective properties which are required to model flow associated

with any process within permeable media. In addition to these, two relative permeability functions

and a capillary pressure function are required to simulate the flow of two immiscible phases.

The porosity, which is the void fraction of the media, can be determined as the ratio of the

volume of saturating fluid to the total volume containing the fluid and solid. Traditionally, an

average value for porosity is determined gravimetrical. Spatial distributions of porosity can be
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determined using non-invasive spatially resolved measurements within the sample. X-ray CT scan-

ning (Withjack 1988) can be used to determine the porosity distribution. Here, we use MRI, which

has the advantage that the entire three-dimensional distribution can be determined, rather than

that associated with a selection of two-dimensional images. The quantitative resolution of the MRI

signal to assess the amount of saturating fluid is a particular challenge addressed in this project.

The determination of the permeability is considerably more challenging. The permeability is in

essence defined by the Darcy equation (see Eq. 2). That is, the permeability is the value that relates,

at any position, the gradient of the pressure to the velocity. It must be determined by setting up

an experiment, measuring fluid states, or functions of the states, and the solving an associated

inverse problem based on a mathematical model of the experiment. This is demonstrated for the

traditional method for determining the permeability of a core sample.

A fluid is flowed unidirectionally through a porous sample, and the flow rate into the sample and

the pressure drop across the sample are measured. For a sample of length L with a constant cross-

sectional area Ac, when body forces are assumed to be negligible, the permeability is calculated

by

kapp = −µ Q
Ac

L

∆p
(7)

where Q is the volumetric flow rate, ∆p is the pressure drop measured over the sample length L,

and kapp is the apparent permeability in the overall direction of flow. This equation follows from the

general state equations (Eqs. 1 and 2) and represents a model for the particular experiment used.

However, this incorporates the assumption that the permeability is uniform within the sample. If

the material is not homogeneous, the measured value of permeability so obtained is not correct.

Consequently, we refer to the value so calculated to as an “apparent” value–i.e., it is calculated on

the basis of an equation that may not correctly describe the physical problem.

To illustrate the severity of error possible, consider the simple case for which the sample is solid,

except for a single fracture which intersects two opposite faces of the sample. If flow injection is

attempted into a face without the fracture, the permeability will be zero. Fluid will flow when

injected into a face having the fracture, and a non-zero permeability can be calculated. The

apparent permeability thus depends on the particular orientation of the sample, and neither case

provides a good estimate for an “average” permeability.

In this work, we develop an approach that provides, for the first time, the spatial distribution of

permeability within core samples. It is based on the use of MRI to measure velocity distributions,

and the use of those measurements with an associated inverse problem to determine the permeability
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distribution.

The relative permeability is also defined through the Darcy expression (see Eq. 4), and must

be determined through an associated inverse problem. It is essential that the mathematical models

used in the inverse problems be an accurate representation of the physical phenomena occurring

within the experiment. We have developed a general approach for determining relative permeability,

together with capillary pressure, from displacement experiments (Watson, Kulkarni, Nordtvedt,

Sylte, and Urkedal 1998). It utilizes a novel stepped-injection scheme and MRI observations of

saturation to obtain accurate estimates of the functions (Kulkarni et al. 1998). For all applications,

an apparent value of permeability has been used. However, if the actual intrinsic permeability were

determined, it could be incorporated into the inverse problem to avoid errors in the determination

of the properties that would result from inaccurate modeling of the associated experiment. In this

work, we explore the effect of spatial variations of properties on the accuracy of estimates of the

multiphase flow functions, and advance three-dimensional simulation as an element in determining

the flow functions.

2.3 Prediction of properties

While flow experiments must be used to measure properties such as the absolute and relative

permeability, it is most desirable to develop the means to predict permeability from direct measure-

ments. This can be done through the development of empirical correlations that relate measured

values of permeability and other properties, which we call predictors. The use of NMR well logging

measurements to predict permeability has been a very active area of research. An example of such

a prediction is provided by the following correlation developed by (Kenyon et al. 1988):

k = aφ4T 2
m (8)

where Tm is the mean NMR relaxation time. Normally, the coefficient a is calculated on the basis

of a calibration using a set of samples corresponding to a particular region within the reservoir for

which measurements of apparent permeability, average porosity, and average relaxation have been

determined for each sample.

With the intrinsic properties, we believe that much more reliable predictive equations can be

developed since these properties provide thousands of data for each sample. Furthermore, such

observations provide a better opportunity to identify intrinsic correlations among the properties

that may be hidden by the use of average or apparent values for spatially variable properties.
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3 Determination of NMR Relaxation Distributions

A key NMR property is relaxation. The relaxation of fluids in permeable media is profoundly

affected by the solid surfaces. In some cases this can be a nuisance. For example, the (intrinsic)

magnetization intensity at equilibrium is proportional to the amount of fluid observed, and thus its

estimation forms the basis for determination of the porosity, when the sample is fully saturated with

the observed fluid, or saturation, when it is partially saturated. However, the intrinsic intensity can

not be measured directly, and it must be determined under dynamic conditions. Unlike with bulk

fluids, the relaxation of fluids in permeable media is generally so fast that appreciable relaxation

occurs before the signal is acquired. In order to get accurate estimates of porosity and saturation,

it is necessary to model the relaxation process (see Section 3.2) in order to estimate the intrinsic

magnetization intensity.

On the other hand, relaxation can be a source of important information. Since relaxation

depends on the actual structure of the permeable media, relaxation can provide information to

estimate the pore-size distribution. In fact, NMR is probably the best method currently available

to probe micro-structures. The critical information for either of these situations is the estimation of

the relaxation distribution from NMR data. This is fundamentally an ill-posed estimation problem.

While a number of methods have been proposed, it was necessary for us to develop a new approach

in order to get reliable solutions to this problem. We describe that method in this section.

3.1 Introduction

The relaxation of NMR active nuclei, or spins, is a fundamental NMR property. In an NMR relax-

ation experiment, a substance containing NMR active nuclei is placed within the static magnetic

field. The ensemble of spin magnetization is initially parallel to the axial direction of the static

magnetic field. Suppose a 90◦ radio-frequency (RF) pulse is applied, so that the spin magnetiza-

tion flips down to the transverse plane, which is perpendicular to the axial direction. Then, the

magnetization relaxes back to the equilibrium state. During the relaxation process, the projection

of the magnetization on the transverse plane decreases to zero while that on the axial direction

increases to the intrinsic magnetization of the equilibrium state. These two types of relaxation are

called transverse and longitudinal relaxations, respectively.

In this work, we deal with permeable media samples saturated with fluids, such as water and

oil, and we detect the signal from hydrogen nuclei in the fluids. The fluid in a permeable medium

9



experiences various magnetic field environments depending on the pore structure where the fluid

is located. In particular, the spins of fluid in the immediate vicinity of interfaces of fluid and solid

undergo enhanced relaxation as compared to those under bulk conditions due to the interaction with

the solid. In heterogeneous porous media, the relaxation rate is affected by a number of dissimilar

magnetic susceptibilities and chemical components, and consequently the relaxation data reflect

superposition of various relaxation rates.

The magnetization evolution of NMR relaxation is modeled in terms of characteristic relaxation

times. If the spins in a sample relax with the same rates, the relaxation data is described by

a single characteristic relaxation time. On the other hand, there is a number distribution of

characteristic relaxation times–conventionally referred to as NMR relaxation distribution–for fluids

in heterogeneous porous media. Once the relaxation distribution is known, the corresponding

magnetization can be calculated with the model. However, the relaxation distribution cannot be

directly calculated from the relaxation data. Instead, an inverse problem is posed and solved. Here,

the relaxation distribution function is determined such that is most consistent with the data under

the given conditions.

In this inverse problem, the mathematical representation of the distribution function is critical

to obtain reliable solutions. Previously, relatively simple functions such as multi-modal delta-

functions, piecewise-constant models and interpolants of discrete points (Timur 1969; Kroeker and

Henkelman 1986; Kenyon et al. 1989; Whittall and MacKay 1989; Whittall et al. 1991; Howard and

Spinler 1993; Kleinberg 1996) were used to represent the distribution. However, these representa-

tions inherently have limitations arising from the specific shape of the functions. In this project,

we have developed a nonparametric regression method to identify the NMR relaxation distribu-

tion function. The relaxation distribution function is represented by spline functions so that any

continuous distribution function can be arbitrarily accurately represented. The determined NMR

relaxation distribution can provide important structural information about heterogeneous materials

such as pore-size distributions (see Section 4) and the means to recover quantitative spin-density

information from MRI experiments (see Section 5).

It has been known that the nonparametric estimation of relaxation distributions is ill-conditioned,

which means that small changes of errors in the input can seriously affect the solution. The use

of regularization is one of the most appropriate ways to handle such problems (Wahba 1978). The

regularization penalizes variations in the determined distribution insofar as the estimation does not

compromise the consistency with data. The degree of regularization is controlled by a specified
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scalar, the regularization parameter. The methodology used to choose the value of the regular-

ization parameter is critical. Graphical or other ad-hoc methods are often used to determine the

regularization parameter (Hansen 1992; Liaw et al. 1996; Kulkarni and Watson 1997), but these

require user intervention. While these methods may be suitable for analysis of a few data sets,

their hands-on approach is prohibitive when analyzing a large number of data sets, as required

with MRI. In this project, we have developed a data-driven technique based on statistical criteria

to determine regularization parameter. The nonparametric approach together with the developed

methodology for determining regularization parameter provide reliable estimation of the relaxation

distributions. The detailed methodology and the validations are described in the following sections.

3.2 Modeling NMR relaxation distributions

The normalized relaxation distribution function, P (τ), presents the normalized number density of

spins that relax with characteristic time τ . The magnetization value M(t) at a relaxation time t is

written in terms of P (τ):

M(t) = M0

∫ ∞

0
P (τ)K(t, τ)dτ, (9)

which is a Fredholm integral equation of the first kind. Here, M0 is the intrinsic magnetization

and K(t, τ) is the kernel corresponding to the relaxation experiment. The normalized distribution

function, P (τ), satisfies
∫ ∞

0
P (τ) dτ = 1. (10)

The kernel function, K(t, τ), is formulated depending on the NMR experiment. It is exp(t/τ)

for the spin-echo experiment that measures transverse (T2) relaxation, and 1 − α exp(t/τ) for the

inversion-recovery experiment that measures longitudinal (T1) relaxation. Here, α is a parameter

that accounts for inhomogeneities of the RF pulse in an inversion-recovery experiment. Equation 9

can be rewritten as

Y (t) =
∫ ∞

0
P (τ) exp

(

t

τ

)

dτ (11)

for either type of relaxation experiment by representing the normalized magnetization, Y (t), as

M(t)/M0 for T2 relaxation and as [M0 −M(t)]/(αM0) for T1 relaxation.

The relaxation distribution, P (τ), is a physical property that is expected to be well represented

by a smooth, continuous function. Therefore, it is appropriate to represent the function in terms of

splines. Splines are piecewise polynomials whose different polynomial segments are joined together

at knots in a way that ensures continuity properties. It is known that every continuous function
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on a finite domain can be approximated arbitrary accurately by splines with sufficient number

of knots (Schumaker 1981). The relaxation distribution function can be represented in terms of

B-spine functions as

P (τ) =
ns
∑

i=1

ciB
m
i (τ,x). (12)

Here, Bm
i (τ,x) are B-spline basis functions where m is the order of the spline and x represents

the extended partition–the location of the knots. Once the partition is chosen, the distribution is

specified by the complete set of coefficients, ci. The number of coefficients is given by the degrees

of freedom ns, which is the sum of the order and the number of interior knots. In our work, a

sufficiently large dimension of the spline space ns is used so that the estimation of the distribution

function is not significantly influenced by the number and position of knots.

To estimate P (τ), a performance index is formulated and subsequently minimized:

J =
[

Ydata −Ycalc
]T

W
[

Ydata −Ycalc
]

+ nλ

∫ ∞

0

[

d2P (τ)
dτ2

]2

dτ. (13)

The first term in the performance index reflects the precision of fit of the data vector Ydata,

comprised of the data Y data(tj), j = 1, . . . , n, to the corresponding calculated values, Ycalc,

evaluated by Eq. 11. The weighting matrix W is chosen on the basis of maximum likelihood

principles (Beck and Arnold 1977). In our work, we assume that the errors have mean zero and are

identically distributed, so that W is identity matrix.

The second term in Eq. 13 is the regularization term. It is used to stabilize the solution by

enforcing certain constraints on the determined distribution or its derivatives. In the present case,

the regularization term takes the form of the second derivative operator which acts to penalize a

lack of smoothness and sharp changes in the estimated distribution function. The regularization

term is weighted relative to the data fitting term by a scalar, λ, the regularization parameter. It

controls the trade-off between the smoothness of the solution and the goodness of fit to the data

in the performance index. Large values tend to give biased estimates that and over-smooth the

distribution function, leading to an imprecise fit to the data. Small values often provide unrealistic

solutions with high variability.

The calculated values of the observed data are written in terms of the B-spline coefficients, c,

by

Ycalc = Ac, (14)

where the components of A are determined by evaluating the kernel function in Eq. 9 with the
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spline basis functions in Eq. 12:

ai,j =
∫ τmax

τmin

Bm
i (τ,x) exp

(

tj
τ

)

dτ. (15)

Here, τmin and τmax represent the minimum and maximum boundaries of the distribution function,

respectively. The distribution function is zero outside of these boundaries. The performance index

in Eq. 13 is then written formally as a quadratic least squares minimization problem:

min
c
J =‖ Ydata −Ac ‖2 +nλ ‖Mc ‖2 . (16)

The quantity MTM is formed by evaluating integrals of the products of the second derivatives of

the B-spline basis functions. Linear equality constraints,

Gc = 0, (17)

and inequality constraints,

Γc ≥ 0, (18)

are included to further stabilize the solution. Inequality constraints ensure that estimated distri-

bution is non-negative, while equality constraints are used to enforce the desired derivatives of the

determined distribution at the boundaries.

For a specified value of the regularization parameter, λ, and a given set of relaxation data, Ydata,

there is a unique and global solution that minimizes Eq. 16 with the given equality and inequality

constraints. The expression of the solution can be obtained by transforming the constrained problem

to an unconstrained problem. Here, the active inequality constraints are identified and treated as

equality constraints, i.e., they are added to the equality constraints and any dependent constraints

are eliminated. Then, the minimization problem with equality constraints is transformed to an

unconstrained problem (see Appendix 1 for the derivation). The performance index with inequality

and equality constraints (Eqs. 16–18) is equivalently written as

min
c
J =‖ Ydata − Ãc ‖2 +nλ ‖ M̃c ‖2 . (19)

The matrices A and M of the constrained problem are now replaced by Ã and M̃ of the un-

constrained problem. The matrices Ã and M̃ are defined in Appendix 1 and they essentially

incorporate the inequality and equality constraints.

The optimal B-spline coefficients ĉλ for a given λ can be expressed as

ĉλ = [ÃT Ã + nλM̃TM̃]−1ÃTYdata. (20)
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Although ĉλ is provided explicitly by Eq. 20, it is not calculated in that way due to numerical issues

associated with the formation of a matrix inverse. We use a numerical least squares solver (Haskell

and Hanson 1981) to obtain the optimal coefficients, ĉλ. We also exploit this solver to identify the

active inequality constraints. The relaxation distribution function corresponding to the optimal

B-spline coefficients is calculated by

P̂λ(τ) =
ns
∑

i=1

ĉλiB
m
i (τ,x), (21)

and the corresponding normalized magnetization is

Ŷλ = Aĉλ. (22)

Combining Eqs. 20 and 22, the predicted values are expressed as

Ŷλ = Ã[ÃT Ã + nλM̃TM̃]−1ÃTYdata (23)

= H(λ)Ydata,

where H(λ) is the hat matrix.

The statistical criteria for determining the optimal regularization parameter are developed in

terms of the hat matrix (see Section 3.3). Here, the hat matrix is treated as a function of λ for

given matrices of Ã and M̃ which are not dependent on λ. However, a problem arises in calculating

the hat matrix because the active inequality constraints change with respect to λ, and consequently

Ã and M̃ are dependent on λ. We use an iteration method suggested by Villalobos and Wahba

(1987) to solve this problem. Here, Ã and M̃ are first determined without inequality constraints.

The optimum λ with those matrices are determined and, under this λ, new Ã and M̃ are found.

Then, a new optimal λ is determined with the new Ã and M̃. This procedure is repeated until λ

converges to the optimal value.

3.3 Statistical selection of regularization parameter

Nonparametric statistical theory provides the framework for developing a reliable data-driven

method to select the regularization parameter (Eubank 1988; Eubank 1999). Here, an additive

error model is used to represent the data, yj , observed at time tj :

yj = Y (tj , P ) + εj , j = 1, . . . , n, (24)

where P represents the true but unknown distribution function and εj is a random measurement

error with zero mean and variance σ2. The normalized magnetization, Y , defined in Eq. 11 is now
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expressed as a function of the distribution function, P . The criteria to provide assessments of an

estimator’s performance can be expressed in terms of Y (tj , P ). Examples are the loss:

L(λ) =
1
n

n
∑

j=1

[

Y (tj , P )− Y (tj , P̂λ)
]2
, (25)

the risk, which is the expected value of the loss:

R(λ) = E[L(λ)], (26)

and the prediction risk:

Rp(λ) = E

[

1
m

m
∑

i=1

(

y?i − Y (ti, P̂λ)
)2
]

. (27)

The distribution function P̂λ is determined by the n data values (y1, . . . , yn) for a given value of

λ. The prediction risk is based on m observations, y?i = Y (ti, P ) + ε?i (i = 1, . . . ,m), which are

independent from the n measurements used for P̂λ. The prediction risk is related to the risk by

Rp(λ) = σ2 +R(λ). (28)

The value of λ that minimizes either the loss, risk, or prediction risk can be the optimal value.

However, these criteria are defined in terms of the unknown distribution function, P . We use P̂λ

as an estimator of P so that these criteria can be developed in terms of the measured data.

The estimator P̂λ provides the mean squared error (MSE),

MSE(λ) =
1
n

n
∑

j=1

[

yj − Y (tj , P̂λ)
]2
, (29)

which gives a biased estimate of prediction risk because

E[MSE]−Rp 6= 0. (30)

Knowledge of the bias value, calculated to be 2n−1σ2tr[H(λ)] (Eubank 1999), allows the unbiased

prediction risk (UBPR) to be formed:

UBPR(λ) = MSE(λ) +
2
n
σ2tr[H(λ)]. (31)

The relationship between the risk and prediction risk (Eq. 27) yields an expression for an unbiased

estimator of the risk:

UBR(λ) = MSE(λ) +
2
n
σ2tr[H(λ)]− σ2. (32)

In order to use UBR criterion, the variance, σ2, must to be estimated. In this work, a nonparametric

estimate of the variance introduced by Gasser et al. (1986) is used to calculate σ2.
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Cross validation (CV) (Stone 1974), or PRESS (Allen 1974), is another criterion that estimates

prediction risk. The CV criterion is given by

CV(λ) =
1
n

n
∑

j=1

[

yj − Y (t, P̂ (j)
λ )

]2
. (33)

The CV criterion differs from MSE (Eq. 29) in that the distribution function, P̂ (j)
λ , is determined

by n − 1 data (y1, ..., yj−1, yj+1, ...yn) in which the jth datum, yj , is omitted. This criterion is

formed as such that each missing point yj is predicted as a measure of the goodness of λ. It can

be shown that Eq. 33 is equivalent to (Craven and Wahba 1979)

CV(λ) =
1
n

n
∑

j=1

[

yj − Y (tj , P̂λ)
1− hjj(λ)

]2

, (34)

where hjj(λ) is the jth diagonal element of the hat matrix, H(λ).

Generalized cross-validation (GCV) (Craven and Wahba 1979) is a modification of CV criterion.

GCV criterion is given by

GCV(λ) =
1
n

n
∑

j=1

[

yj − Y (tj , P̂λ)
1− n−1trH(λ)

]2

(35)

=
MSE(λ)

[1− n−1trH(λ)]2
. (36)

The GCV differs from CV in that the each residual is divided by the average of the denominator,

1− hjj(λ), which gives a more stable and faster evaluation of the criterion value.

3.4 Validation with simulated data

The developed methodology for determination of relaxation distribution is validated with simulated

data. The simulated data were generated by simulating the NMR relaxation for a given true

relaxation distribution (Fig. 1). In Fig. 1 and the following, the relaxation distribution, P (τ), is

presented in a semi-log scale such that a portion of the area under the curve is proportional to the

number of spins in the corresponding range of characteristic relaxation time.

We choose the kernel, K(tj , τ), to be exp(−tj/τ). This kernel applies to conventional transverse

or longitudinal relaxation experiments. Then, the simulated relaxation data, yj , is calculated

from the true relaxation distribution using Eq. 24. The measurement error, εj , was generated

by a random variable, ε, following a normal distribution in which the 95% confidence interval is

|ε| ≤ νymax. Here, ymax = max[y(tj , P )] = 1 and the noise, ν, was chosen to be 0.1%, 1.0%

and 5.0%, respectively. The generated simulated data are presented in Fig. 2 for the three noise
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levels. We used cubic B-splines (the order of spline, m, is 4) for the representation of the relaxation

distribution. We selected the number of knots to be 300. They are logarithmically spaced between

τmin = 10−6 s and τmax = 10 s. The validation for the selection of the number of knots is provided

in this section.

The relaxation distributions were estimated for the three data sets. The regularization parame-

ter was determined using the UBR, CV, and GCV criteria. As described in Section 3.2, the optimal

regularization parameter was determined by an iteration method. Figure 3 presents an example of

how this works. The figure shows the CV scores calculated for the 5.0% noise data. Figure 3(a)

is zoomed in 3(b) to clearly show the region containing the minimum. The CV scores for the first

score line are calculated without inequality constraints and the first optimal λ that minimizes the

scores is determined. Then, the active constraints are identified with the first optimal λ. While

these active constraints are fixed, the scores for the second score line are calculated and the second

optimal λ that minimizes the second scores is determined. This procedure is repeated until the

change of the optimal λ is sufficiently small ( < 1.0× 10−25 in this work). As shown in the figure,

the optimal λ quickly converged for all of the analyzed simulated data, i.e., the desired order of

accuracy was achieved at the first few iteration steps.

The determined regularization parameters are summarized in Table 1 with their corresponding

scores. The regularization parameter that minimizes the loss (Eq. 26), λloss, is also presented in

the table as well as the corresponding value of loss, L(λloss), to be compared with the determined

λ. Note that the loss can be calculated for each set of simulated data since the true relaxation

distribution is known. The table shows that the determined λ is close to λloss, which validates that

the appropriate λ is chosen by the statistical criteria. The regularization parameter value increases

as the noise increases. This indicates that the smoothness of the solutions is more enforced at the

cost of goodness of fit for the data as the data have bigger measurement errors.

It is important to use a sufficiently large number of knots in the relaxation distribution function,

P (τ), which is represented by B-splines, as mentioned in Section 3.2. In this work, the number of

knots is selected by observing P (τ) with respect to the number of knots: we increase the number

of knots until there is no significant improvements in P (τ). In order to quantify the differences of

a pair of distribution functions, we denote the P (τ) estimated using Ni number of knots as PNi(τ)

and define the integral-square-difference (ISD) of PNi(τ) and PNj (τ) as

ISD[PNi , PNj ] =
∫ ∞

0

[

PNi(τ)− PNj (τ)
]2

dτ. (37)
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We examined ISD for a series of number of knots such as Ni = 50, 100, 150, 200, 250, 300, 350,

400 as shown in Fig. 4. The ISD values of adjacent Ni are presented in Fig. 4(a). This graph

shows that there are no significant improvements in P (τ) with respect to the one of adjacently

smaller Ni when Ni is greater than 200. The ISD with respect to 400 knots (Fig. 4(b)) shows

that there are no significant differences among the estimations with Ni greater than 200 while the

other three estimations with Ni = 50, 100, 150, significantly deviate from them. We performed the

similar analysis for other sets of data and chose to use 300 as the number of knots for all of them.

The estimated relaxation distributions for each data set are presented in Fig. 5. The estimations

are satisfactorily consistent with the true distribution, although there are deviations that become

significant as the measurement error increases. The three criteria provide all similar estimations.

In all estimations, the three major relaxation time ranges are identified. The predicted relaxation

curves, calculated using the determined relaxation distribution, y(t, P ) =
∫ τmax
τmin

P (τ) exp(−t/τ) dτ ,

are presented in Fig. 6 with the corresponding simulated relaxation data. The figure shows that the

predictions are consistent with the data regardless of the noise levels. The three statistical criteria

give virtually the same predicted relaxation curves.

18



noise λloss L(λloss) criterion λ, determined score

0.1% 6.10× 10−18 2.44× 10−8 UBR 1.78× 10−18 3.30× 10−7

CV 1.49× 10−19 2.52× 10−7

GCV 9.10× 10−19 2.55× 10−7

1.0% 8.79× 10−18 2.22× 10−6 UBR 7.27× 10−17 2.72× 10−5

CV 5.77× 10−17 2.70× 10−5

GCV 5.88× 10−17 2.65× 10−5

5.0% 4.33× 10−15 3.84× 10−5 UBR 3.32× 10−15 6.41× 10−4

CV 2.83× 10−15 6.37× 10−4

GCV 3.06× 10−15 6.41× 10−4

Table 1: The results of the estimation using 300 B-spline knots
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Figure 1: “True” relaxation distribution
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Figure 2: Simulated data. (a) 0.1% noise, (b) 1.0% noise, (c) 5.0% noise
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Figure 5: Estimated relaxation time distribution (a) 0.1% noise, (b) 1.0% noise, (c) 5.0% noise
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Figure 6: Predicted relaxation curves compared with the simulated data (a) 0.1% noise, (b) 1.0%

noise, (c) 5.0% noise
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Sample R138 R145 R207 R221 R237 BENT1

Diameter (cm) 2.5 2.5 2.5 2.5 2.5 2.5

Length (cm) 4.22 4.32 4.58 3.77 4.19 2.0

Fluid volume (cm3) 4.96 4.82 4.58 3.77 4.38 2.32

Bulk porosity 0.240 0.227 0.223 0.189 0.213 0.237

Table 2: The dimensions of the samples

3.5 Analysis with experimental data

We performed NMR relaxation experiments on several sandstone samples to determine the re-

laxation time distributions. Throughout this report, we demonstrate the experimental results for

one Bentheimer sandstone sample (BENT1) and several actual reservoir sandstone samples (R138,

R145, R207, R221, R237), and a thin Bentheimer sample (BENT2) used for velocity imaging in

Section 6. The reservoir samples were provided by a major petroleum company.

The reservoir sample and BENT1 are cylindrically shaped with dimensions given in Table 2. The

samples were sealed using epoxy (STYCAST r© 2651) and surrounded by plexiglass for mounting in

the RF probe. The hydrogen nuclei in the epoxy and the plexiglass have very small T2 values so that

they do not contribute to the observed signal intensity. The samples were vacuum saturated with

brine solution (3 wt.% NaCl, 0.03 wt.% NaN3 in de-ionized water). The bulk porosity is calculated

from the total volume of the fully saturated fluid in each sample divided by sample volume.

NMR experiments were performed with the Bruker BioSpec r© 24/30 system operated at 100 MHz.

The system is equipped with ± 20 Gauss/cm gradient coil inside the 30 cm magnet bore. A 3.5-

cm-diameter birdcage coil was used in the experiments. All the experiments were performed at

regulated room temperature (21◦C).

We performed inversion recovery experiment using 180◦-delay-90◦ RF pulse sequence to esti-

mate T1 relaxation distributions. The delay time between the two RF pulses corresponds to the

measurement time. The delay times were carefully selected so that they cover the appropriate

range of the T1 relaxation times. The measured inversion-recovery data of BENT1 is presented in

Fig. 7.

We use a Carr-Purcell-Meiboom-Gill (CPMG) (Carr and Purcell 1954; Meiboom and Gill 1959)

sequence to measure the spin echo attenuation caused by T2 relaxation and estimate the relaxation

distribution. The pulse sequence is based on the spin-warp three-dimensional volume imaging
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Figure 7: T1 relaxation data by inversion-recovery experiment

sequence except that, following the initial excitation by a 90◦ pulse, 180◦ pulses continue to be

applied with a spacing of TE so that a train of echoes occurs. Both the first 90◦ and subsequent

180◦ pulses are nonselective broadband pulses. An obvious advantage of CPMG over the Hahn

spin-echo is the shorter imaging time. An entire series of relaxation-attenuated CPMG data are

collected in about the same time as a single spin-echo sequence. Another advantage is that the

CPMG technique allows for the acquisition of T2 data with the molecular diffusion time controlled

by the experimentally selected value of echo spacing. The use of a short echo-spacing can minimize

the diffusion attenuation rate and improve the interpretation of fitting parameters with suitable

relaxation models.

The estimated T1 and T2 relaxation distributions for BENT1 are presented in Fig. 8. The

relaxation distributions for the reservoir samples are provided in Appendix 2. We determined the

harmonic average relaxation time, defined by

τavg =
[∫ ∞

0

1
τ
P (τ)dτ

]−1

, τ = T1, T2, (38)

from the relaxation distribution and presented in Table 3. The average relaxation time is closely

related to the pore structures of the media. Figure 3 shows that the relaxation rate of the reservoir

samples are significantly greater than that of the Bentheimer sample on average. This implies that

the pore structure of the Bentheimer sample is significantly different from the reservoir samples.
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Sample T avg2 (ms) T avg1 (ms)

R138 3.10 265

R145 2.82 165

R221 4.14 156

R237 4.98 240

BENT1 17.13 346

Table 3: Determined average relaxation times of the samples

3.6 Conclusions

A new data-driven nonparametric regression method is presented to estimate NMR relaxation

distribution functions from NMR relaxation data. Statistical criteria are used to determine the

optimal regularization parameter subject to equality and inequality constraints associated with the

distribution function.

We validated the method with simulated data that were generated by a given true distribu-

tion function with different levels of measurement errors. The estimated function was consistent

with the true function for all sets of data. The regularization term effectively worked so that the

measurement errors did not significantly affect the estimation. All three statistical criteria exam-

ined provided similar values for the regularization parameters and the corresponding relaxation

distribution functions.

The T1 and T2 relaxation distributions of several sandstone samples were estimated from relax-

ation experiments. The average relaxation times were evaluated from the relaxation distributions.

The results showed that the relaxation rates associated with the reservoir samples are significantly

greater than those for the Bentheimer sample.
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Figure 8: NMR relaxation distributions of the Bentheimer sample (BENT1)
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4 Determination of Surface Relaxivity and Pore-Size Distribu-

tions

The surface relaxivity is important for developing empirical correlations for improved permeability

prediction. The surface relaxivity is also required to obtain pore-size distribution functions from the

relaxation distributions. However, current methods to determine surface relaxivity is problematic.

We develop a new method that extends the usefulness of NMR experiments for determining the

surface relaxivity.

4.1 Introduction

One of the important porous media properties that NMR provides is the pore surface-to-volume

ratio distribution, which is conventionally called pore-size distribution. With the “fast-exchange”

approximation and isolated pore assumption (Brownstein and Tarr 1977), the distribution of NMR

relaxation rates observed can be directly scaled to the pore-size distribution. The methodology for

determining NMR relaxation distribution is described in Section 3. The issue in this section is how

to determine the scaling factor to obtain pore-size distribution.

Several studies have proposed to determine an average pore-size from independent experiments,

including mercury porosimetry (Gallegos et al. 1987), thin-section analysis (Howard et al. 1990),

and gas adsorption (Borgia et al. 1996), to scale the relaxation distribution. However, NMR of-

fers a number of advantages compared to those methods. Pulsed-field-gradient-stimulated-echo

(PFGSTE) experiments can be used to determine the surface relaxivity–the NMR relaxation rate

at the fluid-solid interface–which provides an intrinsic scale for specifying the pore-size distribu-

tion (Hürlimann et al. 1994; Latour et al. 1995; Fordham et al. 1994; Liaw et al. 1996).

These reported NMR methods are based on an asymptotic relationship for molecular self-

diffusion occurring at vanishingly short time. We have determined that such small times may not

be achieved for many experiments of interest. We present a new method for obtaining NMR surface

relaxivity from PFGSTE experiments that is free from restrictions on the experimental times.

4.2 Scaling relaxation distribution to pore-size distribution

Brownstein and Tarr (1977) proposed that T1 for a fluid in a pore at the fast-exchange limit can

be expressed in terms of T1b and T1s, which are the relaxation times in the bulk phase and in the
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pore surface layer, respectively:

1
T1

=

[

1− η
(

S

V

)

pore

]

1
T1b

+ η

(

S

V

)

pore

1
T1s

, (39)

where η is the thickness of the surface layer and (S/V )pore is the surface-to-volume ratio of the pore.

Relaxation on pore surfaces is much faster than that of the bulk phase, because of the interactions

between the solid and fluid molecules in the immediate vicinity of surfaces, i.e., T1b >> T1s. Then,

Eq. 39 can be approximated as

1
T1

=
η

T1s

(

S

V

)

pore
= ρsr

(

S

V

)

pore
. (40)

Here, η/T1s is defined as surface relaxivity ρsr. The surface relaxivity represents the strength of

the relaxation on pore surfaces, and it depends on the properties specific to the solid surface and

the fluid. A uniform value for the surface relaxivity is reasonable regardless of whether chemical

composition of the solid material is uniform within a pore (Kleinberg et al. 1994). Spatial variations

in chemical composition across the medium could lead to spatial variations in the surface relax-

ivity. One could, in principle, use spatially resolved NMR experiments to determine such spatial

variations. Here, we assume the surface relaxivity is uniform.

Equation (40) implies that a T1 distribution can be converted to the corresponding pore-size

distribution through surface relaxivity. In this work, we define effective pore-radius as

a =
3

(S/V )pore
. (41)

The pore-size distribution P̃ (a) in the following refers to the distribution of effective pore-radius.

Once ρsr is determined the relaxation distribution can be scaled to the pore-size distribution by

a = 3ρsrT1, (42)

which is derived from Eqs. (40) and (41).

4.3 Determination of surface relaxivity using PFGSTE experimental data

The surface relaxivity can be related to the sample surface-to-volume ratio, S/V , as follows: The

average relaxation time, T avg1 , is defined as the harmonic mean of T1 weighted by the number of

nuclei corresponding to each value of T1:

1
T avg1

=
Np
∑

j=1

1
T1j

nj
N

=
∫ ∞

0

1
τ
P (τ)dτ. (43)
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Assuming ρsr is uniform, we obtain the following from Eq. 40:

ρsr
1

T avg1

=
Np
∑

j=1

ρsr
1
T1j

nj
N

=
Np
∑

j

Sj
Vj

nj
N
. (44)

Here, Sj and Vj represent surface area and pore volume of pore j, respectively. Given that nj/N =

Vj/V ,

ρsr
1

T avg1

=
Np
∑

j=1

Sj
V

=
S

V
. (45)

Thus, ρsr can be calculated from the sample values S/V and T avg1 . In this section, we review the

use of PFGSTE to determine S/V and surface relaxivity.

In the PFGSTE sequence, the molecular displacement due to self-diffusion during the time, ∆,

is encoded by the two magnetic gradient pulses. The details of PFGSTE sequence are described in

Section 6, where it is used for velocity imaging. In this section, we are interested in detecting the

self-diffusion of molecules using PFGSTE. The same basic pulse sequence that is used for velocity

imaging is applied here, although there are some differences in the parameters associated with the

pulse sequence and in the interpretation of the measured signal.

The self-diffusion of molecules in restricted geometries can be described by apparent diffusivity.

The apparent diffusivity is defined in terms of mean-square displacement of molecules by

Dapp(t) =
< [r(t)− r(0)]2 >

6t
, (46)

where r(t) is the position of each spin at time t and the angular brackets indicate the ensemble

average. Mitra and Sen (1992) have shown that the apparent diffusivity can be evaluated from

PFGSTE data, M(q,∆), according to

Dapp(∆) = − 1
∆

lim
q→0

∂ ln[M(q,∆)/M(0,∆)]
∂(q2)

, (47)

where q = δγG and γ is gyromagnetic ratio. In porous media, the apparent diffusivity decreases

from the value of bulk diffusivity, D0, as ∆ increases because of restrictions to diffusion posed by

the solid surfaces. Mitra et al. (1992) expanded Dapp(∆) as a polynomial series in terms of
√

∆.

The “short-time approximation” is given by the first order term:

Dapp(∆)
D0

' 1− 4
9
√
π

(

S

V

)

√

D0∆ (48)

The sample surface-to-volume ratio, S/V , has been determined from PFGSTE data using

Eqs. (47) and (48) (Fordham et al. 1994; Liaw et al. 1996). To this end, PFGSTE data are measured
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Figure 9: Procedure of the proposed method for determination of surface relaxivity

with a series of different gradient strengths and diffusion times, and the apparent diffusivities are

evaluated as a function of diffusion time. The PFGSTE data must be interpolated to find the

differential value, as q → 0, in Eq. 47. Then, S/V is determined by the linear relationship be-

tween Dapp(∆) and
√

∆ given by Eq. 48. However, the measurements corresponding to the range

of time over which the asymptotic representation is valid cannot be achieved in some PFGSTE

experiments, particularly when samples exhibit relatively fast relaxation.

In an effort to extend the utility of this approach, Hürlimann et al. (1994) used a two-point Padé

approximation introduced by Latour et al. (1993) to interpolate between the short and long time

asymptotic relations. Consequently, the interpolated equation includes parameters associated with

the two asymptotic equations and an additional fitting parameter. The determination of S/V from

the interpolated equation involves identification of those parameters, but this requires additional

experiments, such as permeability measurement (Hürlimann et al. 1994).

In our method, we mathematically model the PFGSTE experiment over the full range of ex-

perimental time. Here, the PFGSTE response from a sample with a given pore-size distribution is

represented in terms of the strength of applied gradient pulse and diffusion time. Once the PFG-

STE experiment is modeled, the surface relaxivity is determined from the measured stimulated

echo data through an inverse problem.
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Figure 9 illustrates how this problem is solved. The inversion recovery experiment is performed

and the T1 relaxation distribution is estimated. The surface relaxivity is initially postulated, and

P (τ) is scaled to P̃ (a). The stimulated echo calculated from the model, M calc(q,∆), is compared

with experimental data, Mobs(q,∆), and the surface relaxivity is updated until it minimizes the

performance index

J =

[(

Mobs(q,∆)
Mobs(0,∆)

)

−
(

M calc(q,∆)
M calc(0,∆)

)]2

. (49)

Then, the pore-size distribution can be obtained by the determined surface relaxivity and the

relaxation distribution.

It should be noted that this approach avoids the need for defining and using time-dependent

apparent diffusivities and estimating derivatives from discrete data–often a source of large errors–as

done in previous methods. Furthermore, the entire set of measured data may be used, rather than

just those values corresponding to sufficiently “short” times, if they are indeed obtainable.

At longer times, however, additional features of the structure of the permeable media, aside

from just the value of S/V , become important. One could consider a hierarchy of mathematical

models of increasing complexity, depending on the manner in which the structure of the media is

represented. We consider here one of the simpler models that still allows for an entire distribution

of pore-sizes.

We assume that pores are isolated, and of spherical shape. Note that current methods used to

estimate pore-size distributions from NMR experiments are based on the assumption of isolated

pores. To meet this assumption, the data should not be significantly affected by inter-pore diffusion.

The effect of inter-pore coupling has been investigated by McCall et al. (1991). They simulated

decay rates using an idealized network model containing pores and throats and demonstrated that

the spectra of decay rates narrows as the degree of inter-pore coupling increases. They speculated

that inter-pore coupling is probably not significant for sandstones but could be significant for sol-

gel glasses having very large porosities (∼ 85%). Latour et. al. (Latour et al. 1992) investigated

whether inter-pore coupling was significant for various water-saturated rock samples. They showed

that the relaxation time distributions are not sensitive to the temperature changes ranging from

25 to 175oC, implying that the effect of pore connectivity is not significant (Kleinberg 1994) and

the isolated pore model is valid in describing such samples. These studies considered the entire

range of time associated with spin-lattice relaxation. It should be noted that the diffusion times

associated with the PFGSTE experiment can likely be selected sufficiently small to ensure that the

isolated pore assumption is always met.
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The stimulated echo for a sample having pore-size distribution P̃ (a) is represented by the

integral

M(q,∆) =
∫ ∞

0
P̃ (a)M(a; q,∆)da, (50)

where M(a; q,∆) is the magnetization for pores of size a. The stimulated echo signal M(q,∆) can

be expressed as

M(q,∆) = M0

∫ ∫

Ḡ(r, r′,∆) exp
[

−iq · (r− r′)
]

drdr′. (51)

Here, M0 = M(q = 0,∆ = 0). The usual short gradient pulse approximation (Tanner and Stejskal

1968), in which the gradient pulse widths are assumed much smaller than the diffusion time (δ �

∆), is used. The propagator Ḡ(r, r′,∆) represents the probability that a spin initially at point r

moves to location r′ during the time ∆. This satisfies the relation

∂Ḡ(r, r′, t)
∂t

= D0∇2Ḡ(r, r′, t), t > 0 (52)

with the initial condition,

Ḡ(r, r′, 0) = δ̂3(r− r′), (53)

and the boundary condition

D0n · ∇Ḡ(r, r′,∆) + ρsrḠ(r, r′,∆)|surfaces = 0, (54)

where δ̂ is the Dirac delta function and n is the vector normal to the pore surfaces.

The solution of Eqs. (51)–(54) can be obtained analytically for simple geometries such as planar,

cylindrical and spherical pores (Mitra and Sen 1992; Snaar and As 1993; Coy and Callaghan 1994;

Callaghan 1995). We use the spherical pore model since it is the most reasonable one to describe

three-dimensional pore space. The stimulated echo of a single spherical pore with radius a is written

as (Mitra and Sen 1992; Callaghan 1995)

M(a; q,∆) = M0

∞
∑

n=0

∞
∑

l=0

6(2l + 1)ζ2
ln exp(−D0∆ζ2

ln/a
2)

(ζ2
ln − q2a2)2

(qaj′l(qa) + ρsra/D0jl(qa))2

(

ρsra/D0 − 1
2

)2
+ ζ2

ln −
(

l + 1
2

)2 . (55)

Here, jl is a spherical Bessel function of order l and the eigenvalue ζln is the nth root of the equation

ζlnj
′
l(ζln) = −ρsra

D0
jl(ζln). (56)

We note that numerical solutions could be used if more complex shapes, or even coupled pores

systems, were desired.
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Figure 10: The “13-interval, Condition I” pulsed field gradient stimulated echo pulse sequence

4.4 Experiment

A PFGSTE experiment was performed on the Bentheimer sample (BENT1) to determine its surface

relaxivity. We use a pulse sequence based on the “13-interval, Condition I” sequence of Cotts et al.

(1989) (Fig. 10), which is designed to reduce the errors due to background magnetic gradient arising

from the magnetic susceptibility contrast in the porous media. Compared to the Stejskal and Tanner

(1965) sequence, the pulse sequence has alternating gradient directions with additional 180o RF

pulses in dephasing and rephasing stages. As a result, the phase changes due to the background

gradient are refocused. In stimulated echo sequences, unwanted spin-echoes are also generated and

often overlap with the stimulated echoes. This situation becomes more complicated when a greater

number of RF pulses are applied. We used phase cycling and spoiler gradients (Fordham et al.

1994; Liaw et al. 1996) to mitigate this problem so that the desired stimulated echo is accumulated

preferentially. The gradient pulses are designed in trapezoidal shape, which makes q = γδG, with

the maximum amplitude of G and width of δ/2 for each gradient pulse. The gradient pulse width

δ was 2 ms. The PFGSTE experiment was performed with a series of gradient pulses from G =

0 G/cm to 19 G/cm for each of the four different diffusion times: ∆ = 20 ms, 30 ms, 50 ms, and

100 ms.

4.5 Results and discussion

Figure 11 shows the measured PFGSTE data and the calculated values with the estimated surface

relaxivity. The surface relaxivity was estimated using the T1 relaxation distribution of the sample

(Fig. 8a). The result of the estimation is summarized in Table 4. Here, the average pore-radius

aavg is the effective radius corresponding to the overall S/V evaluated by aavg = 3/(S/V ) and
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Sample BENT1

Number of data 80

RMSE 0.0504

ρsr (µm/s) 18.6 µm/s

aavg (µm) 19.3 µm

S/V (µm−1) 0.16 µm−1

Table 4: Results of surface relaxivity estimation for reservoir samples

S/V = 1/(ρsrT
avg
1 ). Figure 11 and the value of root-mean-square error (RMSE) indicate a good fit

to the experimental data, validating the model used in this study. The T1 distribution is converted

to the pore-size distribution using the determined surface relaxivity (Fig. 12).

It is instructive to investigate the range of time over which the short-time approximation holds.

If we suppose that the model and estimated distribution are correct, we can use Eq. 47 to calculate

the apparent diffusivity for any time ∆. This is plotted in Fig. 13. Note that these simulated values

are consistent with values calculated directly from the measured data (also shown in Fig. 13). The

short-time approximation given by Eq. 48, with our estimated value of S/V , is plotted in Fig. 13.

Note that its slope is consistent with that of the simulated curve as ∆ → 0. The figure indicates

that the short-time approximation is valid for
√
D0∆ < 2 µm. However, that approximation is not

useful for the interpretation of the data since there are no data within that range of time.

The PFGSTE method for determination of surface relaxivity is applied to the reservoir samples.

The results of the surface relaxivity estimation are presented in Table 5. The table shows that while

the data from R238 are fitted by the model as well as the Bentheimer sample, the data from the

other two samples are not. This deviation probably arises from the assumptions associated with the

model such as fast-exchange approximation and spherical pores. While the model can be improved

by considering more precise simulation of the NMR experiment, it should be noted that the surface

relaxivity could not have been evaluated in other ways using the given PFGSTE data. Tables 4

and 5 show that the average pore size of the Bentheimer sample is larger than those of the reservoir

samples while their surface relaxivity values are approximately in the same order of magnitude.

36



0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

q2 (µ m−2)

ln
[ M

(q
, ∆

) /
 M

(0
, ∆

) ]

∆ = 20 ms
∆ = 30 ms
∆ = 50 ms
∆ = 100 ms

Figure 11: PFGSTE data and calculated values

10−2 10−1 100 101 102 103 104
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

a (µm)

~ 
   

   
   

   
 P

[lo
g 10

(a
)]

Figure 12: Determined pore-size distribution
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Sample R238 R138 R145

Number of data 44 80 80

RMSE 0.0181 0.142 0.134

ρsr (µm/s) 44.0 22.6 14.7

aavg (µm) 9.9 7.4 3.0

S/V (µm−1) 0.30 0.41 1.0

Table 5: Results of surface relaxivity estimation for reservoir samples (The experimental data for R238

were measured with General Electric 2T Omega CSI system)
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4.6 Conclusions

A new method was developed and validated to determine surface relaxivity for use in estimating

pore-size distributions and developing correlation to predict permeability. The PFGSTE experiment

is mathematically modeled and the surface relaxivity is found by minimizing the differences between

the calculated and measured echo data. The new method avoids restrictions on experimental times

which are integral in previous methods, and it does not require estimates of derivatives of measured

data, which can be a significant source of errors.

The new method is demonstrated with experiments performed on Bentheimer and reservoir

sandstone samples. Examination of the differences between measured data and the corresponding

calculated values showed that a more precise reconciliation of the data was achieved with Ben-

theimer sandstone. It gave a precise fit to the experimental PFGSTE data, from which surface

relaxivity and the corresponding pore-size distribution are obtained. The surface relaxivity from

reservoir samples are also determined and evaluated.
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5 Determination of Porosity and Saturation Distributions

The net magnetization at equilibrium is proportional to the number of NMR-active nuclei, thus

providing, in principle, the means to determine the amount of fluid, and consequently the porosity

or saturation. However, the equilibrium state is not observed directly and must be inferred from

dynamic observations that include relaxation effects. Here we develop methodology to estimate

the intrinsic (equilibrium) magnetization intensity so that accurate assessments of porosity and

saturation distributions can be obtained.

5.1 Introduction

Porosity and fluid saturation are fundamental properties used to characterize multiphase flow in

porous media. Quantitative measurements of these distributions are essential for describing the

amount of fluid phases present within local regions. The interpretation of NMR relaxation data

allows the accurate quantification of the relative amount of the observed fluid, as a function of

position, throughout the samples of permeable media. When a single fluid phase fills the pore

space, the porosity distribution can be computed. When multiple fluid phases are present, each

fluid saturation can be determined.

In this project, we have developed methodologies for the quantification of porosity and satu-

ration distributions in porous media in up to three spatial dimensions. Experiments are carried

out by detecting the NMR signals from protons in the fluid molecules. The use of NMR imaging

techniques to determine porosity and saturation distributions is based on the principle that the in-

trinsic image signal intensity is proportional to the number of protons in the corresponding volume

element of the sample. The main challenge in quantification arises from the fact that the intrinsic

nuclear magnetization is not actually measured since imaging sequences have a certain minimum

time from excitation of the spin system to acquiring image data. Thus, some relaxation occurs

before data are acquired. For fluids in porous media, the relaxation is significantly enhanced due to

the fluid/solid interaction and diffusion of fluid molecules in the presence of magnetic-susceptibility-

derived field gradients. The relaxation rate is sensitive to the pore size and fluid saturation, as

well as local surface compositions. To obtain quantitative values of porosity and saturation in a

heterogeneous sample, it is essential to consider the spatial variation of the relaxation effects on the

observed image signals. By measuring the signals corresponding to different degrees of relaxation,

the intrinsic magnetization intensity can be estimated for each volume element, or voxel.
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TE/2 TE/2TE/2

Figure 14: An example of three-dimensional CPMG imaging pulse sequence.

5.2 Methodology

We use a CPMG imaging pulse sequence incorporated with spatial encodings (Fig. 14) to obtain

T2 relaxation data at each voxel. The spatial information is frequency-encoded in one dimension

and phase-encoded in the other two dimensions.

The relaxation distribution is estimated for each voxel as described in Section 3, where the

individual regularization parameter for each voxel is sought. Once the (non-normalized) relaxation

distribution of a voxel i, Pi(τ) = M0iPi(τ), is determined, the corresponding intrinsic magnetiza-

tion, M0i can be easily calculated by

M0i =
∫ ∞

0
Pi(τ) dτ. (57)

Then, the mass of fluid in voxel i, mi, is related to M0i by

M0i = cm mi, (58)

where cm is the specific magnetization intensity.

The value of cm is affected by several experimental quantities, such as the receiver gain, the

static magnetic field, and the quality factor–a measure of the energy losses in the receiving coil.

While the receiver gain may change only slightly with time during an experiment, the quality

factor may change significantly (Abragam 1961; Mandava et al. 1990). The specific magnetization

intensity can be determined by placing a reference standard containing a known quantity of fluid

into the imaged volume next to the sample (Chang et al. 1993). During the experiment, both the
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sample and reference standard experience the same receiver gain and quality factor, so that the

value of cm for both is the same throughout the experiment. An alternative way of determining

specific magnetization is to use the amount of fluid in the sample if it can be accurately measured.

The porosity is determined by imaging a fully saturated sample with an NMR active fluid such

as water. The fluid is assumed to completely fill the void space. The fluid mass determined in

Eq. 58 is then scaled to fluid volume using the fluid’s density, ρ. The porosity for the ith voxel is

then given by

φi =
M0i

kmρVi
, (59)

where Vi is the volume of the ith voxel. The saturation distribution is determined from a sample

saturated with multiple phases of fluids. The procedure for determination of two-phase saturation

distributions is essentially the same as that of porosity distribution when the signal from one of

the fluids is suppressed. We use two fluids such as D2O and oil for which Lamar frequencies are

different to selectively detect one phase: The probe is tuned to one of them, in our work, oil, so

that the signal from the other fluid (D2O) is not detected. The saturation of a phase j in a voxel i

is calculated by

(Sj)i =
(M0j)i
kmρjViφi

, (60)

where (M0j)i is the intrinsic magnetization of phase j in voxel i and ρj is the density of the phase.

5.3 Experimental results and discussion

In this section, we demonstrate our experimental works to determine porosity distributions for

the Bentheimer and reservoir samples (Table 2). The procedure for determination of saturation

distributions is not presented here in understanding that it is essentially the same as that for

determination of porosity distributions. Experimentally resolved saturation distributions presented

in Section ??.

The three-dimensional CPMG imaging pulse sequence (Fig. 14) was implemented in ParaVision r©,

which is the pulse programming and data acquisition software system equipped with the NMR im-

ager. The key parameter values associated with the imaging sequence are given in Table 6. The

post processing of the raw data, including Fourier transforms, were performed in MATLAB r©.

The NMR T2 relaxation data for each voxel were analyzed to obtain the corresponding relax-

ation distribution and the intrinsic magnetization. The relaxation distribution was represented by

cubic B-spline basis functions with a partition of 100 interior knots logarithmically spaced between
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Sample Reservoir samples Bentheimer (BENT1)

Spectral width 50000 Hz 50000 Hz

Radio-frequency(RF) pulse length 50 µs 50 µs

Repetition time 5 s 1 s

Echo spacing 3.06 ms 4.6 ms

Number of echoes 32 50

Field of view 64 × 32 × 32 mm3 30 × 30 × 30 mm3

Matrix size 32 × 16 × 16 32 × 16 × 16

Voxel size 2.0 × 2.0 × 2.0 mm3 0.938 × 1.875 × 1.875 mm3

Table 6: Parameters of CPMG imaging sequences

1 × 10−5 and 10 seconds. The optimal regularization parameter of each voxel was found by the

UBR criterion. The intrinsic magnetization was scaled to porosity value using the bulk porosity.

The CPMG relaxation data and the corresponding analyzed results are exemplified for a voxel

in Fig. 15. The position of the voxel is represented by the variables Z1, Z2, and Z3, each of

which numbers the voxel along the corresponding z1-, z2-, and z3-directions. Here, we take the

convention that z1 is parallel with the static magnetic field, z2 is horizontal, and z3 is vertical.

The solid line in the Fig. 15(a) stands for the predicted relaxation calculated by the determined

relaxation distribution given in Fig. 15(b). The value of the line at t = 0 represents the intrinsic

magnetization. Figure 15(a) shows that the intrinsic magnetization significantly deviates from the

first echo, which would not be accurately estimated unless the relaxation distribution is reliably

estimated.

The porosity distribution (resolved in three dimensions) is obtained by scaling the intrinsic

magnetization values. The porosity distribution is represented as a series of two-dimensional gray-

scale images in Fig. 16. Each image of the figure represents a horizontal slice of the sample,

numbered from the bottom to the top. Since the field of view is larger than the sample size, there

are regions in the images that do not belong to the sample. For those regions, the porosity is

assigned to be zero and they are presented with black areas in the images.

While Fig. 16 shows the spatial distribution of the porosity, its number distribution can provide

useful statistical information for understanding the characteristics of the porous media. The his-

togram of the porosities of the Bentheimer sample (BENT1) is given in Fig. 17 with the correspond-
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Figure 15: The relaxation data (a) and the estimatied distributiion function (b) of a voxel at Z1 =

16, Z2 = 9, Z3 = 8 in the Bentheimer sample (BENT1)

ing statistical analysis provided by MINTAB r©. The Anderson-Darling Normality Test (Stephens

1976; Stephens 1979) is used to test whether the porosity values are normally distributed. The null

hypothesis is that the porosity distribution follows a normal distribution, and the test static, A2,

is given by

A2 =
Nv
∑

i=1

(2i− 1)
Nv

[lnF (φi) + ln(1− F (φNv+1−i)]−Nv. (61)

Here, F is the cumulative normal distribution function, φi are the ordered porosity data, and Nv

is the number of voxels. Stephens (1979) provides the critical values of A2 for various significance

levels. For instance, the hypothesis is rejected (i.e., the distribution is not normal) if A2 > 2.492

for the significance level of α = 0.05. The skewness is a measure of the lack of symmetry and

the kurtosis is a measure of whether the data are peaked or flat relative to a normal distribution.

Generally speaking, the sample with larger absolute value of skewness or kurtosis deviates more

from the normal distribution.

The porosity distributions for reservoir samples are presented in Appendix 1. Their statistical

analyses are summarized in Table 7. The A2 values in the table show that the hypothesis of normal

distribution is rejected for all the samples in the table with α = 0.05.

5.4 Conclusions

The porosity and saturation distributions in porous media can be determined by scaling the in-

trinsic magnetization of the saturating fluid, which is estimated from the relaxation measurements
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sample mean min. max. st.dev. A2 skewness kurtosis # of data

R138 0.240 0.038 0.782 0.120 13.69 0.581 0.135 2423

R145 0.227 0.034 0.559 0.090 3.26 0.314 0.111 2362

R207 0.223 0.056 0.486 0.077 9.35 -0.141 -0.517 2637

R221 0.189 0.023 0.567 0.101 15.36 0.442 -0.305 2981

R237 0.213 0.032 0.577 0.073 4.26 -0.023 0.199 2724

Bentheimer 0.237 0.138 0.403 0.029 10.54 -0.067 1.300 2826

Table 7: Statistical analysis on porosity distributions of various samples
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Figure 16: Three-dimensional porosity distribution of the Bentheimer sample
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Figure 17: Porosity histogram of the Bentheimer sample and the corresponding statistical analysis

corresponding to each volume element. The spatial distributions of porosity obtained for a num-

ber of sandstone samples reveal the heterogeneous nature of the samples. Our statistical analysis

reveals that the porosity of the examined samples do not follow normal distributions.
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6 Determination of Permeability Distributions using Velocity Imag-

ing Experiments

While both X-ray CT and magnetic resonance imaging can provide the means to obtain spatially

resolved information, NMR is unique in its sensitivity to molecular motion. In this work, we obtain

measures of fluid velocity distributions during flow experiments, which we in turn use to determine

the permeability distributions. We are unaware of any other method to resolve the permeability

distributions within laboratory samples.

6.1 Introduction

While the porosity can be defined for a selected volume element, the permeability is essentially

defined by Darcy’s law–i.e., it represents the proportionality between the local volume-averaged

velocity and gradient of the volume-averaged pressure (see Eq.2). This means that the actual

determination of permeability must be accomplished using that equation. By setting up an experi-

mental system which can be modeled with Darcy’s Law, fluid states, or functions of the states, can

be measured and permeability calculated using the model equations.

Conventional laboratory experiments provide only a single apparent permeability value of a

sample, which will be a good measure of the permeability only if it is uniform throughout the sample

(i.e., the sample is homogeneous). The lack of methodology for resolving spatial distributions of

permeability has been a long-standing problem for understanding, measuring, and predicting that

property.

NMR imaging provide a unique opportunity to observe molecular motions associated with

diffusion or flow, which gives key measurements for determination of permeability distributions.

while NMR has been used to image flow for decades (Packer et al. 1972; Garroway 1974), the

reliable determination of fluid velocity within permeable media is problematic. Permeable media

with pores that are smaller than an imaging voxel, as is the case in our studies, require particular

considerations. The velocity varies throughout each pore and among pores, so that a wide range

of velocities is represented within each voxel. Therefore, the average velocity in a voxel is not

necessarily proportional to the average phase shift of spins, which might apply for flow in conduits

(Caprihan and Fukushima 1990). Instead, one must obtain the number distribution of velocity

in a voxel and convert it to average velocity (Chang and Watson 1999) in order to obtain useful

quantitative information.
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In this project, we developed an NMR velocity imaging methodology based on the pulsed field

gradient stimulated-echo (PFGSTE) technique. The velocity number distributions are determined

with three-dimensional spatial resolution. We also developed an associated estimation (inverse)

problem to determine spatial distributions of permeability. The superficial average velocities calcu-

lated from the velocity number distributions are the essential input information to solve the inverse

problem. In the following subsections, we describe our experimental work for measuring fluid veloc-

ities (Section 6.2), and illustrate the methodology of solving the corresponding estimation problem

for determining the permeability distribution using the velocity data (Section 6.3).

6.2 NMR velocity imaging

6.2.1 Methodology

Pulsed-field-gradient-stimulated echo (PFGSTE) NMR detects molecular displacement over a well

defined time scale and can be an excellent approach to the characterization of transport processes

as well as structural features in porous media. The imaging of fluid molecular velocity can be

achieved by using the pulsed field gradient method to encode the displacement of fluid molecules

and coupling this with a suitable NMR spatial imaging sequence.

The PFGSTE NMR method is based on the observation that nuclear spins moving in the

presence of a magnetic field gradient exhibit a phase shift in the transverse magnetization. For a

time-dependent gradient, the phase shift of a spin is provided by

ϕ(t) = γ

∫ t

0
G(t′) · r(t′)dt′. (62)

In order to obtain a well-defined molecular displacement, it is advantageous to use intense gradient

pulses whose pulse widths are much shorter than the time interval between them (Edwards et al.

1993). If the pulse width δ is sufficiently short, the phase shift during the gradient pulse is written

as

ϕ = q · r. (63)

Here, q is defined as

q = γ

∫

pulse
G(t′)dt′. (64)

The exact value of q depends on the shape of the pulse profile used in the experiment. Its magnitude

would be γδG for a rectangular gradient pulse of width δ, but this is not feasible because the actual
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Figure 18: An example of stimulated-echo pulse sequence for detecting spin displacements along

z-direction. The time between the second and third RF pulses, TM , is referred to as mixing time.

gradient pulse has smooth changes of the gradient field. The most commonly used gradient pulse

has half-sine or trapezoidal shape.

The PFGSTE pulse sequence is shown in Fig. 18. Here, the dephasing and rephasing gradient

pulses are in opposite polarity so that the phase shift is convoluted with the spin displacement.

The first radio-frequency (RF) 90◦ pulse imparts a phase shift q · r0 to a spin located at r0. This

phase shift is inverted by the last two 90◦ pulses in the sequence. Suppose the spin has moved to

position r0 +R during the time between the two velocity encoding gradients pulses, ∆; then the net

phase shift for that particular spin is q ·R. The observation time, ∆, is controlled by the mixing

time, TM , which is the time between the second and third RF pulses. The sequence is repeated

using regularly spaced increments in the pulsed gradient field to completely observe the sample in

“q-space”. The spoiler gradient between the second and the third RF pulses reduces the undesired

signal in the transverse evolution periods. We also use four steps of phase cycling to eliminate

unwanted signals. A remarkable feature of the stimulated echo as opposed to the spin echo is that

the spins display longitudinal relaxation between the last two RF pulses, which is longer than that

of transverse relaxation. The stimulated echo is useful for porous media where the flow rate is

relatively small, but sufficient displacement is required to observe the motion.

The spatial dependence of the molecular translations is resolved by combining the velocity imag-

ing sequence with the conventional spatial imaging encodings. In this pulse sequence, the phase

shift of spins reflects the information about their displacement as well as the spatial position. There-

fore, it is important to carefully design the pulse sequence such that the desired information can

be suitably deconvoluted from the measured data. In particular, it should be noted that the con-

49



ventional spatial encodings, which were originally designed for a stationary fluid, may not correctly

work for moving fluids due to artifacts arising from the motion. In our work, we implemented “flow

compensation” in the spatial encoding gradient. Here, a compensational gradient field is added to

the dephasing frequency encoding gradient and each of the velocity encoding gradients so that the

effects of the fluid flow are canceled out (see Appendix 4 for more details).

We define the joint spin-displacement density function, %(r,R), such that the density of spins–

the number of spins divided by the voxel volume–that have displacements between R and R + dR

in a voxel at r is %(r,R)dR. %(r,R) can be expressed in terms of local spin density ρ(r) and the

normalized displacement distribution function P (r,R):

%(r,R) = ρ(r)P (r,R). (65)

The integral of %(r,R) with respect to R over its whole domain gives the spin density at the voxel,

i.e.,
∫

%(r,R) dR = ρ(r). (66)

In other words,
∫

P (r,R) dR = 1. (67)

The observed NMR signal, S(k,q), is then modulated by the two wave vectors: the first, k, is

related to the spatial density of the spins and the second, q, is related to a spatial displacement of

spins:

S(k,q) =
∫ ∫

%(r,R) exp(ik · r) exp(iq ·R) dr dR. (68)

%(r,R) can be reconstructed by taking inverse Fourier transforms on Eq. 68 with respect to each

of the wave vectors:

%(r,R) =
∫ ∫

S(k,q) exp(−ik · r) exp(−iq ·R) dk dq. (69)

The joint spin-displacement density function, %(r,R), and the normalized displacement distribution

function, P (r,R), can be converted readily to the joint spin-velocity density function, %(r,vn), and

the normalized velocity distribution function, P (r,vn), respectively. Here, the net velocity vn is

defined as

vn =
R
∆
. (70)

Once %(r,vn) is obtained, the average velocity at a voxel can be easily calculated. We calculate

the superficial average velocity for the use of determining permeability distributions. The superficial
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average velocity, vsavg(r), at a voxel at r is defined by

vsavg(r) =
1
Vr

∫

Vr

vn(s) ds, (71)

where Vr denotes the volume of a voxel at r, and s is another position vector indicating a position

within the voxel. In Eq. 71, the term ds/Vr can be interpreted as the infinitesimal volume fraction

of spins that have velocity vn(s). By the definition of the joint spin-velocity density function,

%(r,vn) dvn indicates the number of spins divided by the voxel volume, of which velocities are

in the infinitesimal velocity range. Then, its corresponding volume fraction can be written as

%(r,vn)/ρb dvn, where ρb is the spin density of bulk fluid. Therefore, the superficial velocity can

be written as

vsavg(r) =
∫

Vr

vn
ds
Vr

=
∫ ∞

−∞
vn

%(r,vn)
ρb

dvn =
ρ(r)
ρb

∫ ∞

−∞
vn P (r,vn) dvn (72)

On the other hand, the intrinsic average velocity, viavg(r), at a voxel at r is defined by

viavg(r) =
1
V p

r

∫

Vr

vn(s) ds, (73)

where V p
r is the pore volume in the voxel. Given that V p

r /Vr = ρ(r)/ρb, the combination of Eqs. (71),

(72) and (73) gives

viavg(r) =
∫ ∞

−∞
vnP (r,vn) dvn. (74)

Practically, the quantitative superficial velocity value cannot be directly evaluated only from

velocity imaging data. This is because the spin densities are not known, and what we detect from

NMR experiment is not actually %(r,vn) but the magnetization intensity proportional to %(r,vn).

In our work, we first calculate intrinsic velocity from %(r,vn) using

viavg(r) =
ρ(r)

∫

vnP (r,vn)dvn
ρ(r)

=
∫

vn%(r,vn)dvn
∫

%(r,vn)dvn
. (75)

Then, the superficial velocity is calculated using porosity distribution data, φ(r):

vsavg(r) =
V p

r

Vr
viavg(r) = φ(r)viavg(r). (76)

6.2.2 Experiments

We demonstrate the results of velocity imaging experiments for two kinds of samples. For the first,

we use a relatively thin sample and resolve only two in-plane spatial coordinates (z1 and z2). The

other experiment is for the cylindrical samples presented in Table 2 which are resolved in all three

coordinates.
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Figure 19: The “positioner” in which the RF coil is mounted.

The periphery of each sample was sealed with epoxy and mounted in a plexiglass holder with O-

rings or plastic gaskets and tube fittings to provide appropriate boundary conditions. The sample

was initially saturated with fluid under vacuum and mounted in the RF coil. A plexiglass holder was

designed to fit within the inner space of the RF coil. It was ensured that there were no air bubbles

inside the sample or tube lines. A stable fluid flow through the sample along the z1 direction was

maintained using a Quizix r© QL-700 pump. The pressure drop between the inlet and outlet ports

was monitored by an electronic differential pressure transducer.

The position of the sample must be the same as that used for porosity imaging in order to use

the porosity distribution together with the velocity imaging data. We designed a “positioner” to

meet this condition (Fig. 19). The positioner is made of plexiglass, and it is designed to consistently

position the RF coil and the sample inside the NMR bore.

The pulse sequence for velocity imaging was designed to have a pair of velocity encodings as

described in Section 6.2.1 (Fig. 18) and spatial imaging encodings. We typically use 32 velocity

encoding gradient steps. Their strengths were calculated corresponding to the velocity field of

view and the length of the gradient pulse. The spatial information was frequency-encoded in z1-

direction, which is parallel to the static magnetic field B0, and phase-encoded in the other two

directions (z2 and z3). Each pulse sequence provides the measurements of the component of the

velocity vector corresponding to the direction of the velocity encoding gradient. Thus, the pulse

sequence is repeated with different directions of the velocity encoding gradient to measure each

component of the velocity vector. The detailed parameters for the velocity imaging experiments
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Sample BENT2 BENT1 and reservoir samples

Spectral width 30000 Hz 50000 Hz

Defocusing pulse width 14 µs 50 µs

Refocusing pulse width 28 µs 50 µs

Gradient pulse shape sinusoidal trapezoidal

Velocity encoding pulse width, δ 2 ms 2 ms

Number of velocity encoding steps 32 32

Velocity field of view 11 mm/s 2.5 mm/s

Spatial field of view 100 mm × 35 mm 30 mm × 30 mm × 30 mm

Data acquisition size 128 × 32 32 × 8 × 8

Observation time, ∆ 200 ms 200 ms

Number of averages 8 4

Repetition time, TR 5 s 1 s

Table 8: Pulse sequence parameters used in velocity imaging

are provided in Table 8.

For the relatively thin sample, a Bentheimer sandstone was prepared to be a rectangular par-

allelepiped shape having a length of 50 mm extending in the z1-direction, width 25 mm along the

z2-direction, and thickness 5 mm in the z3-direction. This sample is referred to as BENT2. NMR

velocity imaging was carried out using the proton resonance signal from brine (3%NaCl and 0.03%

NaN3 by weight in distilled water). The measured total flow rate was 1.5 ml/min and the pressure

drop was 0.1 atm. The apparent average velocity over the entire sample is then calculated by

vapp =
1.5 cm3/min

2.5 cm× 0.5 cm× 60 s/min
= 0.02 cm/s (77)

The viscosity of the water was estimated to be 1.0 cP at its temperature (18oC). The apparent

permeability, kapp, of the sample can be calculated in the conventional way (see Eq. 7:

kapp =
0.02 cm/s× 1.0 cP

0.1 atm/5.0cm
= 1.0 Darcy. (78)

The NMR experiment was performed using a General Electric 2T Omega CSI system with an

Oxford Instruments superconducting magnet having 31-cm-diameter horizontal bore. A 4.4-cm-

i.d. birdcage RF resonator was used for RF transmission and reception of the NMR signal.
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Figure 20: Superficial average velocity of the thin Bentheimer sample (BENT2)

The experiment with the cylindrical samples (BENT1 and reservoir samples) was performed

with the Bruker BioSpec r© 24/30 system. The velocity encoding pulse sequence was implemented in

the ParaVision r© pulse programming system. We used de-ionized water for this experiment. Glass

beads of 0.1-mm diameter were inserted at the entrance face of the sample to let the entering flow

distribute uniformly at the entrance surface. The pressure drop across the Bentheimer sample was

0.127 atm, and the volumetric flow rate was controlled to be 20 ml/min. The apparent permeability

calculated by Eq. 78 is 0.267 Darcy.

6.2.3 Results and discussion

Figure 20 shows the measured superficial average velocity of the thin Bentheimer sample (BENT2)

using 58 × 20 image voxels. Each arrow represents the direction and magnitude of the superfi-

cial average velocity at the corresponding voxel. The irregular directions of the fluid flow reflect

heterogeneities of the permeability.

Note that the velocity vector presented in Fig. 20 is not actually raw data but calculated from

the corresponding spin-velocity density function, %(r,vn) (see Eqs. 69–76). The function % with

respect to vn is represented by 32 discrete numbers according to the number of velocity encoding

steps. We interpolate these points to represent the continuous density function. Figure 21 shows

an example of the joint spin-velocity density function of a voxel evaluated from the cylindrical

Bentheimer sample (BENT1). This figure indicates that the z1-component of velocity vector varies

from 0 mm/s to +1.5 mm/s in the voxel.

The superficial average velocities measured for BENT1 are presented in Fig. 22. The figure

shows that the fluid flows through the media in the positive z1-direction on average and that local
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Figure 21: An example of joint spin-velocity density function (z1-component, the coordinate num-

bers for the voxel are Z1=18, Z2=3 and Z3=6)

heterogeneities in the sample cause variations in the velocity field.

It should be noted that not all the voxels within the spatial field of view correspond to the

sample, since the size of the sample is smaller than the field of view. For the three-dimensional

velocity imaging, we determined that the sample is located within 6 ≤ Z1 ≤ 27, 1 ≤ Z2 ≤ 7, and

1 ≤ Z3 ≤ 7 out of 32 × 8 × 8 voxels. There are still more voxels within this range that do not

correspond to the sample, due to the cylindrical shape of the sample. Some of them are located

completely outside of the sample, while others cross the boundaries of the sample for which only a

portion of the voxel volume correspond to the sample.

As described in detail in Section 6.3, we utilize measured velocities and the corresponding

quantities computed using the mathematical model of the experiment. Those computations are

done using a finite difference solution with Cartesian spatial coordinates. A difficulty is encountered

in analyzing three-dimensional velocity imaging due to the use of a Cartesian coordinate system

for the representation of voxels and for the finite difference grid, while the sample has a cylindrical

shape. Consequently, the boundaries of the sample often appears within a voxel, but it is not easy

to exactly locate them. Furthermore, the boundary conditions along the curved surfaces cannot be

accurately handled. In this work, we deal with a virtual sample when we analyze velocity imaging

on cylindrically shaped sample. The virtual sample is a parallelepiped and represented by the

voxels at 6 ≤ Z1 ≤ 27, 1 ≤ Z2 ≤ 7, and 1 ≤ Z3 ≤ 7. Here, the actual sample is considered as a

part of the virtual sample. We have porosity values of zero for the voxels completely outside of the

actual sample, which results in values of zero for the superficial velocity. For the voxels crossing the
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Figure 22: Superficial average velocity of the cylindrical Bentheimer sample

boundaries of the actual sample, the superficial velocity averaged over the voxel volume (Eq. 71) is

calculated. As will be shown in Section 6.3, this can be a good approximation when the voxel size

is sufficiently smaller than the sample size.

The velocity imaging experiments were also performed on the reservoir samples. However, it

was found that the intensity of the stimulated echo for those samples is not significant enough to

provide reliable estimates of the velocity distributions. We suppose the most important reason

for the problem is the relatively strong magnetic susceptibility of the reservoir samples, which

leads to intensive internal magnetic field gradients. Moreover, the significant motion of the fluid

makes the spins experience more inhomogeneous magnetic fields in velocity imaging experiments.

The transverse relaxation consequently tends to be fast and meaningful signals may not be left

in the detected stimulated echo. Note NMR porosity imaging worked with the reservoir samples

(Section 5), but that experiment differs from velocity imaging in that: 1. the fluid is stationary, 2.

the echo time is much shorter than that of PFGSTE sequence, 3. there is no mixing time, and 4.

there is no velocity encoding gradient which may cause internal magnetic field gradients.

We estimated the typical attenuation of the magnetization to evaluate the signal intensity of

the detected stimulated echo. The typical attenuation of the magnetization is represented in terms

of the average relaxation times by

exp(−TE/T avg2 )× exp(−TM/T avg1 ). (79)

56



Sample exp(−TE/T avg2 )× exp(−TM/T avg1 )

R138 0.0418

R145 0.0208

R221 0.0443

R237 0.0973

BENT1 0.3718

Table 9: Typical attenuation of the samples (TE = 7.5 ms and TM = 200 ms)

TM is the mixing time that represents the time between the second and third RF pulses. Using the

average relaxation times presented in Table 3, the typical values for the echo time, TE = 7.5 ms,

and the mixing time, TM = 200 ms, typical attenuation is calculated for each sample (Table 9).

The table shows that the characteristic relaxation times of the reservoir samples are significantly

shorter than those of the Bentheimer sample.

We present some examples of velocity imaging experiments on the Bentheimer and the R237

samples to illustrate the discussions above. The one-dimensional velocity imaging experiments

were performed on each of the samples with stationary (0 ml/min) and flowing (20 ml/min) fluid.

Figure 23 shows the results from the Benheimer sample. It presents the detected stimulated echo

intensity (a and c) and their corresponding inverse Fourier transformation, i.e., the joint spin-

velocity density function (b and d) for the two flow rates. If the phase shift induced by the

dephasing gradient is completely reversible by the rephasing gradient, the intensity of the stimulated

echo would be a constant regardless of the velocity encoding gradient strengths. This would result

in the representation of the joint spin-velocity density function as a Dirac delta function. However,

the net phase shift after the dephasing and rephasing gradients can hardly be zero for most of

the experiments. For a flowing fluid, the effect of flowing motion is dominant on the net phase

shift so that it can be used to measure the molecular displacement. The net phase shift is still

nonzero for a stationary fluid due to the self-diffusion arising from Brownian motion. Even for

a solid, the net phase shift tends not to be zero because internal magnetic field gradients arise

when the pulsed gradient fields are applied. Figure 23(a) shows that the stimulated echo intensity

decreases as the absolute value of the velocity encoding gradient (i.e., the wave vector q) increases

for the stationary fluid. Consequently, the joint spin-velocity density function is spread out from

a Dirac delta function (Fig. 23b). We estimate that the density function is broader than it would
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be with only self-diffusion due to the effect of internal magnetic field gradients. The results from

flowing fluid (Figs. 23 c and d) shows that the joint spin-velocity density function is shifted to the

positive side of the velocity axis when fluid flows. On the other hand, the similar velocity imaging

experiments performed on the R237 sample (Fig. 24) show that the stimulated echo with respect

to the velocity encoding gradients is not significant enough to resolve the velocities.

We have looked into modifying pulse sequences to improve the signal intensity with reservoir

samples. We implemented alternating gradients to eliminate the effect of internal magnetic field as

we do in our diffusion experiment (Section 4.4). However, the critical problem in this sequence is

that the echo time is further extended due to additional gradient and RF pulses. It turns out that

the intensity of the stimulated echo was not much improved. We note again that the stimulated

echo intensity of the moving fluid is smaller than that of the stationary fluid because the moving

fluid experiences a more inhomogeneous magnetic field. Also, the mixing time for velocity imaging

is generally longer than that of the diffusion experiment. The alternating gradient sequence may

work for the diffusion experiment with stationary fluid, but it was not effective for the velocity

imaging experiment on those reservoir samples.

It may be possible to determine the velocity distributions for these challenging samples if a

fluid can be identified whose relaxation rate is not so negatively affected by the solid surfaces, as

is water. We have tried oil (Soltrol r© 130, Phillips Petroleum Co.), and found that intensity of the

stimulated echo can be improved. However, it was not sufficient for determination of the velocity

distributions. Hyperpolarized gases, such as xenon, may be viable, although significant additional

equipment and changes in imaging protocols would be required. At any rate, the method will likely

be viable with many carbonate samples since saturating water tends to exhibit smaller relaxation

rates than with sandstones.
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Figure 23: Velocity encoded stimulated echo data (a,c) and their joint spin-velocity density function

(b,d) of a voxel in the Bentheimer sample with flow rates 0 ml/min (a,b) and 20 ml/min (c,d)
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Figure 24: Velocity encoded stimulated echo data (a,c) and their joint spin-velocity density function

(b,d) of a voxel in R237 sample with flow rates 0 ml/min (a,b) and 20 ml/min (c,d)
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6.3 Determination of permeability distributions

6.3.1 Methodology

The permeability can be determined using the measured velocity distribution. However, explicit

calculation of the permeability is not possible (note, for example, that the pressure gradient in

the Darcy equation (Eq. 2) is not known). The permeability distribution can be determined from

solution of an inverse problem. Our work here is based on the assumption that the permeability is

isotropic, although our work can be extended to the more general case.

The goal of the inverse problem is to find a permeability distribution that minimizes the dis-

crepancy between the observed experimental data and that calculated through the solution of the

governing equations. The problem can be expressed formally as a minimization problem:

min
k
J = Jexpt + λJreg (80)

Here, J is the objective or cost function, which consists of two terms. The first, Jexpt, measures the

difference between experimentally observed and calculated values of the data, while the second, Jreg,

the regularization term, is used to impose any a priori knowledge of the permeability distribution

onto the solution. This knowledge can appear in the form of smoothness constraints, which is used

in this work, or in the form of actual permeability measurements at specified locations. These

terms take the following forms:

Jexpt =
1
2

Nv
∑

n

3
∑

id

∫

V
wvzid,(n)

(vobszid,(n) − v
cal
zid,(n))

2 δ̂(V, V(n)) dV

+
Np
∑

n

1
2

∫

V
wp(n)

(pobs(n) − p
cal
(n))

2 δ̂(V, V(n)) dV (81)

Jreg =
3
∑

id=1

∫

V

(

ddok

dzdoid

)2

dV do ∈ {1, 2, 3, . . .}

The Kronecker delta function is defined as

δ̂(V, V(n)) =











1 V = V(n)

0 otherwise
or δ̂(z, z(n)) =











1 z = z(n)

0 otherwise

where z ∈ V and z(n) ∈ V(n), and V(n) represent the points at which the superficial average velocity

or pressure are measured. Here, vobs, and pobs are observed experimental data and vcal, and pcal

represent the corresponding calculated values from the numerical simulation. In the experimental

data fit term, the differences between observed and calculated properties are individually weighted
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Figure 25: The domain of the fluid flowing system

by wvzid,(n)
, and wp(n)

. These values depend on the relative accuracy of the experimental data, and

are often taken to be the inverse of the variance of the errors in the experimental measurements.

In our work, we assume that the errors have mean zero and are identically distributed, so that the

weight value is unity. The regularization term is weighted relative to the data fitting term by the

regularization parameter, λ, which must be suitably determined. Currently, we are determining

the regularization parameter, λ, by examining the degree of fit, Jexpt, using several different values

for λ, and estimating the maximum value of λ which does not compromise the fit to the data (Yang

and Watson 1988).

The calculated values required to evaluate the objective function are determined by solving the

locally volume-averaged equation of continuity and the differential momentum balance (Eqs. 1 and

2) with appropriate boundary conditions. This is known as solving the forward problem. For a

steady-state incompressible fluid phase in porous media, the continuity equation (see Eq. 1 becomes:

∇ · v = 0 (82)

k

µ
∇p+ v = 0 (83)

Using the Darcy equation (Eq. 2), we can eliminate the velocity to obtain:

∇ ·
[

k

µ
· (∇p− ρg)

]

= 0. (84)

In this work, we deal with a rectangular parallelepiped domain for the fluid flowing system

(Fig. 25). The dimension of the domain is represented by L1, L2, and L3. A fluid is introduced
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at the entrance face Sent, located at z1 = 0, at a constant flow rate. No fluid is allowed to enter

or leave the domain through the sealed periphery surface, Snf , and all of the fluid is eventually

expelled out at the exit face Sexit. The boundary conditions formally take the following forms:

p(0, z2, z3) = pin − ρg(z3 − zin3 )

p(z1, z2, L3) = pout − ρg(z3 − zout3 )

v(z1, z2, z3) · n = 0 for z2 = 0, L2,

v(z1, z2, z3) · n = 0 for z3 = 0, L3.

(85)

zin3 and zout3 represent reference points at which pin and pout are specified, respectively. The unit

vector n is normal to Snf . The gravity is represented as a scalar in understanding that its direction

is opposite to z3.

Equation 84 is solved with the boundary conditions 85 to determine the pressure distribution

for a given permeability distribution. Once the pressure distribution is determined, the velocity can

be computed using Eq. 2. In our current formulation, the state equation (Eq. 84) is solved by using

finite differences (Seto 1999). The calculation requires the solution of large, linear systems that

are iteratively solved using a conjugate gradient method with incomplete Choleski decomposition

and adaptive Chebychev polynomial preconditioning (Ashby 1988). The two-tiered preconditioning

scheme allows for the efficient handling of large, three-dimensional systems.

The solution of the forward problem yields pressure and velocity fields throughout the spatial

domain of the system. The exact local values are dependent upon the permeability distribution used

when solving the forward problem. In this work, the porous media is assumed to be isotropic and

the permeability is interpreted to be a scalar function of position. Mathematically, the distribution

is represented using normalized tensor product B-splines (Lee et al. 1986; Schumaker 1981):

k(z) =
N1
∑

i

N2
∑

j

N3
∑

k

Ci,j,kB
m1
i (z1)Bm2

j (z2)Bm3
k (z3), (86)

where m is the order of the B-spline, Bm1
i (z1) is the ith B-spline basis function in the z1 direction,

and Ci,j,k is the corresponding coefficient. The problem now involves determining the set of B-

spline coefficients that minimizes Eq. 80, subject to the system equations (Eqs. 82 and 2) and the

associated boundary conditions.

We are using a combination of global and local optimization methods. A robust, accurate local

method is essential since sub-optimal solutions could provide significantly different estimates. We

first use a global optimization method by simulated annealing (Kirkpatrick et al. 1983; Corana
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et al. 1987) to provide a good starting point for the local algorithm, since there are likely many

local optima. Then, a quasi-Newton method, Broyden-Fletcher-Goldfarb-Shanno (BFGS) (Powell

1975), is used to determine the coefficients that minimize the performance index.

The BFGS method requires the derivative of the objective function with respect to the per-

meability. While there are several methods for calculating these gradients, the most efficient for

the present case is the method of adjoint states (Chen et al. 1974; Chavent et al. 1975; Neuman

1980; Cacuci et al. 1980). The formulation of the adjoint problem uses calculus of variations to

obtain first an expression for the desired derivatives in terms of an adjoint variable, Ψ, and second,

a system of equations and boundary conditions describing Ψ, which are closely parallel to those

found for pressure, p, in the forward problem. The adjoint equations are derived directly from the

differential equations and boundary conditions for pressure. The adjoint variable, Ψ, is called the

adjoint state of the pressure, p, and the adjoint velocity, vΨ, is defined corresponding to Ψ. The

Ψ value associated with the locations where the pressure is specified or known through boundary

conditions is zero.

6.3.2 Validation with simulated data

The methodology of determining permeability distributions using velocity imaging is validated here.

A “true” permeability distribution is specified and the velocity data corresponding to the true

permeability distribution are generated by solving the forward problem. The simulated velocity

data are then used to estimate the permeability distribution and it is compared with the true

distribution.

We selected clay lenses for the true distribution as presented in Fig. 26. In order to present

the permeability in the three-dimensional domain, the figure is composed of sixteen small pairs of

pictures, each pair of which has a contour and a surface plot of permeability and corresponds to

a horizontal layer of the domain. The vertical position, Y, of the voxels in a layer is numbered

from the bottom to the top. The length of the domain is 1 cm × 1 cm × 1 cm. The permeability

distribution is uniform (k = 0.07 Darcy) throughout the domain except for the area of the two

clay lenses where the permeability is lower (k = 0.005 Darcy) than other places. Consequently, the

simulated velocity distribution (Fig. 27) shows that the flow does not easily pass through the clay

lenses.

Using the simulated velocities, the permeability distribution is reconstructed by solving the

inverse problem. The performance index term, Jexpt, in Eq. 81 is set to be composed of differences
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between the simulated velocity data and their corresponding calculated values. We did not use

pressure terms in the performance index. The second derivative of permeability was used (do = 2)

for the regularization term, Jreg. The number of simulated velocity vector data was 16 × 8 × 8.

The degrees of freedom, which is the number of B-spline coefficients, of the permeability function

was selected to be the same as the number of data. The finite difference grid was set as 32 × 16 ×

16.

The regularization parameter, λ is determined such that we obtain the smoothest permeability

function that does not compromise the precision of the fit to the data. In order to do this, the

minimization of the performance index was repeated and the root-mean-squared-error (RMSE) of

velocity is calculated with respect to various λ (Fig. 28). Here, the RMSE of velocity is defined as

RMSE(v) =

√

√

√

√

1
Nv

Nv
∑

n

3
∑

id

∫

V
(vobszid,(n) − v

cal
zid,(n))

2 δ̂(V, V(n)) dV , (87)

Then, the largest λ that does not make a significant increase of RMSE is selected. For the example

of clay lenses given in Fig. 28, λ is selected to be 3.0×104.

The estimated permeability distribution with the determined regularization parameter is pre-

sented in Fig. 29. The location and shape of the clay lenses are consistent with the true distribution.

The RMSE between the true, ktrue, and the estimated permeability, kcalc, defined as

RMSE(k) =

√

1
V

∫

V
(ktrue − kcalc)2 dV , (88)

is 0.0116. These results show that the methodology properly works for determination of three-

dimensional permeability distributions. The errors of the estimation arise mostly from the limita-

tion of the velocity data used. We would have better results in the above simulated experiment

simply by increasing the resolution of the velocity data. In actual experiments, however, the reso-

lution is inevitably limited by the equipment. In Section 6.3.4 we will discuss how we can improve

the experimental designs to have more accurate estimation.
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Figure 26: The “true” permeability distribution
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Figure 29: Permeability distribution of clay lens(1)
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6.3.3 Analysis with experimental data

The methodology for determining permeability distributions is now applied to the experimental

velocity imaging data presented in Section 6.2. The boundary conditions presented in Eq. 85 are

used, except that the condition corresponding to the z3 coordinate was omitted for the thin sample.

The permeability distribution estimated for the thin Bentheimer sample (BENT2) is presented

in Fig. 30. We used 30 equally spaced B-spline knots in each direction z1 and z2 to represent the

permeability distribution and a finite-difference grid of 128 × 64. The permeability values range

from 0.2 to 1.4 Darcy, indicating a fairly large variation within the sample. It can be observed

that the permeability distribution (Fig. 30) is not inconsistent with the velocity data (Fig. 20), i.e.,

generally, the regions that have relatively small velocities tend to have smaller permeabilities than

other regions.

For BENT1 and reservoir samples, the analysis was performed on the parallelepiped domain

as discussed in Section 6.2; we assign the voxels outside of the sample to have velocity data which

is zero. We obtained superficial average velocity vectors for 20 × 7 × 7 voxels. These data were

scaled to meet the apparent continuity, i.e., the flux through any cross-sectional area is to be the

same. We used 12 × 4 × 4 equally spaced B-spline knots and a finite difference grid of 64 × 32 ×

32.

The determined permeability distribution is presented in Fig. 31 in the same way as Figs. 26 and

29. Here, the permeability is averaged for each volume element while the determined permeability

distribution is a continuous function and represented by the finite difference grids. The permeability

outside of the sample is determined as zero. It is seen that there are relatively large spaces with

zero permeabilities at the layers near the periphery (such as those at Z3=1 or Z3=7) due to the

cylindrical shape of the sample.
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Figure 30: Determined permeability distribution using the velocity distribution in Fig. 20
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Figure 31: Determined permeability distribution using the velocity distribution in Fig. 22
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6.3.4 Improved experimental design

An experimental design is the protocol by which the experiment is conducted and data are measured.

The experimental design can significantly affect the accuracy of the associated estimates. Our

recognition that there are certain spatial configurations that, if they were present, they would not

be identified (Watson et al. 2002) has led us to consider alternative experimental designs that may

provide more reliable estimates of the intrinsic permeability.

There can be many possibilities of the experimental designs for the determination of perme-

ability distributions. In general, more accurate estimates are expected as more data are added to

the estimation, but the trade-offs, such as the experimental costs and convenience, must also be

considered. Seto (1999) presented candidate experimental designs whereby transverse pressures on

the periphery of the sample would be measured in addition to the velocity distributions. Numer-

ical simulation showed that better estimates of permeability are obtained as more pressure data

are added. However, this work has not been implemented experimentally because of experimental

difficulties associated with obtaining pressure measurements around the periphery of the sample

during NMR imaging experiments.

In this work, we propose new experimental designs, which are practically realizable, to improve

the accuracy of the estimates of permeability distributions. The idea is that we perform multiple

velocity imaging experiments on a given sample with different flow conditions and use the data

from all the experiments. The multiple flow scenarios provide additional information content about

the permeability distribution.

Some candidate experiments are illustrated in Fig. 32. The arrows represent injection into,

or production from, the sample across the regions denoted with the thin lines. The fluid flows

into and exit from the sample through the interfaces represented by thin lines. The thick lines

around the sample indicate boundaries through which the fluid is not allowed to flow. Experiment

A represents the conventional experiment. Experiment B is also a conventional experiment, but it

is conducted by flowing fluid in a different direction. In experiments C and D, the inlet and outlet

faces of the sample are partially blocked so that the fluid flows in different ways. There can be

many other possibilities of the flow conditions depending on the ways of preparing the boundaries

of the sample and the inlet and outlet conditions of the flow. In our new experimental design, we

combine the data from several experiments. The data fitting term, Jexpt in the performance index
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(Eq. 81) associated with the new experimental design can be expressed as

Jexpt =
∑

Γ

Jexpt,Γ, Γ ∈ {selected experiments}. (89)

Here, the subscript Γ represents one of the flow experiments from among the chosen set. The

observed and calculated velocities (vobs and vcal in Eq. 81) associated with the data fitting term,

Jexpt,Γ, are measured or calculated for the corresponding flow condition Γ. The regularization term,

Jreg, is not affected by the new design.

The new experimental designs were evaluated by simulated data. In this report, we demon-

strate the design that combines flow conditions A and B (denoted by A+B). For simplicity, this

demonstration was done using the case with two in-plane spatial coordinates, although the same

work could be done with the three-dimensional representation. We generated a true permeability

distribution (Fig. 33), and the velocity imaging experiment was simulated for the flow conditions

A and B. Random measurement error with 1.0% noise was added to the simulated true velocities

to generate simulated data. The simulated velocity data corresponding to the flow conditions A

and B are illustrated in Fig. 34. The permeability distribution was estimated for three kinds of

experimental designs. Two of them use either one of the velocity data A and B, and the other

one uses the two sets of data together. The estimated permeability distributions are presented in

Fig. 35 and their accuracies are evaluated in Table 10.

The accuracy of the permeability distribution was significantly improved with experimental

design A+B compared to the other designs that use only one experiment. It is notable that the

fitting to the data for the design A+B, represented by the velocity RMSE, is comparable to the

other two designs while the accuracy of the estimation is significantly improved.

The contour plots of the permeability distributions (Fig. 35) also show the improvement of the

estimation with the design A+B. The estimate is not exactly the same as the true distribution

because we use finite number of velocity data which are superficial averages of discrete volume

elements.
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Figure 33: True permeability distribution

Experimental Design RMSE(v) RMSE(k)

A 0.0137 0.130

B 0.0116 0.147

A + B 0.0130 0.0742

Table 10: RMSE of the calculated velocity and the estimated permeability distribution
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Figure 35: Estimated permeability distribution with different experimental designs
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6.4 Conclusions

We have developed a method to determine, for the first time, spatially resolved permeability distri-

butions within samples of permeable media. The method utilizes MRI for the determination of the

velocity distribution and the solution of an associated inverse problem to estimate the permeability

distribution from the velocity.

The method was successfully demonstrated with experiments conducted on Bentheimer sand-

stone samples. Unfortunately, we were not able to measure the velocity distributions within the

reservoir samples due to the relatively greater rate of relaxation and additional timing require-

ments of the PFGSTE velocity imaging protocol, as compared to the CPMG imaging sequence

used for determining porosity and saturation. Successful applications with these types of samples

may still be possible with the identification of a suitable fluid that does not have such a high rate

of relaxation when saturating the samples, as does water. The method is likely suitable for many

carbonates since saturating water tends to exhibit smaller relaxation rates than with sandstones.

We have proposed new experimental designs that will provide significantly more accurate es-

timates of permeability distributions for samples or experiments that are amenable to reliable

determination of velocity distributions.
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7 Determination of Multiphase Flow Properties

Relative permeabilities are determined by conducting experiments involving the flow of two fluid

phases, and determining the relative permeabilities from solution of an associated estimation (in-

verse) problem utilizing a mathematical model of the experiment. This problem has been inves-

tigated extensively by the PI and collaborators, who first posed the estimation problem using

nonparametric principles (Kerig and Watson 1986; Watson et al. 1988). They have developed a

general approach to formulate and solve the associated estimation problem for determining multi-

phase flow properties utilizaing any experimental design, and to evaluate the experimental design

(Watson et al. 1998). To date, applications of this work have been based on one-dimensional models

of the displacement experiments. In this work, we develop the means to include instrinsic porosity

and permeability distributions for estimating multiphase flow properties from displacement experi-

ments and advance the use of complete, three-dimensional mathematical modeling of displacement

experiments.

7.1 Introduction

Significant advances in determining multiphase flow properties were reported by Kulkarni et al.

(1998). Their analysis includes the effects of capillary pressure, which is necessary when experiments

are conducted under the capillary-dominated flow conditions that are representative of reservoir

conditions. They estimated capillary pressure together with relative permeability functions, and

developed measures of the accuracy with which the functions are determined.

Kulkarni et al. (1998) introduced a new experimental design that greatly improves the accuracy

with which the multiphase flow properties can be estimated. Rather than using a single injection

rate, as is done conventionally, they used several successive rates. This resulted in more accurate

estimates over a greater range of saturation. In addition to the conventional measurements of pres-

sure drop and production, which are acquired outside of the sample, they included measurements of

saturation distributions obtained using MRI (see also Mejia et al. 1995, who used X-ray CT scan-

ning). Spatially resolved measurements can provide much more information than the conventional

measurements that are only sensitive to the integrated (or average) states of the entire sample.

Kulkarni et al. (1998) evaluated their estimates by comparing the values calculated using the

model of the experiment to the corresponding measured quantities. The conventional measurements

of pressure and production were predicted very precisely. However, the measured and calculated
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saturation distributions were not as consistent. It was hypothesized that the discrepancy was due to

the failure to account for possible spatial variations in the porosity and the permeability, which were

represented as a one-dimensional function (along the axial direction) and as the uniform apparent

value, respectively, in the mathematical model of the experiment.

The intrinsic properties, when known, can be incorporated into the estimation problem, as

discussed in the following section. It is expected that subsequent estimates of the multiphase flow

properties will be more accurate than if the porosity and permeability were only represented with

average or apparent values. We explore this aspect in Section 7.3. Then, we present experimental

work directed to demonstrating the incorporation of intrinsic permeability and porosity into the

estimation process.

7.2 Methodology

The multiphase flow properties are estimated by determining the relative permeability and capillary

pressure functions that minimize a performance index based on differences between the measured

and calculated quantities. The calculated quantities are determined from solution of the model of

the displacement experiment with specified properties.

The performance index is:

J = [Ydata −Ycalc]TW[Ydata −Ycalc]. (90)

The data will typically include the pressure drop and production and, for our work, values of satu-

ration that represent averages corresponding to successive regions in the axial direction (Kulkarni

et al. 1998).

The model for the experiment follows from the state equations introduced earlier (see Sec-

tion 2.1). Using the generalized Darcy expression (Eq. 4) to eliminate the velocity in Eq. 3, we

obtain the following equation for each fluid phase:

∂

∂t
(φρisi) = ∇ ·

[

kkriρi
µi

(∇pi − ρig)
]

, i = 1, 2. (91)

The boundary conditions and initial conditions are specified on the basis of the particular experi-

ment used. We consider here a drainage experiment in which the nonwetting fluid is injected into

a sample initially saturated with the wetting fluid. The outlet is maintained at a given pressure.

These boundary conditions are specified by:
∫

Sent

kkr1ρ1

µ1
n1 · (∇p1 − ρ1g) dz = q1,ent (92)
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n1 · (∇p2 − ρ2g)|Sent = 0

p1|Sexit = p2|Sexit = pout

Here, Sent and Sexit represent inlet and outlet faces, repectively, n1 is a unit vector normal to

those surfaces, q1,ent is the injection flux of phase 1 at Sent, and pout is the ambient pressure. The

boundary conditions implement the capillary end-effect discussed in Dullien (1992). The initial

conditions are
s2(z) = 1

p2(z) = pout
(93)

The fluid properties are determined independently. Once all the permeable media properties are

specified (i.e., porosity, permeability, two relative permeabilities, and capillary pressure), Eqs. 91,

5, and 6, with pertinent boundary and initial conditions, can be solved for the pressures and

saturations of each of the fluid phases, as a function of position and time.

In keeping with our nonparametric approach to these functional estimation problems, we use

B-splines to represent the the relative permeability and capillary pressure functions:

kri(si) =
Ni
∑

j=1

cijB
m
j (si,xi), i = 1, 2 (94)

pc(s1) =
Nc
∑

j=1

ccjB
m
j (s1,xc). (95)

We incorporate inequality constraints into the minimization problem specified by the performance

index (Eq. 90):

Gc ≥ g0. (96)

The inequality constraints are chosen to insure that physically realistic estimates are obtained at

each step of the minimization procedure. We use a trust-region based, linear-inequality constrained

Levenberg-Marquardt algorithm (Richmond 1988) to solve this minimization problem. In order

to choose a suitable partition–numbers and location of knots–for the multiphase functions, we

solve a sequence of minimization problems with increasing values of the spline dimensions. We

generally look for the first solution for which satisfactory residuals–differences between measured

and calculated values–are obtained. By starting with very few degrees of freedom, and beginning

each successive problem with the prior estimates, our method is robust and efficient.

This formulation is quite general in that it can be used with any displacement experiment, and

with any estimates for the porosity and permeability. At issue is the accuracy of the model for
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representing the experiment. In particular, it is desirable that the specified boundary and initial

conditions are consistent with the experiments, and that the porosity and permeability are accurate.

If intrinsic porosity and permeability are known, they should be included in the estimation process.

If average or apparent values are used, it is expected that there will be errors in the estimates due

to the inaccuracies in the model of the experiment.

In previous work for determining multiphase flow properties, one-dimensional models of the

experiment have been employed. Conventionally, it has been assumed that the properties are

homogeneous, and thus represented as single values. One-dimensional variations in properties in

the axial direction can be included in the estimation process with one-dimensional models, as it has

been for experiments with composite core samples, each having uniform values, (Mejia et al. 1995)

and for porosity as a function of axial position, as determined with MRI or CT scanning (Kulkarni

et al. 1998; Mejia et al. 1995). Note also that if there are gravity effects due to a difference in

the densities of the fluids, a one-dimensional model is appropriate if the experiment is conducted

vertically.

We do know that porosity and permeability vary spatially, and when known, those properties

can be taken into account in the model of the experiment. However, a fully three-dimensional math-

ematical model of the experiment is required. In our prior recent work, we have used a commercial

software package, Sendra (Petec Software & Services 2000), which allows for simulation with up

to two spatial dimensions. In this work, we extended the capabilities so that three-dimensional

displacement experiments can be modeled. The details and validation of that implementation are

provided elsewhere (Uh et al. 2002; Watson et al. 2002; Xue 2004).

7.3 Value of including intrinsic permeability

We have investigated potential errors which may be encountered in estimating multiphase flow

properties when simplified representations of the intrinsic properties are used. We illustrate the

method here. Further details are available elsewhere (Watson et al. 2002; Valestrand 2002).

We simulated displacement experiments by solving the models equations (see Eqs. 91–93, 5, and

6) with specified properties. The multiphase flow properties (taken from Kulkarni et al. (1998)) and

the (absolute) permeability distribution used are shown in Figs. 36–38. A uniform value of porosity

was used. Simulated experimental data were created by adding random errors to the calculated

pressure drop and saturation values. The errors were obtained with a random number generator

using a normal distribution with the following variances: σ2
∆p = 1.0 Pa2 and σ2

s2 = 2.3×10−4.
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We then performed two estimations using the simulated experimental data. In Case 1, we used

the specified (true) porosity and permeability properties. In Case 2, we represented the permeability

using the harmonic average value of the specified distribution (see Fig. 38). This represents the value

that would be measured from a conventional experiment to determine the (apparent) permeability.

The simulated data and corresponding calculated pressure drop values obtained using the esti-

mated relative permeabilities are shown in Figs. 40 and 41 for Cases 1 and 2, respectively. The use

of the true permeability distribution provides the most precise fit to the data, although the match

associated with Case 2 may be taken to be acceptable. The simulated data and corresponding cal-

culated saturation distributions are shown in Figs. 42 and 43 for Cases 1 and 2, respectively. While

a suitable match of the saturation distribution is obtained using the correct permeability, that

obtained using the corresponding harmonic-averaged value is not satisfactory. Evidently, there are

no physically realistic relative permeability curves that allow reconciliation of the data. Note that

smallest value of water saturation attained during the simulated experiment is 0.53 (see saturation

data in Fig. 42). Thus the experiment provides no information about the relative permeability

functions corresponding to smaller values of saturation.

The estimates for the relative permeabilities obtained for the two cases are shown in Fig. 39. This

shows that, for Case 1, the multiphase flow properties are accurately estimated over the saturation

region represented by the experiment; however, there are significant errors in the estimates for Case

2.

This example illustrates that errors in the estimated multiphase flow properties may be en-

countered when insufficient resolution is used for the absolute permeability. It also illustrates the

importance of validation of the estimates, as put forth by Kulkarni et al. (1998). The estimates

for Case 1 are validated, while those for Case 2 are not; consequently, the estimates for Case 1

cannot be rejected on the basis of the precision of the match, while those for Case 2 should be

rejected. Finally, it illustrates the value of measured saturation distributions for use in estimating

multiphase flow properties.
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Figure 36: True relative permeability
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Figure 37: Capillary pressure curves used in the estimation process
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Figure 38: Absolute permeability distributions used in the estimation

Figure 39: Estimated relative permeability functions for two cases
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Figure 40: Simulated pressure drop data and the calculated values for Case 1

Figure 41: Simulated pressure drop data and the calculated values for Case 2
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Figure 42: Simulated saturation data and the calculated values for Case 1

Figure 43: Simulated saturation data and the calculated values for Case 2
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Figure 44: Schematic of experimental apparatus for displacement experiments

7.4 Displacement experiments

A number of displacement experiments were run with the objective of demonstrating the use of

intrinsic properties and three-dimensional modeling of the experiment for the determination of

relative permeability and capillary pressure functions. We summarize these efforts in this section.

7.4.1 Experimental setup

A schematic of our experimental apparatus for conducting displacement experiments is shown in

Fig. 44. A constant, continuous flow is delivered by dual-piston Quizix r© QL-700 pumps, which are

situated outside of the imaging enclosure (details on the configuration of the imager are provided

in Watson et al. (2002). Honeywell r© differential pressure transducers are used to measure the

pressure drop across the sample, and the pressure upstream of the sample, relative to atmospheric

pressure, which is measured independently. In some experiments, we used a production device to

monitor the production of the displaced phase (Phan et al. 2001).

The sample holder device is shown in Fig. 45. It is necessary that the holder contains no ferrous

(magnetic) materials. The picture shows that the sample is potted with epoxy within a plexiglass

tube. Nylon bolts are used to attach the end caps to the sample. A water-tight seal is maintained

with 0.79 mm rubber gaskets. One of the endcaps has a small enclosure in which a reference sample
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Figure 45: Sample holder device

can be included. Nylon tubing and fittings are used.

It is desirable that the sample resides completely within the high-linearity region of the radio-

frequency (RF) coil as well as the gradient coils. For our current equipment, this corresponds to

a cylindrical region 3 cm in length and 3.5 cm in diameter. Since we wanted measurements of

permeability for our sample, the length was further limited by the coil we used for that experiment,

which is shorter. We ultimately used samples that were 2.5 cm in diameter and 2 cm in length. We

used the sample positioner described earlier (see Fig. 19) so that we can align the sample identically

for the porosity, permeability, and displacement experiments, which were typically conducted at

different times. A schematic of the sample as it resides within the RF-coil inside the bore of the

MRI is shown in Fig. 46.

7.4.2 Experimental design

We conducted three different displacement experiments using two different Bentheimer samples. For

each of the experiments, we conducted either two or three sequential cycles marked by injection

of different fluids. In the first experiment (Experiment I), we conducted a drainage cycle, followed

by an imbibition cycle and a second drainage cycle. The objective was to obtain estimates of the

multiphase flow properties for primary and secondary drainages, and primary imbibition. In the

second and third experiments (Experiment II and III), only primary drainage and imbibition cycles

were conducted. For each of the drainage cycles, several successively increasing injection rates were

used, while only a single rate was used for the imbibition cycles. Details associated with these

experiments are provided in Table 11.
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Experiment 1st cycle 2nd cycle 3rd cycle

Drainage Imbibition Drainage

0.5 ml/min ( 0 min) 0.5 ml/min ( 750 min) 0.5 ml/min (1375 min)

I 1.0 ml/min (196 min) 1.0 ml/min ( 901 min) 1.0 ml/min (1537 min)

2.0 ml/min (392 min) 2.0 ml/min (1055 min) 2.0 ml/min (1686 min)

3.0 ml/min (570 min) 3.0 ml/min (1204 min) 3.0 ml/min (1832 min)

Drainage Imbibition

0.3 ml/min ( 0 min) 0.6 ml/min ( 575 min)

II 0.6 ml/min (139 min)

0.9 ml/min (214 min)

1.2 ml/min (290 min)

Drainage Imbibition

0.3 ml/min ( 0 min) 0.3 ml/min (1144 min)

III 0.5 ml/min (130 min) 0.5 ml/min (1376 min)

0.75 ml/min (224 min)

1.0 ml/min (294 min)

1.25 ml/min (352 min)

Table 11: Design of displacement experiments (The time in parenthesis indicates when the corre-

sponding flow rate was started based from the beginning of the experiment)
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Figure 46: Schematic of the sample as it resides within the RF-coil inside the MRI bore

Name Specific gravity Viscosity (cP)

Deuterium oxide (D2O) 1.11 1.26

Soltrol r© 130 0.763 2.08

Table 12: Basic properties of fluids (at 18 ◦C)

We used deuterium oxide (D2O) for the wetting fluid phase, and an isoparaffin oil (Soltrol r© 130,

Phillips Petroleum Co.) for the nonwetting fluid phase. The basic properties of those fluids are

presented in Table 12. With NMR, we observe the protons in the isoparaffin oil. For Experiments

I and III, the samples were initially fully saturated with D2O. At the conclusion of the first experi-

ment, we cleaned the sample with solvents such as ethyl alcohol, but the sample evidently retained

some oil which was observed at the beginning of Experiment II.

We used MRI to monitor one-dimensional saturation profiles throughout the experiments. Each

profile can be acquired in less than a second. Each flow rate was maintained up to steady state

conditions, as identified by observing no further changes in the saturation distributions. At that

point, three dimensional saturation distributions were measured. Each scan required about five

minutes.
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7.4.3 Results and discussion

Each of the experiments was extensively analyzed using the method described previously in Sec-

tion 7.2. The estimation problem is very non-linear, so it is best to start with a problem that can

be solved relatively quickly in order to identify good initial guesses for the full, three-dimensional

estimation problems. Thus, we used one-dimensional simulations, initially with uniform values of

(apparent) permeability and (average) porosity, and then with one-dimensional representations of

the properties as a function of the axial position. We also used combinations of pressure drop

and production (obtained by mass balances with an associated integral of the saturation), as for

conventional experiments, or pressure drop with saturation distributions, as well as pressure drop,

saturation, or production alone. While we could generally reconcile any single type of data, we were

never able to reconcile pressure with production or saturation. The lack of fit seemed too great

to be the result of approximating permeability and porosity distributions with one-dimensional

profiles formed by averaging longitudinally. We carefully evaluated all our experimental protocols,

and ran the several different experiments in the hopes of finding any experimental problems.

We take great care to avoid the introduction of any air bubbles into the system. To do this, we

mount the sample within the core holder, vacuum saturate it, and close valves that are attached to

short tubes at either end of the sample. We then make sure that the line we attach from the pump

contains no air bubbles.

In each of the experiments, we observed some pressure anomalies in the initial injection period.

An example is provided in Fig. 47. Overall, the trace shows the features we expect: the pressure

drops increase sharply with each increase in the injection rate, and then fall with time. The

relatively large spikes occur when the pump shifts to the alternate piston. From the beginning, up

until 70 minutes, we see some fairly large, unexpected excursions in pressure.

We believe now that this is due to redistribution of fluids within the inlet and outlet end caps.

Based on the Young-Laplace equation, some of these fluctuations may be of the size associated

with the capillary pressure for a water bubble within the small, 0.8 mm diameter tubing that we

use to minimize dead times in our experiment.

To investigate this further, we observed the first echoes associated with the one-dimensional

images (see Fig. 48) for Experiment III. In the inlet, outlet, and reference standard, the first echoes

are proportional to the amount of fluid since the relaxation time associated with the bulk fluid is

considerably longer than the echo time. While we had expected that the wetting fluid would be
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Figure 47: Pressure drop data of the primary drainage cycle of Experiment III

displaced from the inlet gap early in the experiment, so that face would be exposed only to the

injection phase, we see that is not the case.

In Experiment II, we filled the inlet gap with small glass beads of diameter 0.1 mm. This

did decrease the associated hold-up, but resulted in additional problems with sample preparation

together with the need to determine the hydraulic resistance in that region. Most of all, we still

observed significant changes in the fluid content of the endcaps with flow rate. This information is

provided in Figure 49, which plots the single intensity in the inlet and outlet encaps for different

flow rates, and as a function of time at each flow rate. The figure shows that the amount of the

nonwetting fluid in the caps changes with time, and with flow rate. Particularly troubling is the

inlet cap. It shows that both fluids (oil and water) are within the endcap, which is clearly not

consistent with the inlet boundary condition.

The images provided evidence that the boundary conditions associated with the experiment are

not matched by the mathematical model. It seems likely, however, that this same problem is being

encountered by others in one form or another, but not recognized since conditions within the caps

and distributions of saturations within the sample are generally not observed. We used a different

endplate design in the experiments reported by Kulkarni et al. (1998). The endplate was flush
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Figure 48: One-dimensional first echo image for Experiment III
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Figure 49: The signal intensity of bulk fluid within the inlet and outlet endcaps for Experiment II
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against the sample, but contained two circular channels that carried the injection fluid. While the

hold up was smaller, it is not clear that this experiment actually matches the boundary conditions

either, and the configuration could give rise to saturation distribution differences orthogonal to the

axial direction, which would not be detected by one-dimensional images along the axial direction.

We also note that the simulated values at the outlet of the sample, which must converge to a single

value, according to the usual outlet conditions, don’t precisely match the data (see figure 16 in

Kulkarni et al. (1998)).

Our three-dimensional saturation imaging results show that saturations within the plane or-

thogonal to the axial direction are not uniform. This may be the result of property heterogeneity,

or in part the result of some complex multidimensional flow which could result from the participa-

tion of the fluids in the endcap in the displacement process, as recognized previously (see Figs. 48

and 49). We show the one-dimensional saturation distributions for the primary drainage cycle of

Experiment III for various times, corresponding to a different flow rate in each of the Figs. 50–53.

(The times presented in the figures are based from the starting of each corresponding flow rate.)

The successive increases in the one-dimensional profiles are consistent with expectations. Note also

how greater ranges of saturation as accessed with the increasing injection rates.

We also show data obtained from the multi-dimensional imaging experiments conducted after

achieving each steady state. We show the saturation values for voxels corresponding to various axial

positions, and compute the mean and 90% residual regions. The saturations indicate a relatively

large spread at the higher flow rates, suggesting that the multidimensional simulation we developed

may be necessary to suitably model the experiment. We emphasize that, with full three-dimensional

modeling of the experiment and the inclusion of intrinsic porosity and permeability, the use of one-

dimensional saturation profiles obtained with MRI does not imply any simplification of the problem

since our measurements represent integrals across the transverse plane corresponding to successive

regions in the axial direction. It is important that that corresponding calculated values obtained

within the performance index (see Eq. 90) are in fact the same integral representations of the

calculated three-dimensional saturation distributions. Note that the multi-dimensional saturations

can, and should, be included as data as well.
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Figure 50: Saturation of nonwetting phase for 1st cycle of Experiment III (0.3 ml/min)
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Figure 51: Saturation of nonwetting phase for 1st cycle of Experiment III (0.6 ml/min)
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Figure 52: Saturation of nonwetting phase for 1st cycle of Experiment III (0.9 ml/min)
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Figure 53: Saturation of nonwetting phase for 1st cycle of Experiment III (1.2 ml/min)
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7.5 Conclusions

MRI methods for determining intrinsic porosity and permeability and saturation distributions pro-

vide powerful means to achieve reliable estimates of multiphase flow properties. We showed that

saturation distributions within displacement experiments may not be uniform in the transverse

direction, and thus may not be represented accurately by a one-dimensional model of the experi-

ment. We demonstrated that spatial variations in permeability can be a source of significant error

in estimating multiphase flow properties, and developed methodology whereby complete spatial dis-

tributions for porosity and permeability can be incorporated into the estimation, thus avoided such

errors. We provide the means to include both one-dimensional and three-dimensional saturation

measurements into the estimation process, and we highly recommend that protocol be used.

Using MRI, we determined that our experiments, and most likely all multiphase displacement

experiments, are not modeled accurately with the conventional boundary conditions used to model

displacement experiments. We recommend that extensive evaluation of the experimental design

and mathematical description is warranted to ensure the displacement experiments are accurately

modeled in the estimation process. The validation of estimates of multiphase flow properties using a

full, three-dimensional simulation of the displacement experiment is the only way to ensure accurate

estimates of the multiphase properties are obtained.
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8 Prediction of Properties

Studies of core samples are valuable for these purposes: 1. develop an understanding of the variation

of macroscopic properties at the most fundamental scale, 2. develop a better understanding of, and

means to mathematically model, more complex processes by observing and accounting for important

spatial variations within samples, and 3. develop the means to predict the properties for other media,

such as that actually within the reservoir, using other measurements on that media. The methods

we developed to obtain spatial distributions of the porosity and permeability at the intrinsic scale,

determine saturation distributions, and obtain accurate estimates of multiphase flow properties

from displacement experiments provide unprecedented information that can significantly advance

the value of experiments with reservoir core samples, and ultimately our ability to characterize

and predict reservoir behavior. In this section, we demonstrate the use of intrinsic properties

to develop improved methods to predict the flow properties–(absolute) permeability and relative

permeability–and to study unstable displacement processes.

8.1 Introduction

The ultimate goal for predicting properties is reservoir characterization, i.e., specification of prop-

erties required to reliably simulate reservoir behavior. Generally, properties will vary spatially

throughout the entire reservoir, and there is little direct sampling available at regions away from

the wells. The region around the wells, however, provides the best opportunity to investigate spatial

variations in properties, and to map those variations vertically for extrapolation throughout the

reservoir, since extensive well-log information is fairly readily available.

Conventional well-logging methods are sensitive (at best) to storage properties–typically the

porosity but in some cases the fluid saturations. Of key interest, those, is the permeability, a

critical marker for reservoir producibility that can vary by orders of magnitude. There have been

numerous attempts to predict permeability from conventional well-logs; however, these are all based

on very casual empirical relationships between measured values and permeability. Furthermore,

those methods never address the issue of scale associated with permeability.

NMR well-logging provides the best opportunity for predicting permeability from well logs.

Generally, NMR response is sensitive to the morphology of permeable media, since it depends on

the self-diffusion of molecules through the pore space. The use of NMR relaxation to estimate

pore-size distributions illustrates the sensitivity of relaxation to the microscopic structures, which
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control the permeability. Furthermore, NMR diffusion experiments exhibit a profound difference in

response for samples with different permeabilities (see figure 8 and associated discussion in Watson

and Chang (1997)). In Section 8.2, we describe the basis for permeability prediction from NMR well

logs. We then demonstrate how spatially resolved properties can be used to obtain more reliable

methods for predicting permeability.

Reliable methods for predicting (absolute) permeability may provide a basis for predicting

relative permeability. One such prediction method has been proposed (Chen et al. 1994). Besides

its potential use with well-log data, this type of prediction method can provide the means to

determine relative permeability functions for unstable displacements. No such method is currently

available. In Section 8.3, we demonstrate the use of NMR imaging to predict the wetting-phase

relative permeability and to obtain fundamental information for developing improved understanding

and mathematical methods for simulating unstable displacements.

8.2 Prediction of permeability

Since the permeability is defined within Darcy’s law, we must actually determine it by measuring

associated fluid states, or functions of those states, and solving the corresponding inverse problem,

as discussed in Section 6. However, relationships for predicting the permeability can be developed

by establishing, for a given set of samples, a correlation between the permeability and other prop-

erties (predictors). By measuring the predictors, the permeability can be calculated using that

correlation. In this way, we can predict the permeability without actually having to conduct flow

experiments. Conventionally, the sample set corresponds to an apparent value of permeability and

other measurements, notably the average porosity and relaxation, for each sample. We investigate

the use of a sample set composed of spatially resolved properties. In this way, any correlation

among the properties can be better identified by avoiding the averaging, or use of apparent values,

over entire samples. Note that our approach has the advantage of providing a much larger sample

set, since typically hundreds of values may be available for each sample. Thus, our correlations

will be based on thousands of observations, rather than tens, as is conventionally done; this will

provide a much more powerful foundation for developing correlation equations.

In the next subsection, we review the correlations that have been developed to predict perme-

ability using well-log observables. In the following subsection, we illustrate our approach.
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8.2.1 Permeability correlations

In simple models of porous media, the absolute permeability has been found to be proportional

to the square of the surface-to-volume ratio (Scheidegger 1974) and, therefore, proportional to

the square of the NMR relaxation times (Kenyon et al. 1988). Seevers (1966) first proposed the

estimator φT 2
1 for permeability, and later this was revised by Kenyon et al. (1988) who examined

more than seventy water-saturated sandstone samples from five oilfield wells in different parts of

the world. They proposed, providing physical significance (see section Physical Perspective on

Permeability Estimation in Kenyon et al. (1988)), that permeability can be better predicted by

φ4T 2
1 .

Further support for this form is provided by the following arguments. Katz and Thompson

(1986) observed that the permeability is proportional to the product of the square of the character-

istic length associated with the pore space, lc, and ratio of the conductivity of the porous sample,

σ0, saturated with fluid of conductivity σw (Katz and Thompson 1986):

K ∝ l2c
σo
σw

(97)

NMR provides an estimate of the characteristic length. As shown in Section 4.2, the relaxation

rate associated with a pore is proportional to the effective radius of the pore (see Eqs. 40 and

41). Suppose that we have a characteristic (e.g., average) relaxation time τo at fully saturated

conditions. Archie’s law (Archie 1942) for a fully saturated sample is

σo
σw

= φm. (98)

Consequently, we can write:

K ∝ τ2
oφ

m. (99)

While a typical value for m in Archie’s law is 2, Kenyon et al. (1988) found that an exponent of 4

provided a better correlation of their sample set, as stated previously.

In more recent works (LaTorraca et al. 1993; Kubica 1995; Straley et al. 1997), T2 has been used

instead of T1. The reason for this is that T2 is easier to measure in the down-hole environment than

T1. At the low magnetic field employed by NMR well logging, T2 ≈ T1. At the higher fields, used by

Kenyon et al. (1988) as well as by us, T2 is strongly affected by diffusion within the magnetic field

gradients induced by differences in magnetic susceptibilities of the solid and fluids. Consequently,

at the high field only T1 provides the intrinsic information about the characteristic pore size that

is evidently valuable for permeability correlations.
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The expressions based on pore surface-to-volume ratio have been substantiated by empirical

observations on a number of sandstones core samples (Sen et al. 1990; Kubica 1995). In addi-

tion to the experimental data, artificial porous media were computationally generated and studied.

Dunn et al. (1998,1999) studied periodic porous systems composed of arrays of touching and over-

lapping spheres, Øren et al. (2002) reconstructed three-dimensional sandstone samples by a process-

based reconstruction method, and Hidajat et al. (2002) made use of two-point pore-pore correlation

functions to construct porous media. They simulated or calculated the NMR properties and the

permeabilities on the artificial porous media and studied their correlations. They showed that

the simulated data from the artificial porous media are consistent with the commonly used NMR

permeability correlation, k = aφbT c, and that this expression can be improved by incorporating

surface relaxivity and formation factor as additional multipliers with corresponding exponents.

While the studies with artificial porous media are useful to develop better expressions of per-

meability correlations, the precision of the correlations has understandably been less successful

for actual heterogeneous rocks. In actual applications, we might expect bounds not much better

than an order of magnitude. We believe a significant problem is the use of the core sample as the

fundamental unit associated with the measurements. A single, apparent value of permeability is

used for the sample, when in fact it may vary substantially with position. The porosity and the

relaxation distributions also vary with position. Consequently, substantial averaging (at best) of

the basic properties is occurring prior to application of the correlation equation. If there is a basic

relationship among the permeability, porosity, and relaxation that applies at each position within

the sample, there is no guarantee that averages among those properties will be as reliably related,

or that a relationship among averages would be reliably carried to other length scales. In contrast,

we seek to develop correlation relationships on the basis of the intrinsic properties.

8.2.2 Predictions with intrinsic properties

Here we develop correlation-based predictions of permeability based on spatially-resolved porosity,

relaxation, and permeability distributions. In this way, we expect to avoid significant loss of

resolution due to the use of apparent and averaged quantities. Furthermore, we expect to achieve

predictions that are statistically more reliable since the number of data will be substantially larger

(hundreds or thousands times larger) than the conventional approach.

We focus on the form

k = aφb(T2lm)c, (100)
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which seems to be most commonly used. The logarithmic mean of T2, T2lm, is calculated by

T2lm = exp
[∫

P (τ) ln τ dτ
]

, (101)

where P (τ) is the normalized T2 relaxation distribution. The parameters a, b, and c can be

estimated using data collected for a set of samples. Some researchers have sought to specify

universal estimates for some of these coefficients. For example, Kenyon has proposed (Kenyon

et al. 1988)

kapp = a(φavg)4(T avg2lm)2 (102)

with a to be estimated from the sample set. We denote the properties with superscript app or ave

to emphasize the property is an apparent value, or averaged over the entire sample, respectively.

In this work, we determine k, φ, and T2lm for each of a number of voxels. Here, the relaxation

distribution P (τ) in Eq. 101 is that of the corresponding voxel. We select parameters by linear

regression using the logarithmic transformation of the correlation equation:

log k = log a+ b log φ+ c log T2lm. (103)

It would be preferable to develop the correlations (i.e., determine the parameters) using spatially

resolved properties for each of the samples within a geologically similar unit. However, since we

were unable to determine the velocity distributions, and thus resolve permeability distributions,

for the reservoir samples, we will demonstrate the process with spatially resolved properties for the

single Bentheimer sample.

We consider two different scenarios. For the first, the values developed by (Kenyon et al. 1988)

were used for the exponents (b = 4 and c = 2) and the corresponding values of permeability,

porosity, and average relaxation for all the voxels were used to estimate the coefficient a. For the

second, we estimated all three parameters from the data. The results of the linear regressions are

presented in Table 13. For the logarithmic permeability data, yi = log ki, i = 1, . . . , N , and their

corresponding estimate, ŷi, the coefficients of determination, SSE and SST, are respectively defined

as

SSE =
∑

(ŷi − yi)2 (104)

and

SST =
∑

[

ŷi − (1/N)
∑

yi
]2
. (105)

The coefficient of determination, R2, is defined as 1 - SSE/SST, and the root-mean-square-error

(RMSE) is (SSE/N)1/2. It is observed that the errors between the estimated values and the data

101



Scenario Regression equation SSE RMSE R2 P-value

I log k = 3.94 + 4 log φ + 2 log T2lm 140.49 0.5875 - < 0.001

II log k = 5.57 + 0.819 log φ + 0.335 log T2lm 33.98 0.2897 0.1195 < 0.001

Table 13: Results of linear regression for the parameters of correlation equation

are reduced by estimating all three parameters instead of estimating one. However, the relatively

small R2 value implies that the fitting is not precise for the given correlation equation. The P-

value is based on χ2 random distribution and it provides a criterion to test for significance of the

regression. The associated null hypothesis is that all the linear regression parameters (log a, b, and

c for scenario I and log a for II) are zero. The very small P-values indicate that the null hypothesis

is rejected (i.e., at least one of the parameters are significant) with confidence level more than

99.99% for both of the scenarios.

In Fig. 54, we plot the measured and predicted values of permeability for the three cases. Perfect

predictions will lie along the diagonal. For the first case, there is a clustering around the diagonal,

but a number of points are located to the left of the cluster. The clustering about the diagonal

is tighter for the second case. While this does confirm the more precise prediction provided by

estimating all the coefficients, it would be desirable to have a greater range of permeability values,

which would be available by correlating a number of different samples, to fully appreciate the use

of intrinsic properties. As is shown in Table 7, the standard deviations of the porosity are relatively

larger for the reservoir samples than for the Bentheimer sample, which implies that the reservoir

samples generally have greater heterogeneity than the Bentheimer sample. We expect that the

correlation would give better precision with the results from the reservoir samples.

It is desired that the predicted values closely match the measured (data) values. This precision

is evaluated by calculating the correlation coefficient between predicted and measured permeabili-

ties, while the logarithmic values are used for the linear regressions. The correlation coefficient is

calculated as:

Corr(kpred, kdata) =
Cov(kpred, kdata)

√

Var(kpred)Var(kdata)
, (106)

where Cov and Var are covariance and variance, respectively. The correlation coefficient is a number

between 0 and 1, and the larger the number, the more precise the prediction. In order to insure

the significance of the correlation, we performed a randomization test. Here, the order of each of

the three data set, {ki}, {φi}, and {T2lm,i}, is randomly permuted so that the correlation among
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Figure 54: Permeability of the voxels in the Bentheimer sample versus its predictor, aφb(T2lm)c.
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Realization Corr(kpred, kdata) P-value

Original order of data 0.372 < 0.0001

Random permutation 1 0.065 0.191

Random permutation 2 0.076 0.124

Random permutation 3 0.027 0.589

Random permutation 4 0.001 0.988

Random permutation 5 0.073 0.140

Table 14: Correlation coefficients for various realizations. The three parameters, log a, b, and c

were estimated by linear regression and the corresponding kpred was calculated.

the randomly ordered values are estimated. The significance of the correlation of the original data

is compared to that of the randomly ordered data for which we expect no correlation. We made

five such random realizations and performed the same linear regression for the three parameters as

we did for scenario II. The correlation coefficient values for original data set and for the random

realizations are listed in Table 14.

The table shows that the correlation coefficient of the randomly ordered data is smaller than

that of the original data, typically by an order of magnitude. The null hypothesis associated

with the P-value is that the correlation coefficient is zero: Corr(kpred, kdata) = 0. For the original

data, the hypothesis is rejected (i.e., the correlation coefficient is not zero, which means there is

correlation) with confidence level more than 99.99%. On the other hand, the hypothesis cannot

be rejected (i.e., we cannot avoid the possibility of no correlation) with confidence level down to

90% for all of the randomly permutated realizations. This test shows that there exists correlation

among the properties resolved with respect to the spatial locations within a sample, although the

current correlation equation does not a provide precise fit.

It is emphasized that, due to the limited number of samples for which we have resolved the

intrinsic permeability, we have not performed an exhaustive search of correlation functions, choosing

instead a form based on conventional, whole-sample analyses. The fact that spatial correlation is

observed leads us to believe correlation equations can be developed with far greater reliability

than current ones, provided the intrinsic permeability can be resolved for the samples of interest.

Notably, we recommend evaluation of the inclusion of surface relaxivity, since it provides the scaling

between relaxation and pore-size, which has a significant effect on pore size. Our method developed
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Scenario Correlation kapp,predic φavg T2lm kapp,data

I kapp = 51.4(φavg)4(T2lm)2 290 mD 0.237 42.3 ms 267 mD

II kapp = 262(φavg)0.819(T2lm)0.335 283 mD

Table 15: Predicted apparent permeability using the determined correlation equations.

for determining the surface relaxivity (Section 4) can contribute significantly to this endeavor by

providing much more reliable and convenient measurements of surface relaxivity than previously

available.

It is worthwhile to observe how the apparent property values work with the given correlation

parameters. The apparent permeability, kapp, and the bulk porosity, φavg, of the Bentheimer sample

have been given in previous sections (Sections 5 and 6). The logarithmic mean of T2 of the whole

sample, T2lm can be calculated from the corresponding T2 distribution, which has been presented in

Fig. 8. The predictions of the permeability from those apparent values are presented in Table 15. It

is notable that the parameter sets I and II are quite different while they both give similar apparent

permeability, which is consistent with the apparent permeability data, with the same values of

average porosity and relaxation time. This implies that the study of individual voxels in a samples

provides new aspects of the correlation that could not be investigated only by using apparent values.
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8.3 Prediction of relative permeability

Chen et al. (1994) extended a method for predicting permeability to multiphase situations, providing

for the prediction of relative permeability. We review this development.

Replacing the characteristic length with the relaxation time in Eq. 97, we obtain:

k ∝ τ2
o

σo
σw

(107)

Suppose now that we determine an average relaxation time τ for a sample which has saturation

Sw. The average relaxation rate (inverse of relaxation time) will normally be shorter than for the

fully saturated condition since the wetting phase will be preferentially displaced by the nonwetting

phase from the larger pores. Applying Eq. 107 for this case, we write:

k(Sw) ∝ τ2σ(Sw)
σw

(108)

where σ(Sw) denotes the conductivity of the partially saturated sample. Taking the ratio of Eqs. 107

and 108, we obtain, for the relative permeability:

krw =
τ2

τ2
o

σo
σ(Sw)

. (109)

The Archie equation for partially saturated conditions is: σo/σ(Sw) = Snw, with n = 2 often

approximately valid for many sandstones. Using this in the previous equation, and modifying the

saturation term to account for no flow at the irreducible saturation Swi, we obtain:

kr,w =

(

τ2

τ2
0

)

(

Sw − Swi
1− Swi

)n

. (110)

We were unable to directly validate this equation by comparing the predictions with actual

measurements of the relative permeability for the same experiment. To do so, it is necessary to

measure the relaxation of the wetting phase fluid for different saturation conditions. This requires

spatial resolution of the relaxation and saturation distributions with the MRI. While data for one-

dimensional spatial resolutions of the saturation and transverse relaxation profiles can be acquired

relatively rapidly, the measurement of spatially resolved longitudinal relaxation distributions take

considerably longer. It would be necessary to use a drainage experiment in order to maintain stable

saturation profiles for the imaging time required, since complete, continuous displacement occurs

during imbibition experiments. While we use drainage experiments to determine the multiphase

flow properties, we do so observing the non-wetting phase while using deuterium-oxide for water

(wetting) phase, so that strategy is not suitable.
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We spent considerable effort developing an alternate strategy. In particular, we attempted to

use a nitrogen-water system, so that we could observe the water. In the drainage experiment,

gas is injected into a sample that is filled with water. However, this is an unstable process, and

all methods for determining the relative permeabilities are based on stable displacements. There

are two other possibilities that could prove fruitful. The first is to use chemical-shift imaging

to distinguish the signals, and the second is to use a hydrogen-free oleic phase. While we have

had prior experience with chemical shift imaging (Qin et al. 1995), additional errors are always

encountered compared to observing only a single fluid phase, and the method may not work well

with some samples. Furthermore, we have only demonstrated it for determining saturation, and

have not evaluated its use to reconcile relaxation distributions. An initial investigation for a suitable

hydrogen-free oleic liquid did not seem promising: many potential substances were not available in

any reasonable quantity, were hazardous, or had unknown solubilities with the oil. We concluded

that any alternate approach would require extensive research, with relatively little potential value

since the permeability distributions and accurate estimates of multiphase properties for the reservoir

samples were not available.

A very interesting potential application for the proposed predictive equation is the estimation

of relative permeability for unstable displacements. It is understood that the relative permeabil-

ity property is valid for both stable and unstable displacements. However, there are no methods

for determining relative permeability for unstable situations. Note that simulations of unstable

phenomena are stochastic, and thus we are unable to simulate the results of any specific experi-

ment. Consequently, the approach of modeling the experiment and solving the associated inverse

problem, used for determining multiphase flow properties with stable displacement experiments, is

not directly applicable. The proposed relationship can be used to predict the relative permeability

associated with unstable displacements, as illustrated in this section. We also further investigated

the dependence of relaxation on saturation (Chen et al. 1994), since that is a critical component

for the proposed prediction equation. Note that if relaxation did not depend on saturation, the

predictive equation would only provide the assumed power-law function of saturation since the

coefficient will remain unity.

8.3.1 Experiment

Reservoir sandstone sample R221a, 4.1 cm in length and 2.5 cm in diameter, was mounted in a

plexiglass holder. (We note here that sample R221 was prepared by removing sections of R221a.)
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A small tube of water was placed on the top of the sample to serve as a reference for intensity

calibration in order to determine the porosity and saturation distributions (see Section 5). Initially,

the sample is fully saturated with water. The bulk porosity was determined gravimetrically to be

0.25. The sample with the reference standard was placed into a 3.5-cm diameter birdcage RF

coil and then inserted into our Bruker BioSpec r© 24/30 system (100 MHz) equipped with a ± 20

Gauss/cm gradient coil inside the 30 cm magnet bore.

Imaging was performed during conditions of full saturation (Stage 0) and at three successive

stages. The stages were established by exposing the inlet to nitrogen at 9.7 KPa, 19.3 KPa,

and 29.0 KPa, respectively, while the outlet end was maintained at atmospheric pressure. In

each case, after about five minutes, the sample was closed off. The saturation distribution was

subsequently monitored. When no changes were noted (typically a half hour), spatially resolved

(three-dimensional) CPMG and inversion-pulse recovery experiments were conducted to determine

saturation and relaxation distributions.

The parameter values associated with the imaging sequence are shown in Table 16. A 64×8×8

imaging domain was used. The relatively large value of 64 was used to make sure the reference

signal did not overlap the sample signal. Relatively low resolutions were used in the other two

directions in order to have manageable experimental times for this exploratory experiment. The

position of the sample within the imaging region is shown in Fig. 55. For simplicity, we examine

results for a rectangular parallel-piped which is fully within the cylindrical sample as noted in the

figure. The range of voxels examined in each of the directions, Posterior-Anterior (P-A), Heat-Foot

(H-F), and Left-Right (L-R), are listed in Table 17.

8.3.2 Results and discussion

Transverse relaxation distributions corresponding to each voxel for each of the four stages were

obtained from the CPMG experiments, as described in Section 3. Using the procedures in Section 5,

the porosity was determined from the images for Stage 0, and the saturation distributions for the

other three stages. Longitudinal relaxation distributions P (T1) for each voxel were determined

from the spatially-resolved inversion-recovery experiments, and average values of relaxation τ were

calculated for each voxel using Eq. 38.

Average saturation values for the examined region were determined to be 0.9, 0.7, and 0.6 for

stages 1, 2, and 3, respectively. The saturation distribution is shown for several planar regions

within the sample. Figs. 56–58 show the saturation distributions corresponding to two successive
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Spectral Width 50000 Hz

Spatial Encoding frequency-phase-phase encoding

Slice Orientation transverse anterior-posterior

Excitation Pulse Length 50 µs

Refocusing Pulse Length 50 µs

Repetition Time 5 s

Number of Echoes (CPMG) 32

Number of Experiments (Inversion-Recovery) 30

Echo Spacing (CPMG) 3.6 ms

Field of View 4.8 cm × 4.8 cm × 6.4 cm

Matrix Size 64 × 8 × 8

Voxel Size 0.75 mm × 6 mm × 8mm

Experiment Duration (CPMG) 30 min

Experiment Duration (Inversion-Recovery) 150 min

Table 16: Parameter values for CPMG imaging and inversion-recovery sequences

Figure 55: Sample orientation with imaging experiments

109



Sample Limits in P-A Direction 20-45

Sample Limits in H-F Direction 2-7

Sample Limits in L-R Direction 4-6

Table 17: Range of voxels examined

Figure 56: Stage 1 saturation distributions for two successive horizontal planar regions near the

center of the sample

horizontal slices (i.e., the H-F–R-F plane) near the center of the sample at each of three stages.

Figs. 59–61 show the saturation distributions corresponding to a vertical slice along the axial

direction (i.e., the H-F–A-P plane) at each of the stages. All these figures show considerable

variations of the saturation, apparently due to the unstable displacements. They also indicated

overall decreases in saturation for each of the successive stages.

The large degree of variation in the saturation distributions is further exemplified in Figs. 62–64.

All the voxel saturation values are shown, as a function of position along the axial (H-F) direction.

Also shown are the average saturation values, and the intervals that contain 95% of the saturation

values. The figures indicate that, as expected, the saturation decreases along the length of the

sample for a given stage, and decreasing in each successive stage. It also indicates a very large

variation in values at each position along the axial direction.

We illustrate the general behavior of relaxation with saturation with results from two voxels,

110



Figure 57: Stage 2 saturation distributions for two successive horizontal planar regions near the

center of the sample

Figure 58: Stage 3 saturation distributions for two successive horizontal planar regions near the

center of the sample
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Figure 59: Stage 1 saturation distributions for a horizontal planar region near the center of the

sample

Figure 60: Stage 2 saturation distributions for a horizontal planar region near the center of the

sample

Figure 61: Stage 3 saturation distributions for a horizontal planar region near the center of the

sample
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Figure 62: Stage 1 Voxel saturation values along the axial direction
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Figure 63: Stage 2 Voxel saturation values along the axial direction
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Figure 64: Stage 3 Voxel saturation values along the axial direction
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Figure 65: T1 distributions for Voxel (35, 7, 6)
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Figure 66: T1 distributions for Voxel (30, 6, 6)

whose positions are identified by coordinates (P-A, H-F, L-R), where the indices are the voxel

number in each of the posterior-anterior (P-A), head-foot (H-F), and left-right (L-R) directions,

respectively (see Fig. 55). The relaxation distributions determined for the two voxels corresponding

each of the four stages are shown in Figs. 65 and 66, respectively, and the corresponding average

relaxation values are listed in Table 18.

These average relaxation times are plotted as a function of saturation in Fig. 67. There is a

clear trend of the average relaxation with saturation, consistent with that observed by Chen et al.

(1994). The differences in the experimental protocols between the cited work and ours are notable.

Chen et al. (1994) used averages corresponding to the entire samples, whereas we have resolved

spatially both the saturation and relaxation.
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Voxel (35, 7, 6)

Stage τ(sec) Saturation

0 0.25 1

1 0.24 0.88

2 0.21 0.54

3 0.20 0.41

Voxel (30, 6, 6)

Stage τ (sec) Saturation

0 0.26 1

1 0.25 0.81

2 0.23 0.51

3 0.21 0.38

Table 18: Average relaxation and saturation values for two voxels

This dependence of relaxation on saturation was observed consistently for other voxels. This

is illustrated by Fig. 68, which contains results for 60 voxels. Results corresponding to each single

voxel are connected with lines. Note the the average relaxation associated with the fully saturated

conditions (S2 = 1) varies considerably. Evidently, this is due in differences in surface relaxivity,

which is probably due to variations in chemical composition of the solid material within this sample.

This emphasizes the value of this spatial analysis, which negates that effect.

We now demonstrate the prediction of relative permeability. Using data from all the stages, we

bin the saturations values by identifying the voxels that fall within specified intervals of saturation

with (approximate range of 0.05 saturation units). We determine the relaxation distribution that

represents each bin by computing a composite distribution:

P(T1) =
N
∑

i=1

Pi(T1), (111)

where Pi represents the (non-normalized) relaxation distribution of the water within the ith voxel

in the bin and N is the number of voxels belonging to the bin. The composite distribution, P(T1),

is normalized by

P (T1) =
P(T1)

∫∞
0 P(τ) dτ

, (112)

and the average relaxation value is calculated using T avg1 = [
∫∞
0 τ−1P (τ) dτ)]−1. We then compute,
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Figure 67: Average relaxation for different saturations for two voxels

using a mass balance, the average saturation for the bin, and calculate the corresponding value of

relative permeability using Eq. 110. We estimated the irreducible saturation to be 0.3 by extrap-

olating a plot of saturation versus inlet gas pressure (Xue 2004). The corresponding predicted

relative permeability is shown in Fig. 69.
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Figure 68: Average relaxation for different saturations for sixty voxels
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Figure 69: Predicted relative permeability
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9 Conclusions

We developed a new, non-parametric based method to estimate relaxation distributions from NMR

data. This forms the basis for determining spatially resolved porosity and saturation distributions

from MRI data. Using spatially-resolved CPMG imaging, we determine the relaxation distributions

at each voxel in order to model the relaxation behavior and estimate the intrinsic magnetization

intensity, which is scaled to the porosity or saturation. This method was demonstrated with

several Bentheimer and reservoir sandstone samples. The porosity distributions showed substantial

variations, clearly indicating the heterogeneous nature of all the samples. Statistical analysis of

the associated porosity values indicated that none of the collection of porosity values for any of the

samples had a normal distribution.

We developed a pulsed-field-gradient-stimulated-echo method to determine spatially resolved

velocity density functions during flow experiments. These were in turn used to determine spatially

resolved superficial (average) velocities. This method was successfully applied to Bentheimer sam-

ples. However, the relaxation rates associated with the reservoir sandstone samples were sufficiently

large that we were unable to resolve velocities. Identification of a suitable fluid that, when saturat-

ing the samples, does not exhibit as great relaxation rates as does water would enable resolution

of the velocity. Also, greater success is expected with carbonate samples since water saturated

samples generally exhibit smaller rates of relaxation than sandstone.

We developed methodology to estimate permeability distributions from the velocity data. We

formulate a performance index, based on differences between the measured velocity data and the

corresponding values calculated with a mathematical model of the experiment. We then determine

the permeability distribution that minimizes the performance index. Our flow experiment is similar

to that conventionally used to determine a single value for permeability, in that we flow a fluid

through a sample at a specified flow rate and measure the pressure drop. However, we also use

MRI to determine the velocity distribution. Our estimation procedure is validated with simulated

data and demonstrated using experimental data obtained for a Bentheimer sample.

We have investigated alternative experimental designs that can provide superior estimates of the

permeability distribution. In particular, by conducting multiple experiments establishing different

flowing patterns, such as by conducting a second experiment in which fluid flows in a direction

orthogonal to the first experiment, substantially more accurate estimates can be obtained.

Surface relaxivities are necessary for estimating pore-size distributions from NMR data. These
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properties will also be useful for developing improved correlations to predict permeability. We

developed a method to determine surface relaxivities from NMR data that avoids limitations of

current methods that require restrictions on the range of time for which data may be used. Fur-

thermore, it does not require estimates of derivatives of data, which can be a significant source for

errors.

We advanced the use of full, three-dimensional mathematical models for use in determining mul-

tiphase flow properties from displacement experiments. We recommend including intrinsic porosity

and permeability, dynamic one-dimensional saturation profiles, and three-dimensional saturation

distributions corresponding to steady states within the process to estimate multiphase flow prop-

erties. Using MRI, we have determined the boundary conditions conventionally used to model

displacement experiments may not accurately match the experiments, and thus recommend future

attention to this aspect.

Spatially resolved porosity, permeability, and relaxation distributions will provide much more

powerful foundations for developing correlations to predict permeability than the conventional data

based on apparent and average values associated with core samples. We evaluated a commonly used

correlation equation reported in the literature and found that it did not provide a good correlation

for our spatially resolved data for Bentheimer sandstone. However, our analysis showed our data

clearly exhibited spatial correlations.

We demonstrated spatial resolution of saturation and relaxation distributions with an unstable

displacement process to predict wetting-phase relative permeability. In addition to the potential

application to well logging, this example illustrates the experimental methodology to investigate

unstable displacement processes and to predict the relative permeability.
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BFGS Broyden-Fletcher-Goldfarb-Shanno

CPMG Carr-Purcell-Meiboom-Gill
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CV Cross Validation
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RF Radio Frequency
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TE Echo Time

TM Mixing Time

UBPR Unbiased Prediciton Risk
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Appendix 1. Linearly constrained quadratic minimization problem

In this section, the minimization problem with equality constraints is converted to unconstrained

problem to obtain an expression for the Hat matrix. Consider a linearly constrained, quadratic

minimization problem:

min
c
J(c) = ||Y −Ac||2 (113)

subject to

Gc = 0. (114)

Here, A is n × ns matrix, and Y and c are respectively n × 1 and ns × 1 column matrices (or

vectors).

Suppose all dependent constraints are eliminated and G is composed of u independent con-

straints. In other words, G is u×ns matrix with full row rank (u < ns). Then, a LQ factorization

reduces G into L, an u× u lower diagonal matrix, and an ns × ns orthogonal matrix Q so that

G = [ L : 0 ] Q. (115)

Using the orthonormal properties of Q, Eq. 115 is equivalently expressed as

GQT = G
[

QT
1 : QT

2

]

= [ L : 0 ] . (116)

Here, QT consists of the first u columns, QT
1 , and the other ns − u columns, QT

2 . Since the

orthonormal columns of QT form a basis of ns-dimensional vector space, the vector c can be

expressed as

c = Q1
Tc1 + Q2

Tc2, (117)

where c1 and c2 are u × 1 and (ns − u) × 1 matrices, respectively. Combining Eqs. 114 and 117

gives

GQ1
Tc1 + GQ2

Tc2 = 0. (118)

Using GQT
1 = L and GQT

2 = 0 from Eq. 116, Eq. 118 becomes

Lc1 = 0, (119)

i.e., c1 = 0. This results in

c = QT
2 c2. (120)
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The minimization problem with constraints (Eqs. 113 and 114) is now equivalently written as

min
c2

J(c2) = ||Y −AQT
2 c2||2 (121)

without additional equality constraints. Equation 121 implies that the degree of the freedom of the

performance index is reduced from ns of c to ns − u of c2 due to the equality constraints. This

equation can be rewritten in terms of c instead of c2. Since QT
2 composed of orthonormal columns,

Q2c = Q2QT
2 c2 = c2. (122)

Therefore, the minimization problem is rewritten as

min
c
J(c) = ||Y −AQT

2 Q2c||2 (123)

The above derivation is about the performance index without regurization term. However, that

can be easily applied for the one with regularization term (Eq. 16). Noting that the vector norm,

|| · ||, is defined as

||b||2 = bTb, (124)

the performance index with regularization term (Eq. 16) can be written as

J =

∥

∥

∥

∥

∥

∥

∥
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Ydata
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. (125)

In analogy with the above derivation (Eqs. 113 and 123), Eq. 125 becomes

J =

∥

∥

∥

∥

∥

∥

∥
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Ydata
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2

(126)

when it is constrained by Eq. 114. Therefore, Eq. 16 with the equality constraints is equivalently

written as

min
c
J =‖ Ydata − Ãc ‖2 +nλ ‖ M̃c ‖2, (127)

where Ã = AQT
2 Q2 and M̃ = MQT

2 Q2. The corresponding hat matrix is given by

H(λ) = Ã[ÃT Ã + nλM̃TM̃]−1ÃT . (128)
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Appendix 2. NMR relaxation distributions
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Figure 70: NMR relaxation distributions of R138
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Figure 71: NMR relaxation distributions of R145
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Figure 72: NMR relaxation distributions of R221
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Figure 73: NMR relaxation distributions of R237
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Appendix 3. Porosity distributions
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(a) Three-dimensional porosity image in gray scale

(b) Statistical analysis of porosity distribution

Figure 74: Porosity distribution of R145
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(a) Three-dimensional porosity image in gray scale

(b) Statistical analysis of porosity distribution

Figure 75: Porosity distribution of R207
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(a) Three-dimensional porosity image in gray scale

(b) Statistical analysis of porosity distribution

Figure 76: Porosity distribution of R221
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(a) Three-dimensional porosity image in gray scale

(b) Statistical analysis of porosity distribution

Figure 77: Porosity distribution of R237
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Appendix 4. Flow Compensation

In this section, we describe how the effect of fluid flow on spatial encoding is eliminated by “flow

compensation”. This section focus on the frequency encoding on the z-direction along which the

fluid primarily flows. We assume that the effect of flow on the other two spatial encodings (phase

encoding) is negligible.

The phase change ϕ of a spin due to gradient fields applied during the time from t1 to t2 can

be represented by

ϕ =
∫ t2

t1
γ G(t) · r(t)dt, (129)

where γ is gyromagnetic ratio, G(t) is the applied gradient field, and r(t) is the position vector at

time t. Let us focus on only axial direction of the gradient and position vectors here. In general,

a typical frequency encoding is composed of a defocusing gradient field and refocusing read-out

gradient. The duration and strength of the defocusing gradient field is designed such that the total

phase shift is zero at the center of the read-out gradient. If the fluid is stationary, the position of

the spin is constant, i.e., r(t) = r0. Then, the defocusing gradient strength, grdp, is calculated

as follows for trapezoidal shape of gradient fields: The phase change due to defocusing gradient is

given by

∫ t∗1+d4

t∗1

grdp · t− t
∗
1

d4
r0 dt+

∫ t∗1+d4+d11

t∗1+d4
grdp r0 dt (130)

+
∫ t∗1+d4+d11+d4

t∗1+d4+d11
grdp · t

∗
1 + d4 + d11 + d4− t

d4
r0 dt = grdp (d11 + d4) r0

Here, t∗1 is the time of which the defocusing gradient begins, d4 is rise time of the gradient, and d11

is the duration of gradient. Gyromagnetic ratio is omitted for simplification in Eq. (130) and in

the following. The phase change due to the the rephasing gradient, strength gro, up to the center

of acquisition time, aqq, is

∫ t∗2+d4

t∗2

gro · t− t
∗
2

d4
r0 dt+

∫ t∗2+d4+aqq/2

t∗2+d4
gro r0 dt =

1
2
gro (aqq + d4) r0 (131)

Here, t∗2 is the starting time of the read-out gradient field. The grdp which makes (130) + (131) =

0 is

grdp = −gro (aqq + d4)
2 (d11 + d4)

(132)

When the fluid flows with constant velocity of v, r0 becomes r(t∗1)+(t−t∗1)v and r(t∗2)+(t−t∗2)v

for defocusing and refocusing gradients, respectively. Suppose the defocusing gradient strength is
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adjusted from grdp to grdp+grdpa, the total integration of phase change from t∗1 to t∗2 +d4+aqq/2

is expressed as
∫ t∗2+d4+aqq/2

t∗1

g(t) · r(t)dt (133)

= grdpa (d4 + d11) r(t∗1) +
grdpa v (d4 + d11) (d4 + d11 + d4)

2

+ gro · v
[

d42

3
+
aqq d4

2
+
aqq2

8
+

(aqq + d4) [2(t∗2 − t∗1)− (d4 + d11 + d4)]
4

]

We can then choose grdpa such that Eq. (133) becomes zero, which means complete compensation.

However, it is impossible to obtain the precise value of v because it changes with respect to position.

The problem can be easily solved by adding an additional gradient upon the first velocity encoding

pulse.

Suppose the gradient strength of the first velocity encoding pulsed gradient is increased by

modig. The phase change due to modig is
∫ t1+d4+d11+d4

t1
modig g(t) [r(t1) + (t− t1) v] dt (134)

= modig (d4 + d11)
[

r(t1) +
(d4 + d11 + d4)

2
v

]

,

where t1 is the starting time of the first velocity encoding gradient. After the two 90o pulses, the

phase of Eq. (134) is reversed. The total phase change is then calculated by the summation of

Eqs. (133) and (134).
∫ t∗1+d4+aqq/2

t1

g(t) · r(t) dt = −modig (d4 + d11) r(t1)− modig v (d4 + d11) (d4 + d11 + d4)
2

(135)

+ grdpa (d4 + d11) r(t∗1) +
grdpa v (d4 + d11) (d4 + d11 + d4)

2

+ gro · v
[

d42

3
+
aqq d4

2
+
aqq2

8
+

(aqq + d4) [2(t∗2 − t∗1)− (d4 + d11 + d4)]
4

]

If we choose grdpa = modig and substitute r(t∗1)− r(t1) = v ·∆,
∫ t∗1+d4+aqq/2

t1

g(t) · r(t) dt = modig (d4 + d11) v ∆ (136)

+ gro · v
[

d42

3
+
aqq d4

2
+
aqq2

8
+

(aqq + d4) [2(t∗2 − t∗1)− (d4 + d11 + d4)]
4

]

The modig which satisfied Eq. (136) = 0 is

modig =
−gro

(d4 + d11)∆

[

d42

3
+
aqq d4

2
+
aqq2

8
+

(aqq + d4) [2(t∗2 − t∗1)− (d4 + d11 + d4)]
4

]

(137)

Here, (t∗2−t∗1)−(d4+d11+d4) is the time between the end of the second velocity encoding gradient

pulse and the beginning of the read-out gradient. Note that modig does not include velocity v

because the corresponding term is canceled by the grdpa gradient at defocusing gradient.
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