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The northern Gulf of Mexico continental slope is now covered with overlapping
tracks of high quality 3D-seismic data. Analysis of these data by industry, government
(MMS), and academic geoscientists underscores the extreme geologic complexity
imposed on this province by the interaction of sediments and salt. In this framework,
faults concentrated along intraslope basin margins function as conducts for the migration
of fluids and gases to the modern seafloor from deep petroleum-generating horizons.
Within the gas hydrate stability zone, this vertical flux produces gas hydrate composed
largely of thermogenic gases (structure I1). Flux rate is linked to hydrate formation in
that rapid fluid systems may transfer heat which eliminates the gas hydrate stability zone.
In contrast, moderate-to-slow flux results in massive gas hydrate deposits that fill veins
and fractions within faulted zones. These faults frequently extend to the seafloor where
gas hydrate mounds occur in a spectrum of sizes. Observable gas seeps and larger gas
plumes representing the composite effect of many small seeps occur over areas where
hydrates are exposed. Such plumes suggest that fault-supplied gas is consistently
bypassing the surface and near-surface gas hydrate deposits and entering the water
column. This process provides a constant supply of gas for hydrate formation. Results of
field experiments show that dlight changes in water temperature can cause surface
exposures of hydrate to decompose. A constant fault-related supply of subsurface water
and gas causes surficial hydrate deposits to regenerate after a thermal decomposition
event.
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Geological-Biological
Responses to
Fluid and Gas Expulsion
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Problem:

Reliable Prediction of
Bottom Type from
Remotely Sensed Data



Deepwater Discoveries

79 Confirmed Discoveries

Estimated 6+ BBE Announced

Development Plans Publicized on
at Least 32 Projects (>1500° WD)




Approach:

3D-Seismic Surface Attribute Data

and Wave-Form Analysis
Calibrated to “Ground-Truth”



Methods

3D-Seismic
Geoquest Software
Ground Truth

e Submersible Observation
* Piston Cores
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Garden Banks 387 — 388
(Cooper Prospect)
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Structural Interpretation
Conventional Horizon Attributes

Amplitude map of the water bottom shows high
amplitudes related to gas-hydrate systems with
phase reversals at gas-saturated mud volcanoes.
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Summary

Few simple BSRs — complex geological
framework.

Gas hydrates concentrated in intraslope basin
margins.

- Numerous faults

- Salt-focused vertical fluid/gas explusion
Fluid-gas expulsion rate controls seatloor
response.

- Rapid flux — mud prone

- Slow flux — mineral prone

- Surficial gas hydrates — intermediate flux



Summary

e Oceanic processes atfect surface gas hydrates.

 Abundant supply of gas-fluid to regenerate
surface hydrates.

* Long-term changes in gas-hydrates forced by
global climate change (sea level and sediment

supply).
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