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A new algorithm is presented that allows for the determination of bulk liquid and vapor densities from a
two-phase Molecular Dynamics (2φMD) simulation. This new method does not use any arbitrary cutoffs for
phase definitions; rather it uses single-phase simulations as a self-consistency check. The method does not
use any spatial bins for generating histograms of local properties, thereby avoiding the statistical issues
associated with bins. Finally, it allows one to approach very close to the critical point. The new method
utilizes Voronoi tessellations to determine the molecular volume of every point at every instance in a molecular
dynamics simulation. Since the molecular volume is calculated throughout the simulation, statistical parameters
such as the average molecular volume and average molecular variance are easy to obtain. To define the
phases, the normalized variance of the molecular volume from 1φMD and 2φMD is used as a self-consistency
check. The new method gives new insight into the nature of the near-subcritical fluid. The critical properties
from this analysis areTc ) 1.293 andFc ) 0.313. Direct simulation of the two-phase system was performed
up to a temperature of 1.292. The results show excellent agreement to experimental results and Gibbs Ensemble
Monte Carlo for coexisting densities. We see that well below the critical temperature, some particles are
neither liquid nor vapor. These interfacial particles are primarily, but not exclusively, concentrated at the
bulk interface. However, as we approach the critical point, some particles are considered both liquid and
vapor. These interfacial particles are distributed through the system.

Introduction

There are a variety of tools available for the study of Vapor-
Liquid Equilibrium (VLE). Aside from experimental measure-
ments, computational methods have been evolving since the mid
1970s.1,2 Ladd and Woodcock and Chapela et al. studied VLE
by simulating a slab of a liquid and a slab of a vapor to find
the surface tension and the equilibrium densities by Molecular
Dynamics (MD). The work of Ladd and Woodcock was then
extended upon by Holcomb et al.3,4

Along with these examples for MD simulations, there are
many additional ways to simulate VLE. One common method
to study phase equilibrium is by Gibbs Ensemble Monte Carlo
(GEMC).5,6 GEMC simulates the bulk liquid and bulk vapor in
separate boxes and the molecules are allowed to exchange
between the boxes. The simulation strives to maintain a constant
chemical potential, temperature, and pressure between the two
boxes. One other method of direct simulation of vapor liquid
equilibrium is the NPT+ test particle method created by Lofti
and co-workers.7 The method is implemented by conducting a
MD simulation in the isothermal-isobaric ensemble (NPT)
coupled with the Widom particle insertion method8 to obtain
the chemical potential of the system. Simulations are performed
for both the liquid and vapor phases independently and the
results are then used to calculate the points on the two-phase
envelope.

There are also indirect methods to obtain phase equilibrium.
These indirect methods use an established state point and then
use statistical methods to obtain the rest of the two-phase
region close to the critical point. These methods include
histogram reweighting techniques6,9,10 and Gibbs-Duhem
integration.6

The two primary methods available to directly simulate the
phase diagram are two-phase Molecular Dynamics (2φMD) and
GEMC. There are known deficiencies with the GEMC methods
as mentioned by Gelb and Mu¨ller.11 Equilibration is difficult
to achieve when simulating dense phases because of the poor
statistics associated with the insertion/deletion steps. The GEMC
methods are difficult to apply to systems containing very
complex molecules without substantial modifications, and are
also difficult to implement on parallel computers. In addition
to these deficiencies, GEMC simulations can have problems as
the simulation approaches the critical temperature because the
identity of the volumes can swap during the simulation.6 When
this occurs the results are then analyzed by the distribution of
a given density in the simulation.

Simulating VLE with MD in the canonical (NVT) ensemble
can potentially overcome all of the limitations of GEMC. In
addition, complex fluids are routinely handled and MD codes
are particularly amenable to parallelization. Perhaps more
importantly, by simulating the interface, MD simulations allow
for the investigation of interfacial properties such as molecule
orientation, diffusion of molecules through the interface, and
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thickness of the interface. Furthermore, one can observe the
dynamics of interface formation and destruction in MD simula-
tions.

In the past few years, there have been two different ways
developed to study VLE with MD. These two methods are
Temperature Quench Molecular Dynamics (TQMD) and Vol-
ume Expansion Molecular Dynamics (VEMD). TQMD, as
implemented by Gelb and Mu¨ller,11 allowed for the simulation
of the liquid and vapor phases in the same simulation cell. The
system is equilibrated at a temperature above the critical
temperature and density then suddenly cooled to a region of
mechanical and thermodynamic instability. The system then
separates into liquid and vapor phases separated by an interface.
VEMD, used by Pamies et al.,12 also allowed for the simulation
of the vapor and liquid phases to be simulated in the same cell.
This method is analogous to a piston experiment where a volume
of liquid is suddenly expanded to give liquid and vapor phases.
The VEMD model starts as an equilibrated liquid then the
simulation cell is suddenly expanded to give a density in the
unstable region along the line of rectilinear diameters. The
system then separates into vapor and liquid phases separated
by an interface.

The above methods are two different ways to obtain a two-
phase system by molecular dynamics. The more difficult task
associated with 2φMD (and absent in low-temperature GEMC)
is extracting the values for the bulk liquid and vapor density.
Gelb and Mu¨ller11 and Martı´nez-Veracoechea and Mu¨ller13 cut
the simulation volume into boxes and determined average
coordination numbers of each box then placed the average
coordination numbers into an inverse histogram. The maximum
repeated values are then used with a cutoff to determine the
density of each phase. The resulting procedure has four
adjustable parameters for the determination of the phases. These
four parameters are the distance cutoff for coordination number,
spatial bin size, density bin size for the probability distribution
function, and phase cutoffs of the maximum values in the
distribution function.

The use of bins presents statistical problems when creating a
probability distribution of a local property. One would like to
have as many bins as possible to obtain the best statistical
representation, but in the limit of very small bins, the resulting
density distribution is either 1 or 0 because the bin is either
occupied or unoccupied, which presents no useful information
regarding the densities of the phases. The other extreme is that
in the use of very large bins, the resulting density profile is
that of the total system, which provides no useful information
on the phase equilibrium. So, the hope is that there exists an
intermediate sized bin from which the best VLE data possible
can be extracted. The optimal bin size, if it exists at all, is
probably a function of thermodynamic state. This problem
associated with bins makes the extraction of reliable VLE data
from 2φMD fraught with effects due to arbitrarily chosen bin-
size. These problems are eluded to by Martı´nez-Veracoechea
and Müller.13 In the literature, these issues have been partially
overcome by the use of very large (500 000 particle) simula-
tions.11,13 It is also important to note that the use of very large
systems can also be used combat to finite size effects as the
system approaches the critical point.

One other method to determine the bulk vapor and liquid
densities is to fit the density profile along the axis normal to
the interface to a hyperbolic tangent function.14 The function
contains four adjustable parameters. The use of the hyperbolic
tangent function relies upon a planar interface being present,
along with no local effects due to obtaining the two-phase

system such as explosive boiling, and the center of mass of the
liquid droplet remaining stationary. Since the function only
allows for planar interfaces, the investigation of densities close
to the critical temperature is not an option since there is no
guarantee that the interface will be planar. Also, the fitting of
the function loses all information about any other local
phenomena.

To correct the above deficiencies, a method is presented that
utilizes Voronoi tessellations (VT) to determine the volume of
every particle in the simulation cell. This method is free of all
arbitrary choices by the user and can be easily implemented in
any system. Furthermore, the method will link the two-phase
simulations back to single-phase simulations by the normalized
variance of the molecular volume as determined from the
Voronoi tessellation. This link will be used as a self-consistency
check to ensure that the correct values for the density are
obtained, thus removing all arbitrary choices in phase definition.
The new method is also capable of giving new insight to the
phenomena that occurs as the temperature approaches the critical
point.

Voronoi Tessellation

Voronoi tessellations (VT) have wide applications and have
been utilized to obtain information pertaining to stellar bodies,15

free volumes in proteins,16 crystal deformations,14 the properties
of neurons,17 and the physics of hard-sphere fluids18,19 in
addition to many other applications.20 For a thorough reference
of the history of VT see the review by Aurenhammer.15

VT14,15,20is a procedure that takes as input a set of points in
a volume (either periodic or bounded) and divides the volume
into subvolumes or cells associated with each point, such that
all of the volume associated with a point is geometrically closer
to that point than to any other. The subvolumes are only a
function of the distance to the nearest neighbors of every point.
An illustration of this procedure is shown in Figure 1.

Figure 1 shows the resulting subvolumes for a simple periodic
system in two dimensions. The dotted lines represent the nearest
neighbors around every point, the×’s are the vertices from the
VT defining the subvolume, and finally the solid lines connect
the vertices around each point.

When applied to a system at the molecular level, VT leads
to a molecular volume for every particle. From this set of
molecular volumes,Vn

i , we can obtain, among other statistical
properties, the mean molecular volume,Vn, and the variance of

Figure 1. An illustration of a Voronoi tessellation in a two-
dimensional, periodic simulation cell. The circles represent the mol-
ecules, the dashed lines are the nearest neighbors of each molecule,
the×’s are the vertices which define the subvolume of each molecule,
and the solid lines connect the vertices.
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the molecular volume,σVn

2 . Each particle is in a Voronoi cell,
which in effect is its own custom-sized bin. However, the size
of the bin is different for each particle because it is uniquely
defined by the VT.

Phase Determination

To locate “bulk liquid” and “bulk vapor” phases within the
2φMD simulation, an iterative procedure is used. First, one
guesses (i) the upper limit of the average liquid molecular
volume so that all molecules with volume less than that limit
are defined as liquid and (ii) the lower limit of the vapor
molecular volume so that all molecules with volume greater
than that limit are defined as vapor. On the basis of these limits,

one calculates the liquid statistical measures,Vn
L and σVn

L
2 ,

based on only those particles defined as liquid. The same

procedure applies for the vapor statistical measures,Vn
V and

σVn
V

2 .
At this point a self-consistency check must be used to

determine the validity of our arbitrarily chosen limits on the
molecular density of each phase. This check is simple: two
one-phase Molecular Dynamics (1φMD) simulations are per-
formed at the same temperature as the 2φMD simulation and

at the molar volume given byVn
L and Vn

V. From the 1φMD
simulationsσVn

L
2 andσVn

V
2 are computed. If the value ofσVn

L
2 and

σVn
V

2 from 1φMD matches those from 2φMD within an accept-
able tolerance, then the choice of phase limits was good.
Otherwise, one must choose new phase limits and iterate. It is
important to point out that each step in the iteration requires a
new 1φMD simulation (which can be a relatively small system)
but not another 2φMD simulation (which typically must be much
larger), as long as the Voronoi volumes from a set of
configurations were saved during the 2φMD simulation.

Figure 3 shows an example of this iterative procedure for
the liquid and vapor phases, in which the normalized variance

of the molecular volume is denoted asκ1
L ≡ σVn

L
2 /Vn

L andκ1
V ≡

σVn
V

2 /Vn
V. The subscript 1 indicates that this is an averaged

single particle property. The 2φMD curve was generated from
a single simulation, changing only the phase limit until the two
lines intersected. The 1φMD curve was generated from multiple
simulations at varying molar volumes. It can be seen that this
combination of 1φMD and 2φMD provides an unambiguous
determination of the phase limits and the corresponding phase
properties.

Results and Discussion

As an example system, a simple Lennard-Jones (LJ) fluid is
considered, which has been very well studied. The important

simulation parameters are as follows: 8000 particles were
simulated; a cutoff was employed beyond 6 LJ diameters for
the interaction potential,12,21,22and data were collected for 2 ns
after equilibration. The results are presented in reduced Lennard-
Jones units.14

We include no long-range correction to energy or pressure,
because we have a large cutoff distance. There are methods
available in the literature to compensate for the long-range
corrections in an inhomogeneous system,23,24but these methods
require there to be a planar interface. The simulations were
performed by using TQMD, so it is uncertain if a planar interface
would be present. It is also shown from our results that the 2φ

system has a diffuse and noncontiguous interface, which grows
more diffuse as the system approaches the critical temperature.

The simulations were performed on a rigorously tested, in-
house designed, parallel MD code. The simulations used a
Nose’-Hoover thermostat25 and a fifth-order Gear Predictor-
Corrector.26,27The Voronoi analysis was also performed on an
in-house designed parallel code, using the properties of Voronoi
diagrams mentioned by O’Rourke.20

To implement the Voronoi Tessellations in an MD simulation
a periodic simulation cell is used with the minimum image
convention, the triangulation is performed on the center of mass
of Lennard-Jones spheres, and the analysis is performed after
the simulation was completed on saved configurations. The
speed of the analysis was increased by truncating a sorted
neighbor list. The total volume of the simulation cell was used
as a check to determine if enough neighbors were used in the
analysis. The summation of the individual molecule volumes
equals the total simulation volume to machine precision.

To ensure that the simulations were equilibrated, the simula-
tions at low and intermediate temperatures (T* ) 0.90 to 1.20)

Figure 2. Flow sheet describing the procedure to determine the molar
volumes of the vapor and liquid phases at each temperature.

Figure 3. The intersection of the 2φ molar volumes and the 1φ molar
volumes as a function of the normalized variance of the average molar
volume denoted byκ1 for (a) liquid and (b) vapor.
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ran for 5.15 ns before data production. The simulations at higher
temperatures (T* ) 1.20 to 1.27) equilibrated for 8.2 ns and at
the highest temperature (T* ) 1.29) equilibration lasted for
11.20 ns. The potential energy was monitored throughout the
simulation to show if the energy of the system had equilibrated,
and the equilibration of particle volumes was determined by
monitoring the variance of the Voronoi volume over all particles.
In addition, the vapor and liquid densities were calculated via
the procedure presented every 0.1 ns, which showed that the
densities fluctuated about constant values with time.

In Figure 4, the probability distributions of the molecular
density from the converged 1φMD and 2φMD simulations at
various temperatures are shown. All temperatures are below the
critical point. Good qualitative agreement is seen between the

1φMD and 2φMD distributions for the liquid and vapor. It is
important to note that the 1φMD and 2φMD distributions for
each phase have the same mean molecular volume and the same
variance of the molecular volume. Clearly, the shape of the
distributions does not match exactly.

Well below the critical temperature, as shown in Figure 4a,
there is a set of molecules that are neither vapor nor liquid,
which we can consider as interfacial molecules. Interestingly,
as one approaches the critical point, the distributions of the vapor
and liquid phases from the independent single-phase simulations
overlap. Consequently, in the 2φMD simulation at temperatures
below but near the critical temperature, the lower density limit
of the liquid is less than the upper limit of the vapor. As a result,
some particles are considered as both vapor and liquid. In other
words, in a near critical fluid, there are liquid regions, vapor
regions, and regions that can be considered as both liquid and
vapor.

In Figure 5, a series of snapshots are shown of equilibrated
2φMD simulations at multiple temperatures, all below the
critical point. We color the atoms by phase: particles in the
liquid phase are green and particles in the vapor are red. At
low temperatures (T less than 1.20), particles that are neither
vapor nor liquid are blue. At high temperatures (T greater than
1.20), particles that are both vapor and liquid are blue. We see
that the use of VT allows for us to define vapor and liquid phases
that are not contiguous. This is an important advantage of using
VT to define local density rather than the conventional use of
spatial bins because as one nears the critical point, one does
not expect to find contiguous phases. This presents the pos-
sibility that the use of VT will allow this simulation technique
to continue to provide good VLE data closer to the critical point
than other methods.

In Figure 5a-c, we see that far below the critical temperature,
there are bulk liquid and vapor sections. The interfacial atoms
are located primarily at the bulk interface but also are scattered
through the bulk phases. This scattering of interfacial particles
(by defining the interface as neither bulk vapor nor bulk liquid)
is a result of the VT procedure. Were one to use spatial bins
and define all molecules in the predominantly green region as
liquid or those in the predominately red region as vapor, one
would obtain higher vapor densities and lower liquid densities.
This procedure suggests that “interfacial” particles are concen-
trated at but not limited to the bulk interface. As the temperature
is increased in Figure 5d-f, we see that there are no longer
any interfacial atoms. All atoms are either bulk liquid, bulk
vapor, or both bulk liquid and bulk vapor. It can be seen that
those atoms with molecular volumes corresponding to both bulk
liquid and bulk vapor are not concentrated at the interface of
the predominately liquid and predominately vapor regions, but
rather are scattered throughout the system.

In Figure 6, we show the vapor-liquid phase diagram for
this system. In the plot, we compare (i) the result of our method,
(ii) the results from GEMC simulation,13 (iii) and results from
a 32-parameter EOS fit to extensive MD simulation data.28 We
see that our new method provides excellent agreement with
GEMC. We also see that our algorithm containing 2φMD and
1φMD simulations allows one to obtain properties much closer
to the critical point. GEMC has difficulty simulating close to
the critical temperature because the identity of the liquid and
vapor phases can swap during the simulation.6 Near the critical
point, there is non-negligible disagreement between the simula-
tion results (2φMD or GEMC) and the LJ-EOS. Since the two
independent simulation methods agree, we believe that this
disagreement between simulation and EOS is likely due to

Figure 4. The unnormalized distribution of molecules in the 2φ

simulation (solid line); the results from the procedure for the liquid
(triangles) and vapor (boxes) phases, and the 1φ liquid and vapor
simulations (dashed lines). Reduced temperature is (a) 1.0, (b) 1.2, and
(c) 1.23.
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limitations in the LJ-EOS based on the quality of simulation
data to which it was fit.

Finally, Figure 7 presents a comparison between our results
from the algorithm containing 2φMD and 1φMD simulations
with experimental results for methane,29 which is reasonably
well approximated as a Lennard-Jones fluid. While one might

expect simulation results of a LJ fluid to match an EOS fit to
simulation data better than experiment, here we observe the
contrary behavior.

The critical temperature of this system is 1.293 and the critical
density is 0.313 in reduced units as determined by the law of
rectilinear diameters and by the Ising scaling with the classical
critical exponent of 0.32.6,30,31The critical temperature of the
Lennard-Jones EOS is 1.316 and the critical density is 0.304.

Figure 5. A snapshot of the final configuration for a reduced temperature of (a) 1.0, (b) 1.10, (c) 1.15, (d) 1.20, (e) 1.27, and (f) 1.29. In all plots,
green represents the liquid molecules and red represents the vapor molecules. At temperatures at and below 1.20 blue molecules are interfacial
(neither liquid nor vapor) and at the high temperatures (above 1.20) blue molecules are both vapor and liquid.

Figure 6. The phase diagram. The solid line is the Lennard-Jones
Equation of State (EOS);28 the triangles are results from Gibbs Ensemble
Monte Carlo;13 and the boxes are the results from this work The critical
point as determined from the fit from this work is designated with an
asterisk.

Figure 7. The phase diagram. The solid line shows the experimental
data for methane,29 and the boxes are the results from this work.
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The resulting percentage errors are 1.7% for the critical
temperature and 3.0% for the critical density. The LJ EOS may
overestimate the critical point and coexisting densities at high
temperatures. There were only two sets of data used to perform
the fit in the critical regime.28 One of the sets of data was the
NPT + test particle method of Lofti.7 It is possible that the
Lofti data overpredicted the breadth of the phase envelope
because it is very difficult to simulate in the NPT ensemble
along the two-phase region and simulated just outside the two-
phase region. This is because the system can drift to vapor from
liquid and liquid to vapor. If one uses the LJ EOS to calibrate
the arbitrary phase definition, one can find better agreement
with the LJ EOS, resulting in a systematic deviation from our
simulation results, which are free of arbitrary choices.

If methane is considered as the fluid withσ) 3.73 Å andε

) 148 K12 the resulting critical temperature is 191.4 K and the
critical density is 161.0 kg‚m-3. The accepted experimental
value for the critical temperature of methane is 190.5 K and
the critical density is 162.6 kg‚m-3. So our percent error to the
experimental critical temperature is 0.4% and our percent error
to the critical density is 1.1%. It is felt that the good agreement
seen as compared to the experimental data validates our
conclusions concerning the LJ EOS.

We should point out that we can use a small number of
particles (8000) with VT as compared to 500 000 particles used
to counter the statistical problems associated with spatial bins.13

Another reported advantage of the large system size is that it
combats the system size effects that can occur as the temperature
approaches the critical point. Our new method does not appear
to be as affected by finite size effects, because phase definition
is based on highly localized properties (single-particle molecular
volume and single-particle molecular volume variance).

This technique is directly extendable to the phase equilibrium
of mixtures, in which limits for the density of each species in
each phase must be iteratively determined. It is also directly
applicable to polyatomic fluids, since the VT can be applied to
individual atoms and then summed over all atoms in a molecule
to yield the molecular volume.

Equivalency of κ1 Across Simulations and Ensembles.
Sinceκ1 is being used as a criterion for defining the phases, it
is important to establish that the measured value ofκ1 is
independent of the size of the system and the ensemble in which
the simulation is performed. In Figure 8 the normalized variance
per particle as a function of cluster size for 3 single-phase

simulations in the NpT ensemble withN ) 1000, 4096, and
8000 particles and for 1 single-phase simulation in the NVT
ensemble withN ) 8000 particles is plotted. Clusters were
formed by randomly grouping molecules (without any regard
for position). Thus a simulation withN ) 8000 had 8000 clusters
of size 1 and 2 clusters of size 4000.

The crucial point in Figure 8 is that for all simulations,
regardless of size or ensemble, the value of the normalized
variance per particle is the same for a cluster size of one.
Therefore the single-particle property,κ1, is independent of
system size and ensemble. This is important because the phase
criteria is based upon a comparison ofκ1 from a 1φMD
simulation in the NVT ensemble ofN ) 1000 withκ1 from a
2φMD simulation, where the volume and number of particles
in each phase varies from one configuration to the next.

At cluster sizes larger than one, the normalized variance per
particle is a function of system size and ensemble. If we take
this to the limit where we have 1 cluster composed of all of the
particles in the simulation, then we find that variance in the
NVT simulation goes to zero, as it must since the total volume
is constant. The variance in the NpT ensemble goes to a value
independent of system size, once a minimum system size is
used. This is consistent with fluctuation theory, which states
that the isothermal compressibility, given by14

is a function of the normalized variance of the volume per
particle.

Part of our motivation in choosing the mean and the variance
of the Voronoi volume as criteria for the phase definitions in
2φMD simulations was the fact that these two properties are
local properties. The normalized variance of the single-particle
molecular volume,κ1, and the isothermal compressibility from
fluctuation theory share the same functional form, but they are
not representative of the same property (since the former
assumes a cluster size of 1 and the latter a cluster size ofN). It
is nevertheless interesting to note that the bulk isothermal
compressibility is itself a highly localized function, as evidenced
by the fact that, in the Ornstein-Zernike closure, the isothermal
compressibility is strictly a function of the short-ranged direct
correlation function.30

Conclusions

A new method is presented to account for the statistical
problems associated with the use of bins in 2φMD simulations.
The new method utilizes Voronoi tessellations to obtain the
molecular volumes for every particle simulated. The resulting
mean and variance of the molecular volumes are then used to
self-consistently determine the phases. There is excellent
agreement between this work and GEMC simulations far from
the critical point, where GEMC data are available. We have
excellent agreement with experimental results up to and
including the critical point. The new algorithm also allows for
new insight as the system approaches the critical temperature
since at every instant in time one can know if a molecule is in
the liquid or vapor phases regardless of the location of the
interface. We see that well below the critical temperature, some
particles are neither liquid nor vapor. These interfacial particles
are primarily but not exclusively concentrated at the bulk
interface. However, as we approach the critical point, some
particles are necessarily both liquid and vapor. These interfacial
particles are distributed through the system.

Figure 8. The normalized variance per particle as a function of cluster
size for 3 single-phase simulations in the NpT ensemble withN )
1000 (asterisks), 4096 (circles), and 8000 (boxes) particles and for 1
single-phase simulation in the NVT ensemble withN ) 8000 (triangles).
Ng is the group size.

âT ) 1
kBT

〈δVol2〉NPT

〈Vol〉
(1)
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