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PREFACE
• “To economically recover gas from deep 

reservoirs we need to learn how to drill 
smaller boreholes more rapidly and less 
expensively.”

Steve Holditch, Schlumberger fellow.
• Coiled tubing drilling required low weight 

on bit and becomes increasing 
economical with higher rotary speeds.
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OBJECTIVES
• Developing and testing an effective 

downhole drive mechanism and a novel 
drill bit for drilling with coiled tubing
– An improved Turbodrill that can deliver 

higher power at 1100 to 2200 RPM and 
low weight-on-bit

– A more durable drill bit that will employ 
high-temperature cutters to drill hard 
and abrasive rock in 3½-inch boreholes 



BENEFITS TO THE INDUSTRY

• Shorter higher power 2-7/8” Turbodrill for 
directional drilling
– Better utilization of hydraulic budget

• Dedicated directional coil drill bit
– For drilling rather than to just clean-out hole
– Learning combination of materials needed
– With low available WOB, ROP is RPM sensitive 



PROJECT PLANPROJECT PLAN

• Phase I: Design
– Catoosa Field Test of 2-7/8” Turbodrill 
– Higher Power Turbodrill 

• Turbine Blade Design 
• Bearings
• Seals 

– Drill Bit Design
• Cutter Finite Element Thermal Modeling
• High Temperature Cutter Fabrication 

• Phase II:  Manufacturing and Testing Prototype 
Turbodrill and High Temperature Drill Bit



PHASE I - GTI CATOOSA FIELD 
TEST FACILITY



CATOOSA FIELD TEST#1, BASELINE 2-7/8”
TURBODRILL

• Turbo-PDC drilled 184ft @ 42.8ft/hr (WOB=1klbs, 91gpm, RPM=2070, hHp/in2=1.9)
Shale (UCCS=6-9kPsi) dominated sequence with sandstone (UCCS=~9kPsi) intervals;
Drilled out of common casing until BHA clear of shoe.   

• Sidetracking operations (ABH=2º) @ 540ftMD to build 7º from vertical and hold
tangent in order to create separation before beginning ROP trials.  

2-7/8" FBS-T1 Mk2, Run#1 Data, Catoosa Test Facility.
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2-7/8" Mk2 T1-FBS Power Curve
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Mud  Type (  -  ) wbm wbm
Mud  Weight ( PPG ) 8.80 8.80
Surface  Pressure ( p.s.i. ) 879 2004
Turbine   Pressure ( p.s.i. ) 665 1395
Bit  Pressure ( p.s.i. ) 15 31
AMB   Bearings ( PVu )  0.66 1.90
AMB   Springs ( % )  27 53
Nominal Speed Rpm 1794 2599
Nominal Torque ( Lb.Ft. ) 44 93
Stall Torque ( Lb.Ft. ) 80 169
Power ( Hp ) 15 46
Hydraulic Thrust ( Lbf) 2122 4224
Mech. Horsepower ( Hp/in2) 1.13 3.44



CATOOSA FIELD TEST#2, BASELINE 2-7/8” TURBODRILL

• Turbo-PDC drilled 368ft @ 42.1ft/hr (WOB=1-2klbs, 117gpm, RPM=2691, hHp/in2=3.8)
Shale (@118ft/hr 3.8hHp/in2, UCCS=6-9kPsi) and sandstone (@126ft/hr 3.82hHp/in2, UCCS=9-
12kPsi) sequence; 100% rotation with 1ºABH and PDC.   

2-7/8" FBS-T1 Mk2, Run#2 Data, Catoosa Test Facility.
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AMB   Springs ( % )  35 57
Nominal Speed Rpm 2093 2691
Nominal Torque ( Lb.Ft. ) 60 100
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Power ( Hp ) 24 51
Hydraulic Thrust ( Lbf) 2813 4514
Mech. Horsepower ( Hp/in2) 1.80 3.82



CATOOSA FIELD TEST#3, BASELINE 2-7/8” TURBODRILL
2-7/8" FBS-T1 Mk2, Run#3 Data, Catoosa Test Facility.
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Mud  Type (  -  ) wbm wbm
Mud  Weight ( PPG ) 8.80 8.80
Surface  Pressure ( p.s.i. ) 1993 2638
Turbine   Pressure ( p.s.i. ) 1547 1903
Bit  Pressure ( p.s.i. ) 34 42
AMB   Bearings ( PVu )  2.20 2.98
AMB   Springs ( % )  58 71
Nominal Speed Rpm 2737 3036
Nominal Torque ( Lb.Ft. ) 103 127
Stall Torque ( Lb.Ft. ) 187 231
Power ( Hp ) 54 73
Hydraulic Thrust ( Lbf) 4662 5689
Mech. Horsepower ( Hp/in2) 4.02 5.49

2-7/8" Mk2 T1-FBS Power Curve
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Turbo-PDC drilled 62ft @ 78.5ft/hr (WOB=1klbs, 122gpm, RPM=2887, hHp/in2=4.1)
Shale (UCCS=6-9kPsi) dominated sequence with sandstone (UCCS=9-12kPsi) intervals;
POOH for impreg @ 1012ftMD for comparative ROP trial.  

• Turbo-Impreg drilled 20ft @ 20.4ft/hr (WOB=2-3klbs, 128gpm, RPM=3000, hHp/in2=5.4)
Shale (UCCS=6-9kPsi) dominated sequence with sandstone (UCCS=9-12kPsi) intervals



CATOOSA FIELD TEST#4, BASELINE 2-7/8” TURBODRILL
2-7/8" FBS-T1 Mk2, Run#4 Drilling Data, Catoosa Test Facility.
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Shale (UCCS=6-9kPsi) dominated sequence with sandstone (UCCS=9-12kPsi) intervals;
Tagged top Mississippian Limestone (UCCS=27-30kPsi) before POOH for impreg.   

• Turbo-Impreg drilled 20ft @ 15.8ft/hr (WOB=3klbs, 118gpm, RPM=2781, hHp/in2=5.4)
Mississippian Limestone (27-30KPsi) sequence with shale (UCCS=18-21kPsi) intervals

2-7/8" T1-FBS Mk2 Power Curve
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HIGH POWER TURBODRILL 
DESIGN

• Design Process of Blade Profile
– Fluid dynamics modeling
– Blade shape optimization 
– Dynamometer testing
– Bearing and Seal Testing

• Performance Comparisons



PHASE I – BASELINE MK2 BLADE MODEL
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With turbine at 2000Psi, 120gpm
• Power = 58hp (=4.3hHp/in2)

Nominal Torque = 108ft-lbf
• Nominal Speed = 2806RPM
• Axial Thrust = 4890lbf
• Total Efficiency = 44.9%



Phase II - TURBINE BLADE MODELS

• Computational 
Fluid Dynamics 

• Response Surface 
Methodology 



Phase II - NASA BLADE MODEL
STATOR

ROTOR
With turbine at 2000 Psi, 120 gpm
• Power = 90.8hp (=6.8hHp/in2)

(+32hp ≡ +55%)
• Nominal Torque = 190ft-lbf 

(+82hp ≡ +76%)
• Nominal Speed = 2500RPM   

(-300RPM ≡ -11%)
• Axial Thrust = 2937lbf     

(+1953 ≡ +40%)
• Total Efficiency = 84.8-85.5%



Phase II - Neyrfor Blade Model

With turbine at 2000Psi, 120gpm
• Power = ~120hp (=8.9hHp/in2)

(+62hp ≡ +107%)
• Nominal Torque = 310ft-lbf 

(+202hp ≡ +187%)
• Nominal Speed = 1175RPM   

(-1631RPM ≡ -58%)
• Axial Thrust = ~1630lbf     

(+3260 ≡ +67%)
• Total Efficiency = 87.8-88.5%

Blade
Modeling

Incomplete



•Improve tool efficiency from <40% range up to >70%
•Raise nominal torque output while maintaining RPM

•Reduce fluid separation over blade profile
•Maintain or lower pressure drop across blade inlets / outlets

•New impulse design reduces axial thrust
•Overall tool length reduction

PHASE II – TURBO-BLADE DEVELOPMENT 
CONCLUSIONS



Single- and Multiple-Objective Optimization

With 
Differential Evolution and Neural Networks

Man Mohan Rai
Exploration Technologies Directorate

NASA Ames Research Center
Moffett Field, CA-94035

Seminar at Smith-Neyrfor / Technology International
Houston, Texas

March 14, 2007



NASA AMES TURBINE BLADE DESIGN 
METHODOLOGY

• Dr. Man Mohan Rai Presentation
– Overhead slides contained in three .pdf files 

available from Bob Radtke at 
(radtke@kingwoodcable.com).



POTENTIAL AREAS FOR 
TURBODRILL REDESIGN

• Smith Neyrfor/Technology International assessment shows separated flow 
on first rotor

– Run case where the same blade design is used for the both the stator 
and rotor

– Redesign first rotor to reduce flow separation
– Investigate possibility of turbodrill design with three distinct airfoil 

sections
• First stator row (distinct) followed by repeating rotor and stator 

rows
– Investigate performance with 3-D blade designs

• Design for performance robustness
– Assess performance of various airfoil sections at off design conditions
– If necessary, redesign to reduce performance sensitivity to changing 

operating conditions



REMAINING TASKSREMAINING TASKS
• Phase I: Design

– Catoosa Field Test of 2-7/8” Turbodrill 
– Higher Power Turbodrill Blade

• Bearings and Seals 
• Turbine Blade (Fluid Dynamics)
• ARC Optimization and Geometry Modeling 

Algorithms 
– Drill Bit Design

• Finite Element Thermal Modeling
• High Temperature Cutter Fabrication

• Phase II:  Manufacturing and Testing Prototype 
Turbodrills and High Temperature Drill Bits



SMITH FIELD TEST DRILL BITS



K407K307 K503
K703

KGR282 KGR730

KT703KT503

IMPREGNATED DESIGN OPTIONS

Aggressive Design & Materials



THE SOLUTION  
THE ENDURUSTM DIAMOND

• High Temperature Wear 
Resistance

• High Attachment Shear 
Strength

• Highest Fracture 
Resistance



EFFECT OF PDC CUTTER 
SPEED ON WEAR

FIGURE 2:  EFFECT OF PDC CUTTER SPEED ON WEAR
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EFFECT OF TEMPERATURE 
ON TSP AND PDC WEAR RATE

FIGURE 1: EFFECT OF PDC AND TSP CUTTER TEMPRATURE ON 
WEAR RATE
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RELATIVE ROP OF DRILL BIT 
TYPES WITH INCREASING 
ROTARY SPEEDS

FIGURE 3: EFFECT OF BIT TYPE AND RPM ON RELATIVE ROP 
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MICROWAVE BRAZING



NASA 2002 SPACE ACT 
AWARD for INNOVATION



HIGH POWER TURBODRILL BIT

Thermal and Mechanical 
Performance Modeling

March 14, 2007

Dave Glowka
Red Rock Research, Inc.



OBJECTIVES
• Develop a technique for calculating TSP 

cutter temperatures on a high-speed drill 
bit

• Quantify any thermal advantage of TSP vs 
PDC cutters

• Develop a technique for predicting the 
performance and wear of a high-speed 
TSP drill bit



THERMAL MODELING OF TSP 
CUTTERS

• Based on analysis and numerical 
modeling method first used by in 1980 by 
Sandia National Laboratories

• Two-dimensional finite-element numerical 
models were constructed and run with
- 9-mm TSP cutter geometry
- Temperature-dependent thermal 
properties



DRAG CUTTER on a DRILL BIT
h, Tf

F
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PDC CUTTER WEAR DATA



FOUR LEVELS of WEAR 
MODELED

Lw = 0.38 mm Lw = 0.68 mm

Lw = 2.18 mm Lw = 4.37 mm



ESTIMATING WEARFLAT 
HEAT FLUX

Total Frictional Heating at Wearflat, Q = Fd V = μF V

Heat Flow into Cutter Wearflat, Qw = α Q = α μF V

Heat Flux into Cutter Wearflat, qw = Qw/Aw = α μ V F/Aw

                       Possible Range in Wearflat Heat Flux

Energy partitioning fraction, α 0.2 0.9
Friction coefficient, μ 0.03 0.30
Cutter velocity, V 0.5 12  m/sec
Cutter penetrating stress, F/Aw 35 700  MPa
Wearflat heat flux, qw 1.1E+05 2.3E+09  W/m2



Measured Cooling Coefficients for PDC Cutters



TYPICAL FE TEMPERATURE 
CALCULATIONS



CALCULATED TEMPERATURES     
for TSP and PDC CUTTERS
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EFFECTS of ROCK-CHIP 
BUILDUP on DIAMOND FACE
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TSP BIT PERFORMANCE 
MODELING

• Based on PDCWEAR computer code 
developed in 1986 by Sandia National 
Laboratories

• Code was updated to include new thermal 
response equations for TSP cutters

• Glenn Corser of Applied Design and 
Technology developed user-friendly GUI 
and database management routines to 
facilitate use of the code 

• New software is called DragBit





DRILLING FORCES and 
MOMENTS on a DRAG BIT



EFFECTIVE DEPTH of CUT



MEASURED SINGLE-CUTTER    
PENETRATING STRESSES



ANALYSIS OF THE 4-1/8” M09 BIT

• GeoDiamond bit drawing dated 8/6/98
• 39 cutters arranged in 9 blades
• Multiply-redundant cutter layout, 

especially near gage
• 9-mm TSP cutters assumed in analysis



SIMULATED DRILLING 
CONDITIONS

• Sierra White Granite
• 300, 2200, and 3000 RPM
• 30 and 300 ft/hr ROP
• Typical drilling mud cooling rates



Predicted Bit Life 
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Predicted Cutter Wear Distribution 
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Effects of Bit Wear on WOB 
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Predicted Cutter Wearflat Temperatures 
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Predicted Drilling Torque and Bit Side Force 
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SUMMARY OF THERMAL 
MODELING WORK

• TSP cutters run significantly cooler than PDC 
cutters due to:
- Thicker diamond layer
- Higher thermal conductivity

• Thermal response functions have been calculated 
for both cutter types for a variety of downhole 
conditions

• DRAGBITTM code has been developed to predict 
bit performance for TSP and PDC cutters

• Preliminary analysis of 4-1/8” high-speed bit has 
been completed



ACCOMPLISHMENTS

Phase II - Prototype Advanced Turbodrill
Redesign of turbine power stage blades with the objective of:
–Higher pressure drop per stage (pressure = turbo-power
–50% power stage length reduction (50% length reduction of turbine power 
section and a 30% reduction for the whole turbodrill)
–13% increase in mechanical output efficiency

Catoosa test provided benchmarks for Phase II prototype 
advanced turbodrill testing.  

• Turbo-PDC Drilling 1hHp/in2 ~ 10ft/hr
• Turbo-Impreg Drilling 1hHp/in2 ~ 4ft/hr



CONCLUSIONS
• GTI Catoosa Field Test Provided Baseline 

Turbodrill ROP
• Turbodrill Redesigned for Higher Power in 

a Shorter Tool – Alpha and NASA Blades
• A More Durable High Speed Fixed Cutter 

Drill Bit Design with DRAGBITTM

• Phase II Field Test will compare ROP of 
Baseline and Two Higher Power 
TurboDrills


