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P
APPLICATION OF POLYMER GELS FOR

PROFILE MODIFICATION AND SWEEP IMPROVEMENT
OF GAS FLOODING

By Clarence Raible and Tao Zhu

t ABSTRACT
Early CO2 breakthrough can be a serious problem during miscible and immiscible CO2

flooding of reservoirs with heterogeneous formations. One potential method to reduce the problem

of gas channeling is the use of a gel to restrict flow of fluids into the high-permeability zones. This

_ study included evaluation of several different candidates for their potential as gelled polymer
,t

treatments for in situ profile modification. Crosslinking of one gel system (melamine resin-

xanthan polymer) was activated in the pH range of 4 to 5. This method depended upon CO2

contacting reservoir brines to form carbonic acid. For a CO2 gas flood, brines contacted by CO2

will have a lower pH than the reservoir brine. The primary disadvantages of the melamine resin-

gel system were the high sensitivity of the gel to shear and the inability of the gel to reheal because

the resin degraded after the resin activation in acidic brines.

Another gel system was evaluated which was a blend of hydroxypropyl cellulose (HPC) and

sodium dodecyl sulfate (SDS). A gel was formed by increasing the salinity of the

polymer/surfactant blend. This gel had the advantage of not requiting a crosslinking agent such as

a heavy metal compound and did not require any specific solution pH to form a gel. However,

because the gel formed immediately upon increasing salinity, the gel could be placed only a short

distance from the point of injection. This gel system did not appear to be a practical method for

profile modification because of the inability for deep penetration and placement of the HPC/SDS

solutions in the reservoiz. Also, brine injection following gel placement produced an increase in

the sandpack permeability. This demonstrated that the gel was not stable to subsequent brine

flooding.

The objective of gel treatments is to restrict flow through fractures and high permeability

zones without significantly damaging the adjacent oil productive zones. This involves injection of

viscous polymer solution, hopefully into a high-permeability zone. In this study, layered

sandpacks were used to show the effect of gelant mobility on gel penetration and placement. X-ray

computerized tomography (CT) was used to visualize the flow path of the injected gelant and the

location of gel placement. A conventional gel of xanthan and Cr(IlI) as a crosslinking agent was

used for experimental model studies. The results of experimental model studies demonstrated the

effects of viscous crossflow which may damage the oil I_oductive strata. More specifically these

studies of layered models showed that unless there is a ve_, high-permeability contrast, such as a
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fractured zone, a considerable volume of viscous crossflow will occur with damage to oil

productive strata. These results indicated the need for injection and placement of a low viscosity

gelant prior to gelation.

This report covers work performed for Task 5 of Project BE5B as described in the Annual

Research Plan for FY92 under cooperative agreement DE-FC22-83FE60149 with the Department

of Energy.

INTRODUCTION

Many CO2 projects have experienced early gas breakthrough because of fractures, high-

permeability zones, and other reservoir heterogeneities. These factors adversely affect sweep

efficiency, and a considerable portion of the oil remains in the reservoir because lower permeability

oil-bearing zones are often bypassed by the gas flood. For more efficient oil recovery, profile

modification and improved mobility control are required to reduce channeling through higher

permeability zones.

Water-soluble polymers and gel treatments are widely used to reduce fluid flow in thief

zones. For waterflooding, crosslinked polyacrylamide and biopolymers have been used for profile

modification. Polymer gels which are sufficiently stable and rigid can potentially reduce the

problem of gas channeling by restricting flow of fluids and lower the high-permeability zone. For

the crosslinked polymers to properly block high-permeability zones, chemical and polymer

injections must be carefully designed so that polymer gelation occurs in thief zones without

damaging oH-productive zones.

The development of gel technology continues to be a subject of considerable research to

improve sweep efficiency of enhanced oil recovery applications. A number of technical restraints

on gel technology require further research to achieve the full potential of gels for oil recovery

applications. These technical restraints 1include the limited control of the time for which gelation

occurs, the limited control on gel placement without damaging the oil productive reservoir, and the

limited stability of gels formed under high salinity and temperature conditions.

The objective of this work was to develo'_,_gel systems which are applicable to CO2 gas

flooding conditions, and to conduct laboratory experiments to demonstrate the potential for

selective placement of gels for profile modification. In this study, we evaluated several types of

gels for their potential as profile modification agents for CO2 applications. We also examined

some of the constraints and limitations on controlling where the injected gelants are placed in the

reservoir using experimental models.

POLYMER GEL STUDIES

A polymer system which has the potential to meet the conditions for applications of CO_,gas

floods at weak acid conditions in the pH range of 4 to 5 was investigated. 9- An essential part of

Irl ' M



this method depends upon CO2 contacting reservoir brines to form carbonic acid. For a CO2 gas

flood, brines contacted by CO2 will have a lower pH than the reservoir brine, lt may be possible

to use this property of CO2 gas floods to selectively form and crosslink stable polymer gels in

areas of gas channeling. The selective placement of a rigid gel may be accompUshed by injection

of a polymer and crosslinking compound into an oil reservoir. Upon entering a gas channel, the

lower pH of the brine activates the crosslinking compound to produce a firm polymer. This

polymer system used xanth,m gum as the polymer and a melamine resin as a crosslinking agent.

Another gel system which does not require a crosslinking agent was investigated.

Whittington and Naae 3 reported a blend of hydroxypropyl cellulose (HPC), and sodium dodecyl

sulfate (SDS) will form a gel when mixed with brine. The gel was formed by increasing the

salinity of the blend. The amount of salt in the solution controlled the formation of mixed micelles

where the SDS surfactant strongly binds to the HPC polymer. This gel had the advantage of not

requiring a crosslinking agent such as the melamine resin or a heavy metal. In addition, the gel did

not require any specific solution pH to form a gel.

Materials for Melamine Resin Crosslinking

The melamine resin (hexamethyl melamine) was obtained from American Cyanamid, Inc. and

the product is sold by the tradename Cymel ® 303. The alkylated melamine resin has limited

solubility in aqueous solutions. A number of cosolvent_s were tested to find a suitable resin

solvent. Solubility tests were conducted with a number of alcohols. Of these alcohols, the resin

was most soluble in isopropyl alcohol. The resin then could be dispersed in brine solutions after

dissolving the resin in isopropyl alcohol. Surfactants also were effective agents for dissolving the

resin in brine solutions. An ethoxylated sulfonate Neodol ® 25-3S from Shell Chemical Company

was used for these studies. This surfactant was 58% active surfactant. The melamine resin was

assumed to be 100% active resin. The concentration used to prepare test solutions was 0.58 parts

surfactant to 1.0 part resin by weight.

The polymer was Flocon 4800C ® biopolymer provided by Pfizer with a concentration of

16.35% xanthan gum. Test solutions of the polymer were prepared by weight using a high speed

blender. For these preliminary tests, high pressure CO2 was not used to reduce the pH of

polymer/resin solutions because of the experimental difficulties in observing the solution

properties. The pH of solutions was adjusted with acetic acid.

Bottle Tests with Melamine Crosslinking with Xanthan Polymer

A number of experimental tests were conducted to determine if a firm stable gel could be

made by polymer crosslinking at the gas flooding conditions. Screening tests were made for

different polymer and resin concentrations, solution pH, temperature, and salt concentration of the

brine. Bottle tests were used to observe gel formation and gel properties.



The resin was activated by acidic conditions causing the resin to react with the xanthan

polymer and form a gel. A number of polymer/resin solutions were made by adjustment of the

initial pH with acetic acid. These solutions were made with different pH values ranging from 3 to

5. The pH of the polymer/resin solution changed the rate of gel formation.. ,t room temperature,

gels were formed more quickly in solutions with a lower pH. Although gel formation required

longer time periods of several days to several weeks, stable gels were made with solutions initially

adjusted to as high as a pH of 4.5. The tests demonstrated that gels can be formed with solutions

in the pH range of 4 to 4.5. This is within the pH range expected for some reservoir brines

saturated with CO2 at high pressures. The time for gel formation also depended upon other

variables such as temperature and polymer/resin concentrations.

Experimental tests were conducted to determine the effect of temperature on gel formation. A

_ries of polymer/resin solutions were heated at temperatures of 75 °, 100°, 120°, and 170° F (23.9 °,

37.8 °, 48.9 °, and 76.7 ° C). The time required to form gels was much faster at the higher

temperatures. At 170° F (76.7 ° C), gels were formed in less than 1 hour; however, only solutions

with high resin concentrations formed gels. Also, resin precipitation was indicated by a change in

the solution to a white or milk colored solution. The higher temperatures caused the color of the

solutions to change more rapidly. At other temperatures, gels were formed more quickly at 120° F

(48.9°C) than at 750 and 100° F (23.9 and 37.8 ° C). The solution temperature changed both the

time of gel formation and the rate of resin precipitation.

Other tests were made which indicated the resin precipitated with time after the resin was

hydrolyzed in acid solutions. Solutions of melamine resin were initially adjusted with acetic acid to

a pH of 3, 3.4, and 4. Two sets of these solutions were made in brines of 2 and 12% NAC1. The

solutions contained a high resin concentration of 6,700 ppm. After preparing the resin solutions,

the pH of the solutions was monitored as a function of time at 75 ° F (23.90 C). The results for the

12% NuCl brine are shown in Fig. 1. As the resin hydrolyzed with the acid, the pH of the

solutions increased by about 0.5 pH units in 24 hours. About the same pH change with time was

measured for the 2% NaC1 brine solutions. It was noted that the resin solutions formed a white

precipitate as a function of time. More of the precipitate was formed in the lower pH solutions.

The experiments indicated that the resin degraded after the resin was hydrolyzed at a pH of 3 to 5.

Also, resin precipitation appeared to be greater in the lower pH solutions. There was no evidence

that the rate of precipitation changed in brine concentrations of 2 and 12% NaCI.

Other experiments indicated the hydrolyzed resin degraded with time. A solution of 6,700

ppm resin was initially adjusted with acetic acid to a pH of 4.0. The temperature of the resin

solution was maintained at 75° F (23.9 ° C). At different times, portions of the resin solution were

mixed with polymer to obtain solutions wi'h 5,000 ppm each of polymer and resin. The polymer

4



5.0

4.5 _ .....r..........._'"_'"'"-'-'"'i"'-"-'"'"...................
/ !"r

= 4.0 ...............................'_................................._..............................._._-o ..................

_ 3.5 ................................................................................0

i

..................................................................................................T................................i................................
•: 25. .... I , , , , i. , , , , i .... t , , , ,

0 10 20 30 40 50

REACTIONTIME,hrs

FIGURE 1. - The change in pH of melamine solutions in 12% NaC1 brine as a
function of time.
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and resin mixtures made within 6 hours of resin activation formed firm gels in less than 16 hours at

120° F. Polymer/resin mixtures of the same concentrations made from resin activated for 30 hours

formed weak gels only after extended time periods of one week at 120 ° F (48.9 ° C). The tests

indicated that even at initially high resin concentrations the activated resin precipitated with time

until there was insufficient active resin present in solution to form a fh'm gel.

A series of polymer/resin solutions were made with polymer concentrations of 400, 500,

625, 1,250, and 1,500 ppm. Each solution contained an excess of resin crosslinker (4,500 ppm)

sufficient to form a gel. At 120 ° F (48.9 ° C), the gels formed for each solution varied in

consistency flom very soft to a firm gel. The solution with the 625 ppm concentration of polymer

, produced a very soft gel which was formed in less than 24 hours. The solutions containing 400

and 500 ppm polymer formed small gel particles suspended in the solution but the entire solution

was not gelled. Also, these solutions required several days for the suspended gel particles to form.

The 1,250 and 1,500 ppm polymer solutions formed medium and firm gels respectively. The

experiments indicated the lower limit for polymer concentration to produce a gelled solution was

over 600 ppm of polymer. However, stronger and more stable gels were formed with polymer _D
_, concentrations greater than 1,250 ppm.

_ A limited number of tests were made with high pressure CO2. "l'he object was to determine if,

i1 solutions saturated with CO2 would reduce the solution pH sufficiently to activate the resin and
produce a crosslinked gel. Tests were made by placing polymer/resin solutions in a high pressure

5
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vessel with CO2 pressures of 600 to 800 psi (4.14 to 5.52 mPa). The gels were shear ,sensitive.

This presented problems in observing formation of gels at high pressures. Upon releasing the CO2

pressure, the solutions boiled and outgassed because of the absorbed CO2. Because of shear

sensitivity of the gels, release of CO2 pressure and solution outga_ing probably caused break-up

of the gels. However, there was some evidence that gels were formed. The solutions had

increased in viscosity and the color of the solutions had changed to a white color. As observed

previously, a change in solution color indicated resin activation which should have resulted in

polymer crosslinking and formation of a gel. Results of this study indicated solutions saturated

with CO2 were sufficient to reduce the solution pH which would activate the resin and produce

crosslinking.

An important feature of any gel is the ability of a gel to reheal after gelation. This was a

disadvantage of this melamine resin-gel system. The gel was shear sensitive causing breakup of

the gel. In addition, the resin precipitated after activation in acidic solutions. After the gel was

subjected to shear conditions, sufficient active resin was not present to allow the polymer to reheal

crosslinking bonds and recover the original gel viscosity.

Materials for HPC/SDS Gels

Whittington and Naae 3 reported a blend of hydroxypropyl cellulose (HPC) and sodium

dodecyl sulfate (SDS) will form a gel when mixed with brine. The gel was formed by increasing

the salinity of the polymer/surfactant blend. This gel has the advantage of not requiting a

crosslinking agent such as a heavy metal. In addition, the gel does not require any specific

solution pH to form a gel. The HPC polymer was obtained from Aqualon Company which

markets the polymer under the trade name Klucel. ® A high-molecular-weight and viscous grade of

the product (Klucel H) was used for this study. The SDS surfactant was a chemically pure grade

of SDS (99%). The brines were made with reagent grade NaCI.

Bottle Tests with HPC/SDS Gels

Gels were formed by mixing solutions of HPC and SDS with brine. Ali solutions were

prepared with equal weight of the HPC polymer and SDS surfactant. Figure 2 shows the room

temperature (24° C) viscosities of _veral HPC/SDS solutions measured before the addition of salt.

For a solution containing 0.5% HPC and 0.5% SDS, the viscosity measured at room temperature

with a Brookfield cone and plate viscometer was 128 cP at a shear rate of 2.25 sec-1.

The effect of increasing brine concentration is shown in Figs. 3 and 4, Viscosity

measurements were made with a series of solutions containing 0.5% HPC and 0.5% SDS and

increasing the salinity concentrations. Lower viscosity solutions containing 0.0 to 1.0% NaCI

were measured with a cone and pla_ Wells-Brookfield viscometer. For higher viscosity solutions

containing salt concentrations greater than 1.0% NaCI, viscosity measurements were made with a

i



number 3 or a number 4 cylindrical spindle using a Broold'ield Model LVS viscometer. As shown

in Figs. 2 and 3, the solution viscosity increased with higher salt concentrations. Although stable
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FIGURE 2. - Measured viscosities of fresh aqueous solutions with equal
concentrations of HPC and SDS.
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FIGURE 3. - Room temperature (24 ° C) viscosities of polymer solutions (0.5%
HPC and SDS) with brine concentrations ranging from 0.0 to 1.0%
NaCI.



gels were obtained with higher salt concentrations, solution viscosities with salt concentrations

greater than 3.5% NaC1 resulted in no measurable increase in gel viscosity.
!

'1 Other experiments were made to determine the effect of polymer concentrations on solution

1!I viscosity. Figure 5 shows the change in viscosity of gels containing 3.5% NaCI with polymer and
- surfactant concentrations up to 0.5% HPC at room temperature. For gels with concentrations of

HPC and SDS between 0.25 and 0.5%, the increase in gel viscosity was approximately

proportional to the polymer and surfactant concentrations. The gel containing 0.5% HPC and SDS

was about 15,000 cP at a shear rate of 1.25 sec -l. Higher gel viscosities are possible with

solutions containing higher concentrations of HPC polymer. However, there is a pr, ctical limit for

i polymer concentration in field applications because of the high solution viscosity and problemsI
'! with solution injectivity into the reservoir.
I
|, Profile Modification with Sandpacks and HPC/SDS Gels
,= For initial profile modification tests, it was observed that gel was deposited on the inlet,|l
II

t!J injection screen (300 mesh). Although gel deposition on the screen demonstrated the capability of

| the gel to plug large sized pores, tt.e gel effectively plugged the screen and interfered with

J permeability measurements. Formation of a gel in the inlet system was reduced by redesigningI

'I the injection system to minimize dead volume. This resulted in less solution mixing and gel
|
I

8
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FIGURE 5 - Viscosity at room temperature of gels with 3.5% NaC1
brine and different concentrations of HPC and SDS.

formation in the injection system. Also, premature gel formation in the inlet system and screen

plugging was reduced by chasing each of the polymer/surfactant and brine slugs with small

quantifies of deionized water (0.01 PV). These steps eliminated gel deposition on the inlet screens.

Profile modification tests using the HPC/SDS gel were made with sandpack floods. For

these tests, alternating slugs (0.05 PV) of 1% polymer/surfactant solution and a 7% brine were

injected into a sandpack. A total of about 0.3 PV of the polymer/surfactant solution was injected.

The strategy was to promote intimate mixing of the two solutions to form a gel. Injection rates

were maintained at a constant flow rate of 0.7 m/d and the differential pressure across the sandpack

was monitored as a measure of changes in the sandpack permeability. Although the resistance

factor after gel treatment was typically 200, examination of sandpack indicated the gels were

largely located near the inlet section of the sandpack. Because the gel formed immediately when

the HPC/SDS solution was mixed with brine, the gel plugged the sandpack only a short distance
from the inlet.

For profile modification treatments, the gel must be placed at some distance away from the

wellbore in high-permeability channels. Various strategies, including displacement with slugs of

fresh water, were used to piace the HPC/SDS solution away from the sandpack inlet prior to brine

contact and gel formation. However, fresh water displacement effectively reduced the gel

resistance factor presumably because of dilution of the HPC/SDS solution. Also, a 1% SDS



surfactant solution in fresh water was used as a displacement fluid for the HPC/SDS slug. The

SDS surfactant slug then was followed by a high concentration brine to contact the HPC polymer

and form a gel. However, the brine caused precipitation of the surfactant when the brine exceeded

3% NAC1. This was demonstrated by both sandpack flow and bottle tests. Using SDS in fresh

water as a displacement fluid also caused the HPC polymer to become phase unstable. The HPC

polymer will precipitate from brine solutions without the SDS surfactant. The effluent from

sandpack flow tests initially contained precipitated SDS surfactant followed by precipitated HPC

polymer.

Additional bottle tests were made with several ethoxylated cosurfactants in an attempt to

stabilize and overcome the problems associated with SDS surfactant precipitation and to improve

HPC/SDS gel stability. Also, the presence of divalent cations (Ca2+ and Mg 2+) will cause

precipitation of anionic surfactants such as the SDS surfactant. As discussed previously, the

precipitation of the SDS surfactant can cause the HPC polymer to precipitate. Tests were made

with an ionic ethoxylated cosurfactant (Neodol 25-3S) to improve salt tolerance of the solutions.

For a solution containing 0.5% SDS and 0.3% Neodol 25-3S as a cosurfactant, the salt tolerance

was increased to nearly 9% NaCI. Small quantities of precipitate were observed with 9% NaC1 at a

temperature of 24° C. This was an improvement in SDS salt tolerance from 3% NaC1 without the
cosurfactant.

Other tests were made to determine the effect of the ethoxylated cosurfactant _n i-L__JSDS

gel properties. Solutions of 0.5% HPC and 0.5% SDS were prepared with 0.17% Neodol 25-3S

in various brine concentrations. For previous gel tests without a cosurfactant, a maximum gel

viscosity was obtained with 3.5% NAC1. No further improvement in gel viscosity was measured

for gels containing higher brine concentrations. The addition of the cosurfactant (Neodol 25-3S)

produced solutions with lower viscosities. A gel was not formed with 3.5% NaCI. Only a small

increase in solution viscosity was measured. Solutions containing the cosurfactant and higher

concentrations of brine (5 to 10% NaCI) formed weak gels and the viscosity was lower than that of

gels without the cosurfactant.

Another problem was noted with the cosurfactant gel system. Gels samples heated to 50°C

degraded with time. At the higher temperature, this was indicated by the formation of a white

precipitate and a reduction in viscosity. Also, the rate of gel degradation increased for gels

containing higher brine concentrations. Another nonionic ethoxylated surfactant (Neodol 91-2.5)

was used as a potential cosurfactant candidate for increasing salt tolerance of the gels. This

cosurfactant improved salt tolerance of the SDS surfactant solutions, but gels were not formed

when combined with the HPC polymer. A small improvement in solution viscosity was measured

with brine concentrations up to 5% NaCI. A fibrous precipitate was formed for solutions

containing concentrations greater than 5% NaCI.

10



These tests indicated that the addition of an ethoxylated cosurfactant resulted in either gels

with lower viscosities or unstable gel mixtures. The use of an ethoxylated cosurfactant does not

appear to be a satisfactory method for improving salt tolerance of the HPC/SDS gels.

In summary, the experimental results show that the HPC/SDS gel can be formed by the

injection of suitable brines and HPC/SDS solutions. However, because the gels form immediately

when the HPC/SDS solutions are mixed, gel plugging extends only a short distance from the point

of injection. This gel system does not appear to be a practical method for profile modification

because of the inability for deep penetration of the HPCJSDS solutions in the reservoir. Also, after

gel placement, brine flow through the gel increased the sandpack permeability, and the gel

resistance factor decreased. This demonstrated the gel was not persistent or stable to subsequent

brine flooding.

Bottle Tests with Cr(lll)/Xanthan Gels

Another part of this study was the use of laboratory models to investigate selective placement

of gels. In particular, experimental models were used to demonstrate the potential for gel

placement in heterogeneous layered strata. Therefore, a gel system was required to be used with

experimental model studies. A conventional crosslinked gel system which would meet the

requirements for use with experimental models was chosen. Screening tests were performed with

this gel system to determine the conditions for gelant injection, the gelation time, and gel

properties.

The gel system to be used with experimental model studies was xanthan polymer and Cr(III)

as a crosslinking agent. The xanthan polymer (Flocon ® 4800C) was a concentrated broth with an

active biopolymer concentration reported by Pfizer to be 16.35%. In this report, the polymer

concentrations were reported using the manufacturer's assay. Chromic chloride used as the Cr(III)

crosslinker was purchased from Fisher Scientific. Solutions of the biopolymer and chromic

chloride were prepared in a stock brine with a concentration of 6.6% NaCI, 1.5% CaCI2, and

0.5% MgC12. After mixing the stock solutions, the polymer solutions were adjusted with dilute

HCI and NaOH to obtain the desired pH.

The viscosities of polymer solutions were measured with a Brookfield viscometer Model

LVT-CP. Viscosities of solutions with different polymer concentrations were measured over a

shear-rate rmlge of 1.15 to 230 sec-1. Figure 6 shows the linear plot of shear thinning rheograms

for polymer concentrations of 1,000, 1,500, and 2,250 ppm. A regression of the viscosity and

shear data was made for each polymer concentration using the power law model in Eq. 1:

[.t = KTn-1 (1)

The power law constants (K and n) of the viscosity and shear data are listed in Table 1.
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Figure 6. - Effect of shear rate on viscosity of xanthan solutions.

TABLE 1

Power Law Parameters of 1,000 and 1,500 ppm Xanthan
..

Concentration K

ppm n cP n
..... ,

1,000 0.467 106
1,500 0.417 182
2,250 0.330 445

tb

These shear and viscosity results were compared with a report by Hejri, et. al.4 where active

biopolymer concentrationswere based on isopropanolprecipitation. The biopolymer concentration

reported by the manufacturer was 1.5 times higher than the concentration measured by

precipitation. The lower value for polymer concentration by precipitation was used in Hejri's

report. Good agreement which was within the experimental error of the viscosity measurements

was found for polymer viscosity and shear data. As shown in Table 1, for a polymer

concentration of 1,500 ppm, the regression parameters were n = 0.417 and K = 182. Hejri

reported values of 0.418 and 181 for the regression parameters at a comparable concentration of
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1,500 ppm based on the manufacturer assay. Hejri developed correlations and an empirical models

to predict the apparent viscosity of xanthan solutions polymer solutions flowing through sand

packs. Later in this report, these regression models were used to predict the apparent viscosity of

polymer solutions used in experimental models.

Gelation Rate of Cr(IH) and Xanthan Polymer

The rate of gelation and gel strength were measured by observation of the samples according

to the properties described in Table 2. The gel descriptions are similar to those reported by

Sydansk. 5 Although the gel strength descriptions are subjective observations, the bottle tests

provided a qualitative method for rapid screening of the gel formulations. The pH of the solutions

was an important variable which controlled both the rate.of gelation and precipitation of chromium.

Samples adjusted to a pH of 5.5 resulted in chromium precipitation. These experiments indicated

that before gelation this gel system can be applied only when the gel solutions do not exceed a pH

of about 5.0.

Some of the results of gel bottle tests are presented in Table 3. These results "alsoare shown

in Figs. 7 and 8 where the gel descriptions of Table 3 were assigned arbitrary v',dues for viscosity.

The lowest viscosity description of the gel solution (A) was assigned a value of one; the highest

viscosity (H) was assigned a value of 8. As shown in Table 3 and Fig. 7, faster gelation rates

were observed as the pH of the gel solutions increased from 4.0 to 5.0. Table 3 and Fig. 8 show

the effects of Cr(III) concentration where higher chromium concentrations increased the rate of

gelation. Thus, gelation rates may be varied by changing the polymer and Cr(III) concentrations,

and pH of the solutions.

TABLE 2

Physical Description of Gel Strength for Xanthan Polymer
and Cr(III) Crosslinker Solutions

Gel Strength Description of Gel Strength
Code

' A No _ei formed. The ge! appears same viscosity as the original p_lymer solution.
B Highly flowing gel. The gel appears to be only slightly more viscous than the initial polymer

solution.

C Flowinl_ _el. Detectable" gel with the gei rapidly flowing to the bottle'cap upon inversion...
D Moderately, flowing gel. Gel does not readily flow to the bottle cap upon inversion.
E Barely flowing 8el. Gel slowly, flows to the bottle cap upon inversion.

F Hi_hl_, deformable nonflowing gel. Gel readily deforms but does not flow upon inversion.
G Slightly deformable nonflowing gel. Gel s.urface slightly deforms upon inversion.
H Rigid gel. No gel surface deformation upon invers!on, with gel syneresis.
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TABLE 3

Reaction Time and Physical Description of Gels with 2,000 ppm Xanthan Polymer
and Various Cr(lll) Crosslinker Concentrations

Reaction Time Cr{l,!l), ConcentrationSolution

pH hrs 25 ppm 50 ppm 75 ppm 100 ppm
4.0 1 A A A A

8 A A A A
24 A A B C
48 A B B C
96 A-B C C F
192 B C C F
312 C C C-D F-G,m. .m ..

4.5 1 A A A A-B
2 A A-B A-B B
4 A-B C D E
8 B E F F-G

24 E F-G G G
48 F F-G G G
96 F G-H G-H G-H
19 2 G G-H G-H G-Hi

5.0 0.5 A A-B C D
1 B B-C D E
2 C E F F
4 C-D F G G
8 C-D F-G G G

24 E G G G
4 8 F G G-H G-H
96 F GH G-H G-H
192 G H H H..,

Polymer concentration = 2,000 ppm
Cr(lll) concentration = 100 ppm
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FIGURE 7.- Gel properties and reaction time of 2,000 ppm
xanthan and 100 ppm Cr(III) solutions with
initial pH valuesof 4, 4.5 and 5.
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FIGURE 8. - Gel properties and reaction time of 2,000 ppm
xanthan solutions with an initial pH of 4.5 and
various concentrations of Cr(IIl).

Other tests were made to show the effect of the porous media sandpacks on gelation rates. A

series of gelant samples was prepared in brine with 1,000 ppm xanthan and 100 ppm Cr(III). The

initial pH of this mixture was 3.45. Silica sands used for sandpack experiments and other sands

prepared from crushed rocks were added to each test sample. The quantity of sand added to each

sample was equal to 20 % of the liquid weight. A limited quantity of sand was used to allow

observation and measurement of the properties of the liquid solution. Actually, for a gelant

flowing through a porous sandpack, the fluid volume would occupy only the pore volume of the

sand. Although the quantity of the test liquid was substantially greater than the sand pore volume,

the tests were made to show the relative changes in fluid properties produced by different sands.

Each gel solution was mixed slowly with a magnetic stirring bar for several hours after addition of

the sands.

Figure 9 shows the pH changes of the gel solutions resulting from different sands. The

limestone mixture increased rapidly to a pH of nearly 6, a value that would cause precipitation of

chromic ions which would inhibit gel crosslinking. There was no evidence of gel _'ormation.

Also, the polymer appeared to adsorb onto the limestone particles resulting in polymer

agglomeration with the sand. Because of the high capacity of a limestone matrix to neutralize the

, Cr(III)/biopolymer solution, it was unlikely a gel would be formed in a carbonate matrix even with

a highly buffered gel system. Thus, the Cr(III)/biopolymer system would not be effective as a

' mobility control agent for reservoirs with large quantities of reactive carbonate minerals.
,I
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FIGURE 9. - The pH of 1,000 ppm xanthan and 100 ppm
Cr(III) solutions with various sand mixtures.

Initially, with the 80-100 mesh silica sand, the solution pH increased to about a pH of 4.

After 1 day, a weak gel was formed and the solution pH remained constant at a pH of 3.8. The

crushed Berea sand increased the solution pH one pH unit. After 1 day, a firm gel was formed and

the solution pH remained constant at a pH of 4.3. The quantity of clays in the porous media can

affect the gelation rates because of competition between the biopolymer and clays. 6 For this

experiment, the effect of clays was probably not significant because of the low cation-exchange-

capacity of the Berea sand 7 and high concentration of Cr(ffl).

After 5 hours with the 200-325 mesh sand, the solution pH increased to about 5, and a weak

deformable gel was formed. After 1 day, the solution pH had increased to a nearly 5.5; a value

which would inhibit further gelation. In addition, the weak gel was reduced in size by syneresis

which produced over 50% of the liquid volume as brine. The reason for the gradual pH increase in

the 200-325 mesh sand solution was not evident. Additional tests with dilute HCI acid indicated

the 200-325 mesh sand did not contain significant quantities of carbonate minerals. X-ray images

of sandpacks indicated the 200-325 mesh sand had a higher X-ray density than the 80-100 mesh

sand even though the porosities of the two sands were nearly the same. The sand may have

contained other minerals, such a.sclays, which could change the solution pH by ion exchange. For

sandpack flow tests, where the proportion of sand to gel solution is larger, the solution pH would

increase more rapidly and further inhibit the formation of a gel.
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Other tests in sandpacks with the 80 to 120 mesh and 200 to 325 mesh sand were made for in

situ gelation of the Cr(III)/biopolymer. The gelant solution was stock brine with 1,000 ppm

xanthan and 100 ppm Cr(III) which was adjusted to a pH of 3.4. For each sandpack, 0.42 PV of

the gelant was injected followed by 0.3 PV of 1000 ppm xanthan. After 24 hours to allow

gelation, the brine permeability was measured. For the 80 to 120 mesh sandpack, the gel

resistance factor was 800. For the 200 to 325 mesh _andpack, the resistance factor was less than

10 inalcating virtually no gelation of the polymer.

The bottle and sandpack tests clearly indicate that screening tests must consider the effects of

the reservoir matrix in the gelation process. The Cr(lll)/biopolymer system required a weak acidic

pH for polymer gelation. This Cr(III)/biopolymer was not a candidate gel system for carbonates

reservoirs. The high capacity of these reservoirs to change the pH of injected solutions would

probably inhibit the formation of these gel systems even for solutions containing pH buffers. In

this study, the ability to control the time of gelation was of interest for gel placement using

experimental model studies.

EXPERIMENTAL MODELS FOR GEL PLACEMENT

i Successful gel treatments require placement of a gel in high permeability zones with minimal

damage to the adjacent, less permeable, oil productive reservoir. Numerous laboratory studies

have used single permeability floods or parallel floods with different permeabilities for testing the

effectiveness of gels and fluid diversion agents. Although these studies were useful for measuring

" resistance factors of gels, these experiments can provide erroneous results on improvement of

sweep efficiency. Single or parallel cores do not evaluate the effects of crossflow during

placement of the diversion agents. Crossflow into the nearby oil productive zone during injection

of profile modification agents can seriously impair flow and reduce sweep efficiency of the oil

productive formation. Therefore, evaluation of profile modification _,gents must consider the

impact of crossflow into the adjacent oil productive zone.

To measure the effect of crossflow, profile modification experiments using layered

: sandpacks with contrasting permeabilities were conducted. Two different vessels were used as

sandpack holders. A high pressure model was constructed of aluminum for pressures up to 2,500

psi (17.2 mPa). The internal dimensions of this vessel were 7.69 cm in diameter and 54.6 cm in

length. The wall thickness of the vessel was sufficiently thin to allow CT imaging of X-ray

tracers. Experiments were conducted with a layered sand model using a potassium iodide as an

X-ray tracer to monitor the flow path of fluids.

Also, a low pressure sandpack holder was constructed of a plexiglass cylinder with an

internal diameter of 7.62 cm and a length of 51 cm. The model was used for displacement

experiments with liquid pressures up to 100 psi (0.69 kPa. For some experiments, the model was

used with a suitable liquid dye to visually observe liquid displacement. However, because these
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observations were limited to the external surface of the sandpack, most experimental observations

of fluid displacement were made using CT imaging. To provide contrast in X-ray density between

the liquid phases, the displacement liquid was tagged with a high X-ray density salt which was

usually 6 wt % of potassium iodide.

For heterogeneous sandpacks, layers of high and low permeability silica sands were packed

parallel to the direction of flow. Different sized sands (20-40 mesh, 80 to 120 mesh, and 200 to

325 mesh) were used to obtain sand layers with different permeabilities. Each layered sandpack

was prepared by placing a thin aluminum sheet in the cylindrical sand holder. The aluminum sheet

was nearly the same diameter as the sand holder to minimize crossflow of different sized ,sands

during the packing operation. An air vibrator attached to the sand holder was used to vibrate and

settle the sand during the packing operation. The sands were wet packed with each sand poured

into the tube partially filled with water. The aluminum divider was slowly removed after filling the

tube with sand. The permeability contrast between layers of 80 to 120 mesh and 200 to 325 mesh

sands was about 5, and the permeability contrast between 20 to 40 mesh and 200 to 325 mesh
sands was about 50.

CT Cross Sections of Experimental Models

CT imaging was used for visualization of fluid flow and gel placement. Each CT scan was a

4 mm slice of the sandpack cross section. For a sandpack 51 cm in length, 25 CT scans at 2 cm

intervals were obtained to characterize the sandpack. The resolution of the image along the

sandpack axis was 3.2 % of the sandpack length. As shown in Fig. 10, by computer

CT SCANS

H hpermeabiityayer
¢ ¥ ............

II I III II I I
Low permeability layer

Vertical projection j

of sandpack

_, SOcrn "_ I

FIGURE 10. - CT scans of sandpack and with 2-dimensional image reconstruction of
image along the sandpack axis.
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reconstruction, a 3-dimensional image was obtained of the sandpack, s For this study, a

2-dimensional image was made showing a lengthwise projection of the sandpack perpendicular to

the high- and low-permeability layer plane. The figures used in this report show the most

permeable layer at the top of the image.

A potassium iodide tagging agent was used to provide an X-ray contrast between the injected

and displaced fluids. Injected brines and polymer solutions contained 6 to 7.5 wt % of potassium

iodide. To further enhance the X-ray images, the sandpack was scanned prior to injecting :he

tracer fluid. For each scan location, the appropriate background scan was subtracted from ali

subsequent scans. This enhanced the location and intensity of the injected tracer.

Flow Experiments for Polymer Placement

Initial experiments with layered sandpacks were performed by injecting a X-ray tagged brine

into a brine saturated sandpack. The permeability contrast between layers of 80 to 120 mesh and

200 to 325 mesh sand was about 5. Density of the injected and the saturation brine had

approximately the same density, thus minimizing gravity effects. These experiments were

designed to demonstrate the simple case of permeability contrast between sand layers and the

relative penetration of the injected brine. CT cross sections of the sandpack shown in Fig. 11 were

made after injecting 0.15, 0.4, and 0.5 PV of brine. The distance of brine penetration for the high-

permeability layer was about 5 times that of the low-permeability layer. Also, as shown in the CT

cross sections, there was virtually no crossflow between the high- and low-permeability layers

because the viscosity of the injected brine and the displaced brine were the same. For this idealized

case of fluids with the same viscosity and mobility, the injection fluid placement was largely

controlled by the permeability contrast of the porous media. The length of penetration into dae

high- and low-permeability layers (LI/L2) was proportional to the permeability contrast of kl/k2.

I For this experiment, the relative displacement of the two brine fronts remained nearly constant as

the brine was injected. Other factors such as gravity and capillary forces also could influence this

relationship in a reservoir. These factors were small because of large pores in the sandpack, fluid

miscibility, and small differences in liquid densities.

Effect of Polymer Solution Viscosity and Permeability on CrossflowThere are many studies of gei properties in porous media. Typically, these studies meast_re

the resistance to brine flow after gel formation. Although these studies are useful in gel _ssessment

and the determination of residual resistance factors, flow through virtually any porous media can

be effectively reduced if sufficiently high concentrations of polymer are used, and often, these

polymer solutions have high viscosities. These studies ignore the problems associated with

placement of high viscosity solutions which can seriously influence crossflow and damage to the

lower permeability strata.
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FIGURE l l. - CT cross sections of layered sandpack with a permeability contrast
between layers of about 5. The figure represents a gray scale for the
injected brine tracer profile where white is the location of high tracer
concentration. The ratio of the brine penetration into the two layers was
the same as the permeability contrast (kl/k2 = 5) between layers.
Virtually no crossflow occurred because the viscosity or mobility of
displaced and injected brines were nearly the same.

The objective of gel treatments is to restrict flow through fractures and high-permeability

zones without significantly damaging the adjacent oil productive zones. This involves injection of

a viscous polymer solution before gelation, hopefully in the high-permeability zone. For the

injection of a polymer solution in a porous media, two dominant factors _'an influence the reduction

in the mobility of the polymer solution, i.e., solution viscosity and permeability reduction resulting

from polymer retention.

Layered sandpacks were u_d to show the effect of viscous crossflow on gel penetration and

placement. For one experiment, the sandpack consisted of a high-permeability layer (kl) of 80 to

120 mesh sand and a lower permeability layer (k2) of 200 to 325 mesh sand. The permeability

contrast (kl/k2) between the two sands was about 5. A polymer solution (1,500 ppm xanthan)

was injected at a flow rate of 75 cm3/hr. The polymer solution contained 6% potassium iodide as

an X-ray tracer. Some polymer retention was expected as the polymer solution flowed through the

sandpack, ttowever, _paration of the polymer and tagged brine was minimal because of the large
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sandpack pores. Therefore, location of the polymer and tagging agent was nearly coincident and

within the resolution limitations of the CT images.

A series of CT cross sections (Fig. 12) shows the relative position of frontal advancement

after injecting 0.14, 0.28, 0.54, and 0.95 PV of polymer solution. The figures show only a small

offset of the lower permeability polymer front and the large quantity of polymer crossflow into the

low permeability layer. For this experiment, the ratio of the polymer viscosity to displaced brine

(I.tp/l.tw)was much larger than the permeability contrast of the two layers (kl/k2 = 5) resulting in

nearly total polymer invasion of the lower permeability layer.

, ---I_

0.14 PV Injection

0.28 PV Injection

0.54 PV Injection

k_=10darcy - -
;. -2

0.95 PV Injection

FIGURE 12. - CT cross sectionsshowing the position of a 1,500ppm biopolymer
injection with a permeability contrast betweenlayers kl/k2-- 5. The
figures show only a small offset in the biopolymer fronts between

'( the low and high permeability layers. The ratio of the displaced

' brine mobility to the injected polymer mobility (2_v/29= 53).
i[
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A similar experiment was conducted with a brine saturated sandpack with a larger

permeability contrast. The brine saturated sandpack consisted of 20 to 40 mesh and 200 to 325

mesh sand layers with a permeability contrast (kl/k2) of about 50. A 1,500 ppm xanthan polymer

solution with 6% potassium iodide as an X-ray tagging agent was injected at a rate of 100 cm3/hr.

Figure 13 shows CT cross sections of the sandpack after injecting 0.19, 0.34, 0.59 and 0.73 PV

of polymer. Even with the high-permeability contrast of the two layers, the cross sections show

O.19 PV Injection

m

0.59 PV Injection

,,,....,.m

0.73 PV Injectior_

FIGURE 13. - CT cross sections showing the position of a 1,500 ppm biopolymer
injection with a permeability contrast between layers kl/k2 - 50. For
this experiment with a high-permeability contrast, the polymer
resistance factor (Z_/Zp-53) was too large for polymer placement
without significant invasion (_ 50%)of the low-permeability layer.
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considerable polymer invasion into the low-permeability layer. If the polymer solution was a

gelant (polymer with crosslinker before gelation), the low-permeability layer would have been

extensively damaged after formation of a gel. When the polymer penetrated to the end of the high-

permeability layer (0.73 PV), over 50% of the low-permeability layer was invaded by polymer.

This dramatically shows the problems associated with placement of viscous gelant in a high-

permeability thief zone without extensively invading and damaging the adjacent oil-producing
strata.

For a polymer flood where a gel is not formed, viscous crossflow may have a beneficial

effect on oil mobilization. Polymer invasion may displace oil and ultimately increase sweep

efficiency. However, polymer invasion of less permeable strata is not the objective of a gel

treatment where a gel is formed to block subsequent flooding processes.

Of interest was the mobility ratio of the polymer to the displaced brine. CT cross sections

were used to determine the distance of polymer penetration and the polymer frontal velocity of sand

layer L1. As the polymer penetrated the high-permeability layer, the distance and injection time

gave a frontal velocity of 2.06 m/d (darcy velocity of 0.74 m/d). Since the polymer solution was a

non-Newtonian fluid, mobility of the injected fluid was corrected for shear thinning and flow

behavior in sandpacks. The power law Eq. 1 and the coefficients of Table 1 were used for

rheological fluid properties. Also, flow behavior indices developed by Hejri 4 in sandpacks were

used to determine the biopolymer mobility factor. The mobility factor (apparent viscosity) of the

polymer in Li was estimated to be about 1,870 md/cP. Sorbie 9 defined a resistance factor (Fr) as

ratio of the displaced fluid mobility divided by the polymer or gelant mobility. This gave a

polymer resistance factor (Fr) of about 53 which was close to the permeability ratio (kl/k2 = 50) of

the two layers. The value of Frk2/kl = 1 was too high for the polymer placement without

significant invasion of L2.

Sorbie 9 performed similar experiments with beadpacks with contrasting permeability layers.

Newtonian liquids with different viscosities were used to simulate the injected polymer or gelant

and displaced fluid. His study indicated an approximate guideline of Frk2/kl < 0.3 to reduce

crossflow to an acceptable level.

Even this experiment, with relatively high-permeability contrast, was not sufficient to piace

the polymer solution without significant crossflow and invasion into the low-permeability layer.

The polymer solution was too viscous for thief zone placement which emphasizes the need for

gelant injection with a low viscosity and a low resistance factor.

Flow Experiments for Gel Placement

Experiments were performed for gel placement in layered sandpacks with a permeability

contrast of 5. The sand layers were 80 to 120 mesh and 200 to 325 mesh silica sands. For this

report, the term "gelant" is used to describe the polymer/crosslinker solution before gelation.
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Gelant mixtures for these flow tests was xanthan polymer with 100 ppm Cr(III). The biopolymer

concentration for gel experiments 1 and 3 was 1,000 ppm. For gel experiment 2, the biopolymer

concentration was 1,500 ppm. Relatively low concentrations of biopolymer were used in these

experiments because of the problems associated with polymer placement in the high-permeability

layer. This was demonstrated in previous experiments which showed the effect of fluid viscosity

on crossflow in layered sandpacks. Therefore, a gelant with a low viscosity was used. Bottle

tests indicated xanthan concentrations of 1,000 ppm was the lowest practical limit to obtain

reasonably firm gels.

Gelant solutions of the biopolymer and chromic chloride were prepared in brines with a

concentration of 6.6% NaCI, 1.5% CaCI2, and 0.5% MgC12,and the solutions were adjustedto a

pH of 3.8. Previously, bottle and sandpack tests with this gelant and sand mixtures had indicated

the different sands would influence the gelant pH and polymer gelation. These tests indicated the

80 to 120 mesh sand would increase the gelant pH to a value of less than 5 to form a gel; the 200 to

325 sand would increase the gelant pH sufficiently to inhibit gel formation.

For gel experiments 1, 2, and 3, a brine containing 7.5% potassium iodide was injected

following gel placement. Then, CT scans were made to show the tracer flow path, and the areas of

high flow resistance. These areas of high flow resistance indicating the gel location are shown in

Figs. 14, 15, and 16 as CT cross sections.

For gel experiment 1, all injection flow rates were 100 cm/hr. The injected gelant was

170 cm3 which was 0.4 PV of the high-permeability sand layer. This was followed by injecting

75 cm3 of polymer (1,000 ppm without crosslinker) to displace the gelant from the sandpack inlet.

The sandpack was shut-in for over 48 hours to allow for polymer gelation. Then, an X-ray tracer

(200 cm3 of 7.5% potassium iodide) was injected to indicate the path of lowest flow resistance.

The location of the gel was indicated by the area of high resistance to fluid flow in the high-

permeability layer. A 3-dimensional reconstruction of the CT scans was used to describe the bulk

volume of the gel mass. The sandpack porosity was about 36%. Therefore, gel volume was
measured as 36% of the bulk volume.

Figure 14 shows the X-ray cross section after injecting the brine tracer. The figure shows

the gel location in the high-permeability layer; an area of higher resistance to the injected brine

tracer. The volume of gel measured by CT imaging (62 cm 3) corresponds to approximately 0.15

PV of the high-permeability layer or the gel occupied about 37% of the injected gelant. The gel

location was later verified by removing the sandpack from the holder. Physical examination

indicated this section of the sandpack was cemented by the gel and the bulk was approximately the

same as measured by CT imaging. A gel was not formed for approximately 63% of the gelant

volume. Some loss in gelant volume may have resulted from polymer filtration or incomplete
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FIGURE 14. - CT cross section of gel placement. Gel location is indicated by the
flow path of an injected brine tracer. Becausemuch of the ge]ant
crossflowed into the low-permeability layer, the ge] volume was
measuredasonly 37% of theinjected gelant. In the low-permeability
layer, a gel was not formed because thc gelant pH increased
sufficiently to inhibit gel formation.

FIGURE 15. - CT cross .section of gel placement. Gel location is indicated by the
flow path of an injected brine tracer. For this experiment, a gelant
and a polymer solution with the same viscosity before gelation were
injected at the same rate into the high- and low-permeability layers.
Because of lower permeability in the lower layer, the biopolymer
crossflowed into the high-permeability layer diverting the gelant into
the upper part of the high-permeability layer. The gel placement in
the high-permeability layer was measured as 54% of the injected
gelant.

FIGURE 16.- CT cross section of gel placement. Gel location is indicated by the
flow path of an injected brine tracer. For this experiment, the gelant
and a brine were simultaneously injected into the high- and low-
permeability layers. The rate of brine injection was 2.3 to 2.75 times
the rate of gelant injection. By simultaneous injection of a brine at a
higher injection rate into the low-permeability layer, gelant crossflow
was reduced and about 66% of the injected gelant was placed in the
high-permeability layer.

gelation. However, most of the remaining gelant probably crossflowed into the lower permeability

layer whe_'e the gelant pH increased sufficiently to inhibit gel formation. Most of the gelant loss

was attributed to gelant flow into the lower permeability layer. If the pH changes resulting from

the lower permeability sand were not present, the gelant would have resulted in significant damage

to the lower permeability layer.

A second gel experiment was performed to increase gelant placement in the high-permeability

layer. For this experiment, the gelant (100 ppm Cr(UI) and 1,500 ppm biopolymer) was injected
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at 100 cm3/hr into the high-permeability layer. Simultaneously, a polymer solution of the same

concentration was injected at 100 cm3/hr into the low-permeability layer. The pH of the injected

gelant was 3.8; the polymer solution was 4.0. Before gelation both fluids had the same viscosity.

The objective was to use a second injection to prevent gelant crossflow. A total of 200 cm 3 (0.48

PV of the high-permeability layer) of gelant and 200 cm3 (0.48 PV of the low-permeability layer)

of polymer were injected. The gelant injection step was followed by injecting 125 cm3 of polymer

without cro_linker to displace the gelant away from the injection inlet. As in gel experiment 1, the

sandpack was shut-in for over 48 hours to allow for polymer gelation. Then, an X-ray tracer (250

cm 3 of 7.5% potassium iodide) was injected to indicate the brine flow path and the areas of flow
resistance.

Figure 15 shows the X-ray cross section after injecting the brine tracer and the gel location in

the high-permeability layer. As shown in Fig. 15, the shape of the gel mass was influenced by the

injection of biopolymer into the low-permeability layer. The gel volume was measured as 54% of

the injected gelant volume. Because of the lower permeability in the lower layer, some of the

biopolymer flowed into the high-permeability layer diverting the gelant into the upper part of the

high-permeability layer. As injection of the gelant progressed, the frontal area of the gel mass

filled the high-permeability layer. This indicated premature gelation during injection. The frontal

area of the gelant slug with higher viscosity resulted in displacement of the biopolymer and some

loss of the gelant into the low-permeability layer.

Two problems were noted with this experiment for gel placement in the high-permeability

layer. First, the biopolymer solution was too viscous to balance the pressure between layers for

the two fluids injected at the same flow rate. A lower viscosity biopolymer equivalent to I.tgk,_/kl

(where I.tg= gelant viscosity) would have resulted in better placement of the gelant. Also, as gelant

injection progressed, premature gelation resulted in crossflow and loss of the gelant in the lower

permeability layer. Premature gelation is another problem associated with gel placement in high-

permeability layers.

A third gel experiment was performed to increase gelant placement in the high-permeability

layer. For this experiment, a gelant (100 ppm Cr(III) and 1,000 opm biopolymer) was injected at

100 cm3/hr into the high-permeability layer. Gelant volume was 150 cm 3 (0.32 PV) of the high-

permeability layer. Simultaneously, brine was injected into the low-permeability layer at a higher

flow rates ranging from 230 to 275 cm3/hr. The gelant injection step was followed by injecting

100 cm 3 of polymer without crosslinker to displace the gelant away from the injection inlet. As in

gel experiment 1 and 2, the sandpack was shut-in for over 48 hours to allow for polymer gelation.

Then, an X-ray tracer (325 cm 3 of 7.5% potassium iodide) was injected to indicate the brine flow

path and the areas of flow resistance and location of the gel.
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For the third gel experiment (Fig. 16), a larger proportion of the gelant was placed as a gel in

the high-permeability layer. The gel volume was measured as 66% of the injected gelant.

Crossflow was reduced by injecting a second fluid in the lower permeability layer. Even with

brine injection into the second layer, the injection rate appeared too low to completely balance the

gelant injection, and some crossflow occurred. In the porous media, there a_'e considerable

uncertainties in the estimate of the polymer viscosity and mobility. The porous media has a strong

effect on the shear rate and apparent polymer viscosity. However, the experiment demonstrated

that simultaneous injection of the gelant and a second fluid may be a useful method for reducing

crossflow of the gelant.

RESULTS AND DISCUSSION

The rationale for using simultaneous injection of a gelant and another fluid to reduce

crossflow was as follows. For injection rates (ql and q2) into the high- and low-permeability

layers (L1 and L2), the relationship for Darcy flow of Newtonian fluids was:

q2 k2A2AP2 l.tgL1
= (2)

ql !.1,2L2 klAIAP1

For Newtonian fluids, 1.1,2was the fluid viscosity injected in L2; _g the gelant viscosity. To

simplify Eq. 2, the cross sectional areas were assumed to be equal (Al = A2). At some distance

where L1 = L2, and for the condition of balanced pressure (AP1 = AP2) between the two injected

fluids, Eq. 2 reduced to:

q2/ql = k2_gfkl_2 (3)

For equal injection rates (q2 = ql), the equation suggested a pressure balance between the

fluids could be obtained by injecting an appropriate fluid viscosity filto the lower permeability layer

where _2 = k2btg/kl. For example, a permeability contrast (k1/k2) between layers of 5 would

require injection of a fluid with a viscosity of _g/5 into the lower permeability layer. This was one

of the problems found in gel experiment 2 where the viscosities of the gelant and polymer solution

were the same.

Also, when q2 was greater than ql, a less viscous fluid would be required to balance the

pressure of the injected fluids. This was the strategy used for gel experiment 3, although some gel

crossflow occurred because of nonideality of polymer flow.

Equation 3 will apply only to Newtonian fluids. The previous discussion has not considered

the shear thinning properties of polymer solution and that the rheological properties a_e dependent

upon flow characteristics of the porous media. In addition, polymer retention can occur as a gelant

or polymer solution flows through porous media which can result in a reduction of the gelant or
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polymer mobility. Therefore, to obtain balanced flows between layers, the rheological properties

and mobility of each injected fluid must be considered. Further discussion of biopolymer mobility

in porous media may be found in other technical papers. 4A°

In field applications, however, the technique of simultaneous injection would require zone

isolation of the high- and low-permeability zones, and the simultaneous injection of the gelant into

the thief zone and injection of another lower viscosity fluid into the oil productive strata.

There are other factors which may effect the placement of the gelant. These include the

effects of vertical to horizontal permeability and oil saturation. These factors were not considered

in the experimental models.

The ratio of vertical to horizontal permeability typically is less than unity because of reservoir

stratification. Zapata and Lake 11discussed the effect of these relationships on vertical equilibrium.

Assuming there is not a barrier to flow between layers, vertical equilibrium will depend upon the

reservoir aspect ratio (L/H), and the ratio of vertical to horizontal permeabilities (kv/kh). They

proposed the following relationship as a measure of vertical equilibrium:

R = L/H(kv/kh) 0.5 (4)

Using experimental and simulation data, they determined a range for values of R. Vertical

equilibrium was essentially achieved when R > 10, and for the condition of virtually no crossflow

when R < 0.1. For example, a reservoir with an aspect ratio of 50 (L = 1,000 ft and H = 20 ft),

these values of R would correspond to a vertical permeability less than 4x 10-6 times kh to achieve

no crossflow, and greater than 0.04 times kh to achieve total crossflow and vertical equilibrium. In

between these extremes, the degree of crossflow would vary depending on the value of R.

Finally, oil saturation and relative permeability may influence the relative penetration and

crossflow of the polymer injection. Assuming the high-permeability layer is a watered-out zone,

the following numerical simulations were performed for a layered model with a permeability

contrast of 50. The viscosity of the oil and water were 3.0 and 0.8 cP, respectively. The injected

polymer was 3,000 ppm of polyacrylamide. The figures represent a gray scale for the

concentration profile of the injected polymer where white is high polymer concentration.

The results of the simulation are shown in Fig. 17A where the So of the high- and low-

permeability layers were 25% and 75% respectively, representing a watered-out, high-permeability

layer. For Fig. 17B, the So of the high and low permeability layers were both 75%. Comparison

of figures Figs. 17A and B shows the concentration profiles after injecting 0.6 PV of polymer.

The watered-out layer had less polymer penetration and greater crossflow than the layer with

higher oil saturation.
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t FIGURE 17. - Numerical simulation demonstrating the effect of oil saturation oncrossflow in a two layer system. Viscosity of the saturation fluids of

i oil and water were 3.0 and 0.8 cP, respectively. The polymerresistance factor of the watered-out layer (Fig. 17A) was higher,
I resulting in more crossflow than the layer with higher oil saturation
, (Fig. 17B).

The difference between the two simulations was due to the fluid mobility of the two high-

! permeability layers. For Fig. 17A, the displaced fluid was mostly brine, and for Fig. 17B, thefluid displaced was mostly oil with a higher viscosity. Consequently, fluid mobility of the

I watered-out layer was larger, and therefore, the polymer resistance factor (Fr ,= Zw/,;tp)was largerthan the layer with higher oil saturation (Fr ,=;td_v). The simulation study indicated that for a

reservoir with an oil viscosity greater than the reservoir brine, a highly watered-out zone would

result in more viscous crossflow with a corresponding lower quantity of polymer placement in the

high-permeability layer.

CONCLUSIONS

1. Viscous crossflow into oil-productive formations during gel placement is minimized by

gelant formulations with a low viscosity or low resistance factor.

2. A gelant with a low resistance factor during injection provides better placement of gel
u'eatments in unfractured reservoirs.

3. An effective gelant with a low resistance factor during placement is required for polymer

gels to effectively improve the sweep efficiency of CO2 floods.
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NOMENCLATURE

A = Cross sectional area, cm 2

Fr = mobility ratio of the displaced fluid mobility divided by the mobility of the injected fluid.

kw = permeability to brine, md [I.l.m2]

kwp = permeability to brine after polymer, md [I.tm2]

K = consistency index, cP" [(mPa.s)n]

n = flow behavior index, dimensionless

AP = pressure drop, atm [MPa]

u = darcy velocity, ft/d [m/sl

q = injection rate, cm3/s

y = shear rate, s-1

kt = viscosity, cP [mPa.sl

;t = mobility factor _D/cP [mPa.sl
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