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ABSTRACT

The objective of this project is to perform unique laboratory experiments with artificial
fractured cores (AFCs) and X-ray CT to examine the physical mechanisms of bypassing
in HFR and NFR that eventually result in less efficient CO2 flooding in heterogeneous or
fracture-dominated reservoirs. This report provides results of the second semi-annual
technical progress report that consists of three different topics.

In the first topic, laboratory experiments were performed on a Berea core to investigate
the changes in rock properties and fluid flow under different stress-state conditions. A
comparative study of different stress conditions was also conducted to analyze the effect
of the various loading systems. The experimental results show that fracture permeability
reduces significantly as the stress increases compared to matrix permeability. The
hydrostatic and triaxial stresses have greater impacts on permeability reduction compared
to applying stress in the uniaxial stress condition. Fracture flow dominates when the
applied stress is less, however, the matrix flow rate increases as applied stress increases
and dominates at high stress even if the fracture does not heal completely.

In the second topic, the preliminary results of static imbibition experiments are presented
as a precursor to image the saturation profiles using X-Ray CT scanner.  The static and
dynamic imbibition experiments have been done previously (Schechter et al, 2002). The
imaging of imbibition experiment is underway to track the saturation profiles using X-ray
CT scanner. Hence, no more conclusions are drawn from this study at this time.

In the last topic, the modeling of fluid flow through a single fracture incorporating the
effect of surface roughness is conducted. Fracture permeability is usually estimated by a
cubic law that is based on the theory of hydrodynamics for the laminar flow between flat
plates. However, the cubic law is too simple to estimate the fracture permeability
correctly, because the surface of real fracture is much more complicated and rougher than
the surface of flat plate. Several researchers have shown that the flow characteristics of
an actual fracture surface would be quite different due to the effect of tortuosity, impact
of surface roughness and contact areas. Nonetheless, to date, these efforts have not
converged to form a unified definition on the fracture aperture needed in the cubic law. In
this study, therefore, we show that the cubic law could still be used to model small-scale
and field-scale data as long as it is modeled effectively, accounting for the effect of
surface roughness associated with the fracture surface. The goal of this research is to
examine the effect of surface roughness for flow through fractures and to effectively
incorporate them into simulations with the aid of geostatistics. Since the research has
been supported with experimental results, the consistency of the results enabled us to
define a methodology for single fracture simulation. This methodology successfully
modeled the flow rate and pressure drop from fractured core experiments, which were
earlier not possible through parallel plate approach. Observations suggest that the fracture
aperture needs to be distributed to accurately model the experimental results. The effect
of friction and tortuosity due to surface roughness needs to be taken into account while
modeling.
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I. Investigating The Changes In Matrix and Fracture
Properties And Fluid Flow Under Different Stress-
state Conditions

1.1 Introduction

The main objective of this study is to analyze the variation of permeability with

the effective stress. Uniaxial, triaxial and hydrostatic laboratory experiments were

conducted to study the effect of confining pressure on permeability in both the

unfractured and fractured cores. Various works have been done in the past in

investigating the effect of confining stress on the core samples. The literature review is

divided into three parts. The first part deals with the study of permeability changes with

uniaxial stress. The review is further extended to include the triaxial and hydrostatic

effects on permeability. The later part of the review deals with the experimental study of

fracture permeability variations with the effective stress.

Fatt and Davis (1952) observed a reduction in permeability with an overburden

pressure. The permeabilities of eight cores were plotted as a function of the overburden

pressure. They observed that a significant decrease in permeability of the sandstones

occurs at an overburden pressure range of zero to 3000 psi. McLatchie et al (1958)

determined oil permeability of core material under various overburden loads from zero to

8000 psi. He concluded that the shaly cores have a greater percentage of reduction in

permeability compared to the changes in permeability of the clean sands. Wyble (1958)

used kerosene to apply a radial pressure of zero to 5000 psi to the cylindrical cores while

axial stresses were at atmospheric. He observed that even though the pressurizing system

is changed, the results still are consistent with the observations by Fatt (1953). Dobrynin

(1962) observed changes in physical properties with the overburden pressure. The

permeability at room temperature was calculated using nitrogen as the flowing medium.

He used two series of measurements, one with internal pore pressure equal to the
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atmospheric pressure, while the overburden pressure ranged from zero to 20,000 psi, and

the other with an internal pore pressure of 1800 psi. He found that on the basis of net

overburden pressure there was practically no difference between these two sandstones.

He also assumed that the changes in permeability under pressure depend mainly upon the

contraction of the pore channels.

Bergamini (1962) studied the effects of non-uniform stress on the permeability of

sandstones by applying radial confining pressure and axial stress independent of each

other. At first, tests were run with radial and axial stresses applied equally (hydrostatic

loading) and then the axial stress was kept constant while the radial pressure was

increased. Permeabilities were measured up to 4000 psi. The reduction of permeability of

the order of 10 percent was observed for most of the sandstones. Gray et al (1963)

showed that the permeability reduction of cylindrical samples of two sandstones, when

subjected to mechanical stress, is a function of the ratio of radial to axial stress. The axial

stress was only one-third of the applied radial stress. Wilhelmi et al (1967) conducted

tests on three outcrop sandstones at several confining pressures and axial stresses up to

approximately 80 percent of failure stress. He observed that greater reduction in

permeability occurred in hydrostatic loading but substantial reduction did occur upon

application of deviator (triaxial) stress. The deviator stress is σy – σx, where σy is the axial

stress and σx = σz, is the lateral stress.  The reductions were of the order of 10 to 20

percent for Berea sandstone.  Morita et al (1984) conducted triaxial failure tests on berea

cores and measured both vertical and horizontal permeabilities. The permeabilities

decreased initially during axial loading but increased again close to the failure because of

the dilation behavior of the rock. Holt (1990) conducted triaxial compression and

extension tests on Triassic sandstone. He observed that the single phase permeability

decreased rapidly at non hydrostatic stress conditions when the shear stress [1/2(׀σmax –

σmin׀)] exceeded the yield level. Keaney et al (1998) introduced a newly developed

single-ended transient pulse permeability measurement technique coupled to a high

pressure triaxial deformation apparatus. The technique was applied to Tennessee

sandstone and has demonstrated the dependency of complex interplay between

hydrostatic and non hydrostatic stresses. It was found that while performing the triaxial
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deformation experiments, the permeability decreased because of compaction, but close to

failure the permeability is increased due to dilation.

Hubbert et al (1957) showed that the fractures were formed perpendicular to the

least principal stress. Jones (1975) studied the effects of confining pressure on fracture

flow in carbonate rocks. He used uniform triaxial compressive loading up to 20,000 psi.

The fractures were fabricated and blocked by sandwiching with thin gum rubber. He

calculated the effective fracture clearance assuming the fractures to be parallel plate. He

concluded that fracture permeability is greatly reduced by increasing the confining

pressure. The fracture permeability behavior governed at lower confining pressures and

matrix permeability behavior governed at higher confining pressures. The fracture does

not heal completely even at 20,000 psi. Also the behavior of fractures in limestone,

dolomite and marble is sufficiently similar to be represented by the same expression.

Teufel et al (1993) made a case study of the Ekofisk field, which is a naturally fractured

chalk reservoir. Permeability was measured during hydrostatic and triaxial compression

tests on cylindrical samples that had a single, sub-planar fracture. He applied stress paths

of K (∆σHmin/∆σv) = 1.0, 0.5 and 0.2 on the loading tests. He found that under hydrostatic

loading, the permeability of unfilled fractures reduced greatly than the partially filled

fracture. Also the stress path of k = 1.0 (hydrostatic) will have maximum reduction in

permeability.

No research has been carried out to quantify the fracture aperture and

permeability of fractures so far. The change in effective permeability of fractures and

matrix has been studied in detail under different effective stress, but deriving the

permeability from the effective permeability to study the permeability of fracture alone

has not been considered. Also there is no work involved in the study of matrix and

fracture flowrates under different stress-state conditions. Hence our research extended the

previous work by investigating the changes in matrix and fracture permeabilities, fracture

aperture, matrix and fracture flowrates under different stress-state conditions (uniaxial,

triaxial and hydrostatic stresses). The results of the uniaxial stress experiment have been

provided in the earlier report (Putra et al, 2002). This report mainly discusses detail about
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triaxial and hydrostatic experiments and the comparison between the results of uniaxial,

triaxial and hydrostatic experiments.

1.2 Hydrostatic Stress Experiments

1.2.1 Experimental Description

The core sample is subjected to both overburden pressure and axial stress. The

axial stress is equal to the overburden pressure for the hydrostatic experiment.

Permeability is evaluated at various confining pressures and at various injection rates.

The cores are then fractured subsequently and the effective permeability due to fractures

is evaluated at various confining pressures and injection rates. The parameters are plotted

against overburden pressure to study the effect of confining stress.

1.2.2 Berea cores

Berea sandstone was used in this study. Berea sandstone was selected because it is

widely used as a standard porous rock for the experimental work in the petroleum

industry. The cylindrical core sample was cut from 0.5 ft3 blocks of Berea sandstone. The

diameter of the sample is 3.6 cm. The length of the core is 4.88 cm. The dimensions are

the average values of 3 to 4 measurements using a vernier caliper. The bulk volume of

the sample is 49.68 cc.

1.2.3 Brine composition

Synthetic brine was used in the experiments. It was prepared by dissolving Nacl

and CaCl2.2H2O in distilled water. The brine compositions are shown in Table 1.1.

1.2.4 Pore Volume and Porosity

The porosity is calculated by the saturation method. The saturation method of

determining porosity consists of saturating a clean dry sample with a fluid of known

density and determining the pore volume from the gain in the weight of the sample. For

this experiment, the core is saturated with brine. The pore volume is calculated from the

following expression
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b

drywet WW
PV

ρ
−

=

Where Wdry is the weight of the dry core, Wwet is the weight of the core after saturating

with brine and ρb is the density of the brine. The pore volume was calculated to be 11.71

cc.

Porosity is calculated as a percentage from the following expression

100*
BV
PV=φ

The calculated porosity is 23.58%.

1.3 Experimental Procedures

1.3.1 Core Saturation

Dry core samples were weighed on a balance. The core sample was then saturated

with deaerated brine using a vacuum pump for at least 12 hours. After saturating the core

samples with brine, a period of 3 days was allowed for the brine to achieve ionic

equilibrium with the rock.

1.3.2 Core Flooding

The saturated core is inserted in the Hassler-Type core holder. Overburden

pressure is applied in the radial direction and the axial tension is applied along the axis of

the Berea core, perpendicular to the overburden pressure. An initial overburden pressure

of 500 psi is applied. This is followed by core flooding with the brine solution at flow

rates of 5, 10, 15 and 20cc/min. The pressure drop across the core is recorded in the

transducer. The experiments are repeated for overburden pressures of 1000 psi and 1500

psi and the corresponding pressure drops are recorded. Subsequently, the core is fractured

along the axis and the experiment is repeated as before for the fractured core. The

experiment can be performed for the two-phase flows as shown in the figure (Fig.1.1).

However, the focus is on the single-phase flow.
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1.4 Discussion of Experimental Results

1.4.1 Effect of hydrostatic stress on the permeability

Permeability of the rock decreases with the increase in the applied stress. Fig. 1.2

shows the effect of overburden pressure on permeability of both the unfractured and the

fractured core. The permeability is reduced in both the cases with the increase in the

stress level; however the decrease in permeability of the unfractured core is very less

compared to the fractured core.

The resistance to fluid flow in fractures is less compared to the matrix. The fluid,

therefore, tends to take the preferential path of the fractures rather than flowing through

the matrix. Because of this reason, the effective permeability of the fractured core is

higher than the matrix permeability. The increase in the hydrostatic stress tends to close

the fractures and increase the resistance to fluid flow. Hence the effective permeability of

the fractured core reduces greatly with the increase in the hydrostatic stress. The effective

permeability of the fractured core will be close to the matrix permeability at higher

hydrostatic stress, but there will be some effect of fractures. This is because the fractures

are not completely healed even at a higher stress. Hence there will be a residual effect of

fractures on the effective permeability of the core as is evident from Fig. 1.3. The

normalized permeability of both the unfractured and fractured core is plotted against

overburden pressure at a flowrate of 5 cc/min.

1.4.2 Effect of hydrostatic stress on the fracture aperture

The fracture aperture is the width between the fracture surfaces. The fracture

aperture is not uniform along the fractures and depends on the roughness of the fracture

surfaces. If the fracture surface roughness is high, there will be more variations in the

aperture. The aperture will be maximum at some points and minimum at other points.

Hence the fracture permeability depends upon the fracture aperture distributions and the

conductivity of the fractures.   Since the fracture aperture is not uniform, it is very

difficult to quantify fracture aperture at all points of the fracture path experimentally.

Hence the assumption of parallel plate is used for calculating the mean fracture aperture.

The formula for calculating the fracture aperture using the above assumption is presented
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in the earlier report (Putra, 2002). The fracture aperture also depends upon the physical

properties of the core and also depends on the size of the core sample. The matrix

permeability and the effective fracture permeability greatly influences the calculation of

the mean fracture aperture.

The fracture aperture is calculated for different hydrostatic stress and flowrates. If

the hydrostatic stress increases then the effective fracture permeability and fracture

aperture decrease significantly. The fracture aperture is more dependent on the effective

fracture permeability than on matrix permeability since the variations of the matrix

permeability with increase in hydrostatic stress are less compared to the effective fracture

permeability. The fracture aperture is almost insensitive to the increase in the injection

rate. Fig. 1.4 shows the plot of fracture aperture against overburden pressure.

1.4.3 Effect of hydrostatic stress on the fracture permeability

The fracture permeability determination is based on the fracture aperture. The

fracture permeability is defined as the conductivity of the fractures to the fluid flow in the

fractured core. The effective permeability due to fractures is the combination of both

fracture permeability and matrix permeability. The fracture permeability is calculated

assuming the flow of fluid between the parallel plates. The fracture permeability is

proportional to the square of the fracture aperture by combining the viscous and the

Darcy equation for flow.  Usually the fracture permeability is very high compared to the

matrix permeability; and hence, the fluid tends to flow through the fracture with relative

ease compared to the matrix. However, the fracture permeability decreases significantly

with the increase in the hydrostatic stress. Figure 1.5 shows the variations of fracture

permeability with the increase in the hydrostatic stress.

1.4.4 Effect of hydrostatic stress on the fracture and matrix flow rates

The fracture flowrate depends on the fracture permeability and the fracture

aperture. The fluid flow in fracture and the matrix depends on the injection rate. The fluid

will rush in the fractures since the fracture permeability is high compared to the matrix.

But the volumetric rate of the fracture region is small compared to the matrix block,
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hence, some of the fluid diverts to matrix block. The flowrate through the fracture

depends on the fracture permeability and fracture aperture. If the hydrostatic stress

increases, the fracture permeability and aperture decrease, which also decreases the

volumetric rate of the fracture region. Therefore at high hydrostatic stress, the fluid flow

is not dominant in the fracture anymore although some amount of the flow still occurs

due to the non-healing nature of the fractures as presented in Figs. 1.6 and 1.7.

1.5 Triaxial Stress Experiments

1.5.1 Experimental Description

The core sample is subjected to both overburden pressure and axial stress. The

axial stress is kept at one-third of the overburden pressure for the triaxial experiment.

Matrix permeability is evaluated at various confining pressures and at various injection

rates. The cores are then fractured subsequently and the effective permeability due to

fractures is evaluated at various confining pressures and injection rates. The parameters

are plotted against overburden pressure to study the effect of confining stress.

1.5.2 Berea cores

Berea sandstone was used in this study. The diameter of the sample is 3.59664

cm. The length of the core is 5.047 cm. The dimensions are the average values of 3 to 4

measurements using a vernier caliper. The bulk volume of the sample is 53.23 cc. The

pore volume and porosity are calculated as discussed before under hydrostatic loading.

The pore volume is calculated as 12.55 cc and porosity is calculated as 23.58%. The core

saturation was carried out as explained before under hydrostatic loading.

1.5.3 Core Flooding

The saturated core sample is inserted in the Hassler-Type core holder. The axial

stress is kept one-third of the overburden pressure for the triaxial experiment. Overburden

pressure is applied in the radial direction and axial tension is applied along the axis of the

Berea core, perpendicular to the overburden pressure. An initial overburden pressure of

500 psi is applied. This is followed by core flooding with the brine solution at flow rates
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of 5, 10, 15 and 20cc/min. The pressure drop across the core is recorded in the transducer.

The experiments are repeated for overburden pressures of 1000 psi and 1500 psi and the

corresponding pressure drops are recorded. Subsequently, the core is fractured along the

axis and the experiment is repeated as before for the fractured core. The experiment can

be performed for the two-phase flows as shown in the Fig. 1.8. However, the focus for

these experiments is on the single-phase flow.

1.6 Discussion of Experimental Results

1.6.1 Effect of triaxial stress on the permeability

Permeability of the rock decreases with the increase in the applied stress. Fig. 1.9

shows the effect of overburden pressure on permeability of both the unfractured and the

fractured core. The permeability is reduced in both cases by an increase in stress level;

however, the decrease in permeability of the unfractured core is much less compared to

the fractured core.

The increase in the triaxial stress tends to close the fractures and increase the

resistance to fluid flow. Hence the effective permeability of the fractured core decreases

significantly with the increase in triaxial stress. At 1500 psia, the effective permeability

of the fractured core converges to matrix permeability due to the closing of fracture

aperture. Figure 1.10 shows that the matrix permeability decreases about 20% from its

initial permeability compare to 80% permeability reduction of fractured core at the same

triaxial stress.

1.6.2 Effect of triaxial stress on the fracture aperture

The fracture aperture is calculated for different triaxial stress and flowrates. If the

triaxial stress increases then the effective fracture permeability and fracture aperture

decrease significantly, which is a similar response to previously applied stresses (uniaxial

and hydrostatic stresses). Again it shows that the fracture aperture is almost insensitive to
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the increase in the injection rate. Fig. 1.11 shows the plot of fracture aperture against

overburden pressure.

1.6.3 Effect of applied stress on the fracture permeability

The fracture permeability determination is based on the fracture aperture.

However, the fracture permeability decreases greatly with the increase in the triaxial

stress. Fig. 1.12 shows the variations of fracture permeability with the increase in  triaxial

stress.

1.6.4 Effect of applied stress on the fracture flow rate

The fracture flowrate depends on the fracture permeability and the fracture

aperture. The rate of flow through the fracture depends on the fracture permeability and

fracture aperture. If the triaxial stress increases, the fracture region becomes small and the

flow of the fluid is not dominant in the fracture, although some amount of the flow occurs

due to the non-healing nature of the fractures. Hence, the fracture flowrate decreases with

increase in the triaxial stress. Fig. 1.13 shows the plot of fracture flowrate against

overburden pressure at various flowrates.

1.6.5 Effect of applied stress on the matrix flow rate

The matrix flowrate depends on the matrix permeability and the fracture aperture.

The presence of a fracture reduces the flow through the matrix because the resistance is

least in the fracture. However the increase of triaxial stress closes the fracture aperture

and hence the matrix flowrate dominates. Fig. 1.14 shows the plot between matrix

flowrate and the overburden pressure at various injection rates.
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1.7 Comparison of Uniaxial, Triaxial and Hydrostatic Results

1.7.1 Effect of applied stress on permeability of an unfractured core

As mentioned earlier that permeability of the core reduces with the increase in the

applied stress. Three types of applied stress used in our experiments are uniaxial, triaxial

and hydrostatic stresses. The difference between those stresses is illustrated in Fig. 1.15.

The uniaxial stress has uniform stress around the body of the core (confining stress), but

no axial stress applied in the axis of the core. The triaxial stress has the confining stress

and also has an axial stress applied along the axis of the core. The axial stress is kept one-

third of the confining stress. The hydrostatic stress has uniform confining and axial

stresses. Figure 1.16 shows clearly that hydrostatic stress has the highest impact on

permeability reduction followed by triaxial and uniaxial stresses. The permeabilities are

normalized and plotted against overburden pressure for the comparison of the results.

1.7.2 Effect of applied stress on permeability of fractured core

The permeability of the fractured core decreases with the increase in the applied

stress. As discussed in the previous section, the reduction in permeability is more in case

of hydrostatic stress since the applied stress is more than that of triaxial condition. Figure

1.17 is the plot between the normalized effective permeability due to fracture against

overburden pressure. The reduction in the effective permeability due to fracture is more

than the reduction in the matrix permeability in the unfractured core. The residual effects

of the fracture at higher pressure are due to the fact that the fracture does not heal

completely even at higher stress.

1.7.3 Effect of applied stress on fracture aperture

The fracture aperture greatly depends on the applied stress. The fracture aperture

variation depends on the fracturing technique. In the laboratory, the cores are fractured

using a hydraulic cutter. The fracture aperture depends on the load applied on the core

while cutting. The usual trend is that the fracture aperture decreases significantly with the

increase in the applied stress. Figure 1.18 is the plot between fracture aperture and the
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overburden pressure for a flowrate of 5cc/min. There is not much difference between the

hydrostatic and triaxial stress conditions.

1.7.4 Effect of overburden pressure on fracture permeability

The fracture permeability depends on the fracture aperture. The fracture

permeability decreases greatly with the increase in the applied stress. Figure 1.19 is the

plot between the overburden pressure and the fracture permeability.

1.8 Conclusions

1. The absolute permeability decreases with the increase in hydrostatic stresses.

2. The reduction of effective permeability due to fractures with applied stress is more

compared to the unfractured core.

3. The fracture aperture and fracture permeability decreases with an increase in the

applied stress.

4. Fracture flow dominates when the applied stress is less; however, the matrix flow rate

increases as applied stress increases and dominates at high stress even if the fracture

does not heal completely.

5. The hydrostatic stress has the greatest impact on reduction the matrix and fracture

permeabilities and fracture aperture followed by the triaxial and uniaxial stresses.
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Table 1.1- Synthetic Brine Composition

Salts Content Concentrations (mg/L)

Nacl 122,699

CaCl2.2H2O 7,497

Total Dissolved Solids 130,196
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Fig. 1.1 - Hydrostatic Loading Apparatus
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Fig. 1.15 - Illustration of uniaxial, triaxial and hydrostatic stresses
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Fig. 1.16 – Comparison of matrix permeability reduction due to different applied stresses
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II. Preliminary Results of Imaging Imbibition Process
Using X-Ray CT Scanner

2.1 Introduction

Imbibition is defined as the spontaneous absorption of a preferential wetting fluid

into a porous medium with the simultaneous expulsion of the contained fluid. Imbibition

is the most important mechanism of oil production in the waterflooding of fractured

reservoirs. Counter current imbibition is the process in which water and oil flow through

the same face in the opposite directions, whereas cocurrent imbibition is the process in

which water and oil flow in the same directions. Often, there are existences of two

interconnecting paths i.e. fractures and matrix in the reservoirs. The fractures constitute a

continuous path for fluid flow in the reservoir, while the matrix blocks are discontinuous

and provide the main storage for oil and gas.

The laboratory study includes static and dynamic imbibition experiments.

Although the experiments are conducted at room temperature, the future work will be

extended to the reservoir temperature. The main aim of the experiments is to obtain

relative permeability analysis of both matrix and fractures and wettability of the core

sample.

Wettability is described as the ability of a fluid to wet a solid surface in the

presence of a second fluid. Amott (1959) defined wettability as the relative preference of

a particular surface to be covered by one of the fluids under consideration. The

displacement effectiveness and ultimate oil recovery by driving fluids such as water

flooding depends on the wettability of the reservoir rock. After establishing the initial

water saturation, the wettability index can be determined using the Amott test method.

The determination of wettability index consists of two parts. The first part is spontaneous

imbibition in water and the second part is followed by forced displacement by water.

Wettability index for water is determined by the following expression.

                                                   
dwiw

iw

VV
V

WI
+

=
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where WI is the wettability index, Viw is the oil produced from the imbibition process and

Vdw is the oil produced from the displacement process.

In the porous media, the wettability is generally classified as either homogenous

or heterogeneous.  For the homogeneous case, the entire surface has a uniform molecular

affinity for either water or oil. But heterogeneous wettability indicates distinct surface

regions that exhibit different affinities for oil or water. The homogeneous wettability is

classified as strongly water-wet, strongly-oil wet and intermediate wet. The reservoirs are

not always strongly water-wet, because some crude oil samples showed an ability to wet

sand grains as explained by Bartell et al (1928). Later the terms intermediate-wet was

discussed by Marsden et al (1962). The heterogeneous behavior of the rocks was

discussed by Browns et al (1956). Mixed wettability refers to distinct and separate water-

wet and oil-wet surfaces, which coexist in a porous medium. The mixed wettability study

was conducted by Salathiel (1973). Speckled or spotted wettability refers to continuous

water wet surface enclosing regions of discontinuous oil-wet surfaces or vice-versa. The

speckled wettability was explained in detail by Morrow et al (1986).

The imbibition mechanism can be characterized by its rate and by the total

amount of fluid displaced, which depends on the wettability. Most of the early

experimental studies of imbibition were made with strongly water-wet system and

constant fluid properties. Several investigators have introduced changes in fluid

properties, rock properties and boundary conditions. Determination of the imbibition

mechanism provides knowledge about capillary forces and displacement behavior that

related to changes in the wetting behavior of the system. In laboratory, imbibition can be

performed under two conditions, which are static and dynamic conditions.

Static imbibition is defined as the displacement of the non-wetting fluid by the

wetting fluid through the action of capillary forces alone. Mattax et al (1962) studied the

size of the rock sample for determination of imbibition rate. He also discussed rock

characteristics such as porosity, permeability and the local variations of these parameters.

Boundary conditions were analyzed by Iffly et al (1972).

Brownscombe et al (1952) introduced dynamic imbibition process. The process

includes injecting on end of the single fracture and the water is produced on the other
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end. The imbibition process occurs once the water is injected and the oil is produced.

Graham et al (1960) presented the results of theoretical and experimental studies of

dynamic water injection. They found that the imbibition is rate sensitive and proportional

to the square root of the matrix permeability, interfacial tension, contact angle and

viscosity ratio.

The main aim of this study is to prepare the static and imbibition experiments for

the imaging saturation profiles using X-Ray CT scanner.

2.2 Experimental Description

Berea core samples are used for the static and dynamic imbibition experiments

(Table 2.1). Berea sandstones were used because it is widely used as a standard porous

rock for experimental work in the petroleum industry. Refined oil is used for the

experiments.

2.2.1 Brine composition
Synthetic brine was used in the experiments. It was prepared by dissolving Nacl

and CaCl2.2H2O in distilled water. The brine compositions are shown in Table 2.2.

2.3  Experimental Procedure

2.3.1 Core Saturation
Dry core samples were weighed on a balance. The core sample was then saturated

with deaerated brine using a vacuum pump for at least 12 hours. After saturating the core

samples with brine, a period of 3 days was allowed for the brine to achieve ionic

equilibrium with the rock.

2.3.2 Core Flooding
The saturated core is inserted in the Hassler-Type core holder. Overburden

pressure is applied in the radial direction. An initial overburden pressure of 500 psi is

applied. This is followed by core flooding with the brine solution at flow rates of 5, 10,

15 and 20cc/min. The pressure drop across the core is recorded in the transducer. The
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experiments are repeated for overburden pressures of 1000 psi and 1500 psi and the

corresponding pressure drops are recorded. Subsequently, the core is flooded with oil to

displace the brine. The core flooding is done till the irreducible brine saturation is

achieved. This may take many hours of flooding.

2.3.3 Imbibition Cell
The core is then taken out of the core holder and introduced in the imbibition cell.

The imbibition cell is filled with brine solution and the imbibition process is called the

counter current imbibition. The apparatus is a simple glass container equipped with a

graduated glass cap. The outlet valve is connected to the vacuum pump to remove any air

trapped during the transfer of the core. The recovery of oil initially is noted every half an

hour. Later the reading was taken once after 24 hours. The imbibition takes about 21

days. Figure 2.1 shows the imbibition cell that is used for the experiment.

2.3.4 Wettability Index Determination
To determine the wettability index for water (Iw), the core is transferred to Hassler

sleeve after the spontaneous imbibition for brine displacement. The injections were

performed at room temperature.

2.4 Experimental Results

2.4.1 Effect of Overburden Pressure on Absolute Permeability
Absolute Permeability of the rock decreases with the increase in the applied

stress. Figure 2.2 shows the effect of overburden pressure on permeability of the core

sample. The permeability of the core affects the imbibition process. If the permeability of

the rock is high, then the imbibition is faster and the recovery of oil is high.

2.4.2 Brine Recovery as a function of time
When oil is injected in the core, brine is displaced from the core. The recovery of

brine depends on the drainage capillary pressure. Once the saturation of water decreases,

the capillary pressure increases in the rock. Oil flooding can be done until the core
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reaches irreducible water saturation. Then any further injection of oil will result in almost

100% oil cut. Figure 2.3 shows the plot between brine recoveries and time. The

production of brine is much less after about 5 hours of oil injection at a flowrate of 1

cc/min. Figure 2.4 displays the result in terms of percentage of initial water saturation.

The initial water saturation decreases and after some time it stabilizes. This is the point of

irreducible water saturation. The capillary pressure will be high.

2.4.3 Oil Recovery as a function of time
When the imbibition process starts, the brine imbibes in the core and extracts oil

out of the core. Once the imbibition starts, the water saturation increases and the oil

saturation decreases until irreducible oil saturation is achieved. It may take several days

to attain irreducible oil saturation. The imbibition process is faster initially and then

stabilizes after some time. If the core is strongly water-wet then the recovery will be

greater. Also the imbibition process is fast. If the initial water saturation is more at the

start of the imbibition process then the imbibition occurs at a faster rate. This is because

the mobility of the water is high due to the initial water saturation. However the capillary

pressure will be low due to the initial water saturation. Hence the final amount of oil

recovered will be less and the percentage of initial oil in place is less compared to the

condition with low initial water saturation. Figure 2.5 shows the plot between oil

recoveries as percentage of IOIP against time. The recovery of oil is very less after about

10 hours of imbibition.
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Table 2.1 - Core sample used in the experiment

Diameter           3.602  cm

Length           4.684  cm

Area         10.190  cm2

Bulk volume         47.727   cc

Pore Volume          11.514  cc

Porosity           24.12   %

Table 2.2 - Synthetic Brine Composition

Salts Content Concentrations (mg/L)

Nacl 122,699

CaCl2.2H2O 7,497

Total Dissolved Solids 130,196
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III. Modeling Fluid Flow Through Single Fracture using
Experimental, Stochastic and Simulation Approaches

3.1 Introduction

The search for hydrocarbons has been expanded into harder-to-evaluate formations,

where highly potential and profitable hydrocarbon reserves are located. Over the past few

years, extensive studies have been conducted on fractured reservoirs, because they are

difficult to simulate due to the complexity of fractured reservoirs and also the presence of

tectonic discontinuities.

The production capabilities have been restricted because of the lack of knowledge about

fractures and flow, which occurs through fractures. Understanding the fluid flow

characteristics of fractures is very important to modeling flow through fractures and

hence extend it to the behavior of the reservoir. Fracture aperture and connectivity are the

most critical properties controlling flow and contaminant transport in the saturated zone.

This is because under laminar flow the transmissivity of a planar smooth-sided fracture is

very sensitive to aperture size. Transmissivity seems to be proportional to the cube of the

aperture. This is known as the "cubic law" of fracture flow.

Fracture permeability is usually estimated by a cubic law that is based on the theory of

hydrodynamics for the laminar flow between flat plates. However, the cubic law is too

simple to estimate the fracture permeability correctly, because the surface of real fracture

is much more complicated and rougher than the surface of a flat plate. Several

researchers have shown that the flow characteristics of an actual fracture surface would

be quite different due to the effect of tortuosity, impact of surface roughness and contact

areas. But the general conclusion from these efforts is that the cubic law is valid when an

appropriate average aperture can be defined. Many average apertures have been

proposed, and for some cases, some work better than others. Nonetheless, to date, these

efforts have not converged to form a unified definition on the fracture aperture needed in

the cubic law.
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In this study, therefore, we show that the cubic law could still be used to model small-

scale and field-scale data as long as it is modeled effectively, accounting for the effect of

surface roughness associated with the fracture surface. We understand the surface

roughness has a major part to play in modeling flow though fractures. The notion of a

perfectly smooth parallel plate theory is no longer assumed in this research because it

does not represent the true picture of a fracture surface.

We performed laboratory experiments to support our study and attempted to match the

observed results by modifying cubic law to account for the friction associated with the

flow through fractures. Though several papers have discussed the effect of friction in

flow considerations, the application of the friction factor into simulations has not been

looked into with reference to the experimental results. This stimulates the current effort to

develop a general model for simulating flow through fractures by incorporating the

friction factor or the flow modification factor to alter the fracture permeability

distribution on the surface of the fracture. The goal of this research is to examine the

effect of surface roughness for flow through fractures and to effectively incorporate them

into simulations with the aid of geostatistics. Since  research has been supported  with

experimental results, the consistency of the results enabled us to define a methodology

for single fracture simulation.

3.2 Previous Research Efforts

Early investigators based their idea that a parallel plate concept would be utilized to

understand the concept of fluid flow through fractures. The first comprehensive work on

flow through open fractures was by Lomize (1951). He used parallel glass plates and

demonstrated the validity of the cubic law as long as the flow was laminar. He also

investigated the effects of changing the fracture walls from smooth to rough and, finally,

to a model with different fracture shapes. He introduced the concept of defining the

surface roughness based on empirical data. Later he developed a flow regime chart that

takes into account the effects of roughness and turbulent flow in open fractures. He

proposed to include the roughness factor into the flow equation. Loius (1969),
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independently performed similar experiments and reached essentially the same

conclusions.

It was Snow (1969) who used this concept to simulate real fractures. The cubic law

governs the viscous flow through a fracture with smooth and parallel walls. He discussed

the need for careful assessment since real joints in a rock do not represent the parallel

plate model assumed then. With this idealization he treated flow along intersecting

fractures as being proportional to the cubic of the apertures and to the projection of the

field gradient generally not parallel to neither of the two fractures.

Sharp (1970) proposed an empirical flow law for natural fractures that was based on the

“effective” aperture, which is the difference in the opening from the initial condition, and

the net flow rate obtained from a calculation of measured flow rate minus that observed

under the initial closed condition.

Iwai (1976) conducted a comprehensive study of fluid flow through a single fracture and

investigated the validity of the cubic law of fluid flow through a single natural fracture.

One of the important features of his experiments was that the fracture planes had contact

area as well as roughness. Utilizing this observation an idealized fracture model can be

constructed in which flow paths are represented by an opening which varies continuously

normal to the flow, but with constant aperture in the flow direction. The aperture

variation normal to the flow direction is represented by the aperture distribution in the

fracture.

Nuezil and Tracy (1980) modeled a fracture flow, by representing fractures as a set of

parallel openings with different apertures. They generated an aperture distribution

through a lognormal distribution and studied the flow through numerical analysis. They

showed that the flow conformed to the cubic law and also that the maximum flow occurs

through the highest apertures, thereby quoting that the flow takes a preferred path. Thus

in their analysis, the flow depended on the tail of the frequency distribution. They stated

that the flow not only depends on the aperture but also the distribution parameters; the

first and the second moment of distribution in their case.



38

Witherspoon et al. (1980) stated that cubic law was found to valid whether the fracture

surfaces were held open or were being closed under stress, and the results were

independent of rock type. Permeability was uniquely defined by fracture aperture and

was independent of the stress history. The effects of deviations from the ideal parallel

plate concept only caused an apparent reduction in flow and may be incorporated into the

cubic law by a flow modification factor.

Tsang and Witherspoon (1983) studied the dependence of mechanical and fluid flow

properties of a fracture on its roughness and sample size. They correlated the shape of the

aperture distribution to the specific fractures of the stress-strain behavior and also to the

fluid flow characteristics. They concluded that the roughness of a fracture wall could be

characterized by a large-scale undulation. Also it is the large-scale undulation that

determines the shape of the aperture distribution curve. They also stated that if the

fracture surfaces were not well matched, it could lead to a larger mean and variance.

Theoretical and experimental studies of fracture geometry have shown that the parallel

plate model does not accurately depict a rock fracture. For example, Tsang and

Witherspoon (1983) present figures of actual fracture profiles derived from Bandis et al.

These fracture profiles are non-parallel and consist of both a large-scale undulation and

small-scale roughness.

Tsang (1984) investigated the effect of tortuosity in fluid flow through fractures and

found that it plays a significant role. He represented the flow paths with electrical

resistors placed in a 2 dimensional grid. Fracture apertures obtained from both laboratory

and from hypothetical analytic function were used in the study. He found out that, the

more small apertures that are present in the aperture distribution, the more the effect of

tortuosity. He related the increase in tortuosity and the decrease in connectivity of the

fluid flow paths to the increase in fracture contact area. Though he did not model the

effect of surface roughness in his study, he stated that the tortuosity along with the effect

of surface roughness depresses the flow rate from the value predicted by the parallel plate

theory by three or more orders of magnitude.
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Brown (1987) investigated the effect of surface roughness on fluid flow through rock

joints. He observed that the deviations of fluid flow from the cubic law could merely

stem from the fact that the surfaces are rough and contact each other at discrete points.

He performed a simulation of flow between rough surfaces using a fractal model of

surface topography. The solution was the local volume flow rate through the rock joint.

He solved this flow rate to derive the “hydraulic aperture” using the cubic law. He

concluded that for small aperture separation the topography did have a significant effect

through tortuosity, as stated by many researchers. And also he found out that the

parameter most affecting the fluid flow through rock joints is the ratio of the mean

separation between the surfaces to the root mean square surface height. This parameter

describes the nature of the roughness that protrudes into the fluid and accounts for most

of the disagreement with the parallel plate model.

Tsang and Tsang (1987) developed a conceptual model to effectively model flow

channels for fractured media. They employed a log normal distribution and generated a

statistical aperture distribution based on the mean, variance and spatial correlation length.

They made predictions for tracer breakthrough curves in the case of a single fracture with

varying overburden stress based on their conceptual model, which seem to correspond

well with the one provided by Moreno et al (1988). They also expressed the importance

of laboratory experiments to validate their model.

Other studies indicate that the fracture aperture may vary either as a correlated random

variable (Moreno et al., 1988) or as a random variable described through a fractal model

(Brown, 1987). Work by other researchers, such as Neuzil and Tracy (1981), Brown

(1987), Tsang and Tsang (1987), Tsang et al. (1988) and Moreno et al. (1988), have

shown that the flow through a fracture follows preferred paths or flow channels due to the

variation in fracture aperture. One aspect on which everybody agrees is that the fractures

are not parallel walls but are themselves 2-dimensional networks of variable aperture.

Hence, fluid flow in single fractures probably does not strictly follow the cubic law.

The focus of much research is to understand and quantify these deviations from the cubic

law. Also these investigations were associated with open fractures, and, of course, one
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will encounter many situations in the field where the fractures are not open. Usually,

fracture surfaces have some degree of contact, and the effective aperture will depend

upon the normal stresses acting across the discontinuity. But since a part of the flow is

blocked by asperities, there were concerns whether the cubic law would actually be valid.

Several researchers have proposed a new model wherein the fracture is represented by a

set of parallel plate openings with different apertures. The model leads to a modified

Poiseuille equation for flow, which includes an aperture frequency distribution for the

fracture.

In the last two decades, researchers have employed a more realistic description of a rock

joint with a range of apertures, and the impact of the aperture variation with a single rock

joint on its flow properties has been recognized (Tsang and Witherspoon, 1981, Tsang

1984, Brown 1987). The techniques used in the industry to obtain aperture measurements

include :  1) joint surface profiling 2) low melting point metal injection 3) resin casting

technique. These measurements have provided useful and important data for the basic

studies of flow and transport through variable-aperture fractures. However, in practical

field problems it is neither feasible nor practical to make such detailed measurements of

apertures in all fractures participating in the flow and transport. Furthermore aperture

measurements of exposed fractures at the borehole walls, tunnel walls of core samples

may be affected by the drilling or evacuation process so that they may not be

representative of the fractures in the rock mass.

Tsang and Tsang (1990) chose a statistical description of a fracture with variable

apertures by means of three parameters, two related to the aperture distribution: mean

aperture and the standard deviation, and one to the spatial arrangement of the aperture,

the spatial correlation length. This was similar to their previous study done (1989) where

they generated fracture aperture distribution by the same means and through simulation

study they concluded that the majority of the flow tends to be concentrated in certain

preferred paths. They performed numerical flow and transport experiments with them

with particular emphasis of correlating the fracture geometry parameters with observed

measurable hydrological quantities. Though they advocated the need for this kind of
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hydrological measurements and interpretation they concluded that the correspondence

between observations and the hydrological properties is still ambiguous.

Although several researchers have analyzed the fracture flow and its deviations from the

cubic law in great detail, none of them provide a definite picture of modeling both rough

surfaces and the roughness factor associated with it. Many conceptual models developed

in the past have not been corroborated through effective laboratory results.   In our

research we performed experiments with a fractured core to study the flow behavior in

fractures with increasing overburden pressures. We then analyzed the laboratory

measurements and derived the average fracture aperture width using the cubic law. The

focus of our research is to prove that accurate results could be obtained from the cubic

law if modified to account for the effect of roughness.

We generated a two dimensional network of fracture aperture distribution using

stochastic analysis (lognormal distribution), following similar approaches by earlier

researchers. We then accounted for the effect of surface roughness by means of a friction

factor to obtain a modified permeability distribution in a fracture and used a commercial

simulator to simulate the experiments. We have proved from our modeling that a single

fracture of constant aperture fails to model the experimental results and hence the cubic

law. Since we had the comfort of experimental results to support our model, we have an

effective methodology to simulate single fracture with fracture aperture distribution.

3.3 Distribution of fracture apertures

3.3.1 Aperture measurements

Fracture aperture is the key parameter in determining the flow and transport

characteristics of fractured media. In natural fractures there is usually a large distribution

of fracture apertures even within a single fracture. The fracture aperture distribution is

controlled by a number of factors. The history of mechanical, thermal and chemical

stresses on the material, from before it fractured, through the primary fracturing process

and the subsequent fracturing episodes on to its current state impact significantly the
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nature of the fracture aperture distribution. A sudden release of the confining pressure

may result in a widening of the fractures. Fracture spacing, which may be a result of both

material strength and stress history, also affects the fracture aperture distribution. ( van-

Golf-Racht, 1982)

Prediction of the fracture aperture distribution given the material properties and stress

history is next to impossible, since the material is likely to fail at flaws or inclusions in

the matrix, which cannot be captured in the averaged material properties. Field

determination of the fracture aperture distribution, or even simply mean aperture, is

currently an area of active research. Several direct techniques for detecting and imaging

fractures are under development.

Kumar et al (1997) employed nuclear magnetic resonance imaging techniques to measure

the spatial distribution of apertures. They found that they were in good agreement with

the normal and hydraulic aperture values from cores. Detwiler et al (1998) measured the

fracture aperture filed using a transmitted light. They showed how the error in aperture

field measurement could influence the results of flow and transport simulations. Lerner

and Steele (1998) developed a new field technique where a NAPL (Non-Aqueous Phase

Liquid) is injected into a fractured sandstone aquifer and the transient pressure response

from it was used to derive an aperture profile by reverse numerical modeling of the field

data. But they were only able to measure fracture apertures > 40 um.

Indirect techniques of measuring the statistics of the fracture aperture distribution

(arithmetic mean, geometric mean and standard deviation) include pumping and tracer

injection tests. These are currently the most accurate means of assessing fracture aperture

and its distribution in the field. At the laboratory scale, a much higher resolution can be

attained in the determination of the fracture aperture distribution. The higher resolution

can be used to increase our understanding of the controlling mechanisms and key

parameters for flow and transport in fractured porous media.

Several techniques have been applied to determine fracture aperture in the laboratory.

The two surfaces of an open fracture can be scanned using a surface profiler (Brown et

al., 1986), providing a map of the surface roughness at a theoretical resolution of 10 µm

for surface features. The two halves are then closed using a precise guidance mechanism.
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The fracture aperture distribution is now measured by knowing the distance between the

two halves. Although the principle of this technique is very precise, there is a high

probability that the confining pressure may change during a flow experiment, or that the

referencing between the two halves may not be adequate, resulting in an error in the

estimated fracture aperture distribution. In addition, the surface profiling process may

affect the surface due to the direct application of mechanical force.

The fracture aperture distribution can also be determined by the resin casting technique

and low melting point metal injection. These methods may yield the desired aperture

information, but render the fracture useless for flow experiments. Non-intrusive methods

of determining the in-situ fracture aperture, within a core holder, at a given confining

pressure, are thus more desirable. This would call for the use of computer-aided

Tomography or X-Ray CT scan. This would lead to very high processing costs, which

only a few companies could afford. Therefore alternative methods for finding fracture

aperture width and the fracture distribution have to be sought.

As an alternative to deterministic models, some investigators have used stochastic

methods of characterizing fracture occurrence and flow in fractures. In the past several

researchers have used geostatistics to generate the fracture aperture map, using

parameters like mean fracture aperture, variance of the distribution and spatial correlation

length. This process is effective and does not involve huge monetary resources and its

usefulness in modeling purposes is unparalleled. Though it may not be a true

representative of the fracture aperture system, they play an important role in

characterizing a fracture system.

3.3.2 Fracture Aperture Definition

Brown (1987) states that the "definition of the 'aperture' of a rough-walled fracture is not

unique." Due to the physical nature of rock fractures, researchers have used different

definitions of the fracture aperture in the literature. The rough surfaces of a fracture are

often depicted as distributions of apertures. Much research has focused on the mean, or

arithmetic average, aperture of this distribution, and its relation to fluid flow in the

fracture (Neuzil and Tracy, 1981; Brown, 1987; Tsang et al., 1988).
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Brown used several aperture-averaging formulas, including arithmetic average aperture,

in the cubic law to approximate the fluid flow in his numerically simulated fractures with

isotropic random aperture fields. He determined that the flow calculated from the cubic

law using the arithmetic average aperture, instead of the other aperture averaging

formulas, better approximated the flow from his numerical simulations.

Flow characteristics are strongly controlled by fracture apertures. In order to understand

the fracture aperture system, it is necessary to study the difference between mechanical

and hydraulic apertures. Reneshaw (1995) investigated the relationship between

mechanical and hydraulic apertures. He defined that the arithmetic mean of the fracture

apertures, expressing the average distance between the fracture walls, as mechanical

aperture. As stated earlier aperture derived from the cubic law is referred normally as the

hydraulic aperture. He concluded that the cubic law can predict the fluid flow through

fractures as long as an appropriate average fracture aperture is used.

A number of researchers have shown that the aperture values of laboratory core samples

usually follow a skewed distribution well approximated by a lognormal distribution. In

this research we have used geostatistical methods to generate a fracture aperture system

through a lognormal distribution and then perform flow experiments through them and

attempt to match the experimental results. Though this method is exhaustive, it has

proved to be effective. Basic concepts of lognormal distribution are discussed in

subsequent paragraphs below.

3.3.3 Log – Normal Distribution

Log normal distribution is closely related to the normal distribution. If the logarithm of a

variable is normally distributed, then the variable itself is log normally distributed. The

lognormal distribution is skewed with a long tail on the right hand side. However, after

transforming the data by taking the log of the variable, the distribution becomes

symmetric and normal.

If we consider X to be a log normally distributed variable, then we can define Y= ln X,

where Y is the value of the natural logarithm of the random variable X. if the mean of the



45

variable Y is α and the variance is β2 , we can write the probability density function for

the variable X as ,
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It can be shown that the mean and variance of the random variable X, is related to the

mean and variance of the transformed variable Y. we can write,
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where µ is the mean of the variable X, and σ2 is the variance of the variable X. so given

any standard mean and variance of a variable , we can generate the log-normal values by

first deriving the mean and variance as shown and then standardizing this using,

β
α−= xz ln

(4)

This is similar to the normal distribution. So by choosing a range of values for z , we can

generate a range of values for x. Fig. 3.1 illustrates an example of log normal distribution

with a mean of 56.4 and different variances.

We have shown earlier that aperture values obey a log normal distribution, which is

characterized by two parameters: the mean aperture and the standard deviation. In

addition to the aperture density distribution parameters, the spatial correlation length and

its anisotropy ratio for the variable apertures are needed to fully define the fracture.

The tail of the frequency distribution plays an important part since flow tends to occur

preferred paths having the highest aperture distributions. Having distributed the apertures

over a few points on the surface of the fracture, we move on to a Variogram to model the
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relationship between the points and then to kriging to estimate the aperture values at

points of no sampling.

3.4 Sampling and Estimation - Variogram and Kriging

The variogram is used by most geostatistical mapping and modeling algorithms.

Conservatively, 80% of all geostatistical reservoir-modeling studies involve the use of the

variogram for building one or all of the facies, porosity, and permeability models. Not

only is the variogram used extensively, it has a great effect on predictions of flow

behavior. The flow character of a model with a very short range of correlation is quite

different from a model with a long range of correlation. Occasionally there are enough

well data to control the appearance and flow behavior of the numerical models. The

available well data are too widely spaced to provide effective control on the numerical

model. The variogram provides the only effective control on the resulting numerical

models. The lack of data, which makes the variogram important, also makes it difficult to

calculate, interpret and model a reliable variogram. Variogram modeling is important and

the “details” often have a crucial impact on prediction of future reservoir

performance.

Furthermore, the variogram reflects our understanding of the geometry and continuity of

reservoir properties and can have an important effect on predicted flow behavior and

consequent reservoir management decisions. The variogram has been defined in many

books and technical papers. In words, the variogram is the expected squared difference

between two data values separated by a distance vector.

3.4.1 Modeling a variogram:

Measurements are often taken at a number of locations and the relationship between

observations at the various locations can be explored by variogram analysis. A variogram

summarizes the relationship between differences in pairs of measurements and the

distance of the corresponding points from each other.

3.4.2 Variogram Features:
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The main features of a variogram are,

a - Nugget variance : when the variogram appears not to go through the origin.

b - Range : the distance between locations beyond which observations appear

independent i.e. the variance no longer increases.

c - Sill : describes where the variogram develops a flat region, i.e. where the

variance no longer increases.

There are several methods available in the industry to model variograms. Some of them

are spherical, exponential , linear, gaussian etc.. For our research we have used spherical

model to model the variogram. The effectiveness of other models was also tested but we

choose to stick to the spherical model for consistency. The model was consistent with

different variances involved in the calculations.

Spherical Model:

The spherical model is probably the most commonly used to model variograms with a

sill.

The equation for the spherical variogram can be written as,
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3.4.3 Kriging

Kriging is based on the assumption that the parameter being interpolated can be treated as

a regionalized variable. A regionalized variable is intermediate between a truly random

variable and a completely deterministic variable in that it varies in a continuous manner

from one location to the next and therefore points that are near each other have a certain

degree of spatial correlation, but points that are widely separated are statistically

independent. Kriging is a set of linear regression routines, which minimize estimation

variance from a predefined covariance model. There are several types of kriging like
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simple kriging, ordinary kriging, universal kriging, zonal kriging and indicator kriging.

For our research purposes we have used ordinary kriging.

3.4.4 Generation of fracture aperture map from kriging

Earlier it was shown that by varying the values of normal variable z, generation of

random values for fracture apertures is possible. From the experiments, we had shown

that the fracture aperture width could be calculated from the single fracture flow

experiments by assuming the cubic law. Utilizing the mean fracture aperture width

calculated at different overburden pressures and assumed variances it was possible to

generate random values for fracture apertures. This was achieved by varying the range of

z from –2 to +2.

After generating sufficient number of aperture values (64 in all cases), the data was used

to model the variogram to generate the model parameters nugget, sill and range.  We used

spherical fit to derive these parameters. We have kept lag distance as a constraint to effect

consistency in our results. Figs. 3.4, 3.5 and 3.6 show the variogram modeling of the data

for the various cases of overburden pressure. The mean fracture apertures determined

from the experiments at overburden pressures of 500, 1000, 1500 was 56.4 µm, 40 µm ,

20 µm respectively. The variance assumed for these three aperture widths were 200, 100

and 30 respectively.

Once the parameters are known we proceed to find the values of apertures at unsampled

locations using kriging. The distance of interpolation corresponds to the size of the grid

in the simulator. Figs. 3.7, 3.8, and 3.9 show the fracture aperture distribution maps

generated through kriging. The aperture maps are the half widths of the actual. The maps

generated through kriging may not represent the actual surface, but it is effective in

imitating the surface of the fracture.

Having created the aperture maps through geostatistic modeling, our next step was to

input the varying permeability layer corresponding to the aperture distribution into the

simulation model to effectively study the flow through fractures.
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3.5 Modeling fracture flow experiments

As pointed out earlier, modeling of flow experiments has posed a major challenge to the

ongoing research on naturally fractured reservoirs. Tsang et al (1989) simulated similar

flow experiments by generating a fracture aperture distribution and then with constant

head boundary conditions on two opposite sides of the two-dimensional flow region, with

closed boundaries on the remaining sides. The results show that the majority of flow

tends to coalesce into certain preferred flow paths (channels), which offer least resistance.

Tracer transport was also simulated using a particle tracking method. Tsang and Tsang

(1990) chose a statistical description of a fracture with variable apertures by means of

three parameters, performed numerical flow and transport experiments with them with

particular emphasis of correlate the fracture geometry parameters. But concluded that the

correspondence between observations and the hydrological properties is still ambiguous.

None of the literature in the past points to a case where experimental results were

matched with particular reference to “real” fracture surfaces and the effect of surface

roughness in the form of the “friction factor”. Here we extend their methodology by

analyzing the laboratory data and using it for generating a fracture aperture distribution

with the aid of stochastic analysis, taking into consideration the effect of roughness on

flow.

3.5.1 Simulation model:

In this study it was imperative to show that the cubic law fails when the fracture is

modeled as smooth parallel plates. Figs. 3.10 and 3.11 show that by modeling the same, a

match for flow rate and pressure drop could not be achieved. Also if one variable could

be matched by altering the other, a simultaneous match could not be realized.

After a fracture aperture map was generated, we proceed to model the flow experiments.

A numerical model utilizing commercial simulator (CMG) was used to study the fluid

flow through fractures at different overburden pressures. The laboratory process in which

the water was injected through the fracture was duplicated in this modeling effort. The

cuboid grid block was applied to overcome the difficulty of modeling a cylindrical core
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shape (Putra et al. [1999]). A single porosity model was chosen since it is easier to model

a single fracture than a dual porosity model. The volume of the core was maintained

constant.

3.5.2 Conversion from cylindrical model to cuboid model:

Cylindrical core:

Cuboid model for simulation:

3.5.3 Establishing the correct model:

The first part of modeling any flow experiments is establishing the correct grid model

that would enable the simulation of the experiments properly. We had two sets of data,

one from the matrix flow experiments (unfractured core) and the other from fracture flow

experiments (fractured core).  In the first case flow experiments were conducted in an

Core Specifications
Area  (A)   = 4.9637 Sq.cm
Diameter   =  2.5146 cm
Length (L) = 4.9784 cm

Model Specifications
Height  (h)  = 1.9739  cm
Width (w)   =  2.5146 cm
Length (L)  = 4.9784 cm
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unfractured core and the data from these experiments was used to establish an appropriate

model, which would be utilized to simulate the fractured rock experiments. The data from

unfractured core experiments is presented in Table 3.1.

The simulation model was first tested for grid sensitivity. The sensitivity studies showed

that 31*15*15 was an optimum grid size. The results did not vary much when grid size

was increased in the X or Y direction. It is imperative to first determine if the model is

correct and efficient. We developed the model to simulate the matrix flow experiments.

The results of the matrix flow experiments proved that the model was good enough to

simulate the flow experiments. The model parameters are presented in Table 3.2.

The simulation run using this model gave impressive results. We were able to history

match the results using the model. This ascertained the model and allowed us to carry

forward the model for fracture flow experiments. Figures 3.12, 3.13, and 3.14 show the

history matching for the matrix flow experiments for various overburden pressures and

flow rates.

3.5.4 Surface Roughness Implications on Flow

The parallel plate model can be considered only a qualitative description of flow through

real fractures. Real fracture surfaces are not smooth parallel plates, but are rough and

contact each other at discrete points. Fluid is expected to take a tortuous path when

moving through a real fracture. Thus deviations from the cubic law are expected. The

experimental work by Iwai (1976) suggests that for rough-walled fractures under low

normal stress, changes in the aperture result in changes in flow rate consistent with the

cubic law. However, an electrical resistance analog by Tsang (1984) suggests that a 1-2

order magnitude error should result from neglecting the tortuosity when using the cubic

law. We have attempted to explore and model the magnitude and nature of the

disagreement between the parallel plate model and the actual flow through rough-walled

fractures.

Several approaches have been used in the past that explicitly accounts for surface

roughness. Various empirical flow laws have been presented that are based on
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experiments with idealized geometry. One such experiment used parallel plates with sand

glued to the walls to recreate small-scale roughness and another used parallel plates with

various machining marks to recreate large-scale fractures (Iwai, 1976). There were many

theoretical approaches that focused on redefining the cubic law to account for the surface

roughness and the resulting tortuosity of the fluid flow paths.

Most of the previous studies have targeted the search for an appropriate definition of an

average aperture in order to fit the cubic law. The general conclusion from these efforts is

that the cubic law is valid when an average aperture can be defined. Many definitions of

average aperture have been proposed, and for some reasons, some work better than

others. Nonetheless, to date, these efforts have not converged to form a unified definition

of the fracture aperture for the cubic law. In this research we have attempted to show that

distributing the fracture and accounting for the friction due to the effect of surface

roughness can effectively model the average aperture obtained from cubic law.

3.6 Our Approach

In order to effectively model the flow through fractures, we carefully observe the effect

of surface roughness on flow.  Since the surface of the fracture is rough, the roughness

has to have an impact on the nature and magnitude of flow. The flow velocity is reduced

because of the friction associated with it. Hence there is a decrease in flow rate when

flow occurs through rough surfaces. In an experimental study of flow between sand-

coated plates Lomize (1951) found that the friction factor could be generalized through

the empirical relation given below.

f =  1 + 17 (∈/Dh) 1.5         when  (∈/Dh) > 0.033 (7)

and

f = 1       when (∈/Dh) < 0.033 (8)

where the term (∈/Dh) is known as the relative roughness.

Louis(1969) through a similar experiment showed that flow could be made to fit the

experimental data by introducing a friction factor,
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f =  1 + 8.8 (∈/Dh) 1.5        when  (∈/Dh) > 0.033 (9)

and

f = 1       when (∈/Dh) < 0.033 (10)

Both of these relations have been researched and we have found that both of them fit the

data modeled by researchers in the past. For our purpose we have used Loius’ empirical

relation to fit our experimental data. The methodology will be discussed in the

subsequent paragraphs.

3.6.1 Relative roughness:

In our research the relative roughness is calculated by taking ratio of the average

roughness value over the hydraulic aperture of the fracture (∈/Dh). The hydraulic

aperture is given by the definition Dh = 2* 2b, where 2b is the fracture aperture width.

Figure 3.15 illustrates the concept of relative roughness.

Modification of permeability

After generating the fracture aperture distribution, we account for the effect of surface

roughness by modifying the permeability distribution in the fracture surface.  We

achieved this by using the equation shown below.

291045.81 w
f

k f ×





=  (11)

where, w is a fracture width in centimeters and  ƒ is the friction factor given by Louis

(1969). Figures 3.16 and 3.17 show the difference in permeability distribution before

accounting for roughness and after accounting for roughness. Modification of the

permeability layer proved to be the key while simulating the fracture flow later to match

the two parameters, flow rate and pressure drop across the core.

3.6.2 Fracture flow modeling:

A 31x15 grid block size was used in the x and y directions with 15 layers in the z

direction. The fracture layer was incorporated in the 8th layer and the rest are matrix
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layers. The modified permeability layer was used for the fracture layer, while the matrix

layers had a constant permeability obtained from experimental analysis. For the first

phase of preliminary results the simulation model was run for the 5cc/min injection rate

case. All the layers were injected with constant water injection of 5 cc/min through

injection points located at one extreme end and penetrating through all the layers.  At the

opposite end two production points were located, one for the matrix layers and the other

for the fracture layer to quantify the amount of water produced at those two points.

In the experimental process, the core is saturated with the water. Once water injection

was started with constant rate, water was produced simultaneously. Then the water that

was produced from both matrix and fracture layers at the end point was recorded. In the

simulation, however, the initial water saturation condition is assumed zero. A few

minutes after the injection was started, the flow rate was still in the transient condition

and then reached a steady state condition at later time. At steady state condition, we

recorded the amount of water produced from matrix and fracture. Similar simulation runs

were performed for different overburden pressures.

3.7 Results and Discussions

By introducing the corresponding modified permeability layer for the fracture, the results

obtained were quite impressive. The results matched very closely, opening the door to

more ventures through this kind of modeling. Earlier we had shown that by using a

parallel plate model the match was not possible. Though we could individually match

flow rate by increasing the permeability, we could not match the pressure drop

simultaneously. Using a fracture distribution model, we have made it possible to match

the experimental results, with good correlation between the two. Figures 3.18 and 3.19

show the results of the history match using a fracture distribution model.

The sensitivity analysis of our model in terms of changing variance of the aperture

distribution showed that as variance increased, the flow through fractures increased. This

was in correspondence with the earlier theory that fracture flow tends to be in preferred

paths, through highest apertures. The model also validates that the fact that the tail of the
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aperture distribution largely dominates the flow (Neuzil and Tracy, 1981). Fig. 3.20

illustrates the behavior of the flow through fractures as a result of increased variance.

Fig. 3.21 shows the corresponding behavior of the pressure drop across the core in terms

of increased variance of the aperture distribution.

3.8 Conclusions
1. From the observations we propose that the fracture aperture needs to be

distributed to accurately model the experimental results.

2. The effect of friction due to surface roughness needs to be taken into account

while modeling.

3. There is an increased flow though fractures when the variance of the aperture

distribution is increased. This reiterates the fact that tortuosity in fluid flow is a

significant factor.

4. Though we have shown that the mean aperture obtained from the cubic law could

be effectively modeled using the methodology we adopted, the value of the mean

fracture aperture is only a close estimate. The correct value of the mean aperture

can be obtained with high accuracy using an X-Ray CT Scan.

5. This methodology could be effectively utilized for large field scale modeling for

fractured reservoirs, where still the practice of using a constant permeability layer

to model fracture layer exists. We have shown here that though constant

permeability layer could match the flow rate and pressure drop across the core

individually, the possibility of it matching both simultaneously is very remote.

3.9 Future Work
The next part of our research is to test the validity of our method by physically measuring

the aperture and its distribution using an X-Ray CT Scan.

We plan to conduct two–phase flow experiments through a single fracture and extend this

methodology also to two-phase flow by also investigating the relative permeability data

in fractures.
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Table 3.1 - Matrix flow experimental observations

Injection rate, cc/min
Over burden
pressure, psia Pressure drop, psia

5 cc 500 4.1
5 cc 1000 4.5
5 cc 1500 5.1
10 cc 500 8.1
10 cc 1000 9.35
10 cc 1500 10.8
15 cc 500 12.4
15 cc 1000 13.7
15 cc 1500 16.4

Table 3.2 - Simulation model parameters

Grid 31*15*15
Porosity 0.2358
Pore Volume 5.827 cc
Water Density 1 g/cc
Compressibility 5.19295E-07 (1/psi)
Viscosity 1 cp
Reference pressure 7929.97 psia
Rock compressibility 4.35113E-07 (1/psi)
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Fig. 3.1 - Example of lognormal distribution for different variance

Fig. 3.2 - Features of a variogram.
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Fig. 3.3 - Spherical modeling of variogram

Fig. 3.4 - Variogram modeling for mean aperture = 56.4 µm variance = 200
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Fig. 3.5 - Variogram modeling for mean aperture = 40 µm variance = 100

Fig.3.6 - Variogram modeling for mean aperture = 30 µm variance = 30
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Fig.3.12 - History matching of matrix flow experimental data for q= 5 cc/min.
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Fig. 3.14 - History matching of matrix flow experimental data for q= 15 cc/min
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Relative Roughness:       =      ε/ Dh     
Where Dh = 2*2b

Fig. 3.15 - Relative roughness

Fig. 3.16 - Fracture permeability distribution before accounted for surface roughness

2b ε
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Fig. 3.17 - Fracture permeability distribution after accounted for surface roughness
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Fig. 3.18 - The flow rates comparison between laboratory and simulation results at 5
cc/min and at different overburden pressures.
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Fig. 3.19 – The pressure drop comparison between laboratory and simulation results at 5
cc/min and at different overburden pressures.
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