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1. Introduction

This report describes research carried out in the Department of Petroleum Engineering at
Stanford University from September 1996 - September 1997 under the first year of a three-year
Department of Energy grant on the Prediction of Gas Injection Performance for Heterogeneous
Reservoirs. The research effort is an integrated study of the factors affecting gas injection, from the
pore scale to the field scale, and involves theoretical analysis, laboratory experiments and numerical
simulation. The original proposal described research in four main areas: (1) Pore scale modeling of
three phase flow in porous media; (2) Laboratory experiments and analysis of factors influencing
gas injection performance at the core scale with an emphasis on the fundamentals of three phase
flow; (3) Benchmark simulations of gas injection at the field scale; (4) Development of streamline-
based reservoir simulator. Each stage of the research is planned to provide input and insight into
the next stage, such that at the end we should have an integrated understanding of the key factors
affecting field scale displacements. The chapters that follow give a detailed account of our progress
in these areas.

In chapter 2, we provide a description of the results from a pore scale model of three phase
flow in porous media. By coding pore scale displacement processes observed in micromodels and
predicted from theoretical considerations, a numerical model may be developed that can compute
macroscopic parameters, such as local oil recovery, relative permeability and capillary pressure from
an understanding of the basic physics at the pore scale. We show that the three phase relative
permeabilities depend on fluid properties, particularly spreading coefficient, and are extremely
sensitive to the saturation path taken during the experiment. However, one simple idea emerges:
for gas injection when the oil and water saturations are both low, the oil relative permeability,
kro ~ S2.

Chapter 3 details our experimental work using CT scanning to make in situ measurements of
three phase saturations along a core during a displacement experiment. We provide an analysis that
shows that from this and a knowledge of the capillary pressures, three phase relative permeabilities
can be measured. Experimentally we wish to test some of the predictions from network modeling,
particularly the impact of spreading coefficient and the functional form of oil relative permeability
at low saturation.

Chapter 4 concerns another important aspect of gas injection processes: the thermody-
namics and flow of multicomponent gas/oil mixtures. This section provides a theory for finding
the minimum miscibility pressure (MMP) or minimum miscibility enrichment (MME) for reservoir
mixtures containing an arbitrary number of components. This work is the general extension of the
seminal studies carried out over several years on the method of characteristics theory of gas/oil
mixtures.

Chapter 5 provides details of a three-dimensional streamline based reservoir simulator that
can handle gravity and changing well conditions for tracer flow, miscible flow and waterflooding.
Where comparison with conventional grid-based simulation is possible, the streamline method is
up to 100 times faster and more accurate. This offers great promise for improving significantly our
ability to predict flow in heterogeneous reservoirs at the field scale. The extension to compositional
displacements is planned next under the grant.






2. Use of Network Modeling to Predict Saturation
Paths, Relative Permeabilities and Oil Recovery for
Three Phase Flow in Porous Media

Darryl Fenwick and Martin Blunt

We present a network model of three phase flow in water-wet porous media. To explain the
high oil recoveries in gas injection and gravity drainage experiments, we show that the mechanism
for oil recovery is flow through connected oil layers in the pore space that are on the order of
a micron thick. We then describe a simple model for the configuration of oil, water and gas in
a single pore and present an approximate expression for the conductance of oil layers. We use
this expression to derive the oil relative permeability when flow is dominated by layer drainage.
We show that for low oil and water saturations k., ~ 02, consistent with the results of several
experiments. To predict &, for the full range of oil saturation we use a capillary equilibrium based
network model that can simulate any sequence of oil, water and gas injection. We introduce a
self-consistency procedure to ensure that the correct sequence of saturation changes is used in the
network model to compute relative permeability. We then present relative permeabilities and oil
recoveries for gas injection into different initial oil saturations, and for waterflooding a reservoir
containing gas and oil. We show that the relative permeabilities are strongly affected by the fluid
properties and by the type of displacement process.

2.1 Introduction

Network models simulate multiphase flow through an idealized representation of the pore
space to calculate average properties, such as relative permeability, capillary pressure and oil re-
covery. Network models can predict multiphase flow properties directly if both the geometry of the
porous medium and the displacement process are known precisely (1, 2, 3, 4]. Where a complete
description of the flow physics and the pore structure is unknown or difficult to obtain, conceptual
models can be developed. These models make approximations about the structure of the pore
space and the flow processes. While they cannot make direct predictions of multiphase properties,
they can be used to provide insight into flow in porous media. With suitable tuning of parameters,
the models can match experimental data and can then be used to make predictions for situations
outside the range of available measurements. Examples of this approach include studies of relative
permeability hysteresis and the effects of wettability in two phase flow [5, 6, 7, 8, 9]. In this report
we use a conceptual model to study three phase flow.

The flow of three phases — oil, water and gas — occurs in a variety of different displacement
processes in oil reservoirs and during pollutant transport and clean-up. Although there is now
a large body of literature on three phase relative permeability (for example, Oak [10] provides
a review of studies up to 1990 and Jerauld [11} provides a recent discussion of measurements in
Prudhoe Bay), three phase flow is not well understood, and current empirical models for relative
permeability do not adequately describe the full range of possible behavior.

A three phase network model requires knowledge of the pore-scale displacement mechanisms,
which are studied using micromodels that reproduce the anticipated behavior in real rock. As a
result of these experiments the displacement processes for three phase flow in water-wet media are
now fairly well understood [12, 13, 14, 15, 16, 17]. Based on these observations several three phase
network models have been constructed [18, 19, 20, 21, 22, 23, 24]. These models have predicted
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successfully oil recovery in micromodel experiments [18, 19, 20|, and have computed three phase
relative permeabilities and capillary pressures [23, 24].

In this report we will present a network model for water-wet media and use it to address
two unique aspects of three phase flow. First, oil may form a layer in grooves, crevices, roughness
or corners of the pore space, sandwiched between water close to the solid surfaces and gas in
the center of the pores. Flow through such layers is the mechanism by which oil may drain to
low saturation during gas injection. We will present an approximate analytical model of oil layer
conductance and use it to predict oil relative permeability in the layer drainage regime. Second, a
three phase displacement involves changes in two independent saturations. This is in contrast to
two phase flow (say, oil and water), where the water saturation can only increase (imbibition for
a water-wet system) or decrease (drainage). The direction of the saturation change affects relative
permeability and capillary pressure. In three phase flow there is an infinite number of possible
routes in saturation space all with potentially different relative permeabilities and oil recoveries. In
our model we specify a sequence of saturation changes. However, in a macroscopic displacement,
normally the boundary conditions are known — the gas and water fractional flows at injection wells
and the initial saturation of oil and water in the reservoir. This displacement results in a certain
sequence of saturation changes at a fixed point in the reservoir, but the network model does not
automatically know what the sequence is. In this report we present a self-consistency procedure
that allows the network model to find relative permeabilities for the right saturation path.

First we will discuss the significance of oil layers in three phase flow and describe how the
network model computes oil layer conductance. Before describing the network model itself, we
show how we can make predictions of oil relative permeability directly from expressions for the
oil layer conductance. Then we will introduce the network model. Further details are provided
elsewhere [23, 25]. We then describe the self-consistency procedure. Last we will present self-
consistent saturation paths and relative permeabilities for gas injection and for waterflooding a
reservoir containing oil and gas.

2.2 Oil Films and Layers

Dumoré and Schols [26] showed that low oil saturations can be achieved during gas injection
in water-wet rock. Since then, many other authors [27, 28, 29, 30, 31] have studied three phase
gas injection and gravity drainage and have all confirmed that very high oil recoveries are possible.
Remaining oil saturations as low as 0.1% have been recorded [31]. The mechanism for these high
recoveries is oil drainage through connected layers in the pore space. The presence of oil layers is
controlled by the spreading coefficient. The initial spreading coefficient for oil C? is:

C; = Yow — Yow — Ygo (2.1)
where <y is the interfacial tension of pure fluids before they are brought in contact with each other,
and the subscripts g, o and w label gas, oil and water respectively. If Cj > 0, oil will spread
over a flat water surface. If C¢ < 0 it will not. However, fluids in porous media are usually at
thermodynamic equilibrium, thus the arrangement of fluid in the pore space is governed by the
equilibrium spreading coeflicient:

qu = ’ng - 7210 - 7;0 (22)
where the interfacial tensions are measured for fluids in contact with each other. If Ct > 0, the
gas/water interface will be covered by a film of oil, making g, significantly lower than vg,. C§?
is either zero or negative [32]. C¢9, the interfacial tensions and the wettability of the rock control
the configuration of fluids in the pore space.



Historically, the experiments analyzing hydrocarbon spreading between water and gas have
been performed on flat surfaces. If the hydrocarbon spreads, the resulting film over the water surface
has been found experimentally and theoretically to be typically of order molecular size. [33, 34, 25]
However, in porous media there are grooves, roughness, and corners. Oil in the pore space does
not flow through molecular-sized films, that have a negligible conductance, but instead through
layers of order microns thick in the pore space wedged between water and gas, as illustrated in
Fig. 2.1(a). In this paper we use the word film only to refer to intermolecular films in contrast to
layers that are microns across. Several micromodel experiments have confirmed that the pore scale
mechanism of oil recovery is through the drainage of oil layers [12, 13, 14, 15, 17, 35, 36]. Oil layers
may be present even for C¢ < 0 [17, 36].

We will now make an approximate calculation of how thick the oil layer must be to explain
observed drainage rates. Take, as an example, the experiments of Zhou and Blunt [31]. Here oil
saturations as low as 0.1% were achieved after three weeks of hexane drainage in a sand column that
had a porosity of approximately 0.35. The column had length of 1 m. Clearly the drainage rate is
highest at the beginning of the experiment and decreases to almost zero by the end. However, to
obtain a typical channel size, we assume that the oil saturation in the top half (0.5 m) of the column
decreases by 5% in one week, which is consistent with the experimental data [31]. The oil flow is the
saturation decrease times the porosity times the length of column, or 0.05 % 0.35x 0.5 = 8.75x 1073
m® per m? per week, which is a Darcy velocity ¢ = 1.4 x 10™° ms™!. The mean grain diameter
of the sand was approximately d = 500 ym. We assume that the distance between pores is also
500 pm. Thus the total oil flow in each pore Q = g x d? = 3.6 x 1071 m3s~!. If we assume that
the flow is accommodated by a layer of thickness ¢t and width d (the pore size) flowing freely under
gravity, then [37]

Q = 5—Pog (2.3)

where 4 is the oil viscosity (approximately 3 x 10™* kgm™!s™! for hexane) and p, is the oil density
(659 kgm3) and g = 9.81 ms—2. Solving for ¢ using the data above gives t ~ luym. Again this is
consistent with our assertion that oil forms a layer of order a micron across in the pore space. It is
possible to perform similar calculations for other experiments — the layer thickness is found to be
approximately one micron or larger. Since such low oil saturations are reached, these layers must
be well connected throughout the porous medium.

The arrangement of the three fluids in a representative corner of the pore space is shown
schematically in Fig. 1. We assume that the oil layers are connected throughout the porous medium.
We also assume that the medium is strongly water-wet, such that the oil/water contact angle 8o,
is less than or equal to the gas/oil contact angle 8,4, and that the only curvature of the interface is
in the plane of the wedge. For this configuration to be possible, 85, + 8 < 7/2 and g + 8 < 7/2,
where 3 is the half-angle of the corner. The oil/water capillary pressure is Py = Y5, /Tow Where
Tow 18 the radius of curvature of the oil/water interface. Similarly Frgo = 'ygo /740 Where 1y, is the
radius of curvature of the gas/oil interface. A thick oil layer is present when P, is large and P,
is small. The oil layer is assumed to exist until the contact of the oil/water interface with the solid
surface coincides with the gas/oil contact, as shown in Fig. 2.1(b). We define a ratio of interfacial
curvatures as:

o Tow _ FPegoVou (2.4)
Tg0 Peow 750

If R is very small, the oil layer can be very thick. The critical ratio R, at which the layer

is no longer stable is:
_ cos(040 + B)

“ " cos(fuw + B) (2:5)
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Oil

Gas

Figure 2.1: (a) Three phases in a corner with half angle 8. (b) When the gas/oil and oil/water
interfaces touch at point B, the oil layer is assumed to be unstable.

R, depends only on 5 and the contact angles. It is independent of the magnitude of the interfacial
tensions. If R < R, then the fluid arrangement resembles Fig. 2.1(a). If R > R,, there is no oil
layer, and there is only a gas/water interface with an interfacial tension Yew- Although there might
be a molecular-sized oil film present, this film is too thin to have any significant effect on the flow
of oil. [38]

For a completely water-wet system it is possible to relate 8y, to C$. It is assumed through-
out this work that water coats the entire solid surface and the system is strongly water-wet
(Bow = 04w = 0). At the gas/oil/water contact, the horizontal force balance of the interfacial
tensions is given by,

Vow = Voo €08 Ogo + Vop- (2.6)

Eq. 2.6 can be manipulated, resulting in,

eq
cosfgo = 1 + Cz , (2.7)
go
as derived by Kalaydjian [39] and Kalaydjian et al. [29]. Using Eq. 2.7, Eq. 2.5 becomes,
1/2 1/2
eq eq eq
Rc=1+cs _ (-5 (2+C: ) tan 8 (2.8)
Y0 Yo Ygo

Eq. 2.8 is based upon a simple geometric argument for oil layer stability. However, the
analysis gives an indication of the expected behavior of oil layers. Layers can be present even for
negative spreading coefficients, as shown experimentally [36, 17], but as the spreading coefficient
decreases, oil layers become increasingly less likely to exist. Note that whether or not a oil layer
exists depends on the value of R which is governed by the ratio of capillary pressures, and on
R, which depends on C¢9. Thus oil layers may be present for C$? < 0, and absent for C¢? = 0,
depending on the capillary pressures.



2.3 Conductance of Oil Layers

In this section we investigate the expression for the conductance of an oil layer between
water and gas. We define a conductance g where the volumetric flow in a single pore is given by
Q = gA®, where A® is the potential drop across the pore. The conductance of water in a corner
(Fig. 2.1) is given by [40]

Aypr,

Gw = """ —

puwlR Fw

where A,, is the area of water in the corner, [ is the length of the pore, and p., is the viscosity of

water. Ry, is a constant dimensionless resistance factor for flow of a single fluid in a corner [40)].
This value was calculated by an approximate expression by Zhou et al. [41] A, is given by

(2.9)

Ay =12, [sinay, (cos ay + sin oy cot B) — ay] (2.10)
where .
= 5~ o = . (2.11)

If we assume that all three phases in the pore are flowing with the same imposed potential
gradient and the water and oil viscosities are assumed equal (¢, = u,, = p), then the conductance of
an oil layer in a corner is the conductance of both water and oil in the corner minus the conductance
of the water, or ,

Acrgo
where A. is the area of water and oil in the corner, g, is given by Eq. 2.9, and Ry, is another
dimensionless resistance factor whose value is dependent upon the gas/oil contact angle (64,) on
the water surface. We have ignored viscous coupling between the fluids. For a triangular pore with
B8 =30° Ry, = 31. If 84, = 0, corresponding to C5? = 0 from Eq. 2.7, then Ry, = 31. If 65, = 33°,
corresponding to Cg? = —4 mN/m from Eq. 2.7, then Ry, = 70.
A, is given by

9o

Ac =12, [sina, (cos oy + sina, cot §) — o) (2.13)
where
T
o =2 = 650 — . (2.14)

If there is a no flow boundary at the oil/water interface, a different expression for oil layer
conductance is appropriate. Approximate analytical expressions for this case are given by Zhou et
al. [41]

2.4 Relative Permeability of a Single Pore

Now that we have an expression for oil layer conductance, we can predict the oil relative
permeability. We will assume that the porous medium is a bundle of parallel pores of constant cross-
section, where every pore has been entered by gas and oil flow occurs only through layers. This
layer drainage regime is thus appropriate for low oil and water saturations. While we cannot use
this approach to predict exactly the oil relative permeability for a real rock, we will show that the
functional form of the relative permeability is consistent with several experimental measurements.

The saturation of a phase is the fraction of the cross-sectional area of a pore occupied by
that phase. Eq. 2.13 gives us the area of water and oil in a corner, A., and hence:

(2.15)



where n. is the number of corners in the pore and A; is the cross-sectional area of the pore.
Similarly, the water saturation Sy, = n.A4, /A;.
If the pore is completely full of one phase, the conductance is approximately [1]:

wr;‘f P
8ul ’

gt = (2.16)
where the effective radius ropp = 1/2 (\/At/ T+ ri) and r; is the inscribed radius of the pore. The
oil relative permeability is kro = 1c90/ 9t

Using Eqgs. 2.12-2.14 it is possible to find %, as a function of S, and S,. We will spare the

details, and give an expression for one example, for a pore of equilateral triangular cross-section
(8 = 30°) with 84, = 85, = 0. In this case, n, = 3, Ry = Rfo = 31, and

kro = 0.632 (sg + 2sosw) : (2.17)

If there is no flow boundary condition between oil and water it is possible to show that the
oil relative permeability is [41]
S3

k‘r‘o - 0.632m. (218)

When the oil saturation is much smaller than the water saturation, then the functional
form of the oil relative permeability depends on the boundary condition at the oil/water interface:
kro ~ S, if oil and water flow together, Eq. 2.17, while k,, ~ S2 for no flow at the oil/water
interface, Eq. 2.18. &y, ~ 53 is consistent with a classic film drainage expression for oil flow, Eq.
(3).

For both Egs. 2.17 and 2.18, when the oil saturation is of the same magnitude or larger
than the water saturation:

Ero ~ S2. (2.19)

The quadratic form for k., is readily explained — S, is proportional to the oil area in the
corner (S, ~ A, = A, — Ay), while the conductance and hence k,, is proportional to the square of
the oil area (A2).

The conceptual picture of oil flowing in layers in the pore space leads to the prediction of
quadratic oil relative permeabilities at low saturation — a prediction that is confirmed by a number
of experiments. Fig. 2.2 shows the oil relative permeability at low saturation from the experiments
of Grader & O’Meara [44] which were performed in glass bead packs with analogue fluids. In
these experiments Sy, ~ 6% for S, < 30%, and thus we expect Eq. 2.19 to be valid. At low oil
saturation, a best fit of the data gives ky, ~ 519, consistent with layer drainage. In other work, gas
injection k., in a consolidated sandstone also showed quadratic behavior [42]. Similar experiments
by Goodyear and Jones [43] again showed the same functional form for the oil relative permeability.

This simple analysis cannot, however, predict k., for larger values of S,, where the arrange-
ment of oil-filled pores is important, nor can it determine the effect of spreading coefficient on &,.
Network modeling is necessary to predict the effect of spreading coefficient and to compute relative
permeabilities for the full saturation range.

2.5 Network Model

The network model is a cubic lattice of pores connected by throats. All the pores and throats
have equilateral triangular cross-sections. The pore and throat radii are chosen from different
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Figure 2.2: Oil relative permeabilities measured in a water-wet system. (from Grader &
O’Meara [44] using a glass bead pack and analogue fluids. Included is a line of slope 1.9 on a
log-log scale that best fits the k., data at low S,.)

distributions. The model consists of 30 x 15 x 15 pores. Fluids are injected at the inlet and displaced
through the outlet. There are periodic boundary conditions on the other sides. Saturations and
relative permeabilities are computed on the final 15 x 15 x 15 section of the model to avoid inlet
effects. We did not observe any outlet effects. Several of the results were also calculated for
statistically equivalent, but different realizations, and on 40 x 20 x 20 networks. In all cases, the
results were similar. However, there are some examples where finite size effects are important, and
these will be discussed later. The model is strongly water-wet and 6,,, = 0. The model allows the
two phase displacement processes — piston-like throat filling, cooperative pore filling and snap-off -
observed in micromodels by Lenormand et al. and others and incorporated into previous two phase
network models (see, for instance [6, 5].) For three phase flow the displacement processes observed
in micromodels [14, 12, 13, 17], including the presence of oil layers, are added in the model. Further
details are given elsewhere [23, 25].

We assume that locally the system is in capillary equilibrium, which is appropriate for
capillary numbers of around 10~7 and lower, where the viscous pressure drop across the network
model, including the pressure drops in oil layers, are small in comparison with the capillary pressure.
A dynamic three phase network model that has explored the effects of pressure gradients in oil layers
has been presented by Pereira et al [20]. Our model is accurate only in the limit of very low flow
rates. At every stage in the displacement either water, oil or gas is injected to fill one pore or throat.
We compute the capillary pressures for all possible two and three phase displacement mechanisms.
From this we can compute the entry pressure for each pore and throat. The entry pressure is the
pressure of the injected phase necessary to fill a pore or throat, assuming that the other two phase
pressures are held constant. We fill the pore or throat with the lowest entry pressure. In this way
we can inject oil, gas and water into the network in any order.

Periodically, we compute relative permeabilities. We find the conductance of each phase in
every pore and throat and solve for the phase pressures. There are four possible arrangements of
fluid in a pore or throat:

1. A pore or throat full of water. Here use Eq. 2.16 for the conductance.

2. A pore or throat containing gas in the center and water in the corners. For the gas phase use
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Figure 2.3: Different paths in capillary pressure space. The R = R, line separates the regions of oil
layer stability. Path BCD represents gas invasion into high P, corresponding to high S,, followed
by imbibition of water. Path AD represents gas invasion into low P, corresponding to residual
oil saturation after water invasion.

Eq. 2.16 but where A; is replaced by the cross-sectional area of gas in the pore. For water
Eq. 2.9 is used, where 7, is replaced by r4,, the gas/water radius of curvature.

3. A pore or throat containing oil in the center and water in the corners. The water conductance
is again given by Eq. 2.9, and the oil conductance by Eq. 2.16 but where A; is replaced by
the cross-sectional area of oil in the pore.

4. A pore or throat containing gas in the center, water in the corper and an oil layer. An oil
layer is only present if R < R, Eq. 2.8. The oil layer conductance is given by Eq. 2.12, the
gas conductance is the same as for arrangement (2) and the water conductance is the same
as for arrangement (3).

2.6 Paths in Capillary Pressure Space

Fig. 2.3 is a schematic diagram representing different three phase displacements as paths
in Pego — Peow space. All oil/water displacements occur on the P, axis. The point A represents
water and waterflood residual oil, while B represents a high oil saturation. When gas is introduced
into the system, F,y, is defined. The line R = R, separates the region where oil layers are stable
from the region where oil layers do not exist. R, is calculated from Eq. 2.8 . Let us consider two
different paths ABCD and AD that start and end at the same capillary pressures.

The path AD represents gas injection into residual oil at a fixed value of Fy,. Oil layers
are present for only a short range of P4, and so we expect limited oil layer drainage and little
incremental oil recovery. On the other hand, gas injection may result in the formation of an oil
bank. At some fixed point in the reservoir, the oil saturation first increases (path AB) before gas
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Figure 2.4: Schematic diagram of different scales in multiphase flow in porous media. At the
field scale (100-1000 m), the saturation profile is dominated by viscous forces. At much smaller
scales (1073-1072 m), saturations are relatively constant and flow is dominated by capillary forces.
Around a length scale of a meter, capillary and viscous forces are approximately the same.

enters the system. Path BC represents gas invasion into the high oil saturation in the oil bank, and
oil layers exist until a large value of Py, is reached. In this case there is a greater opportunity for
layer drainage and a lower final oil saturation can be obtained. Path CD represents water injection
after gas flooding — while this may give little further oil recovery the oil saturation is likely to be
very low already.

In previous work we have used the network model to demonstrate that the route ABCD
does indeed give a higher oil recovery than route AD [23, 24]. The relative permeabilities and oil
recovery are very sensitive to the sequence of saturation changes. This is principally because of oil
layers — when oil layers are present, oil cannot be trapped, but when they are absent, oil may be
trapped by both gas and water, leading to poor oil recovery.

What path does the displacement actually follow? One would hope that a network model
would be able to predict the sequence of saturation changes for a given displacement. This issue is
discussed next.

2.7 Self-Consistent Saturation Paths

Fig. 2.4 illustrates the different length scales for a multiphase flow in a reservoir. The
network model represents a small portion of rock over which the saturations are approximately
constant and capillary forces dominate. However, over larger scales, the competition between
viscous and capillary forces leads to changes in saturation over a few meters. On the reservoir
scale, viscous forces dominate. Thus we use a network model that assumes capillary equilibrium
to study flow at the pore level. To compute flow on the reservoir scale, we may use a conventional
numerical simulator, where to a reasonable approximation capillary forces may be ignored. The
link between the pore-level and the field-scale is provided by using relative permeabilities from the
network model in the numerical simulator.

The network model computes relative permeability for a particular saturation path. With
known initial saturations in the reservoir and injection conditions, we can use the relative per-
meabilities derived from the network model in a conventional field-scale numerical simulator to
predict the sequence of saturation changes in the reservoir. The saturation path computed by the
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simulator is dependent upon the initial conditions, injection conditions, viscosities of the phases,
and gravitational forces. The saturation path from the numerical solver and the saturation path
used by the network model may not be the same.

If the paths from the network model and the numerical solver are not the same, then the
sequence of pore-level displacements does not represent the proper sequence for the particular
macroscopic displacement that is being investigated. In order to find the correct saturation path,
the iteration procedure shown schematically in Fig. 2.5 is used. The procedure is as follows:

1. With the network model and a specified pore size distribution, perform a three phase dis-
placement with a guessed saturation path from initial to injection conditions.

2. The displacement produces a set of three phase relative permeabilities. The three phase
relative permeabilities are tabulated as functions of their own saturation for the selected
path.

3. The tabulated values are input into a one-dimensional, three phase Buckley-Leverett numer-
ical solver with given injection conditions and phase viscosities.

4. Stop the simulator after a sufficient amount of time such that any shocks and rarefaction
waves are resolved. Find the saturation path by plotting the saturations of all the grid blocks
on a ternary diagram. For a Buckley-Leverett problem, the saturation is a function of z/¢
only. Thus the saturation path measured by taking the saturations in each grid block at a
fixed time is the same as the sequence of saturation changes in a fixed grid block over time.

5. Compare the saturation paths of the network model and the numerical simulation. If the
saturation values along the two paths differ by less than 1%, we consider them identical.

6. If the paths are not identical, return to step 1. The saturation path for the network model is
that obtained from the numerical solver. If the paths coincide, stop.

When the iteration is complete, the three phase relative permeabilities calculated by the
network model are self-consistent. This means that the network model computes relative perme-
abilities for a sequence of saturation changes that is the same as the sequence that results from a
one-dimensional field-scale simulation using the same relative permeabilities.

This procedure gives us valid predictions of relative permeabilities for one-dimensional,
homogeneous displacements. However, for heterogeneous, three-dimensional flows, the saturation
paths may be different in different regions of the reservoir. Coupling pore scale modeling directly
to three-dimensional reservoir simulation remains an unresolved research issue.

2.8 1D Numerical Solution

The numerical simulations are performed using an explicit, three phase numerical simulator
using a total variation diminishing (TVD) scheme. [45] The scheme is second-order accurate in
space and first-order accurate in time. T'wo mass balance equations are solved simultaneously:

08y  Ofw
gD + 3 =0, (2.20)
and
95,  9fs _
5 + e =0, (2.21)
where,
fo=22 (2.22)
w /\t’ '
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Figure 2.5: Schematic diagram of iteration procedure to obtain self-consistent relative permeability
values. (1) A saturation path through the three phase region is guessed and followed with the net-
work model. (2) During the displacement, three phase relative permeability values are calculated.
(3) These relative permeability values are input into a 1-D numerical simulator with selected initial
conditions, injection conditions, and fluid properties. (4) The 1-D simulator generates another
saturation path. (5) This path is compared to the proposed path with the network model. (6) If
the paths do not coincide, repeat the procedure, using the path from step 4 in the network model.

thwork Model

)‘9
=4 2.2
fo= 55 (2.23)
o= Trw oy ke (2.24)
Hw Mo Ky
and
At = Ay + Ao + Ay (2.25)

z represents dimensionless distance and ¢ is the number of pore volumes of injected fluid. Egs. 2.20
and 2.21 assume incompressible, one-dimensional flow where we have ignored gravity and capillary
forces. Capillary forces are assumed to be neglible at the field-scale, even though they dominate at
the scale of the network model. For the cases we consider we will assume horizontal gas or water
injection with no gravity — however, gravity can easily be accommodated in the one-dimensional
conservation equations if required.

2.9 Gas Injection

We will now present self-consistent relative permeabilities for gas injection into different
initial saturations of oil and water. f, = 1 is specified at the inlet. The viscosities are

to=1cp, py=1cp, and py;=0.1cp.

Note that the self-consistent paths are only valid for this set of phase viscosities.

Runs are performed for C¢ = 0 and C¢? = —4 mN/m. C¢ ~ 0 represents light alkanes
and some oil mixtures, such as Soltrol, while C®? = —4 mN/m is the value for a decane/water/air
system [46]. These spreading coefficients span a plausible range for light crude oils at reservoir
conditions, although reliable estimates of spreading coefficients in these circumstances are not
available.

The displacements start with the network filled with water. Oil is injected until a specified
oil saturation is reached. The resulting S,, and S, are the initial saturations for gas injection into the
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network, and for the numerical solution. Then gas injection is simulated, and the iteration procedure
is followed. Up to 12 iterations may be required until self-consistent relative permeabilities are
found, although typically self-consistent paths are found in only four iterations. Note that the
self-consistent path may involve the injection of water and oil into the network model, as well as
gas.

The relative permeabilities are a function not only of saturation and saturation path, but
also depend on the pore scale configuration of fluid. The relative permeabilites here are computed
for secondary gas injection — that is gas injection after primary drainage of oil. Tertiary gas injection
— gas injection after waterflooding — starts from different pore level arrangements of fluid and thus
may give different relative permeabilities.

Cg1 =0 Results

Fig. 2.6 shows the self-consistent saturation paths for gas injection into five different com-
binations of initial oil and water saturations (denoted S,; and S,,; respectively). As a comparison
Fig. 2.6 also contains experimental saturation paths obtained by Grader & O’Meara [44]. Grader
& O’Meara used analogue fluids — n-decane {x = 0.735 cp) was used in place of gas, and benzyl
alcohol (¢ = 4.984 cp) in place of oil. The water viscosity was 1.140 cp. For this fluid system,
C! = 2 mN/m. It is assumed that C'%¢ ~ 0. The porous medium was a glass bead pack, with
n-decane (gas) invading into different initial saturations of benzyl alcohol (oil). Fig. 2.2(a) shows
kr, for the same experiments.

No attempt has been made to match the experiments. The pore size distribution used in the
network model is not intended to be representative of a glass bead pack, and the viscosities of the
fluids are different. The experimental data is provided for qualitative comparison only. However,
several common features between the network model results and the experiments can be noted:

- At high oil saturations, oil is more mobile than water. Thus, the gas preferentially invades
into the oil until S, is significantly reduced.

- Similarly, when S, is low, the gas preferentially displaces the more mobile water until S,, is
low.

- Different initial conditions follow similar paths in the three phase region, especially at low
values of S,.

An important difference between the experiment and the network model results is that
Grader & O’Meara observed a shock in the two phase region ahead of the invading gas (n-decane)
for an initial oil (benzyl alcohol) saturation of 48%. Two phase shocks are not found with the
network model for the gas injection cases studied.

Fig. 2.7 shows the capillary pressure paths. Notice that the paths remain in the region of
oil layer stability and thus oil is not trapped, and eventually it can all be displaced. Comparison of
Fig. 2.7 with Fig. 2.3 indicates that the capillary pressure paths taken in Fig. 2.3 do not correspond
to field-scale gas injection. Paths such as in Fig. 2.3 that force certain values of P, or lower to be
maintained, and allow oil to be trapped, must correspond to a displacement where both gas and
water are injected to displace oil. Only through the injection of water can a fixed value of P, be
maintained.

Fig. 2.8 shows the self-consistent gas relative permeabilities for the saturation paths shown in
Fig. 2.6. The k4 curves are very similar, and virtually identical at higher saturations. Experiments
by Oak [47] also found that k., values were similar at high S, for various initial conditions. Note
that at low gas saturations, the curves have a step-like character, which is due to the finite size of
the network.
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Figure 2.6: Top plot: Self-consistent saturation paths for gas injection into oil and water. Bottom
plot: Gas injection experiments performed by Grader & O’Meara [44] using a glass bead pack and
analogue fluids. The experimental data is provided for qualitative comparison only.
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Figure 2.7: Capillary pressure paths for gas injection into different values of initial oil saturation
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Figure 2.8: Self-consistent k.4 curves for the saturation paths in Fig. 2.6. Note that the step-like
character of the k4 curves at low S is due to finite-size effects.
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Figure 2.9: Self-consistent k., curves for the saturation paths in Fig. 2.6. The curves overlap when
flow is dominated by water drainage through the corners of the pore space.

The self-consistent water relative permeability curves are given in Fig. 2.9. For reference,
the two phase relative permeability curves are also included. If the self-consistency procedure
required values of &k, at Sy > Sy, the two phase imbibition k., values were used. For Sy, < Sy,
the k., curves are very similar for all values independent of S,;, and correspond to the &, curve for
two phase drainage. Several three phase experiments have also shown that k., curves are similar
for different initial conditions. [48, 49, 47, 10] At low S,, the drainage curves show a straight line
on the log-log plot, indicating that the flow is dominated by flow in corners.

Fig. 2.10 shows the self-consistent oil relative permeability curves. There is a very rapid
change In k,, at large values of S,, which is controlled by the arrangement of pores and throats
filled with oil, followed by a less dramatic decrease at low S,, in the layer drainage regime. At low
S, the k-, curve has a slope of between 1 and 2 on the log-log plot in accordance with the expression
for oil layer conductance, Eq. 2.12. The shape of the k., curve is similar to the experimental results
in Fig. 2.2. Unlike the ky, and kyy curves, k;, is different for different initial conditions. This
indicates that k,, cannot be written as a function of S, alone. Similar functional forms for k., have
been found experimentally [50, 48, 49, 47, 10].

To illustrate why k., is a function of both S, and S,;, consider &, at S, = 0.4 for S,; = 0.9
and S,; = 0.6. From Fig. 6, when 5, = 0.4, S, = 0.1 and S; = 0.5 for S,; = 0.9, while for S,; = 0.6
Sw is larger (0.4) and S is smaller (0.2). To a good approximation gas occupies the largest pores
and water the smallest, while oil fills those of intermediate size. This means that higher water
saturations force oil to occupy larger pores. Hence for S,; = 0.6 the oil occupies larger pores than
for S, = 0.9, which in turn leads to a larger k... Experiments by Skauge et al. [51] have also found
that k., increases for decreasing Sp;. This effect is evident in Fig. 2.10. However, this example
ignores the effect of oil flow through layers, which influences the k., values in Fig. 2.10. If S,; is
low, the oil can be very poorly connected and have a very dentritic structure which tends to reduce
kro disproportionately. This also affects k,,. Thus, the S,; = 30% curve in Fig. 2.10 is below the
curves for S, = 80% and S,; = 60%.

The finite size of the network affects the k,, calculations. Some of the curves in Fig. 2.10 have
been smoothed by interpolation between selected points before input in the numerical simulator,
to ensure that the numerical model was stable.
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Figure 2.10: Self-consistent k;, curves for the saturation paths in Fig. 2.6. Flow at low oil saturation
is governed by flow through layers. When oil flows through oil-filled pores and throats, the relative
permeability curves differ for different initial conditions. Note the qualitative similarity with the
experimental results in Fig. 2.2.

Fig. 2.11 shows the average oil saturation over all the grid blocks in the numerical solver
as a function of the pore volumes of gas injected. The plots are determined by the TVD solution
with 500 grid blocks. Eventually all the oil can be recovered, but only after the injection of a huge
amount of gas.

Ctd = —4 mN/m Results

Displacements for C¢? = —4 mN/m were simulated for initial conditions at Sp; = 90% and
S = 30%. Fig. 2.12 gives the self-consistent saturation paths. For comparison, the S,; = 90% and
Sei = 30% paths for C¢? = 0 are included. The S,; = 30% path stops at an oil saturation of 23.4%.
The Sy = 90% path is similar to the path at C¢? = 0. At high S, the C? = 0 path displaces more
oil, which is due to the effect of C2? upon k,, values at low S5,.

Again there is no trapped oil. For Sy = 30% when the displacement was stopped, all the oil
is surrounded by gas, with water found only in the corners of the pore space. If the displacement
in the network model were allowed to continue the capillary pressure path would proceed along the
R = R, line, very slowly displacing all the oil from the network.

The self-consistent k., values are shown in Fig. 2.13. At high S,, the S,; = 90% curves
are very similar for both values of C¢9. At low S,, the C¢9 = —4 mN/m curve lies consistently
below the C¢ = 0 curve. Oil flow through layers for C¢? = —4 mN/m has a smaller conductance
because the ratio of interfacial curvatures (R) is much closer to the critical value R, than for the
displacement at C?? = 0. The lower k,, values will have an impact upon the rate of oil recovery.
For the Sy = 30% displacement at C¢? = —4 mN/m, oil layers are not stable all the time. Thus,
the oil that reconnects at the beginning of the displacement becomes disconnected again as the
displacement continues, similar to the AD path discussed in Fig. 2. The final oil saturation when
the displacement ceases is 23.4%. For this condition, a simple linear interpolation from the last
finite k, value to ko = 0 at S, = 23.4% is added. Note that the k,, value at S, = 23.4% should
be finite, reflecting the very slow displacement of oil as the capillary pressure path oscillates along
the R = R, line for oil layer stability. Notice that the absence of the layer drainage regime for
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Figure 2.11: The average oil saturation during gas injection for C¢? = 0. The curves were calculated
using the TVD solver with 500 grid blocks.
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Figure 2.12: Self-consistent saturation paths for gas injection into oil and water with C¢9 = —4
mN/m, with gas injection into S,; = 90% and Sg; = 30% for C¢? = 0 included for comparison.
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Figure 2.13: Self-consistent k., curves. At low S,, &y, values for Cf? = —4 mN/m are lower because
the displacement is closer to the region of layer instability than for C¢? = 0. k,, values for gas
injection into S,; = 30% are not finite throughout the entire displacement. However, oil is displaced
to 23.4% saturation. The k,, curve is constructed by interpolating the last finite value of the &,
curve to zero at S, = 23.4%.

Sei = 30% is qualitatively in agreement with the experimental measurements shown in Fig. 2(d).
In comparison with C¢? = 0, krg, krw, (not shown here) and k,, are all more sensitive to Sy;. This
is due to the more complex behavior when 84, > 0 and oil is not completely wetting in the presence
of gas.

Fig. 2.14 shows the recovery curves for the S, = 90% and S,; = 30% paths at the two C¢
values. Recovery is more rapid for C£9 = 0 due to the higher %k, values at low S,.

Figs. 2.11 and 2.14 illustrate an important point regarding the concept of oil recovery and
residual oil saturation. For the gas injection examples given, there is no residual oil saturation.
However, an immense quantity of gas is required to reduce the oil saturation to very low values. This
finding suggests perhaps that reported measurements of S, for gravity drainage and gas injection
experiments are incorrect, and that S, would continually decrease if the experiment were allowed
to continue. Fig. 2.14 also illustrates the sensitivity of oil recovery to C{9. Fig. 2.14 indicates that
after approximately 10 pore volumes of gas is injected into S,; = 30%, the fraction of original oil
in place recovered for C¢4 = 0 is twice the amount for C¢? = —4 mN/m.

2.10 Three Phase Waterflood

Self-consistent three phase relative permeabilities for water injection into a reservoir con-
taining water, oil and gas are presented. f,, = 1 is specified at the inlet, and the viscosities are the
same as is used for gas injection. A single run is shown representing the waterflood of a reservoir
containing oil and gas. For this case, C¢¢ = 0. The displacements start with the network filled with
water. Gas invades into the network up to S; = 80%. Oil subsequently invades into the network,
displacing the gas, until S, = 30%, S; = 50%, and S,, = 20%. This is the initial condition of the
reservoir. Qil is found in layers and in the centers of some intermediate-sized throats and pores. At
this point, water injection commences, and the self-consistency procedure is followed. The results
given below were determined in three iterations. Fig. 2.15 shows the saturation path. Point A is
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Figure 2.14: The average oil saturation during gas injection for C¢? = —4 mN/m. The Sy; = 90%
and S,; = 30% paths for C¢9 = 0 are included for reference. The curves were calculated using the
TVD solver with 500 grid blocks.

the initial condition. The final saturations are given by point C. At point C, S, = 47.4%, S, = 7%,
and S, = 45.6% — both oil and gas are trapped. The path from A to Point B represents an oil bank
ahead of the invading water front. Note that the advancing oil bank traps the gas, and the oil is
subsequently trapped by the advancing water. The capillary pressure path is given in Fig. 2.16.
Note that the displacement occurs in the region of oil layer stability. Since oil layers are stable, the
oil acts as a wetting fluid. Thus, the oil can rapidly disconnect the gas by snap-off. At B, the gas
is trapped. Water invades into oil. At C, oil layers are stable, but some oil is trapped because the
gas is also trapped — oil can only flow if there are connected paths of pores that are either oil-filled
or contain oil layers.

The oil relative permeability curve for the self-consistent path in Fig. 2.15 along with the
kro for gas injection into S,; = 90% are shown in Fig. 2.17. The k., curves are very different.
Significant hysterisis is also seen in the gas and water relative permeabilities.

Fig. 2.18 shows the average oil saturation as a function of pore volumes of water injected.
Oil recovery is slow initially when the gas is being displaced. As more gas becomes trapped, the oil
production increases until the oil is trapped. The ultimate recovery of oil is 76.7% as a fraction of
original oil in place. Note that the rate of recovery is more rapid than gas injection (see Fig. 2.11).
Although the ultimate recovery of oil through gas injection is higher, over 100 pore volumes of gas
would have to be injected to reach the same average oil saturation.

2.11 Conclusions

1. The mechanism for high oil recovery during gas injection is drainage of connected oil layers
in the pore space. These layers are of order microns in thickness, wedged between water and
gas in the pore space. Such layers can exist even if the spreading coefficient is negative.

2. Layer drainage leads to a characteristic form for the oil relative permeability at low saturation.
If both the oil and water saturations are small k., ~ S2, with no residual oil saturation, as
observed in many experiments.
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Figure 2.15: Self-consistent saturation path for imbibition into S, = 30%, Sy, = 20%, and S, = 50%.
Point A is the initial condition. The path from A to B is an o0il bank ahead of the water front. Point
C is the final saturations where both oil and gas are trapped. At point C, S, = 47.4%, S, = ™%,
and S, = 45.6%.
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Figure 2.16: Capillary pressure path for the waterflood gas condensate example. Point A is the
initial condition. Point C is the final condition at which oil and gas are both trapped. The path
from A to B is an oil bank ahead of the invading water.
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Figure 2.17: The self-consistent k,, curve for water injection into a gas-condensate reservoir. ky,
for gas injection into Sy = 90% is included for comparison.
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Figure 2.18: The average oil saturation for water injection of a gas condensate reservoir.
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3. The computation of self-consistent saturation paths and relative permeability allows the net-
work model to make predictions of multiphase flow properties for any type of displacement
process.

4. The saturation paths and relative permeabilities computed for gas injection into different
initial oil saturations show qualitatively similar features to experimental measurements. In
particular, for a given fluid system, the water and gas relative permeabilities are similar
for different initial conditions, while the oil relative permeability is not. The oil relative
permeability shows a rapid decrease with oil saturation at large S, and then a transition to
the layer drainage regime.

5. The relative permeabilities and the rate of oil recovery are functions of equlibrium spreading
coefficient.

6. The oil, water and gas relative permeabilitites for gas injection are all different from those
for three phase waterflooding.

The next step of our work is to experimentally test some of the predictions of the network

model, namely the quadratic form of k., at low s,, and the effect of the spreading coefficient. This
is discussed in the next section.
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3. Three-Phase Flow Experiments

Akshay Sahni, Dengen Zhou, Jon Burger and Martin Blunt

This research presents a framework for analyzing three phase flow experiments in porous
media. We obtain in-situ measurements of phase saturations from three phase gravity drainage
experiments using a CT Scanner. We perform these experiments with both consolidated and
unconsolidated sands and with different spreading and initial conditions. Three phase relative
permeabilities are computed for each of these experiments using in-situ measurements of phase
saturations. We also analyze data from a previously published dynamic displacement experiment
[44], where three phase relative permeabilites have been measured. Once the three phase relative
permeabilities are known, we calculate analytically the saturation paths and recoveries for the
experiments.

3.1 DMotivation

The simultaneous flow of three immiscible fluids in porous media is an essential component
of enhanced oil recovery and aquifer remediation processes. It is important to understand three
phase flow for designing optimum methods for recovering oil by gas injection, gas gravity drainage,
surfactant flooding and thermal recovery.

At Stanford, we are trying to get a better understanding of three phase flow, from the pore
scale upwards. Over the past few years, research on three phase flow has primarily focussed on:

- two and three phase gravity drainage in capillary tubes
- three phase flow in micromodels

- three phase network modeling

- mathematics of three phase flow

From three phase flow in capillaries we can study the flow of oil as thin layers in an idealized
context [41]. Micromodel studies of three phase flow allow us to study pore level processes [17].
Three dimensional and three phase network modeling can give us estimates of relative permeability
and capillary pressures for a variety of different three phase flow processes and for different fluid
systems [52] (see chapter 2 of this report). Finally, if we can correctly predict the three phase
relative permeabilities, we have the mathematical ability to compute the saturation paths and
recoveries analytically [78, 79).

This research provides a good conceptual picture of several three phase flow phenomena,
yet, it is still essential to look at three phase flow behavior in an actual porous medium. Although
work has been done to understand three phase flow at the core scale, most of the published literature
does an inadequate job of analyzing three phase flow experiments. It is our objective to bridge this
gap between experiment and theory of three phase flow in porous media.

At Stanford, we now have a unique experimental capability - a dual energy CT scanner that
can operate in both horizontal and vertical mode. This enables us to obtain in-situ measurements
of phase saturations and compute three phase relative permeabilities. To study three phase flow at
the core scale, we propose to perform and model analytically a series of three phase gravity drainage
experiments in both consolidated and unconsolidated porous media. We will also look at systems
with different spreading and initial conditions. Then we hope to relate the results obtained from
our experiments to those obtained from capillary tubes, micromodels and network modeling. We
also extend our theoretical framework to analyze three phase dynamic displacement experiments
[44] and construct solutions to three phase flow problems analytically.
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3.2 Literature Review

Although three phase flow experiments are hard to perform, there are many published stud-
ies. Grader and O’Meara [44] performed dynamic displacement experiments using three immiscible
fluids. Virnovsky [53] and Grader and O’Meara [44] developed a theory to obtain three phase
relative permeability as a function of saturation by an extension of the Welge [54] and JBN [55]
methods to three phases. Siddiqui et. al [56] verified the theory using X-ray computerized tomog-
raphy to obtain in-situ saturations for three phase dynamic displacement experiments. Sarem [57]
obtained three phase relative permeability by unsteady state displacement experiments assuming
that relative permeability of each phase was a function of its own saturation. Oak et. al [58] pre-
sented a steady-state study of three phase relative permeability using fired Berea cores. Minssieux
and Duquerroix [59] analyzed water alternating gas experiments in porous media with residual oil.

Three phase gravity drainage experiments have shown that it is possible to obtain very low
residual oil saturations [26, 27, 60, 31]. Vizika and Lombard [61] studied the effects of wettability
and spreading characteristics of the fluid system in three phase gravity drainage. Skurdal et. ol [30]
analyzed gas gravity drainage experiments using spreading and non-spreading systems under oil
wet, water wet and mixed wet conditions. Naylor ef. al [62] performed gravity drainage experiments
by measuring in-situ oil and brine saturations using a radioactive tracer technique. Chalier et. al
[63] used a gamma-ray absorption technique to obtain three phase relative permeability for tertiary
gas gravity drainage experiments. Skauge et. al [64] summarized results from gas gravity drainage
experiments at different water saturations. Espie et. al [65] established and interpreted laboratory
data quantifying the dynamics of oil bank growth during the waterflood/gravity drainage interaction
in Prudhoe Bay cores.

In three phase flow, oil may form layers in crevices and roughness of the pore space, between
water and gas. It is the drainage of these layers that is responsible for the good recoveries observed
in gravity drainage experiments (Blunt ef. al [38]). Although the residual oil saturation is very low,
the relative permeability at low oil saturations may also be very small, making gas injection schemes
uneconomic over any reasonable time scale. It is therefore important to have a good understanding
of the three phase relative permeability, especially at low oil saturation.

Most numerical models of three phase flow in porous media use empirical relationships for
capillary pressure and relative permeability [66, 67, 68, 69, 70]. Delshad and Pope [72], Oak [58] and
Fayers and Matthews [73] compared empirical models to published experimental data and showed
that in most cases the empirical models fail to match the measurements.

In the next section ‘Dynamic Displacement Experiments’, we describe our analysis of the
displacement experiment of Grader and O’Meara [44]. We then present our analysis of gravity
drainage experiments and detail the proposed research.

3.3 Dynamic Displacement Experiments

Overview

We use data from a dynamic displacement experiment (Grader and O’Meara [44]). The
method of characteristics (MOC) is used to calculate analytically saturation paths and recoveries
for three phase displacements in one dimension once the relative permeabilities are known (see
Guzman and Fayers [78] and references therein for a discussion of MOC theory applied to three
phase flow). In contrast with previous work we find MOC solutions for experimentally measured
relative permeabilities, rather than assuming, a priori, some empirical model. In other words,
rather than attempting to force a pre-conceived model on the data, in this work we find the
simplest functional form of relative permeability that adequately matches the data.
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Figure 3.1: Saturation trajectories from Grader and O’Meara’s experiments

Experiment Description

The fluids used in Grader and O’Meara’s experiments [44] were water, benzyl alcohol and
decane, and the porous medium was composed of glass beads with 140-200 mesh sizes. Decane
(viscosity = 0.735 cp) was used in place of gas, to reduce viscous fingering effects, and benzyl
alcohol was the oil phase. The viscosities of water and benzyl alcohol were 1.140 cp and 4.984 ¢p
respectively. The initial spreading coefficient for oil was 0.2 mN/m. The interfacial tensions were
about an order of magnitude less than typical gas-oil-water systems to reduce capillary end-effects.
A three phase dynamic displacement experiment was initiated by saturating the porous medium
totally with water and then flooding it with oil until the irreducible water saturation was reached.
Uniform two phase saturation in the core was obtained by injecting a given fractional flow of oil
and water to reach steady state. At this point, the injection of gas (decane) was started.

Virnovsky [53] and Grader and O’Meara [44] extended the Welge/JBN [54, 53] method
for determination of two phase relative permeability to three phases. Details of calculating the
saturation of a particular phase at the outlet end and the corresponding phase relative permeability
are provided in these papers. Several experiments were performed with different initial water
saturations, and the saturation trajectories obtained are shown on the ternary diagram, Fig. 3.1.

Analysis of the Experiment

The three phase relative permeabilities obtained by Grader and O’Meara are shown plotted
as a function of their own saturations in Fig. 3.2. To a good approximation the relative permeability
values lie on a single curve and hence appear to be a function of their own saturation.

In order to have a convenient functional form of relative permeabilities, we matched them
to the following polynomial:

krp = Asp + Bsg + C.sf; + Dsf, + Esg (3.1)

where the subscript p labels the phase (oil, water or gas).

The matching parameters 4, B, C, D and E were found by a least-squares fit to the data.
Table 3.1 shows the values obtained. If Eq. (1) predicts k., < 0, we set k,, = 0. Recently Hicks
et. al [74] analyzed similar experiments and showed that Stone model I and II [68, 69] relative
permeabilities could not match the experimental recoveries very well. They got better results by
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Figure 3.2: Measured and fitted relative permeabilities
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Table 3.1: Polynomial fit to relative permeability

ko | A B C D |[E

Oil | 0.079 [-0.399 | 0.436 | 0.878 | 1.023
Gas | 0.160 | -0.009 | 0.091 | 0.261 | 0.425
Water | -0.01 | 0.2 | -0.198 | 1.662 | -0.032

using different Corey [75] type relative permeabilities in different regions of the saturation space.
The approach we use in this report is simpler, and the polynomial form of relative permeability
gives good predictions of the recoveries and saturation paths, as we show later.

We will now summarize the procedure to calculate the analytical solution given by Guzman
and Fayers (78, 79]. The dimensionless conservation equation, in one dimension, ignoring capillary
pressure may be written as:

8t + AS;,; =0 (32)
where
5= ( 5 ) (3.3)
Bsy
ot
Bsu
sﬁ(&) (3.5
Bz
and
8fw  Ofw
(% g 59
sy Osg

sy is the water saturation, sy is the gas saturation, and f, and f, are fractional flows of water
and gas respectively. There are two independent saturations, chosen to be s, and 54, and the oil
saturation is given by:

So=1—15y— 34 (3.7)

Let £ = 0 be the injection end of the experiment, then we have the initial conditions at
time, t = 0: s4 = 1 for £ < 0 (we inject gas at 100% saturation) and sy = 0, sy, = sy for z > 0,
where s,,; is the initial water saturation in the core. This mathematical statement is a Riemann
problem that may be solved by the method of characteristics (MOC). The solutions are functions
of v = z/t only. Mathematically, we can write Eq. (2) as:

ds ds
Yo = A

29

(3-8)



where v is an eigenvalue of A, and ds/dv is an eigenvector, and:

> ( 3 ) (3.9)

The matrix A has two eigenvalues that correspond to characteristic wavespeeds (v = z/t)
with which given saturation values will travel.

A rarefaction is a smooth change in saturation with v. The eigenvectors of A tell us the
path in saturation space taken by a rarefaction as the wavespeed changes. Fig. 3.3 shows these
rarefaction curves computed for the polynomial relative permeabilities fit to Grader and O’Meara’s
experiments. Only rarefaction curves for the faster of the two wavespeeds are shown. In Appendix
A we show how the eigenvalues and eigenvectors are computed, and how the rarefaction curves are
found.
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Figure 3.3: Rarefaction curves for the polynomial relative permeabilities fit to Grader and
O’Meara’s experiments

An analytical solution is constructed by following a rarefaction curve from the injection
condition (s4 = 1 in this case) to the initial condition as the wavespeed increases monotonically.
The reason the wavespeed has to increase is to avoid multiple-valued solutions for s(v = z/t). For
most cases this simple procedure is not possible and a solution can only be constructed with shocks
or discontinuities in saturation. Shocks obey an integral form of the conservation equation and the
shock speed is:

fy = Iy
Ve = :L_S% (3.10)

where L and R label the saturations to the left (upstream) and right (downstream) of the shock
respectively, and p = w,g. Eq. 10 is obeyed by both water and gas phases. Constant states, where
s is constant as v varies, may separate shocks and rarefaction waves. It is possible to construct a
unique path from injection to initial conditions as the wavespeed (or shock speed) monotonically
increases, composed of rarefactions, shocks and constant states. How these solutions are constructed
for the cases presented in this report is described in Appendix A.
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If krp is a function of its own saturation, then A always has real eigenvalues [76]. More
complex models that assume at-least one k,, dependent on two saturations (such as Stone’s models
(68, 69]) yield complex wavespeeds. Regions in saturation space with complex wavespeeds are called
elliptic regions.

If the two eignevalues of A are equal at some s, and s, then we have an umbilic point,
and both wavespeeds are the same. Corey type relative permeabilities give a single umbilic point
(Holden [77]) and no elliptic regions. If the relative permeabilities are more general functions
of their own phase, Guzman and Fayers [78, 79] showed that there may be none, one or multiple
umbilic points, and again no elliptic regions. It is the presence of points of inflexion (d2k,,/ dsf, = 0,
for s, # 0 and s, # 1) in any of the relative permeability curves that gives rise to the more complex
structure. The relative permeabilities we use here do have points of inflexion. There is a single
umbilic point (at s,, = 0.2879 and s, = 0.184) in the three phase region and the structure of the
rarefaction curve is qualitatively similar to that obtained using Corey type relative permeabilities
(80, 81].

Inspection of the rarefacton curves, Fig. 3. gives an indication of the saturation paths. For
low oil saturation, the rarefactions are aligned at approximately constant s,, which means that
gas will preferentially displace water, with little displacement of oil. This makes physical sense for
horizontal gas injection at low oil saturation where the water relative permeability is much larger
than the oil relative permeability. For large oil saturation, the rarefactions have approximately
constant s,. This implies that gas preferentially displaces oil since k., > kpy. Notice that there
is a dividing rarefaction [80, 81] that passes through the umbilic point and separates paths with
8o approximately constant from those with s, approximately constant. This dividing curve has a
critical influence on the analytical solutions and its precise location is extremely sensitive to the
relative permeabilities. For example, we attempted to fit the experimental data in Fig. 3.2. with a
third order polynomial (D = E = 0 in Eq. (1)). The fit was excellent, but the predicted analytical
solutions were not matched to the experiment as well as for a fifth order polynomial. On the other
hand, the solutions are insensitive to the predicted relative permeabilities at saturations below those
measured in the experiment, since here the wavespeeds are very low. Thus in Fig. 2. the very steep
kmy curve at low s, and the flat &, curve at low s, which are artifacts of the polynomial fit, have
very little effect on the solutions. Also note that the rarefactions shown in Fig. 3 appear to start
at sy = 0.95, rather than s, = 1. This is because the predicted water relative permeability at low
saturation is very small and goes to zero for s,, approximately 5%. This represents a connate water
saturation. The important point to stress here is that a good match to experiments is obtained by a
good match to the relative permeabilities for the saturations actually measured; the extrapolation
of the relative permeabilities outside the region probed experimentally has no physical meaning.

As a check on our analytical solution, we also performed numerical simulations of the three
phase flow problems. We used an explicit, first order in time, second order in space, total variation
diminishing (TVD) scheme (Blunt and Rubin [45]) with 800 gridblocks.

Fig. 3.4. shows the saturation path for horizontal gas injection into low oil saturation (s,; =
0.696, s,; = 0.304). Grader and O’Meara [44] do not provide sufficient information to construct the
saturation profiles for their experiments, but we can compare directly the measured and predicted
saturation paths. This case recovers very little incremental oil. The analytical solution follows
the rarefaction curve and then shocks directly to the initial conditions. Except for small v, the
rarefaction and shock are at approximately constant oil saturation. Thus the oil recovery is poor
unless a huge number of pore volumes of gas is injected.

Fig. 3.5. shows gas injection into a higher oil saturation (s,; = 0.518, s,; = 0.482). Here
it is not possible to find a shock from the rarefaction curve to the initial conditions. The analytic
solution features a shock from the three phase region to the two phase region, and then a two phase
shock to the initial conditions. This solution has an oil bank. Fig. 6. for s,,; = 0.447, s,; = 0.553,
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Figure 3.4: Predicted and measured saturation paths for Grader and O’Meara’s run #9

shows qualitatively the same features. The analytical solution for the cases shown in Figs. 5 and
6 follow the same path in the three phase region.

For all cases, the analytical and experimental paths are similar. The formation of an oil
bank, and a three phase shock has been observed directly using in-situ saturation measurements
for similar experiments [56]. Our analytical predictions for runs #15 and #7 are not shown, but
they also agree well with the experiments. The numerical and analytical one-dimensional solutions
for saturation are virtually identical.

The polynomial relative permeabilities we used assumed that the residual oil saturation
was zero. This implies that given sufficient time, gas could displace all the oil and water from the
core. In reality, however, the experiments are run for only a finite time. Since the wavespeeds for
drainage at low saturations are very slow (corresponding to low relative permeability), it would take
huge amounts of gas to displace oil at very low saturations. For the range of saturations actually
encountered, the theoretical predictions are excellent. Even if the relative permeabilities predict
zero residual oil saturation, this saturation will never be reached in a realistic experiment.

Falls and Schulte [80, 81] presented analytical solutions for three phase flow with Corey
type relative permeabilities, for which a single umbilic point was observed. The solutions obtained
here are similar to the ones obtained by Falls and Schulte, and there is a narrow range of initial
conditions for which the solution follows the same path in the three phase region (Figs. 5 and 6).
The use of Stone [68, 69] relative permeabilities or different curves for different regions of saturation
space, as suggested by Hicks and Grader [74], give elliptic regions. These are unphysical artifacts
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Figure 3.5: Predicted and measured saturation paths for Grader and O’Meara’s run #8

of the extrapolation of the relative permeabilities outside the domain probed experimentally. The
elliptic regions can cause instabilities or may give rise to non-unique solutions [76]. In this work,
the experimental data is matched successfully using polynomial relative permeabilities, and there
are no elliptic regions.

Recovery Calculation

Once the saturation profiles have been obtained, the oil recovery can be computed analyti-
cally. Fig. 3.7. shows the oil and water recoveries as a function of pore volumes of decane injected
for run #5. The computed recoveries match well with the experimental data. As seen in Fig. 3.7.
the increase of slope of the recovery curve for oil just before 0.3 pore volumes injected is due to the
breakthrough of the oil bank prior to the gas.

Conclusions

For the experiments analyzed the three phase relative permeabilities were, to a good ap-
proximation, functions of their own saturation. Analytical solutions for the saturation paths and
recoveries computed using a polynomial fit to the relative permeabilities predicted the results of
the experiments well. The fitted relative permeabilities did not give elliptic regions and there was a
single umbilic point in the three phase region. For a narrow range of initial conditions a two phase
shock, and an oil bank developed, and the saturation paths in the three phase region were the
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Figure 3.6: Predicted and measured saturation paths for Grader and O’Meara’s run #5

same. Outside this narrow range, different initial conditions may lead to different saturation paths
through the three phase region. The solution structure is similar to that obtained from Corey type
relative permeabilities [80, 81].

3.4 Gravity Drainage Experiments

Introduction

Past research [26, 27, 60, 31] has shown that three phase gravity drainage results in very
low residual oil saturations. However, we need to equate oil recovery to some measurable quantity
and figure out how long it would take to recover oil by gravity drainage. To understand this,
we will be performing three phase gravity drainage experiments under different spreading and
initial conditions, with both consolidated (sandstone) and unconsolidated (sand) porous media. To
obtain different spreading conditions we will be using three different oils; hexane, n-octane and
n-decane. We hope to find out how oil recovery varies with changing spreading coefficient for three
phase gravity drainage. Table 3.2. gives a list of proposed experiments. We can calculate relative
permeability from in-situ measurements of phase saturations obtained from the CT-scanner and
compute the saturation paths and recoveries analytically using the method of characteristics.
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Figure 3.7: Predicted and measured recoveries for Grader and O’Meara’s run #5

Table 3.2: Proposed three phase gravity drainage experiments

Ezp No. | Fluid PorousMedium | InitialCondition
1 n-octane sand intermediate s,
2 hexane sand intermediate s,
3 decane sand intermediate s,
4 n-octane sand So + Suc

5 n-octane sand Sor + Sw

6 n-octane sandstone intermediate s,
7 hexane sandstone intermediate s,
8 decane sandstone intermediate s,

Analysis of of Gravity Drainage Experiments

We develop here the equations needed to compute relative permeability during a two phase
alr-water gravity drainage experiment. Equations to compute three phase gravity drainage follow
from these equations.

Starting with Darcy’s law for two phase flow with the z direction defined to be positive in
the downward direction.

kkrw (Opw )
_— L 11
Uy ™ ( 5, PvY (3.11)
kkrg (apg )
=T (ZFF 3.12
Ug 1 dz ng ( )

Since head change in the gas phase is almost zero, we have

Pg — Pg9z =0 (3.13)
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or

Opq
By Ped (3.14)
Capillary pressures implies
Pg — Pw = Degw (3.15)
thus
Pw = Pg = Pegw = P99% — Pegw (3.16)

Substituting this in Equation 3.11. we get

kkpw (apcgw
= —= A .
Uy e Bz + pgwg) (3.17)
where
Apgw = puw — Pg (3.18)

Conservation of water implies

Suy 084
5 Yot
Inserting Equation 3.19 in Equation 3.17 we get

=0 (3.19)

Os 9 [kkyy (0O
¢_a_;”_ =- [ Mww ( Zgjw + Apgwg)] (3.20)

From the above Equation we can obtain relative permeability of water as

% Jsy,
PP ot dz
kg = — . apcow (3.21)
(a_g + Apgwg)
FA

In the above equation, z is the distance from the top of the core or sandpack. We assume
that s, = 1.00 at the top of the core(z = 0).
In the region where capillary pressure is negligible, the relative permeability is given by

Z Osy
kpy = _Mﬂ (3.22)
Tw k Apg .
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Once the relative permeabilities are known we can compute the flow velocity for each phase
using the method of characteristics. For free gravity drainage, neglecting capillary pressure Equa-
tion 3.17 becomes

kkrw
fhaw

(Pw — Pg)g (3.23)

Uw:

Using the Method of Characteristics, we can obtain the following from Equations 3.19 and
3.23

k(pw — pg)g Okruw(Sw)
M sy

Uy =

Z
2= (3.24)
t

where v, is the characteristic velocity for a given water saturation s,,. Assuming the relative

permeability of a phase to be a function of saturation of that phase only (for example: k., = as®)
we can write the above equation as

vy = P = P99 1y 5-1) (3.25)

Bw®

Air-Water Gravity Drainage Experiment

In this section, we show results from an air-water gravity drainage experiment where in-
situ phase saturations have been obtained from the CT scanner. Meaurements of porosity and
saturation as a function of distance(from the top of sandpack) and time are shown in Figure 3.8.
Relative permeability is calculated using the expression given in Equation 3.22. The saturation
profiles are calculated from the expression given in Equation 3.24, neglecting capillary pressure.
Measurements of the relative permeabilities and the computed saturation profiles are shown in
Figure 3.9.
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Three Phase Gravity Drainage

The equations to compute relative permeability for three phase gravity drainage follow from
those derived earlier for two phase gravity drainage.
For three phase flow we can write Darcy’s law for each of the three phases as

kkpy <8pw )
= — — — Ow 2
_ kkyo (Opo
uO _— uo ( az pog> (3.27)
_ _kkrg ( Opg B )
Ug = _ﬂg 5, P99 (3.28)

We can write the capillary pressure equations as

Pg — Po = Dego (3.29)

Do — Pw = Pcow (330)

Again assuming zero head drop for the gas phase (p, = py92),

Po = PggZ — Pcgos (3.31)
DPw = Pgd% — Pego — Peow; (3.32)
and
kk %)
uo = =22 (592 1 Apgg) (3.33)
Ho 0z
kkryw { OPcow 8pcga )
= Apow 3.34
where
Apgo = po — pg (3.35)
and
Apgy = pu — Pg (3.36)
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Now conservation of water implies

08y | Ouy
5 + o 0 (3.37)
Hence
z  Osw
Unp|s = /0 p 2 dz (3.38)
Conservation of oil implies
ds, | Ous
Hence
_[* ,0s,
oz = /0 8524z (3.40)

Thus the equations for the water and oil relative permeabilities are

*9%0,,
k (apcgo +A )
9z Pgod
’ ?f—'f‘ldz

k apcow apcgo )
( Oz + oz + Apgug

To calculate the relative permeabilities, we need in-situ saturation measurements as a func-
tion of distance from the top of the core and time. This can be done using dual-energy CT scanning
and the equations to obtain the saturations are derived in Appendix B.

3.5 Conclusions

We have developed a methodology for analyzing three-phase flow experiments. We have
described a technique for measuring three-phase relative permeabilities from in-situ CT scan mea-
surements of oil and water saturations. In later work we plan a series of gravity drainage exper-
iments to measure three-phase relative permeabilities with a particular emphasis on low oil and
water saturations.
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3.6 Nomenclature

A = Jacobian matrix of flux vector f
ds = right eigenvector of matrix A
I = flux vector with components f,, and f,

fg: fu= gas and water fractional flow
k = absolute permeability

krp, = relative permeability to phase p
v = x-ray attenuation of material
sp = saturation (p =o0, g, w)

)

saturation vector with components s, and s,
dimensionless time (injected pore volumes)
shock velocity

eigenvalues of matrix A

= dimensionless distance

B <o
=
I

Greek Letters

) = discriminant

¢ = porosity

Subscripts

1 = first energy level

2 = second energy level

g = gas

0 = oil

P = phase

t = derivative with respect to ¢
w = water

z = derivative with respect to z
Superscripts

L = left state

R = right state

3.7 Appendix A

More details on the construction of analytical solutions to three phase flow are given in
References [78] and [79]. The dimensionless conservation Equation 3.2. is:

st+ Asy =0 (3.43)
where A is given by Equation 3.6. The eigenvalues of A are:

v = %(fww + fgg) +V6 (3.44)

where

0= (fww - fgg)2 + 4fgwfwg (3-45)
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and

3
fog = a—fi’ (3.46)

The eigenvectors are aligned along the direction

1 1
= ( = ) B ( (fgg — fuow % \/3) /2Fwa ) (3.47)

and thus the ratio of a change in s,4 to s, along an eigenvector is:

dsg = ((fgg = furw = VB) [2fug) ds (3.48)

A rarefaction curve is found by starting at some given s = (sy, $4) and using Equation
3.48. to find the change in s, for a small change in s,,. Then Equation 3.48. is recomputed and
the new eigenvalues are found. In this way a curve in (s, s4) space is traced. In Figure 3.3, the
faster rarefaction is found, i.e., the positive root in Equation 3.48. is taken.

To construct the analytical solutions we start at the initial condition and attempt to find a
shock into the three phase region, where

L fzf _fzfz
’U(Sp) = Vgh = m (349)
4 4

for p = w, g. sf = Sp;, 1.e. the initial condition and we try to find s{; that obeys these conditions.
Equation 3.49 represents two independent equations for two unknowns (s%, s7). Once s% and s
are known we follow a rarefaction curve back to the injection conditions. Note that Equation 3.49.
describes a Buckley-Leverett type shock, where the shock speed is equal to the wavespeed of the
left state.

For Figures 3.5 and 3.6. we could not find a shock from the initial conditions to the three
phase region. For three phase flow with a unique umbilic point, the three phase shock jumps from
the two phase region to the dividing rarefaction that passes through the umbilic point [80, 81]. We
have three unknowns, 3,5’,, sé and 35, the water saturation in the two phase region. Equation 3.49
gives two indepedent equations. Insisting that sZ and 35 lie on the rarefaction that passes through
the umbilic point gives the third equation. To aid in the solution of these equations we can use
the numerical solution as an initial guess for s,’}. There is then a two phase shock to the initial

conditions. This shock speed must be larger than for the three phase shock.

3.8 Appendix B

The equations for three phase saturation calculations using dual energy CT scanning are
derived in the following section. For each energy level, the CT number of a core containing three
fluids is given by the equations

CTy = (1 — ¢)ur + Psglg1 + PsoVor + Pswint (3.50)

CT, =(1-@ra+ ¢59Vg2 + $Solo2 + PSwl2 (3.51)
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Also

Sg=1—5,— 5y (3.52)
This gives us three equations with three unknowns.
Setting
CTgrl = (1 — P)lvp + c]5l/g1 (3.53)
and
gives

5, = [CTI — CTgrl](¢Vw2 - ¢Vg2) — [CTQ - CTgrQ](¢Vw1 = ¢Vgl)
® T (@ror — Prg1)(Prwe — drge) — (Pree — Prga) (Pt — Prg1)

(3.55)

5 = [CT2 - GTgr2](¢’V01 - ¢Vg1) - [CTl - CTgrl](¢’/02 - ¢u92)
v (¢Vol - ¢Vgl)(¢yw2 - ¢V92) - (¢Vo2 - ¢V92)(¢le - ¢Vgl)

(3.56)
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4. Analytical Calculation of Minimum Miscibility
Pressure

Yun Wang and Franklin M. Orr, Jr.

Analysis of the problem of one-dimensional, dispersion-free displacement of a multicompo-
nent oil by a gas such as CO3, or methane has shown that the behavior of the flow is controlled by a
sequence of key tie lines. Those that extend through the original oil and injected gas compositions
and n. — 3 tie lines known as crossover tie lines. The minimum miscibility pressure (MMP) is the
lowest pressure at which any of the key tie lines is a critical tie line. We show how to identify the
n. — 3 crossover tie lines for oils that contain an arbitrary number of components as a sequence of
tie lines whose extensions intersect. For displacement by a gas that contains only one component,
that problem is equivalent to the problem of performing a flash calculation for single phase mixture
with the composition of the intersection point. We transform the standard flash equation to a form
that gives convergent solutions even for compositions well outside the phase diagram. We use the
modified flash calculation to determine which of the key tie lines approaches the critical locus as
the pressure is increased. Calculation of tie line lengths for a sequence of increasing pressures to
determine the MMP as the lowest pressure at which the length of one of the key tie-lines becomes
zero. Extension of the method to systems with two components in the injection gas is demonstrated
for a four-component system, and further extension to multicomponent injection gases is discussed.

4.1 Introduction

(Gas injection processes are among the most effective methods of enhanced oil recovery.
A key parameter in the designing of a gas injection project is the minimum miscibility pressure
(MMP), the pressure at which the local displacement efficiency approaches 100% . If the flow is
one-dimensional (1D) and there is no dispersive mixing, then the displacement efficiency is exactly
100% at the MMP. In real displacements, however, those conditions are not strictly satisfied. At
pressures near MMP, the phases that form in the transition zone between injected fluid and original
oil in place have very low interfacial tension, and the displacement is close to piston-like even when
small amounts of dispersion or nonuniform flow due to viscous fingering or gravity segregation are
present. That is the situation that arises in slim tube displacements, for example, displacement
experiments that are routinely used to determine the MMP. In those experiments a long (say 10
m or longer), small diameter (say 0.5 cm) tube packed with sand or glass beads is filled with oil
that is then displaced by injection gas at a fixed temperature and outlet pressure. The fraction of
the original oil in place recovered after injection of some fixed amount of gas (usually 1.1 or 1.2
pore volumes) is measured. The fraction of oil recovered is then plotted as a function of pressure.
Typically, recovery increases rapidly with increasing pressure and then levels off. The MMP is
usually taken to be the intersection of lines drawn through recovery points in the steeply climbing
and level regions as long as the recovery in the level region is above some arbitrary cutoff (often
90%).

Most attempts to predict MMPs have been empirical. Investigators have tried to fit ex-
perimental MMPs to a variety of expressions for specific gas systems (see, for example, Holm and
Josendal [82]; Glaso [83]; Orr and Silva [84]). While those approaches reproduce reasonably well the
experimental observations on which they were based, they should be used with caution for injection
gases or oils with compositions substantially different from those used to build the correlation (Orr
and Silva [84]).
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Computational attempts to calculate the MMP include three approaches: One-dimensional
compositional simulations, mixing cell calculations based on a single cell, and multiple mixing
cell calculations. Compositional simulations can be used to determine the MMP provided that
sufficiently fine grids are used in the computations, the prediction of the MMP will be as accurate
as the representation of the phase behavior by the equation of state used. The disadvantage of the
simulation approach is the lengthy computation time for fine-grid simulations performed at many
pressures.

Other investigators have used mixing cell methods (Pedersen et al. [87]; Jensen and Michelsen
[88]; Neau et al. [89]) to estimate MMPs. In those methods, injected gas is first mixed with oil and
flashed. The resulting vapor is mixed with fresh oil (forward contacts) and the liquid is mixed with
fresh injection gas (reverse contacts), and the new mixtures are flashed. The process is repeated
until it converges. The forward contacts converge to the tie line that extends through the oil com-
position (if there is one), and the reverse contacts converge to the tie line through the injection gas
composition. The pressure is then increased until one of the tie lines is a critical tie line, which is
taken to be the MMP. These methods work well as long as it is oil tie line (vaporiaing gas drive) or
the injection gas tie line (condensing gas drive) that controls miscibility. In many systems, however,
the MMP occurs at a pressure at which neither the oil tie line nor the gas tie line is a critical tie line,
though such behavior can only occur if four or more components are present (Orr et al. [90]). The
condensing/vaporizing drive described by Zick [86] and Stalkup [85] is an example of this behavior
(Johns et al. [91]). For those systems, mixing cell methods do not give accurate predictions.

Multicell versions of the mixing cell idea have also been used. Metcalfe et al. [92] described
a technique in which gas is added to the first cell and the contacts are flashed. The resulting gas
phase is then moved to the next cell while more gas is added to the initial cell, and both cells are
flashed. Again gas is moved to downstream cells. Thus, the procedure is similar to one-dimensional
simulation, though fluids are not moved according to relative permeability functions. Hearn and
Whitson [93] cite unpublished work by Zick that shows that multicell methods can be used for
condensing-vaporizing drives.

In this report, we attempt to avoid the inaccuracies that can arise from finite grids or
numbers of mixing cells, as well as the computational effort of many flash calculations in many cells,
by calculating the MMP directly from analytical solutions for multicomponent, two-phase flow. We
define the MMP based on the assumption of 1D, dispersion-free flow. Under those assumptions,
the MMP can be calculated rigorously from analytical solutions for one-dimensional flow obtained
by the method of characteristics (MOC). We begin with a brief review of the MOC theory to show
that the problem of finding the MMP can be reduced in many cases to the problem of finding a
sequence of tie lines whose extensions intersect at compositions that may lie well outside the region
of physically attainable compositions. Next we formulate and solve a negative flash algorithm that
converges for the compositions of the intersection points and use it to determine the sequence of
tie lines. We then adjust the displacement pressure until one of the key tie lines becomes a critical
tie line, one that is tangent to the critical locus (Johns and Orr [94]). We describe a technique that
can be used to find the MMP for a two-component injection gas, and we discuss the extension of
the technique to systems with more components.

4.2 Mathematical Model

For one-dimensional, dispersion-free two-phase flow in which components do not change
volume as they transfer between two phases, the mass conservation equations are

oC; | OF, _
ot 8z

0, i=1,..ne (4.1)
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where ¢ and 2 are dimensionless time and distance, respectively. Components do change volume as
they transfer between phases, but that volume change does not affect the MMP (Dindoruk [95]).
C; is the overall volumetric fraction of component ¢ given by:

Ci=ca[l + (K; — 1)8], 1=1,..,nc (4.2)

F; is the the overall fractional flux of component ¢ given by:

F; = cil[l + (KZ - 1)f]7 t=1,..,7, (43)

Here ¢;; is the volume fraction of component ¢ in the liquid phase; S is gas saturation; f is
the fractional flow of the gas phase; and K is the equilibrium ratio of component 3.
For the calculations reported here, the fractional flow function was assumed to be

52
S24+(1—-8)%
It should be noted that while the fractional flow function is required to construct analytical

solutions to Eq. 4.1, numerical calculations suggest that it has no effect on the key tie line geometry
that determines the MMP. Two additional constraints associated with Eq. 4.1 are:

f= (1.4)

Y =1, (4.5)
=1

and "
Y F=1, (4.6)
1=]

which means that only n. — 1 of the conservation equations are independent.

Eqgs. 4.1-4.6 can be solved by calculating the velocity at which a given overall composition
propagates. An eigenvalue problem results, in which an eigenvalue is the wave speed at which
the composition moves. The associated eigenvector gives a discrete direction in composition space
along which composition variations satisfy the differential equations. Integration along eigenvector
directions gives many ‘paths’ through the 7, dimensional composition space. For example, Fig. 4.1
shows typical composition paths for a four-component system in which equilibrium K-values are
independent of composition (Note that when equilibrium K-values are independent of compositions
the surfaces of liquid and vapor compositions are both planes. In Fig. 4.1, the surface of liquid
compositions is the triangle ABC, and the surface of vapor compositions is DEF). Tie lines are
paths, and there are two nontie-line paths through each composition point. The solution to the
problem is the unique route that connects the initial oil composition to the injection gas composition
(Monroe et al. [96]). The modern form of the theory was developed for analysis of three-component
surfactant flooding (Larson and Hirasaki [97]; Larson [98]; Helffreich [99]; Hirasaki [100]), though
wathematically equivalent approaches were reported earlier by Welge et al. [101] and Wachman
[102] for gas/oil and alcohol displacement systems. Application of the theory to gas/oil systems
continued with the analysis of three-component systems by Dumore et al. [103]. Monroe et al. [96]
obtained the first solutions for systems with four components, and subsequent work by Johns [104]
and Dindoruk [95] explored the behavior of systems with four or more components (Dindoruk [105];
Orr et al. [90]; Johns et al. [91]; Johansen et al. [106]). Those papers showed that the solution
behavior is controlled by n.,— 1 key equilibrium tie lines. They are the tie lines that extend through
injection gas and initial oil compositions as well as n. — 3 additional tie-lines known as ‘crossover’
tie lines (Monroe et al. [96]). If the pressure or enrichment is increased enough that one of the key
tie lines becomes a critical tie line (a tie line of zero length that is tangent to the critical locus),
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Figure 4.1: Composition paths in a four-component system with constant K-values (Points a, b,
¢, d refer to composition points in Fig. 4.2.

then the displacement is multicontact miscible (Orr et al. [90]; Johns et al. [91]). Thus the first
step toward finding the MMP is to identify the key tie lines.

In portions of the solution where compositions vary continuously, the variation must occur
along paths. It often happens, however, that eigenvalues vary along a path in such a way that
fast-moving compositions would appear upstream of slow-moving ones, a physical impossibility. In
such situations, the continuous variation (known as a rarefaction by analogy with gas dynamics)
is replaced by a shock, which must satisfy a material balance (also known as a Rankine-Hugoniot
condition) of the form

FU _ gD
A=2—2L i=1.,n 4.7
CiU _ C P bl 1 s F¥Cy ( )
where A is the shock velocity, superscripts U and D represent the upstream and downstream sides
of the shock. A shock must also occur whenever the number of phases present changes; the solution
route must enter and exit the two-phase region via a shock along a tie line extension (Helfferich
[99)).

Fig. 4.2 shows an example, again for the constant K-values, in which a shock between two
tie lines would be required. It shows the magnitudes of compaosition velocities, A, along the path
traced from a to b in the ‘vertical’ surface of paths and then from ¢ to d in the ‘horizontal’ surface of
paths in Fig.1 (between b and c there is a short variation along the crossover tie line). Value of A,
decreases as the path is traced toward the direction from a to b, so a rarefaction is permitted there.
From ¢ to d, however, the value of A,; increases, which would violate the velocity constraints if
this path were being traced in the upstream direction. Hence, this composition variation would be
‘self-sharpening’, and a shock would connect the tie lines that contain points ¢ and d. An important
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Figure 4.2: Variation of the nontie-line eigenvalue alonf the nontie-line path.

result of the analytical theory is that the extensions of two tie lines connected by a shock must
intersect (Johns [104]; Orr et al. [90]; Johns et al. [91]).

For systems in which all the tie lines are connected by shocks, which we refer to as fully
self-sharpening, all the crossover tie lines can be determined from the requirement that the tie line
extensions intersect. Fig. 4.3 shows such a system. In Fig. 4.3, the initial oil composition is o, a
mixture of methane (CHy), butane (C4) and decane (Cyg). The curves labeled ‘phase envelopes’
in Fig. 4.3, are the binodal curves of liquid and vapor compositions in the four ternary faces that
bound the quaternary diagram. The injection gas is a mixture of CO3; and CHy4 (composition
g). The initial tie line lies in the CHy/Cy4/Cyo ternary face, and the injection gas tie line is on
the CH4/CO2/Cyp face. The extensions of the crossover tie line intersect both the initial oil and
injection gas tie lines. In this system, if the pressure were increased, the crossover tie line would
become tangent to the critical locus at a pressure lower than that of either the initial oil or injection
gas tie lines.

For ternary systems, self-sharpening behavior can be identified easily from an analysis of
systems with constant K-values (see Appendix A of Johns [104] or Johns et al. [91] for details). The
analysis shows that self-sharpening behavior is controlled by whether the value of the intermediate
K-value is greater than or less than one. While that analysis is only approximate for systems with
composition-dependent K-values, the prediction of self-sharpening behavior is quite reliable. For
systems with more than three components, self-sharpening behavior can always be detected by
direct integration along nontie-line paths. An approximate method for identifying self-sharpening
behavior in multicomponent displacements was outlined by Johns and Orr [94], who reported
a procedure for calculation of the MMP for displacement of a multicomponent oil by a single-
component gas. In that scheme, components present at any point in a displacement are lumped
into a pseudoternary system so that the expression given by Johns and Orr [94] could be used to
determine self-sharpening behavior.
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Figure 4.3: Key tie lines for a displacement of a three-component oil (composition o) by a two-

component gas (composition g) at 160° F (71.1° C), 1600 psia (11.0 MPa). The crossover tie line

intersects extensions of the initial oil and injection gas tie lines. See Table 4.3 for oil and gas
compositions.
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In the remainder of this report we develop a technique for calculation of MMP that is
rigorous for systems that are fully self-sharpening. Experience with solutions for CO; displacements,
for example, indicates that the fully self-sharpening systems are common for CO, injection. We
also have computational evidence that this approach gives accurate MMPs for displacements that
include one or more segments of rarefaction along nontie-line paths, but we do not have a rigorous
proof of accuracy for those systems.

We find the key tie-lines by solving a sequence of flash calculations for the compositions
at intersection points of tie lines. Those points always lie in the single-phase region, and they
often fall outside the phase diagram where some component fractions are negative (see Fig. 4.3 for
an example). For single-phase compositions that are not too far from the two-phase region, the
negative flash of Whitson and Michelsen [107] can be used to determine the tie-line that extends
through that composition. However, many of the intersection points that arise in the analytical
solutions are well outside the domain of convergence of the negative flash algorithm of Whitson
and Michelsen. In the next section, we transform the flash calculation and develop a negative flash
algorithm that does converge for such compositions.

4.3 Modified Negative Flash

The equation of any tie line is given by a material balance of the form

C; = ql(l - S) + ¢S, =1,...,n, (4.8)

which can be rearranged to yield Eq. 4.2 by substitution of the definition of the equilibrium
K-values,

Ki=2i=1.n, (4.9)
Cil

where C; is the overall composition for component ¢, ¢;; is the volume fraction of component ¢
in the liquid phase and c;,, is the volume fraction in the vapor phase. S is the vapor phase saturation.
K; is the equilibrium ratio for component ¢ (K-value). The equilibrium compositions must also sum
to unity,

e Ne
deu=3 cw=1 (4.10)
i=1 =1

The usual approach to a flash calculation follows that of Rachford and Rice [108]. For a
given set of K-values, the following equation is solved iteratively for S,

n
S Ci(Ki-1)
F = —_—— = 4.11
(5) ;1+(K¢—1)S (+11)
The phase compositions are then calculated as
I & B
AT (K - 1)8
(4.12)
K;C;

=T (K - 1)8

Fugacities can be calculated from an equation of state (EOS). Here we use the Peng-
Robinson EOS [109] to calculate component partial fugacities. K-values are then updated using
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fugacities until convergence is reached. Phase compositions in mole fractions are converted to
volume fractions using the pure component molar densities.

Rachford and Rice assumed that the overall composition is inside the two-phase region.
Whitson and Michelsen [107] pointed out that single-phase compositions can be flashed with the
same algorithm if the vapor phase saturation is not restricted to lie between zero and one. They
showed that their negative flash always converges for compositions within a range bounded by
1/(1 ~ Kpmaz) and 1/(1 — Kmip), where Ky, and Ky, are the highest and lowest K-values of the
system.

We observe that, for an arbitrary overall composition, the vapor phase saturation S can
vary in an unrestricted way, while the phase compositions ¢; and ¢;, are always subject to the
restriction that they be greater than zero and less than one. Hence we choose phase compositions
instead of vapor phase saturation as the primary variables. Elimination of S yields the following
system of equations:

¢
doca—1=0
i=1

Cien(K1 — 1) — eyey(Ky — K;) — Ci(K; - 1) =0, 1=2,..,N;

(4.13)

Eq. 4.13 can be solved for the liquid phase compositions by a Newton-Raphson iteration of
the form

JAc = —F, (4.14)

where Ac; is the vector of changes in individual component fractions. The entries in F are

Ne
F=Y ci—1 (4.15)
4=1
F’i = O,;Cll(Kl — 1) — Cllcil(Kl - Ki) — cﬂCl(Ki - 1) 1= 2, -y Ne. (4.16)

The Jacobian matrix J, whose elements are derivatives of F with respect to ¢y, is

1 1 1. 1
J21 J22 0 0
J=| Ja 0  Jiz ... 0 (4.17)
| Ja1 O 0w  Jun, |

where
Ji1 = Ci(Ky — 1) — (K1 — K;)

(4.18)
Jii = —cu (K1 — K;) — Cu(K; — 1) 1=2,.,N¢

The simple structure of the Jacobian matrix yields a straightforward algebraic solution of
the form
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r n,
C F
2R
= Jii
Acyy = s
1y~
S 2 T (4.19)
F+JanA
Acy = ———”"J“ LA
\ ()
The updated phase compositions are
R =y Aey i=1,.,n. (4.20)

The iterative process ends when the left hand side of Eq. 4.13 is zero to within some
tolerance. Then the phase compositions are used to calculate new partial fugacities and the K-
values are updated. Here we use the standard successive substitution

L
Krew = Kfld(%f) i=1,...ne, (4.21)

where f# and f! are the liquid and vapor partial fugacities for component i, respectively, and
the K-values in Eq. 4.20 are defined in terms of mole fractions. The flash calculation is complete
when component partial fugacities are equal (to within some tolerance). We note that there is
an opportunity to improve the speed of the calculations performed be acceleration along the lines
described by Michelsen [110]. For the examples reported in this report, however, the computation
times for calculating MMPs were quite short (on the order of 3-10 minutes on a workstation), so
the speed of the successive substitution was not a limiting factor.

Fig. 4.4 shows three overall compositions used to test the performance of the modified
negative flash, and Fig. 4.5 compares convergence behavior of the modified flash with that of the
negative flash of Whitson and Michelsen. Composition A is in the domain of convergence of the
Whitson-Michelsen negative flash (The vapor phase saturation for point A is -0.19799, well within
the domain of convergence -1.79176 < S < 1.01865). Both methods converge quickly. Compositions
B and C are outside the domain of convergence for the Whitson-Michelsen negative flash, but
Fig. 4.5 shows that the modified negative flash converges quickly for those compositions as well.
Points B and C are actually outside the phase diagram; the mole fraction of COy; is negative. They
are typical of intersection points (see Fig. 4.3). For point B, the vapor phase saturation is -2.48537,
which is clearly outside the convergence domain -2.14178 < S < 1.03103. Composition C lies on
the extension of a tie line that is quite close to the critical point. The vapor phase saturation of
point C is -3902.968, which is also outside the domain of convergence defined by the largest and
smallest K-values: -3443.336 < S < 323.810 (Kpner = 1.000290, Kpp = 0.996912). In this case as
well, the modified negative flash converges rapidly. It is important that the flash algorithm perform
well in the near-critical region if it is to be used to calculate the MMP.

4.4 Analytical Calculation of MMP

4.4.1 Pure CO; Injection

To illustrate how the modified negative flash can be used to determine the MMP, we con-
sider first an example in which pure CO, displaces a six-component oil. This system is fully
self-sharpening: all the nontie-line portions of the solution are shocks. Hence, all the adjacent key
tie lines intersect. We now show that the intersection points are such that exactly one component
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Figure 4.4: Compositioon for test of the modified negative flash algorithm (T = 160° F (71.1° C),
P = 1600 psia (11.0 MPa)).
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Table 4.1: Oil and gas compositions for pure CQO5 injection, T=160°F.

Compositions(Mole Fraction)

Component
CHy | COg | C4 | C1o | Cra | Coo
Qil 0.20 | 0.05 | 0.05 | 0.40 | 0.10 | 0.20
Gas 0.00 { 1.00 | 0.00 | 0.00 | 0.00 | 0.00

changes to zero composition across each shock that connects two tie lines. Foe the calculations
reported, component properties were those reported by Johns [104].

Table 4.1 shows the oil and gas compositions and system temperature. The initial and
injection tie lines are both known. The initial tie line includes all six components that are present
in the 0il. The injection tie line contains two components, CO5 and Cog. There are three crossover
tie-lines altogether for a six-component system.

We show now that one component disappears across each shock between tie lines in the
sequence from the initial tie line to the injection tie line. Assume first that there are two intersecting
tie lines that have non-zero fractions of an identical number of components. Now the number of
components present can only change if the tie line changes. Because there are only three crossover tie
lines, there must be another pair of adjacent intersecting tie lines that have two or more components
missing. Suppose that components j and k are missing on tie-line n, then

C; =cj[l + (K7 —1)8,] =0, (4.22)
Cp, = 1+ (KP — 1)S,] =0, (4.23)

which requires that
Spm = (4.24)

T 1-K}  1-Kp

Eq. 4.24 is satisfied only if K7 = K}, an equality that never holds true except at the
critical point as long as K-values stay ordered. That condition is satisfied for this system and for
systems of practical interest; if two components have almost equal K-values they should be lumped
for compositional purposes. Thus, the assumption that two tie lines in the sequence have the
same number of components leads to a contradiction. Hence we have shown that, for this system,
there are four shocks that connect pairs of tie lines, and one component present in the initial oil
disappears across each shock. The argument given applies to initial compositions with an arbitrary
number of components. Therefore the statement applies for displacement of an o0il containing any
number of components by a pure component gas.

We use the disappearance of one component at each shock to locate easily the sequence
of tie line intersection points. Components disappear in the order of their K-values: CHy first in
the shock from the initial tie line to crossover tie line 1; C; second in the shock from crossover tie
line 1 to crossover tie line 2, and so on. Table 4.2 shows the sequence of tie lines for the example
six-component oil displaced by COs. For the disappearing component on the crossover tie line n,

Cj = 1 + (K —1)S"] = 0. (4.25)
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Table 4.2: Key tie-line structure for pure CQO4 injection.

Tie-lines Compositions
CHy [ CO2 | Cy4 | Cyo | Cra | Coo
Initial v ViVviVv| YV
Crossover 1 vV I VIV V|V
Crossover 2 V4 NV IV
Crossover 3 Vv v |V
Injection V4 Vv

Therefore the vapor phase saturation on crossover tie line n where the component j is zero
is
1
C1-KY
Substitution of Eq. 4.24 into Eq. 4.23 for other components gives the 7 compositions of the
intersection point,

Sn

(4.26)

K!'-K J"}
1-Kr I
Application of the modified negative flash then gives the next tie line associated with the

intersection point.
The lengths I, of the key tie-lines indicate how close they are to the critical region,

C; = cjf| i # j. (4.27)

Mg
In=,| > (ch —ch)? (4.28)
=1
To find the MMP, we repeat the calculation of tie line lengths for increasing pressures. The
MMP is the pressure at which one of the key tie lines reaches zero length, an indication that it is
a critical tie line. Thus, for a pure component injection gas, the algorithm for calculation of the
MMP is:

1. Perform a modified negative flash to find the initial oil and injection gas tie lines.

2. Find the intersection point between the initial tie line and crossover tie line 1 from Eq. 4.27
applied to each of the components in the oil,

0 0
cl=¢ [I?_;Igj] (4.29)
where superscript o denotes the initial tie line, and
¢ = CHy,COq, Cy, Cyg,C14,Co0, 7= CHy. (4.30)
3. Perform a modified negative flash to find crossover tie line 1.
4. Find the intersection point between crossover tie lines 1 and 2
1 1
Ct=c [—w—fi"__éj ] (4:31)
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where the superscript 1 denotes crossover tie line 1, and

t = CHy, COg2, C4, C10,C14,Ca0, j§=Cy. (4.32)

5. Perform a modified negative flash to find crossover tie line 2.

6. Find the intersection point between crossover tie lines 2 and 3

K? - K?
3 _ 2% J
C; Cil[ 1-K? ], (4.33)
where the superscript 2 denotes crossover tie line 2, and
t = CHy, COg, G4, Cyg, C14,Cag, 7 = Cro. (4.34)

7. Perform a modified negative flash to find the crossover tie line 3.

8. Increase system pressure and repeat the above steps until one of the key tie line lengths is
z€ero.

Fig. 4.6 shows the change of key tie line lengths with pressure. As Fig. 4.6 indicates,
the first crossover tie line reaches the critical region at lower pressure than any other tie line.
Therefore it is the first crossover tie line that controls miscibility. Fig. 4.6 indicates that the
MMP is 2380 psia (16.4 MPa). To confirm the MMP calculated analytically, we also carried out
one-dimensional compositional simulations for the same system. We used a fully explicit finite
difference simulator with single-point upstream weighting. The Peng-Robinson equation of state
was used to calculate phase equilibria. The computations were performed with 800 grid blocks,
and the Courant number (C' = AAf/Az, A is the eigenvalue) was set to 0.2. Fig. 4.7 shows results
of those simulations reported as fractional recovery (defined as one minus the fraction of moles
of hydrocarbons remaining within the porous medium) of hydrocarbon components at 1.1 pore
volumes injected (the use of recovery at 1.1 pore volumes injected is arbitrary but customary in
interpretations of slim tube displacements). We interpret the compositional simulation results as if
they were experimental results: The estimated MMP is taken to be the intersection of lines drawn
through recovery points in the steeply climbing and level regions. An estimated MMP of 2340 psia
(16.1 MPaj} is obtained by extrapolating the linear portions of the recovery curve to an intersection
point. A more precise estimate of the MMP could have been obtained by applying the technique
described by Zick [86](extrapolation to an infinite number of grid blocks), though at the cost of
some additional computation time. While the numerical results are clearly influenced by numerical
dispersion (see Stalkup [85], Zick [86] or Walsh and Orr [111]), they are already accurate enough
to confirm the analytical results.

Next we consider displacement of a ten-component oil by pure COs. This oil was studied
experimentally by Metcalfe and Yarborough {112], and Johns and Orr [94] reported an analytical
solution for this oil. However, they encountered convergence difficulties in the near critical region
when they attempted to calculate the MMP, and hence they obtained only an estimate. However,
use of the modified negative flash described here allowed direct calculation of the MMP. Fig. 4.8
shows the key tie line lengths as a function of system pressure, obtained by the algorithm described.
Again the first crossover tie line controls miscibility. For displacement of oils containing dissolved
CHy4, CO2 will normally have the second highest K-value, and hence the first crossover tie line will
control miscibility (Johns and Orr [94]). The calculated MMP is 1466 psia (10.1 MPa). Again, the
numerical results (see Fig. 4.7) confirm the analytical MMP with an estimate of 1460 psia (10.1
MPa).
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Figure 4.6: Dependence of key tie line lengths on pressure for displacement of a six-component oil
by COs at 160° F (71.1° C). The MMP is 2380 psia (16.4 MPa). See Table 4.1 for oil and gas

compositions.
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Figure 4.7: Results of one-dimensional compositional simulations with 800 grid blocks and a
Courant number of 0.2, for the systems of Fig. 4.6, Fig. 4.8 and Fig. 4.9.
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Figure 4.8: Key tie line lengths for CO, displacement of a ten-component oil at 120° F (48.9° C).
The MMP is 1466 psia (10.1 MPa).

The algorithm given can be applied to a fully self-sharpening system with any number of
components as long as the injection gas contains only a single component. This approach is more
difficult to apply, however, if the injection gas contains more than one component. In the next
section, we consider an alternative approach for such injection gas systems.

4.4.2 Two-Component Gas Injection

If the injection gas contains more than one component, then it is not necessarily true
that a component disappears at each shock that connects two tie lines. Furthermore, the tie line
intersection points associated with shock solutions cannot be determined a priori by using the fact
that one component disappears at the intersection points. The example shown in Fig. 4.3 is such
a system. Table 4.3 lists the oil and gas compositions as well as the system temperature. In this
example, the injection gas contains CO, and CHy, and the crossover tie line intersects both the
initial and injection tie lines. However, the intersection points cannot be determined unless the
crossover tie line is known. In principle, the technique for single-component gas injection could be
used to determine the key tie lines if guesses of intersection points were made. However, experience
indicates that the trial and error approach is difficult to apply in a way that converges routinely,
especially when the system contains more than four components.

In such cases, therefore, it is more convenient to solve the full set of intersection equations
simultaneously. In this four-component example, the equations for the two intersection points of
the key tie lines are

Kéy, — Kéo
Cmyll+ (Ko, = D7) = o[~ 2, (4.35)
2

39



Table 4.3: Oil and gas compositions for a four-component system, T=160°F.

Component Compositions(Mole Fraction)
CH, | COy | Cy4 Cio
0il 0.20 | 0.00 | 0.15 0.65
Gas 0.20 | 0.80 | 0.00 0.00
o 0 K& ”Kéo
g 1+ (Kg, —1)8°] = 084,1[‘?4:?022], (4.36)
Kéy, — K&
clpy 1 + (K&y, —1)87] = céq, [%ﬁ‘KTC‘}“]a (4.37)
Cy
K¢ — K¢
ol + (Kb, = )S7) = choy[Fo2 e, (439
4

where ¢}, are the liquid phase compositions of the initial tie line; ¢f ¢; ; are the liquid phase composi-
tions of the injection gas tie line and ¢f 71 are the liquid phase compositions of the crossover tie line;
K? are the K-values for the initial tie 11ne K are the K-values for the injection tie line and KY are
the K-values for the crossover tie line (i = CH47 CO4,C4,Cyp). S is the vapor phase saturation on
the initial oil tie line of the intersection point between the initial tie line and the crossover tie line,
and $Y is the vapor phase saturation on the injection gas tie line of the intersection point between
the crossover tie line and the injection tie line.

The initial oil and injection gas tie lines can be found easily from the initial and injection
compositions using the negative flash of Whitson and Michelsen [107] or the modified negative flash
described here. The K-values of the crossover tie line are not known initially, but the equation of
Wilson [113] or some other suitable guess can be used. For the example given here the equation of
Wilson was used. Iteration over the K-values converged rapidly for the four-component example,
and as the pressures were increased toward the MMP, the solution still converged fairly rapidly.
Fig. 4.9 shows the tie line length as a function of the system pressure. It indicates that for this
system the MMP is 2297 psia (15.8 MPa), and the crossover tie line controls miscibility. The
numerical simulation results shown in Fig. 4.7 confirm the analytical calculation with an estimated
MMP of 2240 psia (15.4 MPa).

Fig. 4.10 shows that the effect of adding CHy4 to COsz is to increase the MMP substantially.
When pure CO; is injected, the crossover tie line lies in the COy/C4/Cyg face, and the MMP is
easy to identify (Orr et al. [90]). As the CHy fraction is increased the MMP climbs because the
crossover tie line moves into the interior of the quaternary diagram, where the tie line is further
from the critical locus at some pressure below the MMP. Hence, the pressure required to make the
crossover tie line a critical tie line increases. When the CHy fraction reaches 100% in the injection
gas, the algorithm simply finds the critical tie line for the CH4/C4/Cyg ternary system.

4.4.3 Multicomponent Gas Injection

The technique used to handle the two-component gas injection can be extended to systems
in which the oil and gas contains more components. In such systems, solutions of the set of tie
line intersections should yield the appropriate tie lines provided that the systems are fully self-
sharpening. Tie line lengths can then be calculated at a sequence of pressures to find the MMP.
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Figure 4.9: Key tie line lengths for a two-component gas displacement of a three-component oil at
160° F (71.1° C), (see Fig. 4.3). The MMP is 2297 psia (15.9 MPa).
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Figure 4.10: Effect of CH, contamination of COz on MMP for the displacement of a CHy/C4/Cio
mixture at 160° F (71.1° C). See Table 4.3 for the oil composition and Fig. 4.3 for the phase
diagram.
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--------------- Key Tie-lines
Solution Path

Figure 4.11: Displacement of 20% CHy, 40% Cs and 40% Cis by 90% CHy and 10% Cs at P =
2000 psia and T = 200° F. There is a rarefaction between crossover tie line C and initial tie line O.

Convergence behavior has not yet been investigated, however, for systems with more than two
components in the injection gas and four components in the oil.

At least one additional issue must be addressed if analytical methods are to be used reliably
to calculate MMPs for the full range of gas-oil system. While fully self-sharpening systems are
quite common, it is possible to find exceptions. If the injection gas contains significant quantities
of components with K-values less than one, then it is possible that some tie lines will be connected
by rarefactions, and it is also possible to have rarefactions in other situations (see Johns et al.
[91], for an example). The following example shows that even though tie lines are connected by
rarefactions, the notion that all tie lines intersect each other is still a good approximation. If that
is generally true then the MMP calculation method proposed in this report will still give accurate
predictions of MMPs.

Fig. 4.11 shows a quaternary system in which a CH4/C3 mixture displaces a CHs/Cs/C16
mixture. Direct application of the K-value rule suggested by Johns ([104]) indicates that there is a
rarefaction along the nontie-line path connecting the crossover tie line and the initial tie line. To
show that the notion of intersecting tie lines is still reasonable in this case, we first find the crossover
tie line by solving the tie line intersection equations. Next we construct the analytical solution by
integrating along the nontie-line path from the crossover tie line to the initial tie line. The numerical
integration is quite simple. It consists of taking a small step along the nontie-line eigenvector
direction, after which the eigenvector is evaluated again, and the process is repeated. When the
composition steps taken are small, the numerical error associated with this simple integration is also
small. In the calculations described here, the integration step size was 107¢. Finally, we compare
our analytical solution with a solution obtained by fine-grid numerical simulation. To minimize
the effect of numerical dispersion, we use a single-point upstream weighting scheme with 5000
grid blocks. Fig. 4.12 shows that the agreement between the analytical and numerical solutions is
excellent.
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Figure 4.12: Numerical and analytical solutions for a system with a rarefaction along a nontie-line
path.

Tables 4.4 and 4.5 compare two key tie lines obtained by three different approaches: an-
alytical solution (Johns [104]), tie line intersection solution and numerical simulation. Table 4.4
compares crossover tie line. The analytical solution was found by integrating along a nontie-line
path from the initial tie line to the crossover tie line. The numerical simulation version was obtained
by conventional, fine-grid (5000 grid blocks), finite difference simulation. The tie line intersection
version agrees quite closely (the maximum difference between tie lines is 4 x 1073 in the Cg liquid
mole fraction). Table 4.5 compares initial oil tie lines obtained in a i different way. The analytical
solution was obtained from a negative flash of the oil composition. The numerical version came
from the compositional simulation. The tie line intersection result was obtained by integrating
along the nontie-line path from the crossover tie line (calculated with the intersection equations)
to the C3 = 0 face. Here again, the maximum difference in phase compositions is about 3 x 1073
(Ce mole fraction in the liquid). That difference is small enough to be consistent with the accuracy
of the numerical integration along the nontie-line path (step size 107%). Thus, we conclude that it
is reasonable to use the tie line intersection method to estimate the MMP even in the absence of
a proof that tie lines intersect when nontie-line rarefactions are present. For the particular system
shown in Fig. 4.11, we use the tie line intersection method to calculate the MMP. Fig. 4.13 shows
the MMP is 4264 psia (29.4 MPa). Numerical simulation results similar to those shown in Fig. 4.7
gave an estimate of 4320 psia (29.8 MPa) for the MMP. In this example, therefore, the estimate of
the MMP from tie line intersection approach is accurate.

Computation times for MMP calculations described here are compared in Table 4.6. Esti-
mation of the MMP by compositional simulation requires that simulations be performed at multiple
pressures (we used 10 pressures for the examples in Fig. 4.7). For the relatively simple systems
considered here, the tie line intersection approach is about two orders of magnitude faster than
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Table 4.4: Tie-line structure for two-component injection.

Tie-lines Compositions
CHy | COo | Cy | Cio | Cra | Coo
Initial Vv NARY; J 7
Crossover 1 Vv v VARV J v,
Crossover 2 vV v vV IV
Crossover 3 Vi v v, "
Injection N v v,

Table 4.5: Comparison of the initial tie lines obtained from three different approaches for the system
shown in Fig. 4.11.

Initial Tie Line Liquid Phase Mole Fraction

CH, Cs Cs Cie
Analytical 0.420225 | 0.000000 | 0.294695 | 0.285080
Numerical 0.420260 | 0.000000 { 0.294660 | 0.285080

Tie Line Intersection || 0.420224 | 0.000000 | 0.294674 | 0.285102

Vapor Phase Mole Fraction
Analytical 0.965949 | 0.000000 | 0.033674 | 0.000377
Numerical 0.965943 | 0.000000 | 0.033679 | 0.000378

Tie Line Intersection || 0.965952 | 0.000000 | 0.033671 | 0.000377

Table 4.6: Comparison of CPU times between the numerical and analytical approaches.

System
Figure Fig. 9 Fig. 13 Fig. 6 Fig. 8
Number of Components 4 4 6 11
Number of Pressures 10 10 10 10
Method CPU Time
Numerical Simulation 11.2 hrs | 10.4 hrs | 19.1 hrs | 32.1 hrs
Analytical Approach 1.3 mins | 2.8 mins { 2.0 mins | 3.5 mins
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Figure 4.13: Displacement of 20% CH,, 40% C¢ and 40% Ci¢ by 90% CH4 and 10% C3 at T =
200° F. MMP = 4264 psia (29.4 MPa).

conventional simulation. For systems with more components present, the compositional simula-
tion times will grow rapidly with the number of components. Hence, we argue that the tie line
intersection technique offers a significant advantage over conventional simulation.

4.5 Conculsions

The analysis and examples reported here demonstrate that:

1. A modified negative flash calculation can be performed that yields convergent solutions for
composition points far outside the two-phase region, for compositions outside the phase dia-
gram, and for compositions on extensions of near-critical tie-lines.

2. For fully self-sharpening systems in which a gas containing one component displaces a mul-
ticomponent oil, the modified negative flash can be used to find the sequence of key tie lines
from the fact that one component disappears across each shock. The MMP is the lowest
pressure at which one of the key tie lines is a critical tie line.

3. For fully self-sharpening systems in which a gas containing two components displaces a four-
component oil, the crossover tie line can be found by solving the full set of tie line intersection
equations simultaneously. The MMP can then be found as the lowest pressure at which one
of the key tie lines is a critical tie line.

4. For systems that are not fully self-sharpening, it is still reasonable to assume that all key tie
lines intersect each other. The same approach can then be used to calculate the MMP.

5. The proposed MMP calculation method can be extended to apply to a general system with
an arbitrary number of components.
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5. Development of a Streamline Based Reservoir
Simulator

Rod Batycky, Marco Thiele and Martin Blunt

We present a new streamline-based simulator applicable to field scale flow. The method is
three-dimensional (3D) and accounts for changing well conditions that result from infill drilling and
well conversions, heterogeneity, mobility effects, and gravity effects. The key feature of the simulator
is that fluid transport occurs on a streamline grid, rather than between the discrete gridblocks on
which the pressure field is solved. The streamline grid dynamically changes as the mobility field
and boundary conditions dictate. A general numerical solver moves the fluids forward in space and
time along each streamline. Multiphase gravity effects are accounted for by an operator-splitting
technique that also requires a numerical solver. Because fluid transport is decoupled from the
underlying grid, the method is computationally efficient and very large time steps can be taken
without loss in solution accuracy.

We present results of the streamline-based simulator applied to tracer, waterflooding, and
first-contact miscible (FCM) displacements in two and three dimensions. Where possible, compar-
isons with conventional methods indicate that the streamline model minimizes numerical diffusion
and is up to two orders of magnitude faster. We also demonstrate the efficiency of the method
on a field scale, million-gridblock 36-well waterflood that includes a pattern modification plan to
improve oil recovery. Lastly, we present results of the method applied to the House Mountain
waterflood in Canada.

5.1 Introduction

The use of streamlines and streamtubes to model convective displacements in heterogeneous
media has been presented many times since the early works of Muskat[114, 115, 116], Fay &
Prats{117], and Higgins & Leighton[118, 119, 120]. Important contributions to the field are also
due to Parsons[121], Martin & Wegner[122], Bommer & Schechter[123], Lake et al.[124], Emanuel
et al.[125], and Hewett & Behrens[126, 127].

Streamline methods have recently resurfaced as a viable alternative to traditional finite-
difference methods for large, heterogeneous, multiwell, multiphase simulations[128, 129, 130, 131,
132, 133, 134, 135, 136, 137, 138, 139, 140]. The efficiency of the method has made it an ideal
tool for ranking equiprobable reservoir images [141], rapid assessment of production strategies
such as infill drilling and gas injection [142], computing upscaled component flux properties for
compositional simulation [143], and integration with production data for reservoir characterization
[144]. The method has also allowed for the solution of fine-scale models (O(108) gridblocks) on
standard computer resources, thus reducing the need for significant upscaling.

In this report we present advances on our previous work where we mapped analytical so-
lutions along streamlines [132, 135]. Although the streamline paths were updated periodically to
account for changing mobility fields, the method could not account for changing well conditions or
gravity — two key phenomena that must be modeled in general field scale simulations.

We account for these mechanisms by mapping one-dimensional (1D) numerical solutions
along streamlines, as first proposed by Bommer & Schechter[123]. In doing so, nonuniform initial
conditions that appear along recalcuated streamline paths, resulting from changing well and mo-
bility conditions, can be moved forward in space and time correctly. Streamline paths are updated
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and the transport process repeated. The grid on which the pressure field is solved is effectively
decoupled from the streamline grid used to transport fluids. There is no longer a global grid
Courant-Friedrichs-Lewy (CFL) condition to restrict time step size. Furthermore, grid orientation
and numerical diffusion effects are minirnized. Finally, operator-splitting is used to account for grav-
ity in multiphase flow [145, 146]. After moving fluids convectively along streamlines, fluids are then
moved vertically along 1D gravity lines. Bratvedt et al.[137] presented a similar operator-splitting
technique in the context of their front tracking method.

Our application of streamlines to field scale reservoir simulation is a combination of four
existing ideas: (1) 3D streamlines [147], (2) updating the streamline paths to account for changing
mobility field and well conditions [122, 128, 132], (3) numerical solutions along streamlines [123],
and (4) including gravity effects in multiphase flow using operator-splitting [136, 137, 145, 146].
Using streamlines and gravity lines decouples the 3D transport problem into multiple 1D problems
and leads to a very fast and accurate method applicable to a wide range of field conditions.

5.2 The Streamline Method

In this section we outline the streamline method. For a detailed discussion on how to trace
the streamlines we refer the reader to the Appendix.

5.2.1 Governing IMPES Equations

The streamline method is an IMPES method. Ignoring capillary and dispersion effects, the
governing equation for pressure p, for incompressible, multiphase flow is given by

V-E-(MVp+ 2, VD) =0, (5.1)

where D represents a depth below datum. The total mobility A; and the total gravity mobility A,

are defined as
Np ip

=3, Ay =S Zifig, (5.2)
=1 M7 j=1 Hi

kr; is the relative permeability of phase j, 44; is the phase viscosity, p; is the phase density, g is the
gravity acceleration constant, and n, is the number of phases present. We also require a material
balance equation for each phase j [148],

88 .
¢a—;+at-ij+v-Gj:0. (5.3)

The total velocity 4 is derived from the 3D solution to the pressure field (Eq. 5.1) and application
of Darcy’s Law. The phase fractional flow is given by

kr //—1’]
f' = =n ] ’ (54)
! Eiil k‘ri//l'i

and the phase velocity due to gravity effects is given by
= p
G =k -gf;iVD ) krilpi — pj)/ pa- (5.5)
i=1

Eqgs. 5.1 and 5.3 form the IMPES set of equations in the formulation of the streamline simulator.
We will confine our discussion to the solution of these equations for two-phase flow.
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5.2.2 Coordinate Transform

In a conventional IMPES finite-difference simulator Eq. 5.3 is solved in its full 3D form using
the previously calculated pressure field. In the streamline method, we transform the 3D equation
into multiple 1D equations that are solved along streamlines.

Streamlines are launched from gridblock faces containing injectors. As the streamlines are
traced from injectors to producers we determine the time-of-flight along the streamline, which is
defined as [129, 147]

8
¢

o O
and gives the time required to reach a point s on the streamline based on the total velocity @;(¢)
along the streamline. The permeability, porosity, and total mobility effects of the 3D Cartesian
domain are incorporated along a streamline via the T coordinate.

To determine the coordinate transform, we rewrite Eq. 5.6 as

or @

(5.6)

= o 57
¢ |2y | (5.7
which can further be rewritten as
s} o
|Ut|6—C =U V=dg (5.8)
Substituting Eq. 5.8 into Eq. 5.3 gives
df;
S; J
8+8+¢VG_O (5.9)

Eq. 5.9 is the governing pseudo-1D material balance equation for phase j along a streamline coordi-
nate. The equation is pseudo-1D since the gravity term is typically not aligned along the direction
of a streamline. To solve Eq. 5.9 we split the equation into two parts based on operator-splitting
as outlined by Glimm et al.[146], Colella et al.[145], and Bratvedt et al.[137]. First, a convective
step along streamlines is taken governed by

C
o5 | 0f
ot or
to construct an intermediate saturation distribution 57. Then, a gravity step is taken along gravity
lines using

=0, (5.10)

85, 16,
¢ Oz

with 5% as the initial condition to construct §;, and G j:|éj|. For simplicity, we have assumed that
the z-coordinate direction is aligned with the gravity lines.

=0, (5.11)

1D Numerical Solvers

Orne-dimensional numerical solvers are used to solve Eqs. 5.10 and 5.11. Each solver is
completely decoupled from the rest of the simulator. Here we have chosen to solve Eq. 5.9 but in
fact any equation with the desired physics written in 1D can be used. For example, this method
has been extended to compositional displacements [140].

For cases presented here, Eq. 5.10 is solved numerically using a single-point upstream (SPU)
weighting scheme explicit in time. By discretizing in 7 space, this leads to a natural refinement in
1D where flow velocities are high and reduced resolution where flow velocities are low. To retain
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accuracy within the numerical solver the irregular spaced 7-grid is converted to a regular spaced
7-grid. Time stepping for the SPU scheme is controlled within the solver using the optimal local
CFL constraint particular to a given streamline such that the fastest front is always moved one
7 node per local time interval (At;p). The ability to honor the local CFL constraint minimizes
numerical diffusion.

For the gravity solver, Eq. 5.11 is discretized in space limited to the same vertical resolution
of the underlying grid on which the pressure field is defined. Eq. 5.11 is solved using an explicit
upstream weighting method outlined by Sammon [149]. An additional advantage of decoupling the
gravity step in this way is that Eq. 5.11 is only solved in flow regions where gravity effects are
important. For example, in locations where fluids are completely segregated, Eq. 5.11 will not be
solved since 0G/9z=0.

Time Stepping

In field scale displacements the streamline paths change with time due to the changing
mobility field and/or changing boundary conditions. Thus the velocity field is updated periodically
in accordance with these changes, by solving for the pressure.

To move the 3D solution forward in time globally by At from " to t*t1=t"4+At we use the
following algorithm:

1. At the start of a new time step, ", solve for pressure using Eq. 5.1. We solve Eq. 5.1
using a standard seven-point finite difference scheme, with no-flow boundary conditions over the
surface of the domain and specified pressure or rate at the wells. The resulting linear set of equations
is solved using a multigrid method [150].

2. Apply Darcy’s Law to determine the total velocity at gridblock faces of the 3D Cartesian
domain.

3. Trace streamlines from injectors to producers as outlined in the Appendix. For each
streamline we do the following: (a) While tracing a streamline, the current saturation information
from each gridblock that the streamline passes through is recorded. In this manner, a profile of
saturation versus 7 is generated for the new streamline. (b) Move the saturations forward A¢ by
solving Eq. 5.10 numerically in 1D. This will involve several timesteps within the numerical solver
since At>>At1p. (¢c) Map the new saturation profile back to the original streamline path and onto
the underlying grid.

4. Average all the streamline properties within each gridblock of the 3D domain to determine
the saturation distribution at "1,

5. If G;#0 include a gravity step that traces gravity lines from the top of the domain to
the bottom of the domain along §. For each gravity line we do the following: (a) The saturation
distribution calculated in the convective step as a function of z is traced along a gravity line.
(b) The saturations are moved forward by At using Eq. 5.11. (c) Map the new saturation profile
back to the original gravity line and onto the underlying grid.

6. If G;7#0 average all gravity line properties within each gridblock of the 3D domain to
determine the final saturation distribution at £**1.

7. Return to Step 1.

In the above time stepping scheme, for tracer displacements with fixed boundary conditions
the streamline paths do not change with time. The pressure field is only calculated once. At rep-
resents a global convective time step between remappings. For nonlinear displacements (changing
streamline paths), each global time step includes a pressure solve and a remapping step.
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Figure 5.1: Distribution of a tracer slug using (a) the streamline method and (b) ECLIPSE-IMPES.
m. is the center of mass of the tracer slug. (c) Conceptual picture illustrating the final position of
a fluid element at the end of time interval A¢ by transporting along a streamline vs. the underlying
Cartesian grid.

5.3 Tracer Displacements

In our first example, a small slug of tracer is injected into a 100x 100 heterogeneous quarter-
five spot model. The slug distribution at tp=0.07 is shown in Figure 5.1 for the streamline simulator
(3DSL) and ECLIPSE-IMPES[151] with a SPU scheme. This comparison demonstrates how con-
ventional grid-based methods can suffer from large amounts of numerical diffusion and move fluid
in the wrong direction. In contrast, the streamline method automatically captures the correct flow
direction and moves fluid with minimal numerical diffusion. Note the difference in the location of
the center of mass m. of the slug predicted by the two methods.

Figure 5.1c illustrates conceptually the difference between the two methods. The efficiency
of the streamline method is a result of being able to take large global time steps along streamline
paths. The CFL constraints of the underlying grid have been decoupled from transport and there
is no limit to the size of At. For a conventional method, because transport is restricted to Carte-
sian directions, small global time steps must be taken but will not guarantee the same path as a
streamline path. For this example, the streamline method required 2 time steps to move the slug
profile in Figure 5.1 whereas ECLIPSE required over 900 time steps.

For both the streamline simulator and conventional methods, saturation information is only
known at the scale of a single gridblock. Each time we map the streamline saturation information to
the underlying grid we mix all of the streamline saturations within each gridblock. For the numerical
solutions, these mixed properties are then picked up at the next time step and moved forward. In
this manner streamlines communicate with each other within each gridblock after a global time
step. The number of remappings will influence the level of mixing present in the solution. We will
study this mixing next and compare results with those from mapping an analytical solution along
streamlines [132, 135], which for tracer displacements give exact results in the case of no physical
dispersion or diffusion.

For the numerical solutions, Gj=0 in Eq. 5.11 and Sj=f;=C, where C is the tracer con-
centration, in Eq. 5.10. Figure 5.2 shows a comparison of tracer flow results in a heterogeneous
250% 100 medium for the exact solution (mapping the analytical 1D tracer profile) and the nu-
merical mapping technique using both a SPU scheme and a high-order TVD scheme [45] to solve
Eq. 5.10. The use of TVD schemes for transport equations along streamlines is discussed in detail
elsewhere [139, 140]. Taking the entire time step A¢ within the 1D solver and mapping only once to
the underlying grid (Figure 5.2b,d) gives results almost identical to the reference solution. There
is no difference between using a SPU or a TVD scheme. This is because we move fluid at the
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Figure 5.2: Comparison of tracer profiles in a 250x 100 heterogeneous domain using the streamline
simulator: (a) mapping an analytical tracer solution along streamlines, (b) mapping a SPU (nu-
merical) solution with 1 remapping step, (c) mapping a SPU solution with 10 remapping steps, (d)
mapping a TVD (numerical) solution with 1 remapping step, (¢) mapping a TVD solution with 10
remapping steps.

optimum CFL number along a streamline, such that the fastest front moves one 7 interval per local
time step Atyp. Under this condition a SPU scheme will not suffer from numerical diffusion and is
equivalent to a high-order scheme. We see similar behavior for waterflood displacements. Thus, for
the remaining cases in this report we use the SPU scheme. However, for more complex 1D systems,
where the front speed is not known analytically — such as compositional displacements - a TVD
scheme can offer improved accuracy [140].

If the convective time step is reduced by a factor of 10, then 10 time steps are taken to reach
tp=0.3. There are 10 remappings to the underlying grid resulting in the saturation profiles shown
in Figure 5.2c,e. Again there is no difference between the SPU or TVD scheme. However, there is
more diffusion than in Figure 5.2b,d, and it is due to increased mixing of streamline properties at
the gridblock scale.

As we show later, for nonlinear displacements where the flow field changes with time,
the streamline method requires only 10’s of time steps per pore volume injected (PVI) to produce
converged results. The degree of mixing is approximately that shown in Figure 5.2c.e and is smaller
than numerical diffusion in conventional methods. This is important since numerical diffusion can
feed back into errors in the flow field calculation, resulting in compounding errors in recovery
predictions.

5.4 First-Contact Miscible Displacements

For first-contact miscible displacements we use Eq. 5.10 with S;=f;=C, where C is the
concentration of the miscible injectant. Effective phase viscosities and densities are calculated
using the Todd & Longstaff method [152]. For all cases shown here the Todd & Longstaff mixing
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Figure 5.3: Comparison of FCM solvent profiles between 3DSL and ECLIPSE at ¢ p=0.6 in a 125x50
heterogeneous model at three gravity numbers. Injection is into the lower 10 left gridblocks and
production is from the lower 10 right gridblocks.

parameter is assumed to be w=1. This implies that fluid properties between the miscible phases
are completely mixed at the gridblock scale. As a result the effective phase densities within any
gridblock are equal (G;j=0) and only Eq. 5.10 governs transport.

We define a gravity number as [153]

kvApgL?

where ky and ky are average vertical and horizontal permeabilities respectively, Ap is the pure
fluid density difference, Apy is the pressure drop in the horizontal direction, L is the distance
between wells, and A is the model height.

Shown in Figure 5.3 are the solvent profiles for a 125x 50 heterogeneous system at ¢{p=0.6 for
the streamline method at three different gravity numbers. Injection is in the lower ten gridblocks on
the left and production is from the lower ten gridblocks on the right. The pure fluid viscosity ratio
was kept constant at 10, and phase densities were altered to change the gravity number. Clearly,
the streamline simulator (3DSL) can model gravity dominated FCM displacements as seen by the
increased amount of solvent rising in the model as gravity forces are increased. For comparison,
ECLIPSE-IMPES two-point upstream weighting results with the same parameters are also shown in
Figure 5.3. The solvent distributions are similar between the two methods, although there appears
to be more detail in the 3DSL pictures. A summary of oil recovery is shown in Figure 5.4 for
each gravity number. In general, ECLIPSE under predicts recovery compared to the streamline
method. There appears to be more numerical diffusion within ECLIPSE which causes increased
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Figure 5.4: FCM displacement recovery comparisons between 3DSL and ECLIPSE, for three dif-
ferent gravity numbers.

mixing of the solvent and oil. This in turn reduces the effective density between the two fluids
and the ability of the solvent to rise and displace oil, giving lower predicted recoveries than 3DSL.
Heterogeneous FCM displacements are very difficult to model with conventional methods since the
solution is highly susceptible to numerical diffusion [154, 153].

Running on a standard UNIX workstation (DEC AlphaServer 2100 4/275 256 MB RAM),
ECLIPSE results for this small problem with Ny=10 required 32,767 time steps and 6.26 days of
CPU time to reach t{p=2, whereas the streamline method only required 306 time steps and 10.3
minutes of CPU time. This translates into a speed-up factor of 875. For N,=2, the speed-up factor
was 504, and for Ny=0 the speed-up factor was 280. Although not shown here, ECLIPSE fully
implicit results were also calculated. CPU usage was reduced but the results exhibited considerably
more numerical diffusion and very poor agreement with the streamline solutions. Finally, the
ECLIPSE SPU scheme was not considered due to poor agreement with the two-point method and
a high-order flux corrected transport method [135, 154].

5.5 Two-Phase Displacements

Here we consider immiscible, two-phase displacements. We now include a gravity step
(Eq. 5.11) to allow fluids to equilibrate vertically after a convective step (Eq. 5.10).

As a first example we show a two-dimensional (2D) waterflood displacement in a 19,000
gridblock (250x75) heterogeneous model. The fluid viscosity ratio is p,/ 1y =15, the density differ-
ence is 500 kg/m?, and the flowrate was adjusted to vary the gravity number. Shown in Figure 5.5
are the water saturation profiles using 3DSL, for three different gravity numbers. The streamline
method does account for gravity effects in two-phase flow as can be seen by the increased amount
of water sinking in the model as the gravity number increases. For comparison we also include the
standard SPU, ECLIPSE-IMPES results in Figure 5.5. The saturation profiles for the streamline
method show more detail and less numerical diffusion than the ECLIPSE results. Although not
shown, oil recovery predictions by the two methods are very similar for all gravity numbers. This
was expected since waterfloods are stable displacements affected only minimally by numerical dif-
fusion. For this model the speedup factor for Ny=0 was 11, for N;=0.4 the speedup factor was 4,
and for N;=10 the speedup factor was 3. The reduction in speedup factor as IV, increases is due to
the need to update the streamline paths more often in order to honor the additional nonlinearity
due to gravity effects.
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Figure 5.5: Comparison of water saturation profiles between 3DSL and ECLIPSE at tp=0.4 in a
250x 75 heterogeneous model at three gravity numbers. Injection is into the upper 10 left gridblocks
and production is from the upper 10 right gridblocks.

As a second example we solve a 100,000 gridblock (100x100x 10) 5-spot waterflood with and
without gravity. An injection well is located in the lower two central gridblocks, and a production
well is located in the upper two gridblocks in each corner of the model. The water distributions
with and without gravity using 3DSL are shown in Figure 5.6. We compare the streamline results
against the ECLIPSE-IMPES SPU method. Figure 5.7 shows that the oil recovery predicted by the
two methods is similar, although there are some small differences for the Ny,=1 case. We attribute
these differences to grid orientation effects in ECLIPSE and the ability of 3DSL to better model
the water cone to each producer. For the case N,=0, the streamline model required 50 minutes run
time while the equivalent ECLIPSE model required 101 hours run time, a speedup factor of 121.
For the case Ny=1.0, the streamline model required 5.4 hours run time while ECLIPSE required
297 hours (12.4 days) run time, a speedup factor of 55.

5.6 Million Gridblock Waterflood

A major limitation of previous streamline models was the inability to account for changing
well conditions. Mapping numerical solutions along the streamlines removes this deficiency and
allows for shut-in of wells, conversion of producers to injectors, and infill drilling.

We illustrate this flexibility with a field scale problem, a 1.16 million gridblock (220x220x24)
waterflood model containing 9 producers and 9 injectors in 5-spot patterns. The permeability field,
generated using sequential Gaussian simulation [155], is highly heterogeneous with a permeability
trend aligned diagonal to the 5-spots. The correlation length is A.=0.25 in the on-trend direc-
tion, A;=0.03 in the off-trend direction, and A,=0.17 in the vertical direction. The producers are
completed in the upper 12 gridblocks and the injectors are completed in the lower 12 gridblocks.
At tp=0.4 all the producers are recompleted in the lower portion of the model and converted to
injectors, while 16 additional infill producers are added to give a line-drive waterflood.

The million gridblock model was run using 3DSL on a standard workstation and required
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Figure 5.6: Water saturations predicted using 3DSL with and without gravity (100,000 gridblocks).
Injection is in the central bottom two gridblocks, production is from the top two gridblocks of each
corner.

50 hours for the base case recovery curve, and 40 hours for the incremental results. The base
case and incremental recovery due to the pattern modifications are shown in Figure 5.8. We
could not run this model with ECLIPSE using our current computer resources. To compare with
ECLIPSE, the model was upscaled by a factor of 16 to 72,000 gridblocks (110x110x6) using
geometric averaging of absolute permeability. Relative permeabilities were not altered for the coarse
scale model. The oil recovery results for ECLIPSE-IMPES SPU are also shown in Figure 5.8. For
this model the ECLIPSE base case recovery curve required 55 hours run time, while the incremental
results required 13 hours run time. It is worth noting that an ECLIPSE fully implicit solution for
the base case model required 120 hours run time due to time step convergence problems for this
size model. Included for reference are 3DSL upscaled results, which required 28 minutes run time
for the base case and 22 minutes run time for the incremental case.

As seen in Figure 5.8, incremental oil recovery due to infill drilling is underestimated in the
upscaled model. This is because upscaling leads to a larger over prediction of oil recovery for the
base case 5-spot model, than for the line-drive model. We attribute this to the difference in the
inter-well permeability correlation lengths, which are 50% smaller in the line-drive pattern than
the 5-spot pattern. This comparison highlights two points: (1) the ECLIPSE base case model was
16 times smaller than the 3DSL model, yet both required approximately the same run time, and
(2) ignoring fine-scale heterogeneity can lead to an over optimistic prediction of field performance.

5.7 Convergence

A key issue in the streamline method is how large a global time step At can be allowed
between pressure solves before the streamline paths require updating. For a conventional IMPES
scheme the maximum time step size is linked to the grid CFL constraint dictated by the largest
flow velocity anywhere in the domain (typically near a well). Small time steps result, causing fronts
in most of the domain to move at far less than the optimal one gridblock per time step giving rise
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Figure 5.7: Waterflood displacement recovery comparison between 3DSL and ECLIPSE for a 3D
model (100,000 gridblocks) with two different gravity numbers.
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Figure 5.8: Waterflood oil recovery comparisons between 3DSL million gridblock model and up-
scaled ECLIPSE-IMPES and 3DSL models.

to significant levels of numerical diffusion. Moreover, the pressure field is unnecessarily recomputed
at each time step based on saturation changes at a sub-gridblock scale. A fully implicit method
overcomes the drawback of small time steps, but the trade-off is increased numerical diffusion and
nounlinear convergence problems.

For the streamline method, the fastest front can be moved at substantially more that a single
gridblock per global time step since fluid transport is decoupled from the underlying grid. Moving
the fastest fromt at a single gridblock per time step actually represents the desired lower limit on
time step size. The maximum time step size is governed by a global constraint — the nonlinearity of
the displacement. The magnitude of the nonlinearity is a function of heterogeneity, fluid properties,
displacement type, and boundary conditions. The weaker the nonlinearity, the larger the time step
allowable. Convective dominated displacements in heterogeneous domains with multiple wells gives
rise to streamline paths that change little between time steps. This class of problems is ideal for
the streamline method, but is particularly difficult for conventional grid-based methods.

We illustrate convergence of the method on the 2D cross-sectional FCM and waterflood
models at each gravity number. All results presented in this report are converged solutions. In this
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Figure 5.9: Convergence of oil recovery curve as maximum front speed is reduced from 250 to 15
gridblocks per time step, for 250x75 waterflood displacement, N,=0.4.

report, we define convergence of a displacement based on changes to the recovery curve as time
step size is reduced. For these test cases we implemented an automatic time stepping algorithm
that moves the fastest front along the fastest streamline a predetermined number of gridblocks per
time step. This time stepping method has the added advantage of automatically increasing time
step sizes after breakthrough. For example, Figure 5.9 illustrates changes to oil recovery for the
250x 75 waterflood at Ny=0.4, as maximum front movement is reduced from 250 to 15 gridblocks
per time step. For this case there is no change between 31 and 15 gridblocks per time step so the
solution is considered converged at 31 gridblocks per time step, or equivalently, 40 pressure solves.
To summarize our results for the waterflood, as N, changed from 0 to 0.4 to 10, optimal front
movement changed from 25 to 31 to 2 gridblocks per time step. The corresponding ECLIPSE-
IMPES results gave approximately 0.35, 0.62 and 0.28 gridblocks per time step. Note for this case,
adding a small amount of gravity (Ny=0.4) increased the overall effect of heterogeneity on the
displacement giving a higher maxmimum front speed than without gravity. For the FCM cases,
which are inherently more nonlinear, as N, increased from 0 to 2 to 10, optimal front movement
dropped from 5 to 2 to 1 gridblocks per time step. By contrast, approximate front speed movements
for ECLIPSE-IMPES were 0.14, 0.03, and 0.01 gridblocks per time step.

These results highlight the following: (1) the more nonlinear a problem, due to displacement
physics (waterflood vs FCM) and gravity, the smaller the time step required to achieve convergence,
(2) the streamline method converges as the maximum front speed is reduced, (3) for heterogeneous
displacements, optimal front speeds are typically larger than the minimum of a single gridblock
per time step, and (4) using conventional grid based methods result in front speeds far less than
optimum.

The maximum global time step size is also related to boundary conditions. When history
matching, for example, well information may be changing at specific time intervals. These time
intervals would represent limits in the maximum global time step size. How the streamline method
performs under this scenario is illustrated in the next section.

5.8 Field Example - House Mountain Waterflood

We summarize the application of the streamline simulator using the House Mountain water-
flood in central Alberta as an example. The Shell in-house simulator MORES was used to model
a 56 well portion of the waterflood [156]. The data set consisted of 21,000 active gridblocks, 7
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Figure 5.10: Comparison of historical production rate data with history matches for the streamline
simulator (3DSL) and a conventional implicit simulator (MORES).

grid layers, three main rock types, and included vertical barriers in the southern half of the model.
Production data consisted of 30 years of history at 6 month intervals with standard shut-ins and
start-ups, 14 well abandonments, and 2 infill and 2 horizontal redrills added. The MORES sim-
ulation specified total liquid production only. The quality of the history match was defined on
predicted water production performance on a well-by-well basis.

To input the data set into 3DSL the major assumption required was that the system be
strictly incompressible. The assumption was not a major limitation in this case since the voidage
replacement ratio was approximately 1. No tuning of the streamline history match was performed.
Figure 5.10 summarizes the field oil and water production rates for MORES and 3DSL compared
with the field data. Post-breakthrough prediction is excellent, although there is some deviation in
the 3DSL results after 1985. We believe that this is a result of over prediction of water rates at
two southern producers and is due to assuming only a single rock type within 3DSL.

For this 21,000 gridblock model, there was only a minimal speed advantage using 3DSL
compared with the fully implicit MORES model. This is a result of historical well data limiting
the time step size to 6 month intervals. However, we were also able to run a downscaled 201,000
gridblock model with 3DSL in 10.5 CPU hours. The ability to run a fine scale model translates
into either incorporating more heterogeneity in the existing model, or including the entire field. A
field-wide simulation eliminates the need to account for leak-off in pattern type simulations and
gives true field-wide performance predictions.

5.9 Discussion and Limitations

The streamline method is ideally suited for large, heterogeneous, multiwell problems that are
convectively dominated. This is a class of problems that is particularly challenging for conventional
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numerical techniques. For these cases, the streamline simulator can represent the difference between
solving a problem and not solving it at all. However, the method is not applicable to all situations
and the results presented here do ignore the following effects:

1. We have assumed that the fluids are incompressible. For compressible flow, streamlines
are still defined, but they do not always originate or end at wells. The method can accommodate
compressibility by solving a mass balance equation along the streamlines. However, for highly
compressible single-phase flow, such as primary production, frequent recomputation of the pressure
field is necessary and the method is unlikely to offer a significant speed advantage over conventional
techniques.

2. The current method does not allow for transport between streamlines due to capillary
effects or transverse dispersion. These effects could be accommodated using operator-splitting [157].
Fluids would be moved diffusively along the underlying grid after the convective and gravity steps.
For situations where these effects are dominant, again the streamline method may offer little speed
advantage over existing methods.

Because of the decoupled nature of the streamline method, it is easily extended to more
general displacements by simply solving a different mass conservation equation along each stream-
line. For example, we have extended the method to compositional displacements [140], where
multi-component phase behavior effects are accounted for in the 1D solver. We observe that the
advantages of reduced numerical diffusion and increased speed for FCM and waterflood displace-
ments are amplified for compositional displacements.

5.10 Conclusions

1. The underlying idea of the streamline method is to decouple a 3D problem into multiple
1D problems. Fluid transport is separated from the underlying grid and instead occurs along a
dynamically changing streamline grid. The main advantage is that the grid CFL conditions are
eliminated from fluid transport giving global time step sizes that are independent of the underlying
grid constraints. Additionally the method reduces numerical diffusion. A streamline-based grid is
ideal for convective dominated displacements in heterogeneous media.

2. The ability to take large time steps and a reduced number of pressure solves gives
speedup factors between 1 and 2 orders of magnitude over conventional finite-difference methods.
For waterflood and FCM displacements considered here, only 10’s of pressure solves over 2 PVI were
required, whereas conventional IMPES methods required 1000’s or pressure solves and convective
steps due to the grid CFL comstraints. As shown, this increased efficiency translates into easily
being able to solve million gridblock models.

3. The streamline method exhibits convergence as the time step size is reduced. The maxi-
mum time step size is dependent on the nonlinearity of the problem — the greater the nonlinearity,
the smaller the time step size. In terms of front speeds, for all but cases with significant gravity
effects, fronts can move at substantially greater than the minimum of 1 gridblock per time step.
In comparison, conventional IMPES methods gave average front speeds substantially less than 1
gridblock per time step.

4. The streamline method was tested on a 56 well field waterflood with 30 years of produc-
tion history. History matching results compared very well with a conventional simulation, although
no tuning of the streamline model was performed.
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5.11 Nomenclature

C = concentration

D = depth from datum, L

Er = dimensionless recovery efficiency

fi = fractional flow of phase j

G i = 7 phase velocity due to gravity, L/t

g = gravitational acceleration constant, L/t
guz = velocity gradient across gridblock in z-direction, 1/t
h = height of model, L

k = absolute permeability tensor, L2

kr; = relative permeability of phase j

ky = average horizontal permeability, L2

kv = average vertical permeability, L?

L = distance between producer and injector, L
m, = center of mass

Ny, = gravity number

np, = number of phases

p = Pressure, M/t’L

S; = saturation of phase j

S§ = saturation of phase j after convective step
s = spatial distance coordinate along a streamline, L
t = t{ime, t

tp = dimensionless time

ug = total Darcy velocity, L/t

v = interstitial velocity, L/t

ze = z-position of streamline exit location, L
z; = z-position of streamline inlet location, L

z,y,2z= spatial coordinates

Apy = average pressure drop in horizontal direction, M /2L
At = global time step size, t

Atip = time step size within 1D solver, t

Ater = time-of-flight required to reach an z-exit face, t
Ap = fluid density difference, M/L3

¢ = local streamline coordinate, L

Ac = permeability correlation length

Mg = total gravity mobility, 1/Lt

At = total mobility, Lt/M

pj = viscosity of phase j, M/Lt

p;j = density of phase j, M/L?

T = time of flight, t

¢ = porosity

w = Todd & Longstaff mixing parameter
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5.12 Appendix: Tracing Streamlines

Streamlines are launched uniformly across the face of a gridblock containing an injector,
with the number of streamlines launched proportional to the flux across the face. Thus each
streamline between all producers and injectors carries the same flux. Not every gridblock in the
domain will contain a streamline based on launching a finite number of streamlines. For these
missed gridblocks we define a streamline by simply tracing back from each missed gridblock until
an injector is reached.

Tracing streamlines from injectors to producers is based on the analytical description of a
streamline path within a gridblock as outlined by Pollock [147] and Datta-Gupta & King [129].
The underlying assumption is that the velocity field in each coordinate direction varies linearly
and is independent of the velocities in the other directions. This method is attractive because it is
analytical and consistent with the governing material balance equation.

Figure 5.11: Schematic of a streamline path through a 2D gridblock of dimensions Az by Ay.

Consider the two-dimensional gridblock in Figure 5.11, for which we know the interstitial
velocity field and have defined a local coordinate system and origin. The velocity in the z-direction,
vz, is defined as

Uz = Vg0t Io,z(T — To), (5.13)

where g, » is the velocity gradient across the gridblock and is given by
Gu,x = ('U:t,Aa: - Um,o)/A-'L‘- (5.14)

Knowing that v, = dz/dt, one can integrate Eq. 5.13 to yield the time required to reach an

z-exit face Ate, as
1 In { Uz,o T gv,x(xe - xo) }

At , = —
o Gu,x VUz,o+ Quz (mi - -To)

(5.15)

where z; is the inlet position and z. is the exit position, in the z-coordinate direction. Similarly,
the times required to reach the exit faces in the y or z directions are given by

1 —
Aty = In Vy,0 + Guy (Ve — Yo) ’ (5.16)
Gvy Vyo+ Guy (yi - yo)

82



and

Ates = ——1In { Va0 T 9u,r(Ze = 7o) } :

v,z Vz,0 + o,z (Zi - zo)

(5.17)

The correct face which the streamline will exit is that which requires the smallest value of
At, calculated from Egs. 5.15, 5.16, and 5.17. Knowing the minimum time the exact exit location

of the streamline is determined by rewriting Egs. 5.15, 5.16, and 5.17 as

1
Te = _('Ua:,z' exp{gv,IAte} - vm,a) + To,

Gv,x

yAte} —vy0) + Yo,

Ye =
vy

1
Ze = ('Uz i exP{gv zAte} 'Uz,o + 25,

v,z

where v; represents the inlet-velocity and v, is the velocity at the origin coordinates.

(5.18)

(5.19)

(5.20)

For the case when velocity is uniform across a gridblock in a given direction (g,=0), Eq. 5.15,
for example, simply becomes At ;=(Ze-T;)/vs,0 and Eq. 5.18 becomes z,=2z,+Ate ;v 0. Finally,
for the situation where a flow divide exists in say the z direction within a gridblock, one must
assure that the sign v, at the inlet location is the same as the sign of v, at a potential z exit face.
This check also avoids the possibility of calculating negative logarithms in Egs. 5.15, 5.16, and 5.17.
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