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ABSTRACT

A set of experiments is described in which carbon dioxide 1s injec-
ted into large cores of methane-and water-saturated bituminous coal, at
elevated pressures. CO, at pressures of up to 800 psig is used to simu-
late the enhanced recovery of in—-situ methane from coal beds. Carbon-
dioxide injection increases the recovery of methane by a factor of 2-3
times that achieved in simple desorption by pressure drawdown and atmos-
pheric diffusion. In general, higher CO, pressures achileve greater
methane recovery. The presence of even small amounts of nitrogen in the
injection gas, greatly reduces the methane recovered. C02 at pressures
of 500-800 psig are shown to be capable of completely de-methanating in-
tegral coal samples. This fact was also confirmed by tests run on
crushed cores. The consumption of CO, by permanent adsorption is quite
high vis—a-vis the methane recovered and may preclude its use as an en-
hariced-recovery energy process. Its primary function would appear to be

as a means of safely de-methanating coal beds prior to mining.

INTRODUCTION

The present paper represents an extension of the work by Fulton, et.

1

al® to higher CO, pressures. A rather complete literature review is pre-

sented in this previous workl and will not be repeated here.

This paper describes a series of laboratory tests run on Pittsburgh
Seam bituminous coal from West Virginia. Large coal cores were injected
with methane to various equilibrium pressures and saturated with water.
The methane was then vented and allowed to desorb at atmospheric

pressure. This procedure is termed '"natural production". Carbon-dioxide



was 1injected until a pre-determined equilibrium pressure was reached.
The pressure was then released either rapidly or slowly until atmospheric
production was negligible. The gas quality and quantity was analysed and
the C02 adsorbed determined by material balance.

Varilations on this basic procedure included the exclusion of the
natural production cycle; the speed of 002 pressure drawdown; the number
of C02 cycles which constitute the simulated recovery process; the use of
N2/C02 mixtures as the injection gas; variations in injection pressures
from 200-800 psig; subsequent exposure of crushed samples to COy; and the
determination of the total in-place methane by successive injections of
CO, at 800 psig after the process cycles and regardless of the €0,

pressure employed in the latter.

EXPERIMENTAL PROCEDURE

The experimental procedures and equipment descriptions are essen-
tially the same as those described in Reference 1. Briefly, the same
size coal samples were employed (3 1/2-inch diameter) and the pressure
vessels were replaced with high-pressure stainless steel cylinders with
"0" ring seals. A new gas chromatograph was employed with the collector
system remaining essentially unchanged (see Figure A-2).

Appendix A includes six schematic diagrams depicting sample prepara-
tion, experimental set—up, and recovery simulation.

The coal was stored under water with a bactericide added, wuntil
cored. The cores were then dried @ 70°C under vacuum for 30-70 days (see
Figure A~1). The cores were then subjected to methane adsorption until
an equilibrium pressure was established at 200 psig (800 psig in the case

of sample 22). The cores were then permitted to imbibe water treated



with a bactericide for several days. The immersed cores were then sub-
jected to a methane pressure equal to the adsorption pressure to achieve
maximum water saturation (see Figure A-3).

The excess water was then drained from the vessels and the porosity
computed from the volume of water remaining and the assumption of 100
percent saturation of the coal fractures and matrix pores by the water.

The coal was then allowed to desorb methane at atmospheric pressure
until the methane produced was negligible. This lasted from 5-15 days
and was proportional to the adsorption pressure (see Figure A-4). The
natural production cycle was not included in runs 14-16.

Carbon dioxide (COZ/NZ in the case of run no. 20) was then injected
until some specified equilibrium pressure was established. These
pressures are listed in Table 1 and ranged from 200-800 psig. The
vessels were then vented either rapidly or slowly (rumns 21, 23 and 24) to
atmospheric pressure and production permitted to continue until methane
production was mnegligible. Such a competitive adsorption/desorption
process constituted one "process" cycle.

A complete enhanced recovery process consisted of three such cycles
for rapid pressure drawdown to atmospheric pressure (30-90 minutes). In
the case of slower pressure drawdowns to atmospheric pressure (= 1400 cc
total gas per 8 hour period), a single cycle constituted the enhanced
process. Subsequent atmospheric production for either case ranged from
2-4 days (see Figure A-5).

All runs, regardless of the 'process' pressure were then subjected
to multiple CO, injections at 800 psig until methane recovery was negli-
gible. This required from 1 to 4 cycles as shown in Table 1 and Figures

2, 5, and 6. This provided the total in-place methane value for the



sample which was considerably in excess of that added by laboratory ad-
sorption. Thls excess methane was simply the residual in-situ methane
which was not removed from the cores during preparation.

The 800-psig CO, injections effectively remove all of the in-place
methane. This is confirmed by the tests run on samples 18 and 19 after
crushing (see Table 6) which are described below.

Finally a dual material balance check was provided by that on the
supply reservoir and that on the sample vessel. Also, all vessel vold
space was accounted for in the mass balances.

A11 tests were performed at between 60 & 70°F.

TOTAL METHANE-IN-PLACE

The 12 samples tested show total methane-in-place values of 138-193
SCF/Ton of coal for the 10 samples in which methane was adsorbed at 200
psig (see Table 1). Sample 22 which adsorbed methane at 800 psig yielded
a higher total in-place-methane value of 222 SCF/Ton of coal. The latter
value is clearly a result of the large amount of methane adsorbed at 800
psig, 158 SCF/Ton compared to corresponding values of 65-147 SCF/Ton for
the other samples.

It should be recalled that the methane adsorption values of Table 1
were computed for the methane remaining in the cores, after the adsorp-
tion pressure was vented to atmospheric pressure.

The total in-place methane values appear to be quite reasonable for
Pittsburgh-Seam coals and, are considerably higher than those reported by
Fulton, et. al.l which is to be expected inasmuch as these earlier ex-

periments were limited to pressures of less than 200 psig.



Figures 1 and 2 show the effect of 800 psig CO, cycles run subse-
quent to the process-pressure cycles. The amount of additionmal methane
recovered is inversely proportional to the process COZ pressure. Sample
14 at a process CO, pressure of 200 psig for 3 cycles (Figure 1) desorbs
150 percent more methane when exposed to 4 cycles of ) injected at 800
psig (Figure 2). Smaller but significant increases are similarly dis-
played by samples 15 and 16 for CO, process—pressures of 560 and 800
pslg, respectively.

The total methane-in-place values do not correlate with the apparent

porosities listed in Table 1.

POROSITY

Porosity values range from 2.76-8.5 percent of bulk volume and are
listed in Table 1. At an average value of 4+ percent these values are
somewhat in excess of the 2.5 percent values obtained by Reznik, et.‘al.2
for Pittsburgh type coal from Pricetown, West Virginia. They are quite
close to values obtained for Pocohontas coals3 which are more friable
than Pittsburgh coals.

The discrepancy between the values obtained in Reference 2 and the
present work is probably the result of the better experimental procedure
employed by Reznik, et. al.2 in which water was imbibed into almost com—
pletely evacuated cores. Countering this effect 1s the probability of a
more highly developed fracture system in the larger 3 1/2-inch diameter
cores of the present paper compared to the 1 1/2-inch diameter cores em-
ployed in References 2 and 3.

The values, in any case, appear to be reasonable and the assumption

of 100 percent water saturation is consequently justified. Thus, the gas



desorption rates would be minimized1 and the cores may be representative
of the coal around a well bore. Significant amounts of carbon dioxide

would also be dissolved in the water.

METHANE RECOVERY

Table 2 and Figures 3-6 reveal the relatively low and constant
methane recoveries achieved by natural production (labeled "N" on the
Figures) at atmospheric pressure. This type of process 1s clearly dif-
fusion controlled and yields about 30 percent of the total methane-in-
place. Sample 20, Figure 6, yields the lowest value at about 20 percent
while sample 22, in which methane was adsorbed at 800 psig, yields the
highest value at 45 percent.

Figure 1 shows the significant increase in methane recovery as the
CO, pressure is increased. In these 3 rums, 14-16, the recovery process
consisted of 3 002 cyclic injections at the end of which recoveries of
approximately 40, 82, and 92 percent were achieved for C02 pressures of
200, 560, and 800 psig, respectively.

Figure 3 shows that for CO, pressures of 300, 400, and 560 psig, the
recovery was almost identical at about 80 percent (see Table 2). An ad-
ditional 10 percent of the methane-in-place was recovered using CO, at
800 psig in run number 18. All four runs included a natural desorption
step.

Figure 4 shows the large methane recovery which can be achieved by a
single CO, injection cycle when the production rate is maintained low.
Including natural desorption, the recovery is about the same, for C02 at
200 psig, as that when the process consists of 3 COy cycles. At 800 psig

COZ pressure, 75 percent of the methane-in-place of sample 21 1is



recovered after only a single €0, injection cycle following natural
desorption. Sample 24 which was run in a similar fashion, but at a €O,y
pressure of 560 psig, displayed a methane recovery of 68 percent, only
slightly lower than that achieved by €O, at 800 psig from sample 21.
Figure 5 compares 4 samples run at CO, pressures of 800 psig. Dif-
ferences in the runs are: The elimination of natural desorption for run
16, CH adsorption at 800 psig for run 22, rapid C02 pressure drawdown
for run 18, and slow CO, pressure drawdown for run 21. All 800 psig €O,y
cycles are included. Performance is similar for all rums, being charac-
terized by high recoveries. Sample 22 displays the best performance and

may argue against the low recoveries at CO, pressures of 200 psig being

interpreted as a result of that pressure being identical with the usual

methane adsorption pressure.

NITROGEN/CARBON DIOXIDE MIXTURES

Figure 6 and Table 3 show the results of using mixtures of N, and
CO, as the injection gas. The CO, partial pressures ranged from 60 to
800 psig for a constant, total injection pressure of 800 psig. Nine in-
jection cycles following natural desorption were required to recover all
of the in-place methane. Three cycles with CO, @ 60 psig resulted in
only doubling the already low recovery due to natural desorption. The
fourth cycle at a CO, partial pressure of 200 psig resulted in about the
same recovery as that for a total pressure of 200 psig. Further, the
recovery at a COy partial pressure of 560 psig resulted in significantly
lower recovery than a total CO, pressure cycle of the same value. The

last 4 cycles were 100 percent 002 and resulted in doubling the produc-

tion.



Material balance indicated that none of the N, was adsorbed by the
coal when in the presence of COp. It would appear that mixtures of Ny
and COZ’ over a wide concentration range, greatly reduce the recovery of
methane. This result is in agreement with that observed in 002 water-

flooding of petroleunm reservoirs4.

METHANE RECOVERY FROM CRUSHED COAL

After all apparent methane had been recovered from samples 18 and
19, these cores were crushed to cumulative size distributions tabulated
in Table 6. Crushed coal from sample 18 was subjected to nitrogen at 30
psig and shut in for 72 hours. The production gas contained only 0.1
percent methane (see Figure A-6).

Crushed coal from sample 19 was subjected to a fourth C0, injection
cycle at 800 psig. This yielded only 1.68 SCF/Ton of additional methane
or 1.16 percent of the total methane-in-place value as computed prior to
crushing. We conclude that multiple COZ cycles at 800 psig (near the
critical point at 60-70°F) completely strip all of the in-situ methane

from coal (see Figure A~6).

CARBON DIOXIDE ADSORBED

Table 5 shows the amount of CO, permanently adsorbed on the coal for
the various tests. The results are scattered but clearly reveal a nega-
tive result with regard to energy efficiency. Disregarding the optimis-
tic results of sample 15, about 9 SCF of CO, per SCF of CH, is required
to recover all of the methane by rapid CO, pressure drawdown. Slower

drawdown of the production gas pressure reduces this to about 6 SCF of

COp per SCF of CHA.



The C02 lost 1increases with the C02 injection pressure. Thus the
more CH, recovered the greater is the loss of COy. The only run which
yields a roughly even trade-off between CH, recovered and C0, adsorbed is
the low pressure, slow production run of sample 23. However, this

process would still leave 60 percent of the in-situ methane unrecovered.

COMPOSITION OF PRODUCED GAS

Table 4 shows the low quality of the product gas produced. For
cycle 1, the methane content of the produced gases is greater at lower
CO, pressures but never exceeds 20 percent by volume. Subsequent cycles
produce gases of very low methane content. In most rums, COy comprises
90-99 percent of the product gas. No atempt was made to recycle this

gas.

CONCLUSIONS

1. The production of methane from coal beds by natural desorption
produces about 30 percent of the total in-place methane. This value
should increase slightly with beds of greater depth. This process 1is
diffusion controlled.

2. Carbon dioxide at pressure between 500 and 800 psig is capable
of completely desorbing all of the in-situ methane from coal beds by
cyclic injection. The process is primarily controlled by fluid dynamics,
Darcian or fully laminar. The latter production period, which may be

diffusion controlled, recovers an insignificant amount of methane for any

cycle.
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3. The large quantities of carbon dioxide which are permanently
adsorbed on the coal probably preclude its employment as an enhanced re-
covery process.

4, Cyclic carbon-dioxide injections at high pressure with recycling
of the product gas may represent a safe way to de-methanate a coal seam

prior to mining.
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Fig. 1 - Effect of CO2 Pressure on methane recovery
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CUMULATIVE CH4 RECOVERED, % TOTAL IN-PLACE

Fig. 2 -~ Determination of total methane in-place
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CUMULATIVE CH4 RECOVERED, % TOTAL IN-PLACE
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Fig. 3 - Methane recovery by natural and enhanced recovery
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CUMULATIVE CH4 RECOVERED, % TOTAL IN-PLACE
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Fig. 4 - Effect of CO2 pressure on slow production cycle
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CUMULATIVE CH4 RECOVERED, % TOTAL IN-PLACE

Fig. 5 -~ Comparison of 800-psig CO2 tests
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Fig. 6 - Effect of nitrogen concentration on methane recovery
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TABLE &
COMPOSITION OF PRODUCED GAS PER CYCLE

Sample and Run No. (not incl. no. 20 (see Table 3))

14 15 16 18 19 21 22 23 24

13

X of total

Couponent

Cycle
no.

11.1 19.6 6.0 5.8 4.3 5.7 11.3 7.0 15.6 12.9
91.1 92.0 94.6 90.5 92.3

5.2
94.0

86.4

83.6

88.0

75.7

87.9

0.7

0.8

0.7

0.7

3.8

1.1

2.2

2.9

4.7

1.0

0.8

2.8
96.7

2.7
96.7

3.5
96.0

4.2

95.2

1.8
96.9

8.2 6.0 4.3 3.9 2.4
92.5 95.0 95.5 96.7

90.3

8.4
91.1

0.5

0.6

0.6

0.6

1.3

0.9

0.6

0.7

1.5

1.5

0.5

1.0
98.5

1.6
97.8

0.5

99.0

1.8
97.7

2.3
97.1

0.9

98.3

1.3
98.1

2.6
96.8

2.5
96.7

1.6
97.4

92.3

0.5

0.6
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TABLE 6

PARTICLE-SIZE DISTRIBUTION OF CRUSHED COAL CORES

Sample & run no. 18

Apparent Diameter
(mm), less than:

Fraction of Total Weight

0.0372
0.0724
0.2518
0.4344
0.5036
0.6119
0.6597
0.7239
0.8835
1.0000

Sample & run no. 19

Apparent diameter
(mm), less than:

Fraction of total weight

0.1

0.335

0.565
0.855

10

15

20

25

45

0.0907
0.1714
0.4580
0.7209
0.7605
0.7937
0.8349
0.8929
1.0000

23.



APPENDIX A

EXPERIMENTAL PROCEDURE AND SIMULATION SCHEMATICS

FIGURES (A - 1) to (A - 6)

24,
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