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ABSTRACT

This is the second annual report for contract DE-AC26-99BC15211. The report describes
progress made in the various thrust areas of the project, which include internal drives for
oil recovery, vapor-liquid flows, combustion and reaction processes, instabilities and
upscaling and the flow of fluids with yield stress. The report is mainly a compilation of
previous topical reports published in the second year of the project, which ended on May

5,2001. Advances in multiple processes and at various scales are described.

In the area of internal drives, significant progress was made in the modeling of the
nucleation and growth of the gas-phase driven by mass transfer, which particularly
applies to foamy oil. A review of various issues in phase change in porous media is also
presented. In the area of vapor-liquid flows, we describe the scaling of the rates of
produced fluids in laboratory displacements in conjunction with gas-liquid flows. A
report on the dynamics of concurrent gas-liquid flows is also given. In the area of
combustion, we continue our investigation at two different scales, one involving pore-
network scale modeling, and another involving the propagation of combustion fronts in
porous media at the large scale. In the area of viscous instabilities, upscaling and
identification, we report on three studies, one involving the upscaling of processes with
fast kinetics, another on the upscaling of displacements in fractured systems and a third
on the identification of the permeability heterogeneity in anisotropic systems, from the
injection of a passive tracer. On-going work in the area of flow of fluids with yield stress

is also reported.






EXECUTIVE SUMMARY

This is the second annual report of an investigation of the various multi-phase and
multiscale transport and reaction processes associated with heavy oil recovery. The thrust
areas of the project include the following: Internal drives, vapor-liquid flows, combustion
and reaction processes, fluid displacements and the effect of instabilities and
heterogeneities and the flow of fluids with yield stress. These find respective applications
in foamy oils, the evolution of dissolved gas, internal steam drives, the mechanics of
concurrent and countercurrent vapor-liquid flows, associated with thermal methods and
steam injection, such as SAGD, the in-situ combustion, the upscaling of displacements in
heterogeneous media and the flow of foams, Bingham plastics and heavy oils in porous

media and the development of wormholes during cold production.

In many processes associated with heavy oil recovery, internal drives, namely these
driven by applied supersaturation in dissolved gases or heat content, are common. The
main result is the growth of a gas phase, which is driven by mass or heat transfer,
depending on the kind of the applied supersaturation. We have conducted various studies
of this multifaceted problem. In this report, we present results in two areas, one
associated with the nucleation and growth of a gas phase from a supersaturated liquid,
and another reviewing recent advances on phase change processes in porous media. The
first study describes a mathematical model of the dynamics of gas evolution as a function
of the rate of application of the supersaturation for solution gas drive. With simple
changes in variables, it also finds application to the process of internal steam drive. The
second study is a compilation of recent findings in general phase change problems in
porous media. We review notable advances published in the year 1999 in the area of
phase change and phase growth in porous media. The review identifies common

processes at the various scales and points out important open problems.
The simultaneous flow of vapor and liquid phases is common to steam injection.

Counter-current flows are encountered in Steam-Assisted-Gravity-Drainage (SAGD), and

in steam injection in horizontal wells. Concurrent flows are found in typical
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displacements, in solution gas-drives near wells, and various other contexts. In this
section we report on two studies, one dealing with transient gas-liquid flows with an
evaporating component, although at time scales where evaporation is not significant, and
another on the dynamics of two-phase flows in heterogeneous media where capillarity
induces a trapped phase. The first study shows how the flow rates of the produced fluids
in laboratory displacements can be used to assess the exponent of the relative
permeability of the flowing liquid. We propose a novel diagnostic technique to infer these
properties, which allows for the mechanism of fluid flow to be uncovered. The second
study is a new approach, based on what we term Darcian Dynamics, to describe the
dynamics of the flow of a disconnected phase, in the form of ganglia, in the flow field of
a displacing continuous phase. It is a computationally fast approach for the evaluation of
quantities in concurrent and counter-current flows, such as the critical capillary number
for mobilization, the subsequent movement of the mobilized phase, and its possible
stranding and/or coalescence. The two studies do not address phase-change or heat

transfer issues, which are currently under consideration.

A well-established method for the recovery of heavy oils is in-situ combustion. Two
particular aspects are analyzed in this project: The description of the process at the pore-
network scale, and its upscaling at the large scale for field applications. A detailed pore-
network simulator is described in the first study. The simulator accounts for all relevant
phenomena at the microscale, including mass transfer by convection and diffusion,
viscous flow, heat transfer in the porespace and the solid matrix and chemical reactions.
It predicts small-scale patterns, including particularly the structure of the combustion
zone and associated instabilities. The simulator can be used to understand the combustion
process from first principles and to delineate ignition, extinction and sustained
propagation phenomena. In the second study, we continue our previous work using an
asymptotic approach to describe the movement of combustion fronts in porous media.
This approach is essential for the upscaling of the process at the field scale. The novel
aspect of the present effort is the incorporation of the effect of heat losses in non-

adiabatic combustion processes.
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The effect of macroscale heterogeneity on displacements, including those of heavy oil is
an important consideration. Key issues include the identification of the heterogeneity, and
its upscaling. We report on two studies, one on the continuation of a previous effort on
the identification of permeability using a passive tracer, and another on the development
of a model equation to incorporate heterogeneity effects in both stable and unstable
displacements. The work on the identification of permeability is an extension of our
previous study for direct inversion to anisotropic porous media. This technique is the
first, to our knowledge, that in principle allows one to identify the heterogeneity of
permeability along the principal axes of anisotropy. The second study provides a new
model equation to capture the effect of heterogeneity (noise) on large-scale front
propagation, by proposing an extension of the so-called KPZ equation. We describe an
approach, in which stable and unstable effects can be incorporated using a non-local
formalism. The properties of this equation are examined in detail, both for stable and

unstable processes.
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INTRODUCTION

This project is an investigation of various multi-phase and multiscale transport and
reaction processes associated with heavy oil recovery. The thrust areas of the project
include the following: Internal drives, vapor-liquid flows, combustion and reaction
processes, fluid displacements and the effect of instabilities and heterogeneities and the
flow of fluids with yield stress. These find respective applications in foamy oils, the
evolution of dissolved gas, internal steam drives, the mechanics of concurrent and
countercurrent vapor-liquid flows, associated with thermal methods and steam injection,
such as SAGD, the in-situ combustion, the upscaling of displacements in heterogeneous
media and the flow of foams, Bingham plastics and heavy oils in porous media and the
development of wormholes during cold production. Funding of the project is for three
years, from May 6, 1999 to May 5, 2002.

In this report, progress made in the various areas outlined above during the second year
of the project is described. Work was conducted in all areas, with progress being greater
in some areas compared to others, for a variety of circumstances. During the reporting
period, a total of up to 8 students were supported by the project. A number of
publications and 11 technical reports have resulted from this effort. The publications are
listed below. The report is essentially, but not exclusively, a compilation of the topical

reports.

This report is organized as follows: For each of the four first thrust areas, namely internal
drives, vapor-liquid flows, combustion dynamics, and instabilities and heterogeneity, we
provide a brief summary of the work performed, followed by two reports each. Work in
the thrust area of fluids with yield stress will not be reported here. Although progress was
made, the results obtained are preliminary and further work is required before they can

become conclusive.






PUBLICATION LIST

Laroche, C., Chen, M., Yortsos, Y.C., and Kamath, J., “Time Scaling of the Rates of
Produced Fluids in Laboratory Displacements”, Water Res. Res., submitted (2001).

Yortsos, Y.C., and Stubos, A.K, “Phase Change in Porous Media”, Current Opinions in
Colloid and Interface Science, in press (2001).

Kechagia, P., Yortsos, Y.C. and Lichtner, P., “A Non-Local KPZ Equation to Model
Interface Growth”, Phys. Rev. E, in press (2001).

Zhan, L. and Yortsos, Y.C., “A Direct Method for the Identification of the Permeability
Field of an Anisotropic Porous Medium”, Water Res. Res., in press (2001).

Lajeunesse, E., Martin J., Rakotomalala, N., Salin, D., and Yortsos, Y.C., “The Threshold
of Instability in Miscible Displacements in a Hele-Shaw Cell at High Rates”, Phys.
Fluids, in press (2001).

Yiotis, A.G., Stubos, A.K., Bountouvis, A., and Yortsos, Y.C., “A 2-D Pore-Network
Model of the Drying of Single-Component Liquids in Porous Media”, Adv. Water Res.
24,437-458 (2001).

Yortsos, Y.C., Xu, B., and Salin, D., “Delineation of Microscale Regimes in Fully
Developed Drainage and Implications for Continuum Models”, Comp. Geosc., submitted
(2000).

Zhan, L. and Yortsos, Y.C., “The Shape of a Gravity Finger in a Rectangular Channel in
a Homogeneous Porous Medium”, Transport in Porous Media, submitted (2000).

Zhan, L. and Yortsos, Y.C., “A Note on the Use of Streamline Coordinates in Porous
Media Displacements”, Water Res. Res., submitted (2000).

Kechagia, P., Tsimpanogiannis, I.N., Yortsos, Y.C. and Lichtner, P., “On the Upscaling
of Reaction-Transport Processes in Porous Media with Fast Kinetics”, Chem. Eng. Sci.,
submitted (2000).

Shariati, M. and Yortsos, Y.C., “Stability of Miscible Displacements Across Stratified
Porous Media”, Phys. Fluids, submitted (2000).

Yortsos, Y.C., “The Permeability Variogram from Pressure Transients of Multiple
Wells”, in “Theory, Modeling, and Field Investigation in Hydrogeology: A Special
Volume in Honor of Shlomo P. Neuman's 60th Birthday” (D. Zhang, and C.L. Winter,
eds.), Geological Society of America Special Paper {\bf 348}, 19-23 (2000).



Yortsos, Y.C., “Physical Considerations in the Upscaling of Immiscible Displacements in
a Fractured Medium”, in “Dynamics of Fluids in Fractured Rock” (B. Faybisenko, P.A.
Witherspoon and S.M. Benson, eds.), Geophysical Monograph Series {\bf 122},
American Geophysical Union, 235-251 (2000).

Zhan, L., and Yortsos, Y.C., “Identification of the Permeability Field of a Porous Media
from the Injection of a Passive Tracer”, Phys. Rev. E 62, 863-879 (2000).

Tsimpanogiannis, I.N., Yortsos, Y.C., and Stubos, A.K., “Evaporation of a Stagnant
Liquid”, Ind. Eng. Chem. Res. 39, 1505-1513 (2000).

Lu, C., and Yortsos, Y.C., “A Pore-Network Model of Combustion in Porous Media”,
paper SPE 69705 presented at the International Thermal Operations and Heavy Oil
Symposium (ITOHOS), Margarita Island, Venezuela (March 12-14, 2001).

Akkutlu, I., and Yortsos, Y.C., “The Dynamics of Combustion Fronts in Porous Media”,
paper SPE 63225 proceedings of the 74th SPE Annual Fall Meeting, Dallas, TX (Oct. 1-
4, 2000).

Zhan, L. and Yortsos, Y.C., “A Direct Method for the Identification of the Permeability
Field of an Anisotropic Porous Medium”, paper SPE 62976 proceedings of the 74th SPE
Annual Fall Meeting, Dallas, TX (Oct. 1-4, 2000).

Lu, C. and Yortsos, Y.C., “The Dynamics of Combustion in Porous Media at the Pore-
Network Scale”, paper presented at the 7th European Conference on the Mathematics of
Oil Recovery, Baveno, Lago Maggiore, Italy (Sept. 5-8, 2000).

Laroche, C., Yortsos, Y.C., and Kamath, J., “Time-Scaling of the Rates of Produced
Fluids in Laboratory Displacements in Porous Media”, paper presented at the 7th
European Conference on the Mathematics of Oil Recovery, Baveno, Lago Maggiore,
Italy (Sept. 5-8, 2000).

Lu, C., and Yortsos, Y.C., “A Pore-Network Model of Smoldering Combustion}, paper
presented at the AIChE Fall Meeting, Los Angeles, CA (November 12-17, 2000).

Shariati, M., and Yortsos, Y.C., “A Study of Miscible Displacement in the Gap of a Hele-
Shaw Cell with a Non-Monotonic Viscosity Profile”, paper presented at the AIChE Fall
Meeting, Los Angeles, CA (November 12-17, 2000).

Kechagia, P., Yortsos, Y.C. and Lichtner, P., “On the Constraint of Local Equilibrium in
the Upscaling of Reaction and Transport Problems in Heterogeneous Porous Media”,
paper presented at the AIChE Fall Meeting, Los Angeles, CA (November 12-17, 2000).



Zhan, L., and Yortsos, Y.C., “Identification of Permeability Heterogeneity from Tracer
Displacement: Sensitivity Analysis”, proceedings of Conference Tracers and Modelling
in Hydrogeology, Tram 2000, Liege, Belgium, pp. 63-73 (May 23-26, 2000).

Shariati, M., and Yortsos, Y.C., “The Effect of Heterogeneity on the Stability of
Miscible Displacements in Porous Media”, paper presented at the AGU Fall Meeting, San
Francisco, CA (December 16, 1999).

Zhan, L., and Yortsos, Y.C., “The Identification of the Permeability Heterogeneity of
Porous Media from the Displacement of a Passive Tracer”, paper presented at the APS
(DFD) Fall Meeting, New Orleans, LA (November 21-23, 1999).

Amili, P. and Yortsos, Y.C., “Stability of Heat Pipes in Vapor-Dominated Systems”,
paper presented at the ASME Fall Meeting, Nashville, TN (November 14-19, 1999).

Kechagia, P., and Yortsos, Y.C., “A Model Stochastic Equation for Convection-Diffusion
Equation in Evolving Porous Media”, paper presented at the AIChE Fall Meeting, Dallas,
TX (November 1-5, 1999).






L. INTERNAL DRIVES

In many processes associated with heavy oil recovery, internal drives, namely these
driven by applied supersaturation in dissolved gases or heat content, are common. These
include, but are not limited to the evolution of gas in foamy oils, internal steam drives,
the evaporation of volatile components during gas injection or the injection of steam, and
other processes. The main result is the growth of a gas phase, which is driven by mass or
heat transfer, depending on the kind of the applied supersaturation. We have conducted
various studies of this multifaceted problem. In this report, we present results in two
areas, one associated with the nucleation and growth of a gas phase from a supersaturated
liquid, and another reviewing recent advances on phase change processes in porous
media. The first study describes a mathematical model of the dynamics of gas evolution
as a function of the rate of application of the supersaturation for solution gas drive. With
simple changes in variables, it also finds application to the process of internal steam
drive. The second study is a compilation of recent findings in general phase change
problems in porous media. We review notable advances published in the year 1999 in the
area of phase change and phase growth in porous media. Phase equilibria
thermodynamics, particulary in micropores, and growth kinetics, emphasizing the pore-
network structure, are highlighted. Advances reported include the effects of confinement
in phase transitions in micropores, and of the pore microstructure in the growth and
dissolution of gas and liquid phases with applications ranging from capillary
condensation to drying to gas evolution to condensation. The review identifies common

processes at the various scales and points out important open problems.






AN EFFECTIVE CONTINUUM MODEL FOR THE LIQUID-TO-GAS
PHASE CHANGE AND GROWTH IN A POROUS MEDIUM DRIVEN BY
SOLUTE DIFFUSION
By

Ioannis N. Tsimpanogiannis and Yanis C. Yortsos

I. INTRODUCTION

The liquid-to-gas phase change in a porous medium and the subsequent growth of the gas
phase is a process encountered in many applications driven by mass or heat transfer. These
span various fields of scientific interest and a range of length scales (Yortsos, 2001). Examples
include the so-called solution gas-drive process for the recovery of oil from oil reservoirs
(Sheng et al., 1999a, 1999b), boiling in porous media (Thome, 1990; Satik and Yortsos,
1996), thermal methods for oil recovery (Prats, 1982), nuclear waste disposal (Doughty and
Pruess, 1990), soil remediation (Ho and Udell, 1995) and many others. In this chapter, we
focus on the specific process of isothermal gas phase growth from a supersaturated, slightly
compressible, binary liquid in a porous medium. This process is driven by mass transfer,
the extent of which is controlled by the application of either a constant-rate decline of the
system pressure or by the withdrawal of the liquid at a constant rate.

Consider the constant-rate removal of an initially supersaturated liquid from a porous
medium of a fixed volume (Fig. 1). As the pressure continuously declines, due to liquid
expansion, the bubble point of the liquid is eventually reached. Then, nucleation of a gas
phase starts, at rates depending on the nucleation properties of the medium. Nucleation
is manifested either in the form of the release of pre-existing gas bubbles, trapped in hy-
drophobic cavities, or in the form of heterogeneously nucleated nuclei. Emphasis in this
chapter will be placed on the former mechanism, although a conventional model will also
be discussed. Because of the competing processes of bubble growth, which depletes the so-
lute from the liquid, thus reducing the supersaturation, and the liquid withdrawal, which
reduces the pressure, thus increasing the supersaturation, a maximum in the supersaturation
is attained, following which, nucleation terminates for all practical purposes. Identifying the
maximum supersaturation and its dependence on process parameters is, therefore, a key is-
sue. The subsequent evolution of the gas phase is controlled by the available supersaturation,
the mass transfer of the solute from the liquid to the gas and by the capillary characteristics
of the porous medium. The gas phase appears first in the form of small bubbles growing

within the confines of single pores (Fig. 2a), but ultimately takes the form of large clusters,



spanning a number of pores (Fig. 2b). Competition for mass transfer between the growing
bubbles or clusters, capillary effects at pore constrictions, viscous and gravity forces, and
the possibility of coalescence or the snap-off of gas-liquid interfaces are important factors for
determining the gas phase evolution.

Eventually, gas flows as a bulk phase out of the porous medium. The onset of flow is
signaled when the gas pore-volume fraction, S;, becomes equal to the so-called critical gas
saturation, Sy, a value which depends on the underlying growth and flow mechanisms. If
viscous or gravity gradients are negligible, then bulk gas flow occurs for the first time when
the various isolated gas clusters connect to form a sample-spanning (percolation) cluster
(Yortsos and Parlar, 1989). If they are not, gas flow and production occur through the
continuous motion of finite-size gas clusters, subject to various mechanisms of interaction,
including coalescence. The simultaneous flow of gas and liquid can be quite complex, par-
ticularly under strong pressure gradients, as is the case with high-viscosity oils, where the
interesting and yet to be fully explained “foamy” oil flow takes place (Smith, 1988; Maini,
1996, 1999; Pooladi-Darvish and Firoozabadi, 1999, Kumar et al., 2000, Renard et al., 2000).
In this chapter, we will only consider the stage before the onset of gas flow, however, and in
the absence of gravity or viscous gradients.

Due to the interest of the problem, a number of studies have been conducted. A review
of the early literature can be found in Li and Yortsos (1995a, 1995b). Experimental work
in consolidated porous media was reported Moulu and Longeron (1989), Firoozabadi et al.,
(1992), Scherpenisse et al., (1994), Firoozabadi and Aronson, (1999). These studies showed
that the critical gas saturation is an increasing function of the liquid withdrawal rate, a
finding explained by the increasing number of nucleation centers, from which gas clusters
grow, at larger depletion rates. Scherpenisse et al., (1994) provided useful, but qualitative,
scaling arguments showing that the maximum supersaturation and the critical gas saturation
are power-law functions of the depletion rate. A theoretical analysis of bubble growth by
solute diffusion, following nucleation, in which mass transfer and porous medium capillarity
dominate, was provided by Li and Yortsos (1995a, 1995b). These authors conducted visual-
ization experiments in glass micromodels and pore-network simulations to explain patterns
and rates of growth of the gas phase at the pore-network scale. Along similar lines, Du
and Yortsos (1999) focused on a pore-network analysis of the critical gas saturation, in the
absence of gravity/viscous gradients. They confirmed the hypothesis of Yortsos and Parlar
(1989) that the onset of critical gas saturation coincides with the percolation threshold of
invasion percolation, originating from multiple nucleation centers, and showed that S,. is a
power law of the final nucleation fraction (defined more precisely below), f,s, namely

1-D4/E

SQC:qu (1)
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Here, E (equal to 2 or 3) is the (Euclidian) dimension of the pore network and Dy is the
mass fractal dimension of the percolation cluster (equal to 1.82 for 2-D Invasion Percolation
(IP) with trapping, and 2.53 for 3-D IP with or without trapping (Feder, 1988)). The
dependence shown in (1) was established regardless of the nucleation sequence (instantaneous
or sequential) or the particular regime of bubble growth (global or local percolation, see Li
and Yortsos, 1995a, 1995b).

Certainly, the presence of gradients will affect the above scaling. Pore-network simu-
lations conducted by McDougal and Sorbie (1999) and Wang and Mohanty (1999) (in the
related topic of gas condensation) showed that S,. decreases as the hydrostatic pressure
gradient increases, a trend also anticipated in Scherpenisse et al., (1994). In a parallel study
(Tsimpanogiannis and Yortsos, 2001), we have analyzed the effect of gravity and/or viscous
forces on Sy, and developed scaling laws for the dependence of Sy. on both f,; and the two
respective dimensionless parameters, the Bond and capillary numbers, defined, respectively,

as

B___é@ and Ca=2 (2)
Y v

where Ap is the density difference between liquid and gas, k is the medium permeability, v
the liquid-gas interfacial tension, g the liquid flow rate and x is the liquid viscosity. We have
found that S, is a function of f;¢, B and Ca, leading to power-law scalings in various limits,
with equation (1) obtained in the limits B <« 1 and Ca < 1, which are also the regions of
interest in this chapter.

A modeling attempt to capture the gas phase growth in a depletion experiment was made
by Firoozabadi and Kaschiev (1997). These authors used an effective continuum model with
bubble growth driven by diffusion. The gas phase is modeled as a collection of effective bub-
bles, mass transfer to which is approximated by simple expressions. Although the chapter
discusses rate-dependent nucleation using classical expressions (see also below), the nucle-
ation issue is in fact bypassed, in that nucleation fraction, the maximum supersaturation, or
the effect of depletion rate on the number of bubbles nucleated, are not actually predicted
or calculated. Rather, the latter quantities are inferred from the experimental results, and
are subsequently used as initial conditions for the gas phase growth following the nucleation
period. Additional experiments on pressure depletion, particularly with heavy oils, were
reported in Bora et al., (1997), Tang and Firoozabadi (1999), Bora et al., (2000), Andarcia
et al., (2001), Arora and Kovscek (2001), Kamp et al., (2001a, 2001b), In some very recent
studies, which appeared at the same time this work was being written, (Kamp et al., 2001a;
Arora and Kovscek, 2001), presented effective continuum models to interpret the pressure
depletion of heavy oils, focusing, in particular, on the foamy oil issue. Because of the high

viscous forces in these experiments, these models must also account for two-phase flow, which
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in these studies was done using conventional relative permeability functions. In the present
context, these studies are of interest insofar as nucleation is concerned. The latter is incor-
porated in the form of rate-dependent nucleation in Kamp et al., (2001a), and in the form
of activated cavities in Arora and Kovscek (2001). Nucleation parameters were estimated to
match experimental data (see more discussion below).

The objective of this chapter is to provide a comprehensive model both of the nucleation
and the gas-phase growth periods, until the onset of the critical gas saturation. For this pur-
pose, an effective continuum model will be used. If used to model the later stages of bubble
growth, where gas clusters occupy several pores and are influenced by the pore geometry,
topology and capillarity (e.g. see Li and Yortsos, 1995a, 1995b), effective continuum models
have obvious drawbacks. However, they may be adequate for describing nucleation and the
early stages of bubble growth. The last two, and particularly the nucleation sequence, are
the main areas of interest of this chapter. We focus on the effect of the nucleation char-
acteristics of the porous medium on the maximum supersaturation, the nucleation fraction
and the critical gas saturation, and provide an analysis of the effect of various parameters,
such as rate, on these quantities. Results for the gas phase growth following the conclusion
of nucleation are also presented.

The chapter is organized as follows: First, we formulate the problem and discuss the
assumptions made. A scaling analysis allows to recast the problem in a more useful form,
to be used for direct predictions. Then, the numerical results of the mathematical model
are analyzed. It turns out that for their interpretation, a simplified model of the nucleation
and growth periods can be developed. We use the simpler model to obtain expressions
for the maximum supersaturation attained in the system as a function of the geometric,
thermodynamic and process parameters. In turn, this permits to obtain useful predictive
relations for the dependence of the final nucleation fraction and the critical gas saturation on
the process parameters. For completeness, we consider two different cases, one corresponding
to the decline of pressure at a constant rate, and another corresponding to the withdrawal of
liquid at a constant rate. The results are then compared to various published experimental

results.
II. MATHEMATICAL FORMULATION

We consider heterogeneous nucleation and growth of multiple bubbles from a binary
liquid, within an effective porous medium. The process is driven by the continuous increase
in the supersaturation of the system, K C(t) — Pi(t), due to the slow flow of the liquid phase
out of the porous medium. Here, we have assumed for simplicity linear thermodynamic

equilibria using Henry’s law

P, = KCu(t) (3)

12



where K is the solubility constant, Ce(t) is the time-varying mass concentration, P stands
for pressure, and subscripts g and [ denote gas and liquid, respectively. More complex
thermodynamics can certainly be incorporated in the model, but the salient features are
manifested with the simple model (3). As remarked, the change in supersaturation can be
imposed in two different ways, one in which the pressure declines at a constant rate, and
another in which the liquid is withdrawn at constant rate. In either of these, gravitational
and/or viscous effects will not be included, with the corrolary that the pressure is spatially
uniform. Instead, emphasis is placed on nucleation and on the effect of the increase of

supersaturation on the growth of the gas phase.

a. Nucleation

As the liquid pressure declines, nucleation sets in. Yortsos and Parlar (1989) provided a
comprehensive review of nucleation in a gas-liquid phase change in porous media driven by
solute diffusion. They examined homogeneous and heterogeneous nucleation and concluded
that heterogeneous nucleation is the most plausible mechanism in solution gas drives in
porous media (see also the recent reviews on the nucleation problem by Laaksonen et al,
1995; Jones et al., 1999). In one particular mechanism considered, nucleation occurs when
a gas bubble, either pre-existing or nucleated inside a hydrophobic cavity at the pore walls,
becomes unstable and detaches or otherwise occupies the host pore body (Fig. 3a). This
type of mechanism is in agreement with visual observations from micromodel experiments
(Li and Yortsos, 1995a; El Yousfi et al., 1991; 1997; Bora et al., 2000). In the cavity model,
the condition for the activation of a nucleation site is when capillary forces, which hold
the bubble trapped inside the cavity, are overcome for the first time (Fig. 3a), namely
when the following condition is satisfied between the radius of the nucleation cavity, ., and

supersaturation,

2~cost

= KCo(t) — A(?) (4)

c

where @ is the contact angle (0 < § < 7/2). We remark that the onset of nucleation is
not kinetically related to the degree of supersaturation, as for example, in conventional
approaches (Firoozabadi et al.), but rather depends on the size distribution a.(r.) of the
nucleation cavities (Fig. 3b). Without loss in generality, we will assume in the following a
zero contact angle, which is equivalent to redefining the interfacial tension term 7.
Consider, now, the activation of nucleation sites. With the decrease in the liquid pressure,
the right-hand side of (4) increases, eventually becoming positive. Then, various cavities
of size satisfying (4) become activated and their corresponding host pore bodies become
occupied by gas. At any time, therefore, the current nucleation fraction, f,, defined as the

number fraction of pores that contain sizes which have been activated, is
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fa= /oo ac(r)dr (5)

where r. is an implicit function of time, through (4). Equation (5) implies a zero nucleation
fraction at zero supersaturation (r. — 0o0) and a nucleation fraction of one at infinite super-
saturation (r. — 0), as expected. Here, the cavity size distribution a. pertains only to the
largest cavity in any given pore (as this cavity will be activated first). The actual number of
bubbles contained in a given pore may be larger. We will proceed using the assumption that
a number of bubbles np are contained in each activated pore. The unknown parameter npg
will be taken equal to 1, for the cavity model (as this is strongly suggested in micromodel
experiments), but will be kept arbitrary for the rate-dependent heterogeneous nucleation.
We also remark that equation (5) slightly overestimates the true nucleation fraction, since
pores containing sites to be activated later, may already be occupied by gas, due to the
growth of gas clusters from neighboring pores. A more appropriate expression in such a case
would be

% =(1- Sg)% [/oo ac(r)dr] (6)

where S, is the gas saturation (defined as the volume fraction of the pore space occupied
by gas). However, in most cases, nucleation terminates well before gas bubble growth has
occurred to any substantial degree (S; < 1), thus (5) should be an excellent approximation.

It is interesting to illustrate the f, dependence for various cavity size distributions. For

a Rayleigh distribution of the form

T mr?
a.(r) = 52 exp (— 4r;‘2) (7)
where ¥ is a characteristic (here the mean) cavity size, equation (5) reads
mre T’
fo = exp (_47':2 - P " 4r2(KCo — P))? (8)

This exponential relation bears a superficial resemblance to classical nucleation (see below),
a result, however, purely due to the assumption of Rayleigh distribution. Different distribu-
tions result in different functionals. For example, we will also consider stretched-exponential

or log-normal distributions of the type

re L . Ins
fqa =exp g or f,= Ferfc 7 ) (9)

respectively, where n is a positive exponent and o is a measure of the width of the distribu-

tion. The type of assumed distribution influences significantly the results to be obtained, as

will be demonstrated below.
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As long as the level of supersaturation increases with time, the right-hand-side of equa-
tion (8) also increases, implying that additional sites become activated, and the nucleation
fraction continuously rises. After the supersaturation reaches a maximum (local or global),
equation (8) predicts a decreasing f,;, which is unphysical. Therefore, in segments of de-
creasing supersaturation the nucleation fraction is kept constant. When the supersaturation
goes through a global maximum, it signals the end of the nucleation period, in which case
the fraction of pores ultimately activated, f,s, will be given by equations (8) or (9) at the
time of the maximum supersaturation.

The fraction f,; can be directly related to the number of bubbles nucleated per unit pore
volume, Ny, a quantity used in Firoozabadi and Kaschiev, (1997) to quantify nucleation.
Assuming ng = 1, we have

Ny = J (10)
where N7 is the total number of pores and V, is the total pore volume. By noting that
V, = NrV;, where V; is a typical volume of a pore, we can further write

Ny = fvisf (11)

This allows us to relate the nucleation fraction to experimental values of N (see below). We
note, in advance, that in typical experiments, f,s is very small, of the order of 1076 — 10~°.
For future use, we also give a brief account of rate-dependent heterogeneous nucleation.

Consider the nucleation rate expression

dN 1673 f

G = e | S K — B - 12

where K} is a heterogeneous rate constant, f is a dimensionless number expressing the

wettability of the medium vis-a-vis nucleation (ranging between 1 and 0 for perfectly ho-
mogeneous and perfectly heterogeneous rate-dependent nucleation, respectively), and kg is
Boltzmann’s constant. Using the equivalent of (11) we can express (12) in terms of the
nucleation fraction f,,

dfy _ KhetVs 16m7°f

dt ng Y| 3ksT(KCo — Bi)?

Compared to (8), equation (13) contains an explicit rate dependence, while the dependence

(13)

on parameters, such as v, is different, as expected.
Through the nucleation process, nucleation centers are activated sequentially, giving rise
to evolving gas clusters, which grow by mass transfer from the liquid towards the gas.

Sequential nucleation results into clusters of different ages (the time passed since a particular
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class of gas clusters has been nucleated/activated). Let w(7) be the number density of clusters
nucleated per total number of pores. Then, w(7)dr is the number of new clusters per total

number of pores that become activated in the time interval between 7 and 7+ d7. Evidently,

w(7)dT = npdf, (14)

This relation will be used below to simplify the expressions for the growth of the gas phase.

b. Gas phase growth

As noted previously, during the growth of the gas phase we can roughly distinguish two
different periods, one in which the growth is within single pores and a second corresponding
to gas clusters spanning several pores (Figs. 2a, 2b). The first period extends throughout
and following the nucleation stage, the second is the later stage of growth. In either, growth
is driven by diffusive mass transfer of the dissolved gas in the liquid. In the first case,
mass transfer results mostly in the increase of the volume of the gas. In the second, it also
leads to an increase in the pressure of the gas phase, in case the interface is pinned at pore
throats (Fig. 2b), until the time when the smallest capillary threshold at the throats is
overcome. Then, the gas cluster volume expands accordingly. Assuming that the rate of
growth is relatively slow, for viscous effects to be small, the pattern in the latter stage is
one of local percolation (Li and Yortsos, 1995b), namely one in which each cluster grows
by occupying sequentially the pores with the smallest capillary threshold available to the
cluster perimeter. In general, different clusters compete for the available solute in the liquid,
the relative mass transfer rates depending on their geometry and relative position. These
dynamics were analyzed by Li and Yortsos (1995a, 1995b).

In the absence of competition between adjacent clusters, an isolated cluster 7 grows at
a rate which is proportional to its effective radius, R;(¢,7), and the driving force Co, — Cj,
where C,, is the far-field concentration and C; is the equilibrium concentration at the gas-
liquid interface. This is true even for ramified fractal clusters, as was verified by Satik and
Yortsos (1996) for the case of a percolation cluster. We will proceed, therefore, by assuming
that mass transfer is by quasi-steady-state diffusion and that the gas is ideal. Then, we can

write the following mass balance for a growing cluster

M\ d
( RgT) = (RV;) ~ 47AR;D(Cor = Ci) (15)

where M, is the molecular weight of the gas, R, is the ideal gas constant, 7' is temperature,
V, the gas cluster volume and D the diffusion coefficient. Dimensionless parameter A is
an O(1) geometric constant to account for possible corrections to the mass transfer model

depending on the growth period (see below). In equation (15) we have neglected the capillary
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pressure, P, which in typical applications is small compared to the liquid pressure. From

Henry’s law, we have
P,_P+P. P
K~ K K

where the second equality is again an excellent approximation in typical applications.

C; = (16)

The gas volume V, takes a different expression in the two different periods. For growth
\3
within a single pore, V, = V, (%) , where V is a characteristic cavity volume (defined here

as %m‘f). For growth of a cluster spanning several pores, we have the different expression,

\D
V, = A™V, (?1) f, where V; is the average site volume, r} a characteristic pore body size,
Dy is the mass fractal dimension, equal approximately to 2.5 for a 3-D cluster, and A* is a
dimensionless geometric prefactor. To capture both periods with the same equation we will

take the general expression
AV.M, d R;\"*
7 - = AR; oo — L
( R.T )dt [Pl(rz> } 4 AR;D(C Ci) (17)

with the understanding that Dy = 3, A = 1, for the nucleation period, and Dy ~ 2.5,

* «\D .
A=4Y (%) ” for the second period.

Ve \r:
We expect that the nucleation period and the early part of the growth period are ade-

quately represented by equation (17). However, growth during the later stages of the second
period, where gas clusters span several pores, cannot in reality be captured by (17). The
presence of competing clusters affects the rates of growth in a non-trivial manner. The
latter would still be proportional to a mean driving force, Cy, — C;, where now C, is the
volume-averaged concentration in the liquid, and R; stands for the average size of a cluster.
However, the mass transfer coefficient A may be variable in time and space, while coales-
cence of clusters will also occur. Accounting for these complexities is a difficult problem,
the solution of which requires a pore-network approach (Li and Yortsos 1995a, 1995b). As
noted before, in this chapter we are mostly interested in the nucleation and the early stages
of growth periods, before the establishment of the critical gas saturation, where gas volume
fractions are relatively small. Therefore, we will proceed with these two assumptions, that
on average ) is constant and that coalescence occurs only when the sample-spanning cluster
is reached. The second assumption was tested using a local percolation model and found to
be adequate as long as the nucleation fraction is small (Tsimpanogiannis 2001).

Under these assumptions, therefore, the growth of the gas phase can be described as
that of a collection of clusters of size R(t,7), the dynamics of each of which is described by

equation (17), with R; replaced by R, namely
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AV.M,) @ R\""| _
(25 [ (2)"] - e - "

and subject to the initial condition R(7,7) = r.(7), where r. satisfies (4). In the formulation
of Firoozabadi and Kashchiev (1997) and more recently of Arora and Kovscec (2001), the
equivalent of equation (18) was integrated under a number of simplifying assumptions to
obtain an explicit dependence of R on time. Such an approximation will not be used here.
Consider, next, the mass balance for the solute in the liquid phase. We have
dCw t
(1= 5,)% == = ~47AD(Cor — Ci) Nz / R(t, 7)w(r)dr — CoQ(2) (19)
0
where the integration is over all existing clusters and Q(t), the volumetric flow rate of the
liquid out of the porous medium, is in general a function of time. Equivalently, we can

rewrite (19) as

dC. fa s
(1= 5,)% == = ~4m)D(Cee — C5)Nrnp /0 R(t, f)df — CQ(t) (20)

where we introduced the notation R(t, f(r)) = R(t, ), for the radius of a cluster at time ¢,
nucleated when the nucleation fraction is f(7). For the case of instantaneous nucleation, e.g.
as postulated in Firoozabadi and Kashchiev (1997), R(t, f,) = R(t)d(f, — fus), where fyy is
the final nucleation fraction. Then, the above integral reduces to R(¢) f,s. Unfortunately, f,s
is the very quantity we must determine, is not known a priori, and needs to be computed as
part of the overall process. This key task is in detail discussed below. Making the assumption
of instantaneous nucleation inherently prohibits the evaluation of this key variable.

The volumetric flow rate Q(t)/V, is related to the pressure decline rate through the mass

balance on the liquid, which reads

I 1)

where p; is the liquid density. For a slightly compressible liquid,

p1 = poexple(Pr — F,)] (22)

where the liquid compressibility, ¢, takes typical values in the order of 1075 — 10~Spsi~’.

Then,

Q) _ ab  dS,
y, = A= S)eg g

Finally, the gas saturation is related to the radius of the growing clusters and the nucleation

(23)

fraction through the relation
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S, = 4o [ t (R—(:—T—)) 7 o(e)dr = Avns | g (M) v &, (24)

c

where we introduced the volume ratio v = L: Subject to the relevant initial conditions, the
system of equations (18), (20), (23) and (24) can be integrated. Integration proceeds until
the time when the critical gas saturation is reached. As previously mentioned, and in the
absence of significant pressure gradients, this is given by the relation

Sge = fyf (25)
As far as the critical gas saturation is concerned, it only suffices to model well the events
during the nucleation period (as equation (25) shows). Therefore, the approximations made
in the description of the later growth period are only likely to affect the rate at which the

critical gas saturation is approached but not its value.

c. Dimensionless formulation

To proceed with the solution of the problem, we recast the equations in dimensionless
form. Denote dimensionless quantities by subscript D and scale concentrations by Cj = %,
pressure by P,, where subscript b refers to the bubble point, and cluster size by r}. The
choice of the characteristic time depends on the process. We will take t* = -Izﬁ, where a is
the pressure decline rate, for the case of constant pressure decline rate, and ¢t* = %, for the
case of liquid withdrawal at the constant volumetric rate Q.

For the case of constant pressure decline rate, the dimensionless mass balances for the

solute in the gas and liquid phases read

ORD 1, ~ . aD
—t = Cpeo — P, !
(1—tp) B, AHl( D pi)Rp + Rp (26)
and
dCp 1 fa dS
— 8 =22 _ __~ (Cp. — P, Bn(t df. — _ v — Cpoo—22
(1-5) . HI(CD Dl)/0 p(tp, fo)dfy —1ls(1 — Sg)Cpes — Cp &io (27)
where we have used the equlibrium relationship
Cpi = Ppi(tp) (28)

and implicitly assumed that the process begins (tp = 0) when the pressure is at the bubble

point. In the above, we have also defined three dimensionless groups,
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Vea _ Via _ R,T _
~ 4TADPyNrr:  AnADPynpr:’ I, = onp MK and II; =ch (29)

Parameter II; essentially expresses the ratio of the characteristic times for diffusion at the

II,

pore scale to that for the decline of pressure. Although a small number in typical applications
(see Table 1), it plays a key role in determining the nucleation fraction and the critical gas
saturation as shown below. Parameter II; is the product of the geometric constant vng
with a thermodynamic constant, expressing the ratio of the equilibrium concentrations in
the liquid and the gas phases.

The analogous equations for the case of constant liquid withdrawal rate read as

ORp  ap,dPpi I A
PDz(tD)WE- + Rp iy - AH4(CD00 — Pp))Rp (30)
and
dCpes 1 fa &
(1 - Sg)—d% = —ﬁ;‘(CDoo - PDI)./(; RD(ta fq)dfq — Cpeo (31)
where
. Q 14 (32)

- 47t ADNrnpr: - 4mADV,npr:
Parameter I, expresses the ratio of the characteristic time for diffusion to that for the
emptying of the pore volume. Typically, this is also a small number (Table 1). The liquid

mass balance becomes

dPp; 1 ds,
dtp  II3(1-=25,) (dtD 1) (33)

As will be shown below, I1,/II3 plays a role equivalent to II;.
Finally, in both cases, we have the following relations. The gas saturation is

fa 4
s = Avng [ Rlto, £,)71df, (34)
In dimensionless notation the cavity size that becomes activated at a given time is
IL,
TDq = 35
? Cpoo(tp) — Poi(tp) (35)
where we introduced the dimensionless cavity capillary pressure threshold, II, = %.

This is an important parameter in the overall dynamics of the process. In terms of the

supersaturation

s = CDoo(tD) - PDl(tD) (36)
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or, more conveniently, in terms of the rescaled supersaturation

Sp = — (37)

expression (35) can be further expressed as rp, = sp'. The nucleation fraction is then given

by the various expressions

T 1 1 Insp
fqa=exp (_E> , o= exp(—g) or f,= §erfc (— \/50) (38)

depending on the size distribution used, or by

df q h2
e _p 2
in the rate-dependent nucleation case. In the latter we introduced the dimensionless param-
eters
Kpe:it*V, 16my3 f
T ) (40)

Parameter h; is inversely proportional to II; or to II4 in the respective cases of constant
pressure decline rate or constant liquid withdrawal rate, respectively. If this dependence is

extracted, then it reads as

C C KhetV2
= — hy = =— wh =
hy I or h . where ( TADnb (41)
respectively. The initial conditions for the simulations were Cp, = 1, Ppy = 1 and
Rp(7,7) = sp' (7).
d. Scaling

The above system of equations contains two main parameters, II; and II4, which contain
the effect of the rate of increase of the supersaturation. As shown in Table 1, these can
be rather small and a further rescaling of the nucleation fraction and the cluster size is
necessary. After some analysis, it is not difficult to show that for the case of the cavity
nucleation model, the two parameters can be scaled out of the differential equations if Ehe
following scaling is taken (for example for the constant pressure decline rate) f, ~ I,
and f,RP7 ~ O(1). Given that the nucleation fraction varies only during the first period,
we must select Dy = 3. We anticipate that this rescaling contains the main effect of the
pressure decline rate (or the liquid withdrawal rate) on the nucleation fraction. Based on

this, we thus define for the respective cases, rescaled nucleation fractions
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¢g = qul—% or ¢, =f, (E_:) ' (42)

(N1

and rescaled cluster sizes

1A I, % ,
pp =II{Rp or pp= (ﬁ—) Rp (43)
3

In the new notation, the governing equations become as follows:

For the case of constant rate of pressure decline,

dpp! My -2t

- D
—t —— 2 f
(1—tp) 9ty A II, * spp+pp (44)
and
ds ¢ ds,
(1= 5)2 = —s [* pnlto, 6)ddy — (s +1 ~ t0) |Ts(1 = 5) + 22| +1 -5,  (45)
dtp 0 dtp
while, for the case of constant rate of liquid withdrawal
3-D
dpp! p;dPpi T (Tly\" "7
rao g e -1 (3
IsPpi(tp) 5ty T G =4\, $pD (46)
and
ds ¢ ds
s(1 — 55)—— = _3/ " pp(tD, $g)ddy — Ia(Ppr + 5) — 2 + 1 (47)
dtp 0 dip
The last two equations are also accompanied by equation (33). The gas saturation expression
becomes
3-D
3-D; ¢ II —1 ¢
Sy = Avngl = [ pltn, )"/ dgy or S, = Avnp (H—“) [ etto, 40)Pds, (49)
3

in the respective cases. In the above, we take A =1, Dy = 3 for the nucleation period and
* «\ D . . .
A =AY (2)" D; a~ 2.5 during the later stages of growth. Thus, during the nucleation
V. \r f g g g
period, and for the case of the cavity nucleation model, the dependence on parameters II,
and II; does not appear explicitly in the equations for growth, but only in the expression for
1 1
¢, and in the initial condition for pp (which now reads: pp(7,7) = sp'(7)IIZ or sp'(r) (%:) z
in the respective cases). An explicit dependence on II; (or Il4) will arise during the second
period, when the gas clusters eventually reach a fractal structure and Dy ~ 2.5. For the case

of rate-dependent nucleation, the rescaled nucleation fraction reads as
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d¢q % h2
e hiexp [— 32] (49)

NI

_3
where A} = hiI1, ? or h] = hy (%:) in the respective cases.
The solution of the system of rescaled equations will be sought numerically in the follow-
ing. Before we proceed, we also briefly mention the thermodynamic equilibrium curve for

the respective cases.

e. The thermodynamic equilibrium curve

In the absence of rate effects, the equilibrium relationship Cp., = Pp; applies. To obtain
an expression for the evolution of the gas saturation S,, we use equations (27) and (26), and
(31), (30) and (33), in the respective cases of constant pressure decline rate and constant
liquid withdrawal rate. Since this pertains to growth following nucleation, we replace the
integral term in (30) and (34) with f,Rp and qugf , respectively. Then, by eliminating the
mass transfer term proportional to s we obtain
(1-to) [1+] % = (1-§,)(1 ~ (1 ~ tp) + 2 (50)

for the case of the constant pressure decline rate, and

S,1dPoi  PpidS,
[1 - S, + K] T +— dip —Pp, (51)
and
dP, ds,
O3(1 — §,) =2 - 22 = 1 (52)

dtp dtp
for the case of constant rate of liquid withdrawal, where we introduced the thermodynamic
parameter Kk = ﬁi’%. The solution of the above can be readily obtained if we assume a small
II3, which is typically the case. We find

S\ 1
PD,=(1—sg+f) zl—“: s, (53)

for either case, and in addition

K

1 sl
K — k=1
SEEEE o
for the case of constant rate of liquid withdrawal. Equation (54) is in fact equivalent to

(53), given the assumption of negligible liquid volume expansion (small II3), and where

tp = S,. Since tp is the dimensionless measure of the liquid volume expelled, either of these
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equations express the P — V' thermodynamic equilibrium relation and will be compared to

the non-equilibrium results.
II1. RESULTS

The system of differential equations was solved numerically using a fourth-order Runge-
Kutta method (Press et al., 1994). A typical calculation requires the time to be marched
forward. A difficulty is that the total number of classes of gas clusters is not known a priori,
but it is an outcome of the computation during the nucleation process. In theory, this
number is infinite, and the problem becomes one of solving an infinite system of differential
equations. In practice, the number of equations is constrained by the size of the time step.
At each time step we examine whether nucleation of a new class of gas clusters is possible,
namely whether the supersaturation is increasing. If so, a new class of gas clusters is added.
Then, the simultaneous growth of all different classes of clusters is computed. When the
supersaturation reaches a maximum, further nucleation stops. Computations during the
nucleation process were also facilitated with an asymptotic analysis, to be described in more

detall in a later section.

a. Constant Pressure Decline Rate

In the typical case, parameters which can vary over a significant range are II; and II. (and
possibly II;). An additional important variable is the type of the cavity size distribution
used in the calculation of the nucleation fraction. The sensitivity to these parameters was
examined in the simulations.

The effect of II; and II. on the rescaled nucleation fraction, ¢,, the mean rescaled radius,
pD.m, the rescaled supersaturation, sp, and the gas saturation, S,, is shown in Figs. 4-7.
In these calculations, we used a Rayleigh size distribution, II; and II3 were kept constant
to the values 5.28 x 10% and 2.2 x 1072, respectively, while II, varied over several orders of
magnitude (from 1078 to 107%).

The variation of ¢, as a function of the dimensionless time, tp, and of the parameters II;
and II. is shown in Fig. 4. It is shown to increase very rapidly in a small time interval, and
then to stabilize to a final value, at the conclusion of the nucleation period. Such behavior
is characteristic of nucleation processes, and has features similar to the work of El Yousfi et
al. (1991, 1997), but it is demonstrated here for the first time for the case of nucleation from
pre-existing, trapped gas. The rapid variation of ¢, is approximately a stretched exponential
of the form

w12 Iz IHUEL
$g ~ exp (— 4t2D) , g~ eXP (—0_ E) , @ ~ erfc (\/_Tt;) (55)
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for the various cases, as during the early nucleation period we have s ~ i{p (see below).

Equation (55) suggests that, e.g. for the Rayleigh distribution case, a plot of —In¢, vs.

w12
4 .

Because of the very sharp rise, the process can be interpreted as instantaneous nucleation

t5? is linear with slope . Such a behavior is indeed observed in the numerical results.
(IN), although the details of its evolution to the final values are indeed important. Fig.
4a shows that for constant II., the effect of II; on the rescaled nucleation fraction is not
very significant at small II;, but that it becomes stronger (roughly a power law) as II; takes
larger values. The relatively weak dependence on II; verifies the correctness of the scaling
(91) taken above. At the same time, the stronger dependence at larger Il; is important, and
it is needed in order to explain experimental data, as will be shown below. In terms of the
actual nucleation fraction, these findings imply that an increase in II; leads to an increase
in the final fraction, f,s, according to a power law scaling, which is roughly ~ HI% at very
small II;, and ~ II; at larger II;. The effect of Il. is also significant. As II, increases, the
final nucleation fraction ¢,; (hence f,s) decreases (Fig. 4b). The increase of f,; with an
increase in II; and a decrease in Il is expected. Larger values of II; imply a faster decline
rate, a greater departure from equilibrium, the establishment of a greater supersaturation in
the system, hence the activation of more nucleation sites. Likewise, smaller II. imply that
nucleation is facilitated at increasingly smaller supersaturations, as larger size cavities can
be activated. An approximate analysis shown below will provide a theoretical explanation
of the behavior observed.

Fig. 5 shows the corresponding effects on the mean rescaled size pp,,. As anticipated,
there are two regions, one corresponding to the nucleation period, and another to growth
after nucleation. The two periods can be roughly approximated as power-law regimes (as
a function of time) with slopes approximately equal to 1 and 0.63, respectively. The effect
of II, is relatively insignificant at small II;, confirming the validity of the scaling (91). The
effect of I, is more significant. Smaller values of II. lead to an increase in the nucleation
fraction, and a corresponding decrease in the size of the gas clusters at the conclusion of
nucleation.

Fig. 6a shows plots of the rescaled supersaturation sp as a function of time for different
II;, and II.. At the beginning of the process and during nucleation, the supersaturation
increases with time almost linearly, suggesting that Cp., does not vary significantly in that
period. As nucleation and growth occurs, the rate of supersaturation increase slows down
and, at some point, sp reaches a maximum value, spn,. It is at that point where nucleation
terminates. Following this, the supersaturation decreases monotonically. The maximum
value sp,, is plotted in Fig. 6b as a function of II; and II.. We first note that sp,, is in
general of the order of 107*. The dependence on the parameters is weak at small II; and

large II., but becomes stronger at larger II;, and smaller II.. The behavior is consistent
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with that of the nucleation fraction discusssed above. From a compilation of experimental
results Scherpenisse et al., (1994) suggested that sp, behaves roughly as a power-law of the
pressure decline rate with exponent 1/4. Our analysis indicates that such a power law is
not universally valid, although it may apply in a certain range of II;. It is interesting that
the sensitivity of sp,, to Il and II; (and in particular to the latter) is not as large as one
might have intuitively anticipated. However, in spite of the weak sensitivity, its effect on the
nucleation fraction can be significant, due to the exponential dependence, as can be seen for

example in the following expression for the Rayleigh distribution

T D
tr=e (-5~ 1o L) 0

Because of the 31‘32 dependence and because sp,, is of the order of 10!, even small changes in

sp can have a very large effect on ¢, thus on the nucleation fraction. This large sensitivity
counterbalances the weak sensitivity of sp,, on II; and 3 and leads overall to a non-trivial
effect. Of course, different distributions may lead to different conclusions, as further analyzed
below.

The evolution of the gas saturation is shown in Fig. 7. It follows that of f,, during
the nucleation period, and that of pps, during the period of growth. The latter gives a
power-law segment of slope 0.63. The effect of II. is indirect, in that smaller values of II.
promote larger values of S, due to an increase in both f;; and pp. The difference between
the equilibrium and the actual curve depends on the value of II;, increasing as the latter
increases, but remaining constant following the end of the nucleation period. Fig. 8 shows
the effects of II; and II. on the critical gas saturation Sg. Recall that the latter pertains
to the formation of a sample-spanning cluster, in the absence of viscous or gravity effects.
Thus, Fig. 8 actually reflects the variation of f,;. Fig. 8 shows that S,. can be considered
a power-law both of II; and of II, with exponents that vary between 0.16 and 0.25 with
respect to II; and between -0.33 and -0.22, with respect to IL., respectively. These trends

are consistent with the experimental evidence (Scherpenisse et al., 1994; Bora et al., 1997).

b. Constant Rate of Liquid Withdrawal

Similar results were obtained for the case of constant rate of liquid withdrawal. The
effect of II; and II. on the rescaled nucleation fraction, ¢,, the mean value of the rescaled
radius, pp ., the rescaled supersaturation, sp, and the gas saturation, Sy, is shown in Figs.
9-12. In these calculations, we again used the Rayleigh size distribution, II; and II3 were
kept constant to the values 5.28 x 10° and 2.2 x 1072, respectively, while II; varied over
several orders of magnitude (from 107!° to 10=*). The effect of the parameters is almost

identical to the constant pressure decline rate, subject to the change II; — II4/II5 and to
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the rescaling of time by II3. Thus, we anticipate a scaling of the form: fir ~ H% at small
I, and f,; ~ II4 at larger I1; and of the form: fy; ~ II7% at large II., and fo5 ~ II712 at
smaller II;. The critical gas saturation has the analogous scaling: S,. ~ I13?® at small I,
and Sy ~ 11316 at larger Ily; and Sy, ~ II7%%2 at large I, and Sy ~ II7%% at smaller II,.
The discussion and interpretation of these findings is similar to the previous.

What is different in the case of constant rate of liquid withdrawal is the evolution of
pressure with time (Fig. 13). Indeed, during the nucleation period, the pressure declines
almost linearly with time, Pp; ~ 1 — %193—, following equation (33). This decrease slows down
rapidly as the maximum supersaturation is approached, however, in the very near region of
which the pressure reaches a local minimum. Following this minimum, the pressure increases,
reaches a maximum and subsequently decreases, roughly paralleling the equilibrium curve.
The pressure minimum decreases as Il4 increases (Fig. 13), the dependence being roughly
the same as that of spn,, namely weak at small II; and stronger at larger I1, (where the 1/4
power law may be applicable). '

The non-equilibrium behavior reflects the competition between mass transfer and solute
availability as explained in the following. Roughly, the ideal gas law requires PV, = nR,T.
The rate of change dn/dt of the moles in the gas phase is dictated by the mass transfer rate.
At the end of the nucleation period, near sp,,, this rate is the highest. Now, if the rate
by which the gas volume expands, dV,/dt (which is almost equal to @), is not sufficiently
large, the increase in volume due to mass transfer cannot be compensated, thus the pressure,
P,, must increase. An increasing pressure leads to a successively decreasing supersaturation
(since C; increases), thus to a continuous decrease of the mass transfer rate. Eventually, this
decrease becomes sufficiently large for the volume expansion rate to balance mass transfer.
Then, the pressure goes through a maximum and subsequently begins to decline.

In the above, we used the cavity-based nucleation model. Qualitatively similar results
were also obtained for the model based on rate-dependent nucleation. A comparison of the
predictions of the two models will be discussed in a later section. The numerical solution will
be compared against available experimental results. However, before doing so it is beneficial
to provide an interpretation of the main numerical findings, using a simpler model to be

developed in the next section.
IV. INTERPRETATION USING A SIMPLER MODEL

To interpret the results obtained we consider a simpler model that captures the essential
features of the problem. Consider, first, the nucleation period for the case of constant

pressure decline rate.

27



a. Nucleation

To approximately describe the nucleation period, we use the following equations for the

gas phase growth and the supersaturation

9pd
Bitp M2spp (57)
and
ds $als)
T ML= (L4 /0 ppdé, (58)

respectively. These are subject to the initial conditions

Iz
= d =2
s(0) =0 and pp(7,T) Py (59)
At early times and for small II;, the solution of this system is approximately
| LI To(s? — s(r)?)) ?
s~tp and pp ~ (32(7_) + 3 (60)

Equation (60) shows that the dimensionless supersaturation is identical to the dimensionless
time and that the mean cluster size becomes evantually a power-law of time with exponent
1. Both these are consistent with the numerical results during the nucleation period shown
in Figs. 5 and 6.

We will use (58) and (60) to approximate the approach to the maximum supersaturation.

The latter is reached when ﬁ— = 0, namely when

bq dé 1
So PD qu+fc

(61)
We will approximate the solution of (61) by taking pp =~ (%2) 2 s(tp). Then, using (60) and
the definition of ¢,, leads to an approximate algebraic equation for the rescaled maximum

supersaturation, sp,,. For the case of Rayleigh distribution we find,

T 1 3
v — 2lnspm =~ In(1l + &) — §ln3 - é-lnA (62)
where we introduced the combination of variables
A =1L 310, 3 (63)

Likewise, we get
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1
o lspr — 2lnspy, & In(1 + &) — §ln3 - glnA (64)

in the case of a stretched exponential, and

1
Hmerfc [l——} ~ 2V3(1 +k)71A2 (65)
V20
in the case of a log-normal distribution.

Equations (62)-(65) are significant. First, they suggest that the dependence of the max-
imum supersaturation on the various parameters of the problem, other than the thermody-
namic ones, enters only through parameter A. The solution for the Rayleigh distribution
is plotted in Fig. 14, as a function of A. We note that sp,, varies weakly, in the range
0.1 —1, as A varies over many orders of magnitude. For very small A, the maximum super-
saturation is practically constant. However, as A takes larger values, sp,, increases weakly
and eventually much more strongly, as A exceeds the order of one (compare also with Fig.
6). Shown also in the logarithmic coordinates of Fig. 14 is a line with slope 1/4, corre-
sponding to the 1/4 power-law, postulated by Scherpenisse et al., (1994) to describe several
experimental data. Although the power law does not capture the overall behavior, it is a
reasonable approximation within a certain interval of A. Plotted in the same figure are also
the results of the numerical solution of the full problem for a number of different parameter
values. The agreement between the numerical results and the simple analytical model is
remarkable and demonstrates the validity of the simple equation (62). The solution of (64)
and (65) for different values of the parameters is plotted in Fig. 15. As the tail of the cavity
size distribution becomes longer (which occurs for smaller values of n > 0 and/or for larger
o) the dependence of sp,, on A becomes stronger. In addition, the region where a power-law
scaling with exponent ~ 1/4 tentatively fits the results, increases and also covers a range
with smaller values of A.

We can use (62)-(65) to approximate the final nucleation fraction, ¢,¢, and the time (or

pressure) at the end of nucleation. For all cases we have

_ g (T2
bus ~ 514+ 0) (1) () (66)
thus, the final nucleation fraction reads
1 —2 (12 ~3
far 5B 1+ R (IL) () (67)

This equation is another important result of this chapter. We can use (67) to deduce the

following:
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(a) In the region where sp,, varies weakly with A (namely at small A) the final nucleation
fraction varies as a power law of II;, with slope equal to 3/2. This is consistent with the
anticipated increase in the nucleation fraction as the rate of pressure decline increases. The
equation also suggests a power-law dependence on the capillary properties of the cavity. One
should interpret this carefully, however, since information on the cavity properties is included
in all parameters II;, IT, and II, (through r* and v). For example, if we were to consider only
the dependence on r*, we would find the power-law scaling fy5 ~ ri?, indicating a smaller
nucleation fraction as the cavity size decreases. This is also as expected.

(b) In the region where sp, may approximated by a power-law dependence on A, e.g.

as spm ~ A™, we have the power-law scaling

far ~ (1 + &) TTAZ=2m (68)

Such a dependence on A leads to a decrease in the exponent in the power-law scaling. For
example, if we take the region where m = 1/4 (as suggested by Scherpenisse et al., 1994),

we read

for~Th and  fy it (69)
Such a linear dependence of the rate on II; was postulated in Scherpenisse et al., (1994)
and McDougal and Sorbie (1999), to fit available experimental data. These results are also
consistent with the full numerical solutions shown in Fig. 4.
Likewise, the time, hence the pressure, P,,, when nucleation ends can be approximated
using (60). we find
f‘% ~ M.Spm (70)
thus, the supersaturation at the end of nucleation is directly related to sp,. This means,
of course, that in this approximation Cpe, ~ 1. It follows that in the region where spn, is
insensitive to A, the supersaturation only varies linearly with II.. A rate dependence, which
has been observed experimentally in some cases, enters only insofar as sp,, varies with A.
Assuming again a power-law variation with m =~ 1/4, as above, the maximum pressure
supersaturation in that case varies as
fb—%b& ~ Hi% and % ~ T'c—§ (71)
The 1/4 power-law dependence was found to fit well experimental data (see below). It
is interesting that the maximum supersaturation relative to the bulk bubble point is only
weakly dependent on the rate of pressure decline, for example varying by only a factor of 2

when the pressure decline rate varies by two orders of magnitude, in the range considered.
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A similar analysis applies for the case of constant liquid withdrawal rate. The equivalent

equations now read

d 3
H3d ~ Ispp (72)
tp
and
dS K ¢q
L a1 — ( —) / d
3y 1+II3 s ppdd, (73)

The early-time solution for this problem is identical to the previous (60), where ¢{p must
now be replaced by tp/Il;. Again, the linear scaling of the size of the cluster with time is
consistent with the full numerical solution.

Proceeding as above, we find that the maximum rescaled supersaturation, spm, is now

given by a similar equation

ksppo, ~ 113 (74)

where pp satisfies (60). Thus, the solution of (74) is the same as that of (62), except that one
must replace II; with it H , and -In(1 + x) with In(II3/«). For exactly the same reasons, the
final nucleation fractlon is given by (67), by substituting II; with —‘31 and - w1th . The
previous analysis for the constant pressure decline rate applies directly to the constant rate of
liquid withdrawal, subject to the substitution indicated. A comparison between the solution
of the full problem (for the cases of the Rayleigh distribution and a strectched exponential
with n = 0.5 and ¢ = 1.0) and of the approximate equation (74) is shown in Fig. 16. We
note an excellent agreement for practically all values tested. The scalings obtained are also
consistent with the solution of the full equations.

In systems involving a constant rate of liquid withdrawal, the pressure reaches a minimum,
as noted above. This will be denoted by subscript n, and we will proceed to identify it as

follows. Integrating equation (33), we obtain

H3PD[ ~ Aquqp% — tD + H3 (75)

where we made the same approximation for the integral, as above. Finding the minimum in
pressure requires equating the derivative of the above to zero. Using (60) for pp, it is not

difficult to show the following equation satisfied by sp, at that point

(e 3) e (1) () (9

More generally, for the general stretched exponential case (for o = 1) we have,
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M5 /3\7 /1) |
352, +nsh") x == (—) (—) 77
¢q ( Dn Dn ) Av H2 Hc ( )
Based on these equations, one can show that the pressure reaches its minimum before the
supersaturation reaches its maximum, suggesting that nucleation will continue following the

minimum in pressure, albeit for a very brief period of time. We can solve the above equations

to determine the pressure value at the local pressure minimum. For the Rayleigh distribution

we find
P, - P, -232D + ]
—— Hc N “Pn | 2
2 Sp 32, 4 (78)
and for the stretched exponential,
P, — P, -QSB + n
- T~ Hc " _LLn
b, D |35, + 1 (79)

Given that sp, is generally of order 0.1, equations (78) and (79) are very similar to those
for the maximum supersaturation in the constant-pressure decline rate case, equation (70).
Furthermore, because of the closeness of sp, to Spm, We may use the sensitivity analysis we
conducted before to assess the dependence of % to the various parameters. For example,
in the region where sp,, is insensitive to A, the supersaturation }—)b;b—R‘ varies linearly with
II,. When sp,, is more sensitive, with the assumed power-law variation with m = 1/4, the

supersaturation at the minimum pressure varies roughly as

P, - P, (&
P,
Such a dependence can be used to guide the matching of the experimental data to be dis-

T2 1
) nim, (80)
3

cussed below.
We close this section by applying a similar analysis, now for the different rate-dependent

nucleation model. For the latter we recall the rescaled expression

do, ha
— = hiexp |—— 81
ditp 1%P [ s2 ( )
_3 -2

where h} = hill; 2 or ] = hy (%) ? in the respective cases. We proceed as before to
evaluate the time when nucleation terminates, which is the time when the maximum super-
saturation is reached. To find the maximum supersaturation, one needs to determine the
evolution of ¢,. For this we use in (49) the relation s = tp, to write

d¢q * h2
-~ hlexp [— 52] (82)
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the solution of which is readily found

¢y = h] (sexp [—%] — \/ﬂ'—h;erfc [—\C—E_ZD (83)

Thus, the maximum supersaturation occurs when the right-hand-side of (82) vanishes, which

approximately occurs when the following equation is satisfied

1 1 3
S5 exp (— s ) — sy /merfc (*—) =AZ1+x)! (84)

Dm SDm
where we defined the reduced supersaturation s}, = s/v/h2 and the new combination of

parameters

5
M= G (=it o = 2t ) (85)
3

in the respective cases of constant pressure decline rate and constant rate of liquid with-

drawal. For relatively small s},,, the solution of the above equation also reads

1

*2
SDm

— 5lns}),, ~In(l + &) — %ln3 —In2 — glnAh (86)

A plot of the solution of the general equation (84) is shown in Fig. 17. We note features very
similar to the cavity nucleation model, namely a region of weak sensitivity and another, at
higher Ay, of stronger sensitivity. Close examination shows that the rescaled supersaturation
for the rate-dependent nucleation model is slightly higher in the region of small Ay, but its
increase at higher A, is weaker than for the cavity model. Given the stronger dependence
of A, on rate, the dependence of the maximum supersaturation could be at first glance
be considered stronger. For example, for spm to vary as a power-law of the rate with
exponent m, it suffices for it to follow a power law with respect to Aj, with exponent 3m/5.
Interestingly, however, this higher sensitivity is counterbalanced by the lower sensitivity to
A}, at higher A}, compared to the cavity model. For example, if we were to demand m = 1/4,
then we should consider a range of Ay in Fig. 17 where the exponent is of the order of 3/20.
As shown in the Figure, this roughly corresponds to the same range as that of A for the
cavity model (Figs. 15, 16).

The nucleation fraction at the time of the maximum supersaturation can be estimated
as before. We find

D=

L\~ El
fur=spehit () (U407 (87)

As expected, the nucleation rate increases with a decreasing h2, namely with smaller values

of the interfacial tension v and the heterogeneous nucleation parameter f. It is interesting
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to note that the combination h?hj plays here the role of II.. For the same reasons, as before,
the pressure at the end of nucleation, which is also approximately the minimum pressure, is

given by

Pb_Pm *

In matching experimental data using this model, we would need to infer two parameters, the
rate constant Kj.; and the heterogeneous parameter f. The variation of the supersaturation
with the parameters, and particularly with II; is shown in Figure 18.

Working likewise for the constant liquid withdrawal rate, we find that the maximum su-
persaturation corresponds to an equation identical to (84), provided that one must substitute

1+ & with &/II3 and « with II;. The minimum pressure varies approximately following (88).

b. Gas cluster growth

To simplify the modeling of the growth regime, where nucleation has terminated we
consider only one class of clusters and write the mass balances as follows. For the case of

constant pressure decline rate we approximate

dCpes dzPrs
~ —(Cpeo — 1 +tp)z — o
T (Cp 1+tp)z —kkiCh . (89)
and
dzPs
(1 —tp) 2" = k7 (Cpeo — 1 + tp)z + 22 (90)
dtp
where we introduced the variable
Z = PqspD (91)
and the parameter
-D 1
¢y T}
| L A—
1 T (92)

Values for the final value of the rescaled nucleation fraction, ¢,¢, are to be obtained from the
previous analysis. Likewise, for the case of constant liquid withdrawal rate, we have similar
equations, except that now one must use II4/II3 in place of II;,

dCpo 1

ity —H—3(CDoo — Ppi)z — Cpeo (93)

and
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d Df d Df
MaPp 2 4 227 |kky o — 1| = kY (Cpeo — Ppi)z (94)
dtD dtD
along with
dPp; 1 dzPs
D — (kk ~1
dtp 1 (“ 2 dtp ) (95)

where we defined

ky =L M/ (96)

The comparison of the full numerical results with those corresponding to the approximate
model are shown in Fig. 19, for the constant rate of liquid withdrawal. We note a good
agreement. In particular, the approximate model captures well the pressure increase, follow-
ing the mimimum, its subsequent leveling and the gradual decline paralleling the equilibrium

curve.
V. COMPARISON WITH EXPERIMENTS

The above model and predictions were checked against various published experimental
results. We attempted to match the following quantities and their dependence on parameters,
particularly the rate: the final nucleation fraction, the maximum supersaturation sp, the
critical gas saturation, S,., the minimum pressure, for the case of constant rate of liquid
withdrawal, and finally the evolution of pressure or saturation as a function of time and the
various process parameters.

Experimental data for maximum superaturation, for the case of constant pressure decline
rate experiments, are reported by Scherpenisse et al., (1994). As pointed out in the previous
section, the experimental dependence is reported to be roughly linear. As explained in detail
in the previous section, matching these results requires the use of a window in the parameter
A, in the sp, vs. A relationship, where approximately a 1/4 power-law is observed. The
corresponding window is identified in Fig. 19 for the cavity model and in Fig. 17 for the rate-
dependent nucleation model. The combination A contains a number of geometric variables,

which are not known a priori. For example,

A ~ V,(riv)s (97)

while, the cavity size distribution is also not known. We used best estimates for V; and a

range of values for the cavity size characteristics, to indicate the range of values of A where
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the various experimental results may fall for the various size distributions considered. In
order for the theory to agree with the experiments, values of n = 0.223 and o = 0.046
are needed. Likewise, the predictions of the rate-dependent nucleation model were also
tested. Here, parameters that must be estimated include the wettability parameter f and

the heterogeneous nucleation rate K., since

-2
Ap~ Ky f7 (98)

Interestingly, the nucleus initial size is not included in this dependence. The corresponding
window for this model is indicated in Fig. 17, for the experiments of Scherpenisse et al.,
(1994). It is shown that for the reported dependence to be matched, the following parameter
values must be used: f = 2. x 107 and Kje; = 0.03867. This is rather extreme for the
model considered.

Estimates for the final nucleation fraction for the experiments by Scherpenisse et al.,
(1994) are shown in Fig. 20. We note that as anticipated, f,; is quite small, of the order of
1071°-10". In order to estimate the final nucleation fraction for the experimental data we,
first, calculate the number of nucleation sites per unit volume, N; ~ Ry’, where Ry is half
the average distance between nucleations and is given by Scherpenisse et al., (1994). Then,
fas is calculated using equation (11). The power-law scaling with exponent 1, as predicted
by the theory, is well supported by the data.

Additional comparisons, including constant liquid withdrawal rate experiments, are in

progress.

VI. CONCLUSIONS

In this chapter we developed an effective continuum model to describe the nucleation
and subsequent growth of a gas phase from a supersaturated, slightly compressible binary
liquid in a porous medium, driven by solute diffusion. The evolution of the gas results either
from the reduction of the system pressure at a constant rate, or from the withdrawal of the
liquid at a constant rate. The model addresses two stages before the onset of bulk gas flow,
nucleation and gas phase growth. We assume negligible gradients due to gravity or viscous
forces, thus the critical gas saturation, which signals the onset of bulk gas flow, is only a
function of the nucleation fraction.

We showed that the important quantities characterizing the process, such as the frac-
tion of pores that host activated sites, the deviation from thermodynamic equilibrium, the
maximum supersaturation in the system and the critical gas saturation depend crucially on
the nucleation characteristics of the medium. We used a heterogeneous nucleation models

primarily in the form of pre-existing gas, trapped in hydrophobic cavities, but also in terms
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of a rate-dependent nucleation, to investigate in detail the nucleation behavior. Using scal-
ing analysis and a simpler analytical model we showed that the relevant quantities during
nucleation can be expressed in terms of a simple combination of dimensionless parameters,
which include rate effects, for either type of nucleation model.

The theory predicts that the maximum supersaturation in the system is a weakly in-
creasing function of rate, which in the region of typical experimental parameters, can be
approximated as a power law with a small exponent. This function depends sensitively on
the probability density function of the nucleation cavity sizes. It also predicts that the final
nucleation fraction, thus the critical gas saturation, is a power law of the decline (or the

withdrawal) rate. The theoretical exponents were shown to fit the experimental data.
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Table 1. Characteristic values for the various parameters.

Parameter Pressure decline | Liquid Withdrawal
MW (g/mol) 18.6 16.0

D (cm?/s) 2.40z107° 1.352107°
v (dynes/em) | 8.2 13.0

T (R) 566.3 566.3

P, (psia) 870.0 1400.0

K (psia cm®/g) | 12476 4487.9

c (psia™t) 1.0z107° 1.49692107°
rs (cm) 9.0x10™* 1.0z1072
r. (cm) 8.0z107¢ 7.12107°
A* 1. 1.

npg 1. 1.

A 1. 1.

a (psta/h) 14.5 -

Q (ecm?/s) - 1.672107°
V, (em?®) - 132.24

11, 5.859210~° -

11, 2.327x108 1.476210'°
I3 8.700z1073 1.600x10~2
114 - 4.392210~*
11, 3.41721072 | 4.959210~2
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Figure 1: Schematic of a gas cluster growth in a porous medium.
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Figure 2: Micromodel snapshots indicating: (a) Gas bubbles confined within single pore
throats/bodies. (b) A gas bubble spanning several pore bodies.
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Figure 3: Cavity nucleation properties: (a) Schematic of a nucleation cavity in a host
pore body. (b) Rayleigh and stretched exponential distributions for nucleation cavities
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Figure 4: Variation of the rescaled nucleation fraction, ¢,, as a function of dimensionless
time, £ p, for constant pressure decline rate: (a) Effect of II; = 4.58210™™, for II, = 2.521073,
I, = 5.28210% and 113 = 2.221072. (b) Effect of II, = 0.25210~™, for II; = 4.58210™* and

I3 = 2.221072
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Figure 5: Variation of the mean rescaled dimensionless radius, ppm, as a function of di-
mensionless time, ¢p, for constant pressure decline rate. Effect of II; = 4.58210™™, for
I, = 2.521073, II, = 5.28210° and I3 = 2.221072.
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Figure 6: Constant pressure decline rate: (a) Variation of the rescaled supersaturation, sp,
as a function of dimensionless time, tp. Effect of II; = 4.58210™™, for II. = 2.5z1073,
I, = 5.28210°% and IIs = 2.22z1072. (b) Effect of the dimensionless parameter II; on the
maximum rescaled supersaturation, sp,, for II. = 0.25210~™. Points correspond to the full

numerical solution, solid lines correspond to the simpler problem.
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Figure 7: Variation of the gas saturation, S,, as a function of dimensionless time, ¢p, for
constant pressure decline rate. Effect of I, = 4.582107™, for II. = 2.521073, I, = 5.282108
and I3 = 2.221072.
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Figure 8: Effect of the dimensionless parameter II; on the critical gas saturation, S, for

II. = 0.25210~™ and constant pressure decline rate. Points denote the full numerical solution.
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Figure 9: Variation of the rescaled nucleation fraction, ¢,, as a function of dimensionless
time, tp, for constant liquid withdrawal rate. Effect of II; = 0.7446z10~™, for I, = 2.5z1073,

I, = 5.28210°% and I3 = 2.221072.
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Figure 10: Variation of the mean rescaled dimensionless radius, ppm, as a function of di-
mensionless time, tp, for constant liquid withdrawal rate. Effect of II, = 0.7446210~™, for
I, = 2.521072, II, = 5.28210° and II5 = 2.221072.
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Figure 11: Constant liquid withdrawal rate: (a) Variation of the rescaled supersaturation,
sp, as a function of dimensionless time, ¢p. Effect of Il = 0.7446210~™, for II. = 2.521072,
I, = 5.28210° and II5 = 2.221072. (b) Effect of the dimensionless parameter II,/II5 on the
maximum rescaled supersaturation, sp,, for II. = 0.25210~™. Points correspond to the full

numerical solution, solid lines correspond to the simpler problem.
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Figure 12: Constant liquid withdrawal rate: (a) Variation of the gas saturation, S, as
a function of dimensionless time, tp. Effect of II, = 0.7446210~™, for II. = 2.521073,
[, = 5.28210° and IIs = 2.221072. (b) Effect of the dimensionless parameter Il on the

critical gas saturation, S, for II, = 0.25210™™. Points denote the full numerical solution.
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Figure 13: Variation of the dimensionless pressure, Pp;, as a function of dimensionless time,
tp, for constant liquid withdrawal rate. Effect of II; = 0.7446z10™™, for II. = 2.521072,
I, = 5.28210° and I3 = 2.221072.
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Figure 14: Maximum rescaled supersaturation, spn, as a function of A for the case of
constant pressure decline rate, using Rayleigh cavity size distribution. Solid line corresponds

to the simpler model, circles denote the full numerical solution.
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Figure 15: Maximum rescaled supersaturation, sp, as a function of A for the case of con-

stant pressure decline rate, using various cavity size distributions. The solution corresponds

to the simpler model.
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Figure 16: Maximum rescaled supersaturation, spm, as a function of A for the case of con-
stant liquid withdrawal rate. Comparison between the simpler model (connected lines) and
the full numerical solution (denoted by stars for the stretched exponential cavity size distri-

bution with » = 0.5 and ¢ = 1.0 and by squares for the Rayleigh cavity size distribution).
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Figure 17: Maximum rescaled supersaturation, sp,,, as a function of A, for the case of rate-
dependent nucleation. Solid line corresponds to the simpler model. Squares denote, values

calculated using experimental data from Scherpenisse et al., (1994).
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Figure 19: Maximum rescaled supersaturation, spn,, as a function of A for the case of
constant pressure decline rate, when a stretched exponential (n = 0.223 and ¢ = 0.046)
cavity size distribution is used. Solid line corresponds to the simpler model, squares denote

values calculated using experimental data from Scherpenisse et al., (1994).
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Figure 20: Final nucleation fraction, f,f, as a function of A for the case of constant pressure
decline rate, when a stretched exponential (n = 0.223 and o = 0.046) cavity size distribution
is used. Solid line corresponds to the simpler model, squares denote values calculated using

experimental data from Scherpenisse et al., (1994).
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PHASE CHANGE IN POROUS MEDIA

Yanis C. Yortsos and Athanassios K. Stubos

INTRODUCTION

Phase change in porous media is a broad subject. It encompasses the gas, liquid or solid
phases occupying the pore space, or the solid matrix of the porous medium itself. The
structure of the latter may be rigid or evolving as a result of the phase change, for
example, as in the preparation of porous media or sol-gel processing. However, the focus
of this review will be on rigid porous media and on the phase change of resident fluids.
Phase change in porous media occurs in the confines of the pore space but it is driven by
the application of a supersaturation at the external boundaries of the porous medium.
Intermolecular forces between the fluids and the pore surface and the transport of mass or
heat within the pore structure, therefore, determine phase equilibria and growth kinetics,
respectively.

Porous media involve geometries at various scales, from rough pore surfaces to isolated
pores to pore networks to the macroscopic continuum. The study of phase change
encompasses different issues on these different scales. Nucleation is affected by surface
roughness; phase equilibria by the intermolecular interaction between confined fluid and
solid surface, in micropores, and by capillary forces in meso- and macropores; growth
kinetics are controlled by the transport of supersaturation in the pore space or the solid
matrix, and by the competition between growing clusters, if multiple nucleation centers
exist, and between dissolving blobs, if the phase becomes disconnected; curvature effects
at phase boundaries are related to the individual pore geometries rather than the effective
interface, as in the bulk; boundary conditions and macroscale heterogeneity control the
large-scale behavior. A schematic of the distribution of host and growing phases in a pore

network and of their interactions is shown in Figure 1.
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Figure 1: Schematic of phase change in a porous medium at three different scales,
including single-pore and pore-network scales. The schematic pertains to a gas-liquid
transition, although other phases can obviously be considered. The shaded areas denote

the liquid phase, the gas phase is white (and shown to be disconnected).
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This review reports on notable advances in these issues published during 1999, and to the
best of the authors’ knowledge. Thermodynamics and kinetics of phase change are
considered. For presentation purposes, the review is organized based on the type of the
phase change. Specific applications include: adsorption-desorption (and capillary
condensation) of single-component fluids, the melting-freezing transition, the boiling,
drying and evaporation of a liquid phase, the evolution of gas from a multicomponent
supersaturated liquid, the condensation of a gas phase, and the dissolution of a liquid
phase. Advances in each area are further classified in three different classes, wherever
appropriate, one dealing with molecular interactions, another with the geometrical-
topological effects of the porous micro-structure, and a third dealing with the

macroscopic level (see schematic of Figure 1).

1. Adsorption-Desorption

Advances reported in the period reviewed include a review article and several studies to
relate sorption properties to the microstructure. A review of adsorption-desorption of a
single-component gas in porous media appeared by the first author [1]. The article
describes multilayer adsorption, capillary condensation and desorption over the different
scales comprising a porous medium, from rough pore surfaces to micropores to pore
networks. It particularly focuses on the analysis of sorption isotherms for determining
pore-size distributions.

Ma et al. [2] reported experimental results for the fractal dimension of a rough surface
using SANS (small-angle neutron scattering) mesaurements during multilayer adsorption.
The results do not agree with conventional theories, and the authors cite the lack of the
validity of Kelvin’s equation as one reason for the discrepancy. Determining the correct
scaling relation remains an open issue. The effort to characterize micropore size
distributions in the absence of por network effects based on a combination of phase
transition simulations (using Monte Carlo or Density Functional Theory (DFT) methods
and experimental data continued [3]. Griffiths and Nilson [4] integrated the DFT
equations across several pore widths and obtained closed-form expressions for the

condensation pressure in terms of the pore size, surface tension and the Lennard-Jones
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parameters. The equation reduces to Kelvin’s for pores of large sizes. Frink and van Swol
[5] also used nonlocal DFT to model compressive stresses in fluids confined in nanopores
due to the interaction with the pore walls.

To incroporate pore-network effects in adsorption-desorption processes in porous media,
several studies made use of Kelvin’s equation. Murray et al. [6] proposed an extension of
previously developed nitrogen adsorption methods for pore networks to media involving
macropores. The influence of the porespace morphology on the adsorption-desorption
hysteresis was revisited by Stepanek et al. [7], who studied the process in reconstructed
porous media. The latter have been used recently in a variety of porous media
applications and represent an interesting alternative to conventional pore network models.
An algorithmic approach was implemented to determine the thermodynamic equilibria of
vapor-liquid interfaces in the reconstructed pore space. As in pore-network models,
hysteresis arises from a combination of geometrical and pore-blocking effects. Two
analytically tractable, but approximate models, a Bethe lattice representation of the
porous medium and the Effective Medium Approximation were used by Rajniak et al. [8]

to calculate transport properties in adsorption-desorption.

2. Melting-Freezing

A number of studies were published on the effect of the microporous confinement on the
freezing and melting of fluids. These parallel previous investigations on the effect of
confinement on vapor-liquid equilibria and probe effects of hysteresis and the shift of
equilibria.

The transition of Lennard-Jones fluids, confined in a single slit pore, was studied with
Monte-Carlo simulation by Dominguez et al. [9]. For sufficiently repulsive walls, the
freezing line shifts down in temperature compared to the bulk, the shift being larger as
the pore thickness decreases. This result is consistent with a Gibbs-Thomson condition.
Similar results were reported by Sliwinska-Bartkowiak et al. [10]. The transition of
carbon tetrachloride in Vycor and porous glasses was experimentally studied using
Differential Scanning Calorimetry (DSC). Simulations of a Lennard-Jones methane in slit
pores revealed the depression of the melting point as the confinement increases. Other

experiments showed similar trends. For example, Huber and Knorr [11] studied the
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transition of Ar in porous glass using X-Ray Diffraction (XRD) and reported a depression
of the melting point. Using DSC, Morineau et al. [12] examined the glass transition,
freezing and melting of a series of liquids in the mesoporous silicate material MCM-41
(cylindrical pores of 4 nm diameter). A moderate decrease in the melting of organic
liquids was observed. However, the glass transition temperature was found not to be
significantly different than in the bulk. XRD was used by Morishige and Kawano [13] to
study the freezing and melting of water, confined in MCM-41 cylindrical pores (1.2-2.9
nm) and in Vycor glass. Freezing-melting hysteresis and a size-dependent supercooling
was reported. Kaneko et al. [14] examined the freezing transition of carbon tetrachloride
inside graphitic micropores (average width 1.1 nm) using DSC but reported an elevation
of the freezing temperature.

The effect of the pore network on the melting-freezing transition was not explored in the
period reviewed. Two interesting investigations at the continuum level were conducted,
however. Cummings et al. [15] provided an analytic framework for solidification or
melting in 2-D and in the absence of surface tension, but where the supersaturation is
convected by a forced potential flow. As is well known, potential flow also applies to
single-phase flow in homogeneous porous media. Thus, the problem in Ref. [15] also
pertains to porous media, and in fact to an arbitrary phase change therein under forced
flow. The formalism developed allows for the construction of explicit solutions and
includes a parabolic tip as a special case. In a separate study, the linear stability of the
Rayleigh-Benard instability of a solidifying liquid in a porous medium was carried out
[16]. Solidification occurs above a superheated liquid. The flow is described using a
Darcy-Brinkman model, which allows enforcing a no-slip condition at the solidifying
boundary. As in [15], curvature or surface tension effects were not included, the
transition between the two phases being a sharp interface. The improved description of

interface phenomena that also accounts for the effects of the microstructure should be

pursued in future research.
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3. Boiling

Progress was reported in boiling in porous media at the various scales of interest. The
nucleate boiling from surface cavities was studied by Zhang and Chao [17], who focused
on the detachment of bubbles from nucleation cavities. They report on an unusual
Marangoni effect associated with aqueous solutions of long-chain alcohols in which the
surface tension is a non-monotonic function of temperature. In such solutions, above a
certain temperature, the surface tension increases with temperature, thus generating a
non-trivial driving force for bubble detachment. This leads to an increase in the critical
heat flux and the delay in the onset of dryout.

Considerable attention was paid during the period reviewed on micro heat pipes,
considered for the cooling of micro-electronic devices. In essence, these are capillary
grooves of various geometries, in which the confined liquid flows between a
condensation and an evaporation region. In a certain sense, they also represent single-
pore analogues. Advances were reported by Peterson and Ma [18], Hopkins et al. [19],
and Lin and Faghri [20]. Evaporation-condensation and the return flow of a fluid
confined in the capillary groove was simulated using conventional models. Thin-film
evaporation at the fringe of the evaporating menisci was accounted using disjoining
pressures. The effect of the geometric design on the heat transfer efficiency was
investigated.

Pore-network effects were analyzed in the study of Figus et al. [21], who described the
steady-state distribution of vapor and liquid in a porous capillary pump using a pore-
network model. The model accounts for heat transfer in the solid matrix and the pore
space, viscous flow, and phase change at the liquid-vapor menisci, each residing in
individual pores. As is conventional in such models [22], flow and heat transfer is
described using lumped pore- or grain-level conductances, as opposed to the detailed
calculations for single-pore geometries. A comparison with a continuum model, based on
a constant capillary pressure, is also made. It is shown that the vapor-liquid interface is
rough at the pore-network scale, with the roughness increasing with the variance in the
pore-size distribution. This capillary dispersion effect is expected. By contrast, gravity
stabilizes and limits its extent. Simulations of this type can be useful for applications

involving porous media of a small thickness, for example in porous coatings used as
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micro-cooling devices, and where continuum models are questionable. The development
of vertical vapor channels and their influence in increasing the dryout heat flux was
discussed in Stubos and Buchlin [23].

Various studies were also conducted using conventional continuum models involving a
liquid-vapor phase change, in which various effects of boundary conditions and process
parameters were analyzed. An interesting review of liquid-vapor phase change at the
continuum level with emphasis on steam-water flows in porous media was given by
Woods [24]. Forced flows, as a result of liquid injection in a hot porous medium, and

natural convection flows, associated with vertical heat transfer, were analyzed.

4. Drying-Evaporation

Advances in the evaporation of a single-combonent liquid from a porous medium focused
mostly on effects of microstructure at the pore-network scale. Under slow evaporation
conditions, capillarity is dominant at the single-pore scale, and vapor-liquid interfaces
conform to the pore-scale geometry. This allows modeling the process using pore
networks.

The analogy of drying to drainage, which is the displacement in a porous medium of a
wetting by a non-wetting fluid, was exploited in the studies by Tsimpanogiannis et al.
[25], Le Bray and Prat [26], and Prat and Bouleux [27], under the assumption of
isothermal conditions. Tsimpanogiannis et al. [25] discuss the connection between drying
and Invasion Percolation (IP), first postulated by Prat [28]. By accounting for viscous
flow they further make an analogy with Invasion Percolation in a Stabilizing Gradient
(IPSG). Here, and in contrast to external drainage, the viscous fluid velocity is opposite
to the front velocity, thus viscous forces are stabilizing. Using IPSG arguments, they
relate by a power law the width of the drying front ¢ to a diffusion-based capillary
number. Le Bray and Prat [26] extend the IP description of drying to a 3-D pore-network
in the absence of gravity or viscous effects. Their model demonstrates the existence of
dry patches at the evaporating interface and the occurrence of a constant-rate period, both
of which have been observed experimentally. They follow as a direct consequence of the
IP character of the displacement. Prat and Bouleux [27] describe 2-D pore-network

simulations, where the stabilizing effect of gravity is considered. They provide various
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numerical and theoretical results for variables at the front, including the evolution of the
drying interface and the evaporation of disconnected liquid clusters (a rough sketch is
indicated in Figure 1). By applying previous theories on percolation with trapping they
are able to obtain a scaling relation in 2-D for the overall extent of the front, defined as
the perpendicular distance between the front’s most advanced and least advanced points.
This scaling has a slightly different exponent than the classical one for the front width.
Coussot et al. [29] provide experimental results for the drying of layered media, which
demonstrate the dominance of capillarity under slow drying conditions. Layers of high
permeability regions are shown to dry preferentially, regardless of their distance from the
external interface. These findings are consistent with a capillary control of the process, as
postulated in the above pore-network studies.

Continuum-level studies were also published based on conventional macroscopic models.
These contain a number of coefficients, the validity of the expressions for which is
currently unclear. Given that the front region, where most of the action occurs, is under
IP (hence possibly fractal) conditions, a conventional continuum may in fact be
questionable. Pore-network models can provide the missing link. However, detailed
upscaling studies have not yet been reported. Furthermore, existing pore-network models
do not yet account for (thin or thick) film flow, temperature and Marangoni
(thermocapillary) and Marangoni-Gibbs effects. An interesting by-product of such an
effort would be the assessment of the validity of concepts, such as that of enhanced
diffusion, proposed by Philip and De Vries [30]. According to the latter, transport of
vapor at conditions of relatively low moisture content is enhanced by a sequence of
condensation-evaporation phenomena across liquid bridges. We note that this effect was
not observed in recent experiments of Plumb et al. [31], although this may be due to the
difficulty in interpreting experiments in real porous media due to the interplay of a
number of phenomena.

Using continuum models Wang and Chen [32] and Ni et al. [33] simulated 1-D drying
under conditions of convection and microwave heating, respectively. In contrast to the
pore-network models cited, here drying is driven by the imposed heat flux or by internal
heat generation, respectively, where the gas is at conditions of thermodynamic

equilibrium. Of interest is the case of intensive microwave heating, where the vapor
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generated internally displaces the liquid like in external drainage, thus resulting in high
drying rates. The important coupling between temperature, phase change and fluid flow is
of interest and needs to be examined in more detail. One may add that in contrast to the
previous applications, for example [25], here the flow of the liquid is not countercurrent,
viscous forces are destabilizing and can lead to the possibility of viscous fingering
patterns.

The vaporization of hydrocarbon mixtures in porous media was studied experimentally
by Liang and Udell [34], and Ruiz et al. [35], and by a chromatoghraphic modeling
approach by Zaidel and Zazovsky [36]. Liang and Udell [34] focus on the effect of the
amount of water present on the rates of vaporization in a water-wet medium, which they
find to be minimal. Ruiz et al. [35] discuss the effect of vapor adsorption on the solid
(sand) particles and the competition for adsorption in the presence of humidity. Zaidel
and Zazovsky [36] consider the propagation of evaporation-condensation fronts in the
evaporation of multicomponent liquids, by formulating the problem as one in
chromatographic transport. This formalism is generic to soil vapor extraction. Under
conditions of thermodynamic equilibria, the component volatilities are shown to control

the sequence of the propagating fronts.

5. Gas Phase Evolution from Supersaturated Liquids

Gas phase growth from a binary (or multicomponent) supersaturated liquid by pressure
lowering (also known as pressure depletion) is common to many applications, for
example to solution-gas drive for the recovery of oil from oil reservoirs. Pressure
lowering occurs as a result of the overall flow of the supersaturated liquid. Following
nucleation, the driving force for gas growth is mass transfer in the liquid phase in a
direction towards the growing interface. This is in contrast to drying or evaporation,
where the driving force is mass transfer in the gas phase and in a direction opposite to the
interface advance.

In the year reviewed, emphasis was given to the critical gas saturation and the mobility of
the gas phase. The critical gas saturation, S, denotes the value of the gas pore-volume
fraction at which the gas phase becomes mobile for the first time. This definition is not

unambiguous, however. In the absence of gravity or viscous effects, Li and Yortsos [37]
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defined S, as the condition at which a sample-spanning gas-phase cluster first arises
(which in the schematic of Figure 1 corresponds to the case when the growing phase
spans the porous medium). Clearly, the latter would be a function of the fraction of pores,
f,, which host active nucleation sites. Using pore-network simulations, Du and Yortsos
[38] confirmed a universal power-law scaling between Sgc and fy, first reported in [37],
for a variety of nucleation sequences. In the presence of gravity or viscous forces,
mobilization of a gas cluster can occur before the onset of a sample-spanning cluster, and
results from the imbalance of gravity or viscous forces and capillarity. In such a case, Sgc
will also depend on the gravity Bond number or the capillary number. Pore-network
simulations by McDougal and Sorbie [39], which included buoyancy, led to various
correlations for Sy as a function of the gravity Bond number and other parameters. These
authors also considered the dependence of interfacial tension (IFT) on pressure. If IFT
increases as pressure decreases, as is the case in some applications of interest, it will lead
to an increase in S in the presence of gravity.

When the liquid has very high viscosity, as in the case of heavy oils, viscous forces
dominate, perhaps even at the pore scale. Then, macroscopic bubbles in nucleation sites
could detach as a result of viscous shear, and the mobilization of the gas phase may occur
well before the onset of a sample-spanning cluster, thus leading to a small Sg.. Under
such conditions, Sy is expected to be capillary-number dependent, much like in the case
of gravity, with Sy decreasing as the capillary number increases. In addition, the size of
the mobilized gas clusters may be comparable to the pore size. A number of papers
addressed this subject. At issue is the observed anomalously high production of heavy oil
following the onset of gas flow, which appears to be in contrast to what is expected in the
solution-gas drive of light oils. The term ‘foamy oil’ was used to describe such a
condition.

A review of the foamy oil problem was presented in Sheng et al. [40]. From micromodel
experiments they infer the existence of microbbubles (smaller than 2 microns), which
contribute to the expansion and production of oil. They suggest that such microbbubles
originate from cavities at the pore walls, from which they grow in macroscopic size,
detach, entrain and subsequently break-up due to the strong viscous forces in the liquid

phase and the porous medium variable geometry. The resulting gas-in-oil dispersion may
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be possibly stabilized by asphaltenes deposited at the gas-liquid interface. Wong et al.
[41] suggested that this foamy oil flow occurs between the bubble point and the onset of
critical gas saturation, which they reported in the range 8-13%. From experiments outside
of a porous medium, Sheng et al. [42] find that such dispersion is metastable, the fraction
of microbubbles decreasing exponentially in time. By contrast, Pooladi-Darvish and
Firoozabadi [43] discount the concept of a gas-in-liquid dispersion (and of the foamy oil
terminology). Instead, they attribute the enhanced liquid production in heavy oils to the
reduced gas mobility, following S, as a result of the intermittent and fluctuating bubble
flow. In their hypothesis, low gas mobility is due to bubble break-up and the
accompanying increased resistance to mobilization and flow. Analogous results are
reported in Firoozabadi and Aronson [44]. In both studies, S, is of the order of 3-5%,
which is lower than in [40]. At the present time, the issue of foamy oil flow has not been
conclusively settled. In particular, besides some empirical modeling attempts [45], a
comprehensive model of the process to quantitatively account for the observed behavior

is still to be developed.

6. Gas Condensation
The reverse problem, namely the condensation of a gas phase in a porous medium was
addressed in only one study published in 1999, to our knowledge. Wang and Mohanty
[46] used a pore-network model to simulate the condensation of a multicomponent gas
under pressure decline, in a process of retrograde condensation. The model assumes that
condensation occurs under negligible supersaturation at the throats of the porespace (as
roughly shown in Figure 1). The pore geometry is crucial in determining condensate
volume and connectivity. Much like in capillary condensation, thermodynamic
equilibrium dictates the radius of curvature of the liquid-gas interface. Small throats fill
first and connected condensate blobs are identified. The critical condensate saturation,
Sce, is reached when a connected blob becomes large enough for gravity forces to
overcome capillarity and mobilize the fluid. Due to the large connectivity of the throats,
the critical condensate saturation is found to be small. In this approach, gravity is the
dominant factor for determining S... However, the scaling of the latter with respect to the

gravity Bond number is not given.
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7. Liquid Dissolution

The final area to be addressed in this review is the dissolution of a stationary liquid phase
in a porous medium due to the flow of another liquid phase (solvent). Applications range
from the dissolution of organic contaminants (Non Aqueous Liquid Phases, NAPL) in
subsurface soils to drug release from porous membranes (e.g. Tarvainen et al. [47]).
Often, the dissolving liquid phase is entrapped in the form of disconnected blobs or
ganglia (again roughly shown in the generic schematic of Figure 1). The forced
dissolution process is inherently unstable, as flow of the solvent is amplified where the
number of ganglia (hence the flow resistance) decreases.

In the context of this review, of most importance is the mass transfer between the
disconnected ganglia and the injected liquid. Various experiments and simulations were
reported during the period reviewed. Experiments on the dissolution of octane blobs in
packed beds were conducted by Johns and Gladden [48]. Using Magnetic Resonance
Imaging (MRI) these authors mapped the interfacial area and the flow velocities during
solubilization, and used the information obtained to determine an effective mass transfer
coefficient. Mayer et al. [49] and Johnson et al. [50] reported on the experimental
determination of mass transfer coefficients in surfactant-enhanced solubilization of TCE
and PCE, respectively. Bradford et al. [51] discussed the influence of fractional
wettability on the increased dissolution of trapped organic liquids. In less water-wet
media, organic liquids are likely to spread also in the form of films rather than as
disconnected blobs only, thus creating a larger surface area and, accordingly, a higher
rate of solubilization. Jia et al. [52] investigated mass transfer from disconnected blobs to
a flowing liquid by carrying out experiments in etched glass micromodels and
corresponding pore-network simulations. These authors reported that the dissolution rates
are sensitive to the local mass transfer coefficients, and particularly to their dependence
on local velocity.

Upscaling of dissolution was modelled by Quintard and Whitaker [53] with the use of
classical volume-averaging methods, which take into account in detail the effect of the
microstructure. In particular, an evolution equation for the volume fraction of the

dissolving phase was derived, the determination of which requires the solution of certain,
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rather complex, closure problems. The approach is based on the assumption of scale
separation at the microscale, however, which may be violated in processes at relatively

high rates of dissolution.

CONCLUSIONS
In this review we discussed various aspects of phase change in porous media. We focused
on the issues of the confinement in micropores, which affects phase equilibria and phase
transitions, and of the porous medium microstructure, which affect the kinetics of phase
change. Significant progress has been reported in various areas, including condensation-
evaporation and freezing-melting. Additional work is required, however, to couple

phenomena at the various scales and to improve the macroscopic description.
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II. VAPOR-LIQUID FLOWS

The simultaneous flow of vapor and liquid phases is common to steam injection.
Counter-current flows are encountered in Steam-Assisted-Gravity-Drainage (SAGD), and
in steam injection in horizontal wells. They also appear in the context of heat pipes in a
variety of processes (from geothermal to high-level numclear waste disposal). Concurrent
flows are found in typical displacements, in solution gas-drives near wells, and various
other contexts. The interaction between heat transfer, heat flux, buoyancy and fluid flow
affects the occupancy of phases and the flow characteristics, such as relative
permeabilities. In this section we report on two studies, one dealing with transient gas-
liquid flows with an evaporating component, although at time scales where evaporation is
not significant, and another on the dynamics of two-phase flows in heterogeneous media
where capillarity induces a trapped phase. The first study shows how the flow rates of the
produced fluids in laboratory displacements can be used to assess the exponent of the
relative permeability of the flowing liquid. We propose a novel diagnostic technique to
infer these properties, which allows for the mechanism of fluid flow to be uncovered. The
second study is a new approach, based on what we term Darcian Dynamics, to describe
the dynamics of the flow of a disconnected phase, in the form of ganglia, in the flow field
of a displacing continuous phase. This effort parallels the analogous effort in Stokes
flows, called Stokesian Dynamics. It is a computationally fast approach for the evaluation
of quantities such as the critical capillary number for mobilization, the subsequent
movement of the mobilized phase, and its possible stranding and/or coalescence. These

two studies do not address phase-change or heat transfer issues, which are currently under

consideration.
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TIME SCALING OF THE RATES OF PRODUCED FLUIDS IN LABORATORY
DISPLACEMENTS
Catherine Larochel, Min Chen and Yanis C. Yortsos
Department of Chemical Engineering,
University of Southern California, Los Angeles, CA 90089-1211
and
Jairam Kamath
Chevron Petroleum Technology Company, San Ramon, CA 94583-0719
INTRODUCTION

Relative permeabilities are important functions for the modeling and prediction of the
recovery of fluids from porous media. They express integrated information on the pore
structure topology and geometry and on the pore occupancy by the corresponding fluids.
Of particular interest is their dependence near the end-point saturations (corresponding to
residual or trapped fluids), where a power-law behavior is expected. Sensitivity studies
using numcﬁcal simulation have shown that this behavior has the most important effect
on recovery rates. Reflecting the same fact, most of the empirical models used (e.g.
Corey, see Bear?) contain a‘ power law in the residual saturation region. From theoretical
considerations, this power-law dependence reflects two different mechanisms, the
trapping of é disconnected non-wetting phase, where film flow is absent, in the case of
imbibition, and the continuous drainage of a wetting phase, through film flow, in the case
of drainage. In the latter case, the residual saturation is theoretically zero.

The trapping of a non-wetting phase by capillarity can be described by percolation
theory and its extensions, such as invasion percolatio’ and gradient percolation®.
Percohtion theory predicts that the approach of various functions to the trapped
saturation satisfies a power law with universal exponents, independent of the local pore

structure. For example, Wilkinsor® showed that the relative permeability of the displaced

phase, k,;, near the trapping threshold in a random medium obeys the scaling

ky~(S-8,)° )

'Now at the Institut Frangais du Pétrole, Reservoir Engineering Department, Rueil-Malmaison, France.
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where S is the displaced phase saturation and subscript » denotes trapped. The important
parameter in (1) is exponent b, which depends only on the dimensionality of the pore

network through the relation

15 @
Here u is the conductivity exponent and [ the percolation exponent, both of which are
universal. For example, in 3-D we have u =2, =045, hence b=1.38.

This analysis applies under the assumption that the displaced phase is non-wetting, thus
it becomes trapped by capillary forces. However, if the displaced phase is wetting, it can
escape through film flow. Now drainage of the wetting phase continues, albeit at low
rates. Film flow occurs either in the form of thick films and comer (or pocket) flows or
through continuous thin films. In such cases, the residual saturation will ultimately
vanish, while the exponent of the relative permeability curve is different from that for
drainage. Theoretical results for the dependence of the relative permeability of the
wetting phase under conditions of film flow were obtained by de Gennes®, Novy et al.”
and Toledo et al.® In the thick-film flow regime, de Gennes' theory predicts an exponent
- of the form

5-D
b= 3D 3
where D is the fractal dimension of the pore surface. For values of D in the order of 2-
2.5, one obtains estimates for » in the range 3-5. The theory was based on the

assumption of parallel pores. If the flow is controlled by thin films, the power-law

exponent is additionally related to the power mof the dependence of the disjoining
pressure [] on the film thickness 4 (namely [1(A)~A™), through the relation

3

b =m(T55 (4)

(see Toledo et al.®). For values of D in the order of 2.3-2.6 and m = Y, one obtains

estimates for b in the range 8.4 to 16.8. These values are significantly higher and
different than for drainage.
The experimental determination of the relative permeability functions, including their

behavior near the trapped saturation, is usually done using steady- or unsteady-state
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displacements. The well-known JBN technique® provides information on the relative
permeabilities in the saturation region after breakthrough of the injected fluid. It is based
on an analysis of fluid rate production data and of the pressure drop across the sample,
using the classical Buckley-Leverett equation'’. In general, however, the method is most
accurate away from trapped saturations, where relative permeabilities are not too small.
An alternative for determining the exponent of the power law dependence near residual
saturations is to consider the behavior at late times. In a recent study', we showed that for
displacements in porous media and various injection patterns, the variation of the ratio of
the produced flow rates as a function of time can be used to identify certain geometrical
and petrophysical characteristics of the medium. In particular, for a 1-D displacement this
ratio can be used to estimate the relative permeability exponents. Motivated by this
finding, the objective of this chapter is to evaluate the potential of such a method as a
diagnostic tool for displacements in laboratory cores. For this purpose we will assess the
conditions for which the approach of Ref. [1] is applicable, provide a suitable extension
and subsequently apply to experimental data in gas-liquid displacements.

Deriving an expression for the time dependence of the ratio of the produced fluids is
straightforward in the absence of capillary effects. Capillarity will affect saturation
profiles, and possibly flow rates, in places where permeability varies with position. A
most extreme, but routine, example of capillary heterogeneity is at the ends of the core
sample, where the permeability contrast is theoretically infinite and gives rise to well
known end effects. Effects of capillary heterogeneity were analyzed in detail under
steady-state flow conditions!!. In unsteady-state displacements, most of our
understanding comes from numerical investigations'2. Analytical results do exist for a
number of problems involving counter-current imbibition'> . In the later, however, the
process is controlled by capilly dispersion, rather than by viscous forces, as is the case in
the Buckley-Leverett problem. To access the effect of capillarity we will consider the
influence of end effects, other effects of capillary heterogeneity, and late-time regimes,
where capillarity may be important, even at high rates of displacement. For this purpose,
boundary-layer analyses and late-time asymptotics will be provided. These will be
verified using analytical solutions of the full problem based on a simple model that

follows Burgers’ equation'”. The latter is one among a few nonlinear equations of the
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second order, which are exactly solvable!®. The results will then be applied to obtain
relative permeability exponents from a set of gas-liquid displacements.

The chapter is organized as follows: We first derive the basic theory for the dependence
of the ratio of the produced fluids as a function of time in homogeneous media and under
viscous control. Then, the end-effect at the production end is analyzed using a boundary
layer description, when capillarity is small. Under the same conditions, we derive the
dependence for late-time regimes, where capillarity may be significant. A discussion of
more general effects of heterogeneity is also provided. Subsequently, we verify the
asymptotic results analytically, by constructing solutions of a model problem based on
Burgers' equation. Experiments are then reported involving the displacement of various
liquids (brine, methanol and toluene) with methane at high rates. The exponents obtained
are interpreted using pore scale models, which allow inferring possible flow mechanisms
near the residual saturation.

THEORY

The equation describing 1-D immiscible 2-phase flow in porous media, where capillary

forces are accounted for, is well known. For homogeneous media, it reads in

dimensionless form

u,+(Fu)), —e(D@u,), =0 ®)

where u is the reduced saturation of the displacing phase (namely, u ===, where s,

Sm—
is the maximum saturation), F(u) is its fractional flow function and D(u) is a

dimensionless capillary diffusivity. In the general case, the fractional flow function has

the form
1-N_ k. (u)
F(y) = —& "7 6

where Kk(u) is the ratio of the relative permeabilities of displaced to displacing phases,

M= ’7‘17; is the ratio of the corresponding viscosities, and N, = ﬂ—;—pﬁj—k& is the gravity

number, where g, is the acceleration of gravity component in the direction of
displacement,subscripts 1 and 2 denote initial and injected phases, respectively, and p

denotes density. However, most of our interest is on the approach near the trapped
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saturation of the displaced phase. There, gravity effects are secondary and can be
neglected. Near that region we can assume, in view of the theoretical of expectations
cited above, that the ratio of the relative permeabilities obeys a power law

k(u) = c(1-u)® @)
where b5>1 and ¢ is a constant prefactor. We must also note that at intermediate
saturations, an exponential dependence (the so-called X-plot) was found to successfully
describe relative permeability field data'’.

Parameter € is the inverse of a modified capillary number,

7
Jkpy ©

HiqrL

E =

where k denotes permeability, ¢ is porosity, ¥ is interfacial tension, u is viscosity, g;

is the injection rate and L is the system length. Small or large € denote, respectively, the

limits of viscous or capillary control. The dimensionless capillary dispersivity is

_ k. (w) |dJ
D)= (const)@zl 9)

where the constant prefactor accounts for the fact that # is a normalized saturation, J is
the J -function representing capillary pressure and the absolute value is taken to allow for
a common description for both drainage and imbibition. The dependence of D(u) near
the residual saturation has been discussed by various authors. In the corner (pocket) flow
regime, de Gennes® predicted hypodiffusion, namely the vanishing of the capillary
dispersivity,
D@)~(1-u)™® (10)
When thin films dominate, the behavior is more complicated. de Gennes' theory predicts
hyperdispersion, where
D@u)~(1-u)™" €3]
but Novy et al.” provide arguments for both hypodiffusion and hyperdispersion,
depending on the values of the fractal dimension of the pore surface and the exponent of

the disjoining pressure.

The problem is completed with the initial condition
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u=0at t=0 (12)

and the following boundary conditions. At the inlet, assuming injection at a constant rate,

we have
F(u)-eD(u)u, =1 at x=0 (13)
At the outlet, the end effect dictates
u=0at x=1 (14)
for the case of drainage, and
u =0 when F(u)—&D(u)u, =0, otherwise u=1,at x=1 (15)

for the case of imbibition. Because of its nonlinearity, the above problem must generally
be solved numerically. However, analytical solutions are possible in some limiting cases,
where the finctions F(u) and D(u) take a specific form'> 1. One such model will be
used below to verify the asymptotic predictions. In the next section we consider, first, the
solution in the limit when viscous forces are dominant.

Viscous Control, &£<<1.

In the case of viscous control, €<<1, capillarity is negligible, and equation (5) becomes
the well-known Buckley-Leverett equation. Its solution will be referred to as the outer
solution and denoted by superscript (0). This solution is singular in the following places:
around the shock front, if one develops, around the inlet x =0 at early times of order

O(€), around the outlet x =1 near and after breakthrough, and possibly at late times of
order O(e™"). Corrections to the Buckley-Leverett solutions in these limits will be

discussed in later sections.

1.The outer solution

In the small € limit, we obtain
u®@+Fu®), =0 (16)
the solution of which is obtained by the method of characteristics,

F'@®) =§ an

This solution is also valid for variable injection rates, where t expresses the fraction of

pore volumes injected. Of interest to this chapter is the reduced saturation at the outlet

u @) =u{? . From (17), this is readily shown to satisfy
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K@) _ M

=—— (18)
x@®) ¥ t
(1+ xe?) )
Then, the fractional flow of the displaced phase at the outlet, F,fg) , can be calculated
1

0) _ 0y —

Fl(,L) _l—F(uE))_l— O (19)
1+——

The variation of the produced flow rate ratio with time has been used originally by
Welge'3, in laboratory displacements, by Omoregie and Ershaghi'” (X-plot method) for
field analysis, and by Yortsos et al.!, as a diagnostic tool in waterfloods.

Consider, now, relatively large times (to be more precisely defined below), where u{®

is sufficiently large for equation (7) to apply. Substitution of the latter in (18) gives after

some manipulations the result

1
FO ¥ i1
[I—%J ~bc’M™'t (20)
-FY
This can be further re-arranged to read
Fl(O)
log| — == |=blog(tF} (- F,P))+ const @1)

Thus, under conditions of viscous control and at sufficiently large times, a log-log plot of

(0)
Lt vs tFQ1-F®) is a straight line with slope . By definition (b>1), the latter

=R
slope must be larger than 1. Equation (21) is a more general and, as it will turn out, a
better diagnostic tool for relative permeability exponents, than what was presented in Ref.

[1] (see also discussion below). In the latter we considered the further limit of small

F}Eg) , to obtain the power law dependence

0
kK(u c M L
AP - S G @)

from which one can infer exponent b. For reasons that will become clear below, in this
chapter we consider the more general expression (21). An important reason is that the use

of such a plot allows to differentiate sharply the power-law regime from that of the X
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plot. Indeed, if X-plot conditions were applicable, in which case the relation

K (u) ~exp(—du) is assumed to apply, the expression equivalent to (21) reads
1= (consttF,) (1~ F;) (23)

suggesting that in the appropriate plot, the combination tﬁfg)(l - F,fg)) is a constant. In
simulations and experiments to be described below, this property will be used to
differentiate between the X-plot and the other regimes.

To verify the above results, we computed the solution of problem (18) and plotted the
results in the logarithmic plot suggested by (21). Results for =2 and b=5 and for four

different values of M are shown in Figures la and 1b, respectively. In these examples,
we have taken the relative permeability dependence, x(u) = (1— u”)/u2 . The arrows in
the curves of Figure 1 point in the direction of increasing time. As expected, for
sufficiently small Flfg), at sufficiently large times, the plots show the existence. of a

straight segment with slope b equal to what is theoretically expected, regardless of the
value of M . The latter only affects the results by shifting downwards the region of
applicability of the power-law regime as M increases. The straight line segment is
preceded by an earlier-time regime in which Xplot conditions apply, and in which a
constant ordinate is expected (region near the vertical slope). At least for the simulations
of Figure 1, it is apparent that this region does not last for an extended period in the
logarithmic coordinates. The examples in Figure 1 confirm the validity of the abowe
analysis and its scaling predictions in the absence of capillarity. The results will be
contrasted to the experiments, to be analyzed later in this chapter.

Equation (21) was derived assuming ¢ sufficiently larger than 1 and the @sence of
capillary effects. As pointed out above, however, even under the condition &<<1, the
solution (17) becomes singular at various places: at the inlet, at the shock front of the
propagating Buckley-Leverett front (if any) and at the outlet, where boundary layers must
be inserted (see Figure 2). These layers have a thickness of order &, in space or time, or

around the shock. In addition, capillarity cannot be neglected at large times of the order

of % How these affect the above scaling of the effluent flow ratio will be analyzed

below.
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2. Outlet-end effect

Let ¢, denote the time of breakthrough of the injected fluid. In the neighborhood of the
outlet and for #<t,, the solution of the full problem is identically equal to # =0 (if
D(0)=0) or it is exponentially small (if D(0) #0), and the viscous solution satisfies
both the differential equation and the boundary condition, for either drainage or
imbibition. After breakthrough, however, the outer solution at the outlet, u,(f)) , does not
satisfy boundary conditions (14) or (15), in the respective cases. A boundary layer in

terms of the stretched coordinate & = 1=x must be inserted. Rescaling equation (5) in
£

this coordinate gives to leading-order the equation

—(F@)g = (D(u)ug )¢ (24)
the integration of which is
Du)du _
J: F(u)—AQ@) ~ @)
for the case of drainage, and
D(u)du —
'[" Fu)— A@®) 2 (26)

for the case of imbibition. Parameter A(¢) is independent of £ and is determined by
matching the outer limit (§ — <) of (25) and (26) with the outer solution ul(o) . Then, we
find, to leading-order

A = F(u7) @7)
Inserted back in (25) and (26), this expression gives closed-form expressions for the
behavior of the saturation near the outlet.

For illustration, we consider the case F(u)=1-(1— u)* (shown in the schematic of
Figure 3), which implies #\” =1-- and F(%) = —21—2, for t>1, =5 . We also take

for simplicity, D(u)=1. Direct substitution gives the following expression near the

outlet,
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2t-1 —l=x
u:l—L[l-'-(ZHl)exp( :zx):l for I>% (28)
&

" =1__1_[1"e"p(“1?)] for t>% 29)

for the case of imbibition.

The variation of u as a function of time and position for the above two cases is shown
in Figures 4a and 4b. The well-known end effect is apparent in both drainage and
imbibition. However, and even though the saturation profile undergoes a significant

change near the outlet, the fluid rates remain continuous across the thin boundary layer.
Hence, in this limit, expressions (21) and/or (22), which are based on u{?, still give at
leading-order the correct expressions for the flow ratio at the outlet. This will be
demonstrated by a specific example in a later section. Therefore, we conclude that even
though they affect the saturation profile, end-effects do not change to leading order the

time scaling of the outlet fractional flow rates.

3. Capillary heterogeneity

This also applied to the more general heterogeneous media. There, the permeability
variation will induce a corresponding capillary heterogeneity. The effect will be
manifested primarily as an additional term to the fractional flow, the strength of which is

proportional to £ and the gradient of the dimensionless permeability, kj, as shown in

the following equation

u, +(F(u), +&| D@)—2— | - e(D@Wkpu,)x=0 (30)
J

x
which is the corresponding version of (5) for heterogeneous media'!13. Steady- and
unsteady-state saturation profiles in the presence of capillary heterogeneity have been
discussed before !, From (30) it is apparert that the effect of heterogeneity is strongest
when the permeability is discontinuous, in which case it acts as an equivalent end-effect.
As in the end effect in homogeneous media, however, there exists a sufficiently small &

(sufficiently high rate) such that the heterogeneity effect is negligible on the flow rate
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ratio, although not necessarily on the saturation. Therefore, in the theoretical limit £€<<I,
we expect that equation (21) would still be valid for describing the ratio of the flow rates
at the outlet. The more heterogeneous the medium, the smallest the value of € required
for the power-law scaling behavior previously derived to apply. For example, Figure 5
reprinted from Ref. [11] shows that even for £=0.1, heterogeneity affects nor-trivially
the saturation profile. In general, its effect would be to lower the average value of the
saturation profile. (In an unpublished numerical study we have also found that at small
values of €, the effective relative permeabilities, hence the effective fractional flow rates,
are the same with the point relative permeabilities evaluated at the average saturation.)
Therefore, the main effect of heterogeneity would be to delay the onset of the power-law
behavior (7) over the sample. Precise estimates on the value of & for which this delay is
negligible require knowledge of the detailed permeability field and flow parameters,
however.

We conclude that if € is sufficiently small, capillary heterogeneity or end effects,
although affecting saturation profiles, would not substantially affect the flow rate ratio,
which should approach the scaling given by (21) and/or (22), sometime after
breakthrough. Capillarity is expected to affect the eventual approach to a steady- state, at
a later time, however. This is addressed next.

4. Late-time behavior

In the large-time limit, equations (25) and (26) show that u approaches a steady state u .
In the case of imbibition, it is the flat profilex =1. In the case of drainage, the steady
state is a function of &, obtained from the solution of

£ jo“ % =1-x G1)
Our interest in this section is on the rate of approach to this asymptotic state. Consider,
first, the case of constant capillary dispersivity.

a. Case of constant dispersivity, D,, =D(1)#0.

In the viscous control region outside the boundary layer at the outlet end, u —1 as
€ —0. Defining v=1-u, and taking into account that in this limit equation (7) is

valid, we find that v satisfies the equation
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v, + %vb_lvx =&D, v, (32)

where we assumed D, = D(1)#0. This is to be solved subject to the boundary

conditions

—ﬁvb+£Dmvx=0 at x=O0and v, =0 at x=1 (33)

Because of the assumed constant capillary diffusivity and the fact that b>1, equation

(32) admits a solution which decays exponentially in time,
v = exp(-At)g(x,1) (34)

The positive constant A is determined by substituting in (32) and taking the large-time

limit, Az>>1. Then, the viscous term contributes only a higher-order correction, and g

satisfies the eigenvalue problem
eD_ g, +Ag=0 (35)

with
g, =0at x=0andat x=1 36)
The solution of this problem is straightforward. We find g~cos\/£—D§ , where the
eigenvalue is obtained by applying the boundary condition at x =1, hence
A=eD n? 37
Thus, the solution in the outer region outside the boundary layer, approaches at late
times, #>>1, the expression
u =1-exp(—n’eD_t)g(x,t)+ - (338)
indicating an exponential decay in time. Regarding the flow rate ratio, we note that the
dominant component in the flux of the displaced phase, 1- F(u) —€D_v, = %—EDwvx )
is the capillary term €D_v,, as the nonlinear term contributes only a higher-order
correction. Using (38) we then find in this limit the scaling behavior
Fy ~exp(-m’eD,.f) (39)
Equation (39) shows that at large times, where capillarity dominates, the log-log plot of

F . . . . . .
%VS tF; (1-F,1) is a straight line, but now with slope equal to unity, subject to
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some logarithmic corrections. To examine the behavior when the capillary dispersivity
vanishes, we consider the following case.
b. Hypodiffusive case, D~(1—u)"*"".

Consider the asymptotic behavior in the large-time limit for the hypo-diffusive case,

where D(1)=0. For this, we need to assume the behavior |(}—“lf|~(l—u)"'1 , where

1-b<n<l. For example, according to de Gennes' theory’ for corner flow,

n =1++15—b. Now, the equivalent to (32) equation is
v, + L—bv”"vx ~e, (v, (40)

where we have incorporated various constants in the modified capillary dispersivity, €.

b+n

By further defining @ = v°™", this equation reads

o, +—C]l-{;-cogc0Jlr ~g,070,, 41)

where { = ﬁ and y = -b;:—n“. At large times, we take a solution of (41) in the asymptotic
form
o~t™ 42)
where the exponent v is to be determined. Substituting in (41) shows that balancing the
dominant terms is possible if the transient term is balanced by the capillary term, namely
if
1 b+n

=—= 43
Y Y b+n-1 “3)

This implies that in the capillary limit, the viscous term makes a negligible contribution

to leading order. The contribution to the flux comes only from capillary effects, hence

b+n

Fy~t® (44)
It follows that in this case, the log-log plot of 1_%‘? vs tF; (1-F, ;) is a straight line

with a slope b+ n, greater than 1. For example, using de Gennes' theory, we find a slope

equal to 1+ 515, which for D =1, which is the non-fractal limit in his theory, gives the
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value 1.5. The scaling predicted by (44) was verified with numerical simulations of the
full problem, which will not be reported here for the sake of brevity.

In theory, therefore, the capillary control segment, with slope 1 or 1+ 4 follows the

straight-line segment corresponding to viscous control, which has the slope 5>1. For the
two segments to be clearly distinguished requires sufficiently small €, so that the late-
time regime where capillarity is important, & >>1, does not overlap with the viscous
control regime after breakthrough, where ¢ is sufficiently large, but not too large, for
equation (7) to apply. An analytical example illustrating these regimes will be provided
below.
Exact Solution for a Model Case
In the above we showed that the flow rate ratio has a different behavior deﬁending on
whether the problem is viscous- or capillary- controlled. To verify these limits, we will
use an exact result for a model case in a homogeneous medium, including end effects,
based on Burgers’ equation. This involves the quadratic fractional flow function
F(u)=1-(1-u)? 45)
which corresponds to a power-law near the trapping treshold (#~1) with exponent 5 =2.

Function F(u) was plotted in Figure 3. Based on (45), the corresponding Buckley
Leverett problem (& =0) admits the spreading wave (no shock) solution, #® =1-%.

For a constant dispersivity, D =1, the general displacement is described by the non
linear equation
u,+2(1-uyu, = €u (46)

XX

which through the further substitution v=1-u, can be transformed to Burgers’

equation'

v, +2vy, =gy, Ce))
This is to be solved subject to the initial condition v=1 at ¢#=1, and the boundary
conditions: v> —&v, =0 at x =0, and

v=1at x=1 (48)
for the case of drainage, or

1-vi+ev, =0 if v#0,and 1-v?+ev, 20 if v=0,at x=1 49)
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for the case of imbibition. Now, it is well-known that using the Cole-Hopf

transformation,
vV=—¢ 23 (50)
¢
Burgers' equation is mapped to the linear heat equation
Pr =0x (1)

where we introduced the rescaled time 7 =& . Then, the initial and boundary conditions

become ¢ =exp(—%) at 7=0, ¢=1 at x=0, and

g"._—:_latx.—_l (52)
() £
for the case of drainage, or
¢=exp[i2—l] if . #0,and ¢, =0 otherwise, at x =1 (53)
g° €

for the case of imbibition. In this notation, the fractional flow of the displaced phase at

F, =% 54
L =€ E‘Ll (54)

Consider, now the solution of this problem in the case of drainage. The corresponding

the outlet is

for either drainage or imbibition.

solution for imbibition is described in the Appendix. By subtracting the steady-state
solution, q_>= 1- 3%, from ¢ and defining the variable w=¢ —5, we obtain an initial

boundary value problem which can be solved using classical methods'®. After several

manipulations we find the result
0= 2,() exp(~B37)], Z, ()GE)dE (55)
n=l1

where Z, (n =12,3,---) is the eigenfunction

2np2 >
N2(€*B7 +1)sin B, x 56)
Je2B2+l1+e

n =1,2,3,---) is the eigenvalue, obtained as the 1i? root of the algebraic equation
n q

Z,(x)=
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ta‘nﬂn =_ﬁn£ (57)

and G(x) =exp(—Z)+ 1% —1. The solution for ¢ reads

1+
#(x,7)=1-— _7% sin( 3, x)exp(—B.7)

1+ = B, (e*B}+1+¢) (58)

from which the saturation u =1+¢ %‘- and other quantities can be explicitly expressed. In

particular, we find the following expression for the fractional flow at the outlet,
2 (1+e)S" B cospB, exp-B;7)

FI,L(T):'_[

n=l £2B2+14¢ ( 5 9)

e cosf, exp(—-ﬂzr)
%+ (1 +£) n=l  g2B2+l1+¢

The analytical saturation profiles are plotted in Figure 6 for two different values of the
dimensionless time 7 (small 7 in Figure 6a and large 7 in Figure 6b) and for various

values of €. At small & (Figure 6a), the profile is close to the outer viscous solution
(Buckley-Leverett) profile, #” =1-%, as expected (curves with £=0.001 and 0.01 in

Figure 6a, where we should also note that for constant 7, different values of &
correspond to different times). In both cases, inlet and outlet effects are apparent, the inlet
effect delaying the approach of the inlet saturation to its maximum value of 1. At larger
times (Figure 6b), the corresponding profiles are almost flat, except near the boundary
layer at the outlet. As € increases, the saturation profiles are being controlled by

capillarity and lose the linear relationship predicted by the viscous solution.

The variation of =~ with tF;; (1-F, ;) for different values of € is shown i Figure

L3t

=h
7. At small values of & the plot has the main features of the viscous solution (compare
with Figure 1), provided that time is not too large. At early times, before breakthrough,
the curve has a negative slope. For sufficiently small times after breakthrough the X-plot
regime sets in, and the curve approaches a vertical slope. The regime of the power-law
approach to the trapped saturation is the straight-line segment that follows with slope
b=2. This is as expected from the outer viscous solution, where b =2. This regime is

quite apparent for sufficiently small & (&£<0.1 in Figure 7), although its extent decreases

with increasing €. Also shown in Figure 7 is the viscous solution (denoted in the figure
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as the BL curve), which for the particular fractional flow taken for Burgers' equation

satisfies the implicit equation
1 1
Y=-log(4t>-1); X =log—(1-— 60
og( 4% ~1); X =log (1= ) (60)

in the logarithmic coordinates X ,Y of Figure 7. As expected the analytical solution
approaches this limiting curve, as £ becomes smaller.

At larger times, the curve changes slope, reflecting the onset of the exponential decay
regime. According to the asymptotic theory, in this region the plot should be a straight
line with a slope equal to unity. We first remark that this is also the limit of the exact
solution (59). Indeed, in the limit of large times, the leading-order in (59) is the first term
in the series, namely

F =-2€” B} cos B exp(—PB/’1) (61)
where P, is the first root of the algebraic equation. In the small € limit, we further have
B, =m, thus

F;=2r 2e? exp(—m*T) (62)
The exponential decay is as predicted theoretically and coincides with (39), where
D_, = 1. Figure 7 shows that this capillary regime with unit slope is indeed approached at
sufficiently large times.

As € increases, the curves in Figure 7 retain the linear character of the viscous solution,
but in progressively smaller intervals. In fact, above € =0.1, the capillary regime
overlaps the viscous regime, and it is difficult to discern the existence of the latter. For
€>10, all curves practically coincide to a single, capillary-controlled curve. This curve

can be obtained by considering equation (59) in the limit £€>>1. Then,

sin
F, =2~ exp(-B7) (63)
B,
where f; is the first root of the algebraic equation and, in the large € limit, B, =Z.
Thus,
4 r?
F,; =—exp(——7 64
L= p( 3 ) (64)

In the X, Y plot of Figure 7, this curve has the implicit dependence
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T r? . te’
Y ——logI:Zexp(Tet) —1:' ; X = log[m] (65)

Similar results were obtained for the case of imbibition, as described separately in the
Appendix.

In summary, the above theory suggests that for sufficiently small values of the capillary
parameter €, corresponding to sufficiently high rates, a plot of the effluent flow rate ratio

1

in the form :T,LL vs. tFy; (1-F, ;) will give a straight-line segment with a slope greater

than one. This is equal to the exponent of the power-law approach of the relative
permeability of the displaced phase to its trapped saturation. This segment is followed by
a subsequent one with slope equal to one (or with a slope greater than one, in the
hypodiffusive case), where capillarity dominates. The above behavior is valid regardless
of whether the displacement is drainage or imbibition (see Appendix).
EXPERIMENTS AND DISCUSSION

The theoretical predictions were subsequently used to analyze laboratory experiments.
The experiments consisted of a series of room-temperature methane floods of a core
sample containing various liquids (brine, brine/methanol mixture and toluene). Humid
methane was injected from the top, while maintaining a constant pressure drop of 10 psi.
The core sample consisted of a preserved, composite (3 plugs) sandstone with porosity
0.16, permeability 14 md, length 16 cm and pore volume of 30 cc. Since the injection rate
was variable, the value of € was estimated at the later times of the displacement, where

gas is the main flowing phase. For ¥ =50 mN/m, and a viscosity ratio M =100, equation

(8) shows that € =0.02 for these experiments.
The measured data consisted of the gas flow rate, the volume of gas injected, the flow

rate of the liquid expelled, and the change in the weight of the core at the end of each

flood. Figure 8 shows log-log plots of :I';l‘L vs. tF; (1-F ;) for different experiments,

where methane displaces respectively, methanol (MeOH), toluene, brine (KCl), a 1:1
mixture of brine and methanol, and a 3:1 mixture of brine and methanol. All these plots
should be compared to the small £ curves in the corresponding figure for the Burgers'
model, Figure 7. We note similar features in all the experimental results. The curves

consist of segment with a negative slope, at early times, followed by a segment with an
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almost vertical slope, which then becomes a straight line with a slope greater than one,
and eventually approaches at large times a segment with slope close to unity. Guided by
the previous theory, we identify these regimes as corresponding to a regime before
breakthrough, the X-plot regime, the regime of the power-law dependence near the
trapped saturation and the capillary regime, respectively.

The segment with the powerlaw behavior can be identified well in most of the
experiments but not as well in the displacement of brine (Figure 8c). The methanol,
toluene and KCL-MeOH data (Figures 8a, 8b, 8d and 8¢) show well-defined power-law
regions in the viscous control regime. However, the region of applicability of the power-
law decreases in this sequence, due to the increase of €, since the interfacial tension
increases in the sequence, and the increasing overlap with the capillary regime (compare
also with Figure 7). The experiment involving the displacement of brine (Figure 8c) has
the least well-defined power-law region, which is also consistent with the high interfacial
tension (72 dyn/cm) for this system. From the theory, we can extract the appropriate
value of b. We estimate »=3.15, 3.28, 3.54, 4.5 and 4.8 for Figures 8a, 8b, 8c, 8d and 8e,
respectively.

The capillary regime has a slope close to unity, with an exponent varying in the range
1.18-1.20 for MeOH and toluene and in the range 1.02-1.05 for the brine solution. It is
suggesting either a constant dispersivity (for the latter case) or a weakly-hypodiffusive
case (for the former). The first case predicts a slope equal to one, but subject to
logarithmic corrections, which are not negligible in this time regime. The second predicts
a slope greater than one (and equal to 1.5 in the case of a Euclidean (not fractal) surface),
according to de Gennes' theory.

Comparison with the percolation results of Wilkinsori, equations (1) and (2), which
predict an exponent of the order of 1.38 for 3-D, clearly shows that trapping in the
absence of film flow is not the operating mechanism in these experiments. Instead, it is
apparent that drainage continues, albeit at slow rates, through the action of film flow. The
values of the exponents obtained are consistent with the theory of de Gennes® for pocket
flow over a weakly fractal pore-surface (for example, where D=2.2 for 5=3.5 and
D=2.42 for b=4.5). We note that our results cannot be compared with Novy et al.” or

Toledo et al.®, whose pore-network simulations do not agree with de Gennes, as their
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saturations take much smaller values (in the range 103-10") compared to those in our
experiments (of the order of 10" and higher). In either of the latter theories, the phase
distribution at the pore-network scale is controlled by capillary forces. It is possible,
although this was not confirmed, that the trapped saturation in our experiments reflects
macroscopic trapping due to permeability heterogeneity (similar to that shown in Figure
5) or viscous fingering at various scales. In such cases, the exponents obtained would
reflect drainage through film flow along the displacement patterns in a fashion different
than the one predicted by de Gennes. As far as we know, an analysis of this problem does
not exist at present.

In summary, we are led to the conclusion that the displacement in the experiments
reported is a drainage process, where following the trapping of the displaced phase,
drainage continues, albeit at slow rates, through corner and pocket flow. The exponent of
the relative permeability obtained, of the order of 3-4, is consistent with de Gennes'
theory, with flow occurring over a weakly fractal pore surface. At the same time, we
cannot exclude the possibility of trapping due to heterogeneity or viscous fingering, the
slow drainage around which may contribute to analogous exponents. What appears to be
certain is that thin film flow did not contribute to the observed behavior in this regime.
This is consistent with two facts: that the exponerts are much smaller than what would be
expected if thin films dominated (order of 6 and higher), and that they appear to be
weakly dependent on the chemistry of the displaced fluid, which rules out disjoining
pressure effects.

Finally, we must add that n a preliminary report® of this analysis, we were led to a
different conclusion and reported considerably larger exponents, which supported flow

dominated by thin films. That analysis was based on analyzing plots of log F;; vs. log?,

which according to this chapter and Ref. [1], should asymptotically approach a straight
line with slope equal to —b/(b—1) (for example, compare with (22)). The slopes

obtained were close to one, which is possible only if b is hrge indeed. It was realized in
retrospect, however, that in fact we were matching data, which did not pertain to the

power-law regime of the curve, but rather to the X-plot regime. In a log F; ; -log ¢ plot,

this regime is also a straight line with slope 1, but more importantly, it cannot be clearly
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distinguished from the power-law segment. Using the new plot %l‘—z- vs. tF; (1-F;),

on the other hand, allows for a much sharper distinction, as the X-plot regime
theoretically corresponds to a vertical slope, which can be clearly separated from the
power-law segment, which has a finite slope. To demonstrate the usefulness of this new
plot, as a diagnostic tool, we have plotted all the curves for the various experiments in
one Figure (Figure 9). The curves have very similar characteristics with the theoretically
expected (e.g. compare with Figure 7) in the limit of small capillarity, and allow for the
identification of the viscous control regime.
CONCLUSIONS

In this chapter, we proposed the use of an asymptotic method, based on the time scaling
of the ratio of produced fluids, to infer the relative permeability exponent of the displaced
phase near its residual saturation, for immiscible displacements in laboratory cores. We
showed that at sufficiently large injection rates, the existence of a power law can be

detected, and its exponent inferred, by plotting in an appropriate plot the ratio of the flow
rates of the two fluids at the effluent for some time after breakthrough. In this time
interval, the plot is a straight line with a slope equal to the exponent in the relative
permeability power law. Capillary end effects do not affect the results to leading order at
high rates. However, at sufficiently large times, capillarity becomes important. In such a
plot, it is manifested by a straight line with a slope equal to one, if the capillary
dispersivity is constant, or greater than one, if the process is hypodiffusive. The
theoretical findings were verified by comparison with an exact solution. Application of
the results to laboratory displacements of various liquids by methane resulted in
exponents for the relative permeability of the wetting phase which were consistent with

pore-scale models of corner (or pocket) film flow.
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APPENDIX
In this Appendix we provide the derivation of the exact solution in the case of
imbibition. As noted in the main text, for this we will seek a solution of the heat equation
(51) subject to the boundary condition (53). The first part of the boundary condition,
namely before the breakthrough of the displacing phase, applies first. Hence, for 7 <7,

where the breakthrough time 7, is determined from the condition ¢, =0, we take

T 1
= — =] at x=1 1
oeen]5-1] o
The solution of this problem is obtained by standard methods. We find
¢ =1-x+ Yb,sin nexp(—n’1 1) + Y c, sin n7 exp(—) Q@
t 1 &
where the unknown coefficients are
2
b, = 3
n(l+e2n’n? ®)
and
. 27e’n
¢, =(-)™ T einin? XP(——) C))

The breakthrough time is the solution of the equation
1 i(—l)"nb exp(—n’m’t )+i(—l)"nc exp(zf—) 5)
T 1 n P d 1 ! e?

Equivalently, one may use a different expansion for the solution of this problem, by

considering a Laplace transform. Then, it is not difficult to show that 7, solves the

following equation

-3 exp(§<n+1>1er {J— (nf—l) ”"p('?I {E (3:;)] ]}

(6)

where s, = sign(n+1/2). This equation is better suited both for numerical evaluation and

for analytical manipulations. For example, one can show after some manipulations, that

the solution of (6) in the limit £<<lis 7, =%, as expected from the viscous solution
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case, where 7, =1/2. For completeness, we show in Figure Al the solution of (6) for

different values of €. As expected, the breakthrough time is given by the Buckley-

Leverett solution, ¢, = 1/2 at small € and approaches ¢, =1 as the problem is controlled
by capillarity.

For times 7 >7,, we need to solve again the heat equation, but now using the boundary
condition ¢, =0 at x =1. Based on the initial condition ¢ =¢(x,7 ), obtained from the

above, we obtain the result

A Yy sin 4, 1S sin( A, —mz) _sin( A, +mn)
¢_1 2;SID(A'"X)GXP( )'n(T Tf))[ ngm(‘rf)[ 2. —mn l"+mﬂ: ):'

AZ
@)
where A, =(2n+1)% and
2 2 Tr
Su(Tg)=byexp(-m"n7T,) +c,, eXp(g—z) ®

Although in an explicit form, the solution of the problem requires the numerical

evaluation of 7. The results for the fractional flow at the outlet, Fj;, are plotted in the

log-log plot of l—f‘Ff—L vs. tF; (1-F, ;) in Figure A2 for various values of €. The curves

obtained have similar characteristics with the drainage case discussed in the main text.
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Figure 1. Loglog plot of

liquid under viscous control, for different values of b and M. (a) b=2, (b) b=5.
Arrows indicate the direction of increasing time. The straight-line segment at large times

has slope equal to 5. The X-plot regime corresponds b the region around the vertical

slope.
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Figure 4. The saturation profile in boundary layer coordinates, near the outlet end for the

fractional flow of Figure 3: (a) drainage, (b) imbibition.
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Figure 5b

Figure 5. Drainage saturation profiles in a heterogeneous medium for £=0.1, M =10
and for different values of time (0.1, 0.25, 0.50, 0.75, 1.0, 2.0 and 8): (a) Saturation
profiles, (b) the imposed permeability variation. (From Ref. [12]).
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Figure 6 Saturation profiles for drainage obtained from the exact solution based on

Burgers' equation, for different values of € and two different values of 7 (a) 7=0.01, (b)

7=10.

Figure 7. Log-log plot of H; V8 tF; (1-F;) for the outlet fractional flow of the

liquid as obtained from the exact solution of the Burgers' equation for drainage, for
different values of €. Plotted also is the solution corresponding to the viscous solution.
For £<0.1, a straight line segment with slope 2, corresponding to the viscous solution

can be identified. The late-time segment with slope 1 corresponds to capillary control.
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8a. Displacement of MeOH with methane
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8c. Displacement of brine (KCI) with methane
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8e. Displacement of KCI-MeOH3:1 with methane
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Figure 8 Log-log plot of I_F’T‘L vs tF;(1-F, ;) for the outlet fractional flow in the

following experiments: (a) methanol (MeOH) displaced by methane, (b) toluene
displaced by methane, (c) brine (KCl) displaced by methane, (d) an 1:1 mixture of brine
and methanol displaced by methane, and (¢) a 3:1 mixture of brine and methanol
displaced by methane. The slopes of the viscous control and capillary control straightline

segments are 3.15 and 1.21, 3.28 and 1.18, 3.54 and 1.02, 4.5 and 1.04, and 4.8 and 1.05,
respectively.
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Displacement of liquids with methane
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Figure 9. Log-log plot of %fz— vs tF ; (1-F, ;) for the outlet fractional flow of all the

curves in Figures 8-12. Comparison with Figure 7 at small € shows that the experimental

curves are consistent with the theoretical expectations
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Figure Al. The breakthrough time ¢, as a function of the parameter &£ for imbibition,

obtained from the exact solution corresponding to Burgers' equation. At small &, the

breakthrough time approaches the viscous limit %, while at large € it approaches the

capillary limit 1.
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DARCIAN DYNAMICS
Pouya Amili and Yanis C. Yortsos
I. Introduction

Two-phase flow in porous media has been the subject of many studies for decades due
to its importance in many applications such as oil recovery, geothermal reservoirs, nuclear
waste repositories and so on. In many applications, two-phase flow is also accompanied by ‘
phase-change, thus effects of heat transfer are important as well, for example, in thermally
enhanced oil recovery. Of interest to this part of the report are co-current and counter-current
vapor-liquid flows in porous media. While this topic is important in many applications, it has
not received a fundamental attention. A difficulty arises from the fact that due to capillary
forces, there is the possibility that one phase becomes disconnected or stranded. Conversely,
a stranded phase, consisting of blobs or ganglia, can be mobilized, if the flow rate of the
other phase is sufficiently large. The existence of such blobs disturbs in turn, the flow, which
consequently affects trapping and mobilization conditions.

Modeling of the trapping, mobilization and or coalescence of disconnected ganglia in
porous media has been investigated using two models: percolation and pore-network simu-
lation. The advantage of percolation models is that they are fast, however they only apply
to very small flow rates, where the process can be considered as quasi-static. A full-scale
pore-network simulation does not have this disadvantage, and applies to general dynamic
flow conditions [5], [6], [7]. However, it is computationally intensive and requires a great
deal of detail of the microstructure. In this work, we provide an alternative approach, which
utilizes the fact that at the small scale, fluid flow is in fact described by Poiseuille’s equation
(which can lead to a macroscale description based on Darcy’s law). The linear character
of this equation allows us to apply a Boundary Integral Method in which all the relevant
flow information is mapped on the boundaries of the two phases. Moreover, because the
underlying equation is the Laplace equation, we can use the many important advances made

in potential theory.
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An analogous situation exists in the bulk fluid flow of a suspension of small particles,
droplets or bubbles, where the flow is controlled by viscous forces. One method to understand
the flow properties of such systems is Stokesian Dynamics introduced by Brady and Bossis
[1]. Stokesian Dynamics is a molecular-dynamics-like method to numerically simulate the
suspension behaviour at small Reynolds number. It is based on the linearity of the problem
at small Reynolds numbers, where Stokes equations apply, and relies on a boundary integral
method to compute the hydrodynamic forces between particles as transmitted through the
flowing fluid. In the flow of fluids in the bulk, these forces are driven by viscous shear, which
compete with thermal and interparticle forces. In fluid flow through porous media, however,
the main forces that compete with capillarity are pressure forces, which can be expressed via
Darcy’s law. In this report, we propose an analogue to Stokesian dynamics, based on Darcy’s
law, which we call Darcian Dynamics. While our ultimate interest is vapor-liquid flows, we
have found that the simpler problem of isothermal flows is not really well understood, in
this context, thus this preliminary effort addresses first, the problem in the absence of phase
change. The latter will be considered in the next phase of this project.

The objective of this work, therefore, is to use a Boundary Integral Method, based on
potential theory, to formulate a methodology for Darcy flows, which is analogous to that
for Stokesian Dynamics. The foundation of this method is described in this work. The
method will enable us to investigate the interaction between a flowing and a dispersed phase
in a porous medium, which is held trapped or has its motion hindered, by capillary forces.
The method provides a fast way to model the system behavior and its dependence on the
various geometric parameters, such as ganglia configuration and location, the flow rate, the
capillary number, and other variables. By using the new approach, the pressure distribution
on the interface of the various ganglia can be directly obtained. This is a function of various
parameters, such as the size and shape of each ganglion as well as the position and the
distance between ganglia. Using this information, the overall pressure force on each ganglion
can be calculated to study the possibility of mobilization or movement of ganglia. This

movement is related to the population, distribution, as well as the size and configuration of
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the ganglia. In addition, forces such as gravity will play a role in ganglia mobilization. We
note that following the mobilization of a ganglion above a critical flow rate, all or some of
the ganglia can be moved, although after some steps, some of them may become stranded.
Flowing ganglia may break up and form two or more daughter ganglia, which in turn may be
stranded. Another possibility is coalescence between two ganglia resulting in the formation

of a larger ganglion.

I1. Theory

The governing equations for the flow of a fluid in a homogeneous porous medium are obtained

from momentum and mass conservation as follows

U= —E(VP _og) W)

and

vV-U=0 (2)

where U, 1, k and P are the flow rate, dynamic viscosity of the flowing fluid, permeability of
the porous medium and pressure, respectively. By substituting (1) in (2) and taking £ and

u constant, Laplace’s equation for pressure is obtained

V2P =0 (3)
whose solution provides the pressure profile in the system. Consider, now, a two-dimensional
system with flow of the fluid in the direction of the z-axis with far-field velocity U, =U.,.
The system contains trapped blobs or ganglia of another phase and is considered to be
infinitely extended in the direction of flow. The existence of the ganglia perturbs the flow,

consequently the total pressure and flow rate can be described as

PtZPd‘l‘Po
U,=Us+7, (4)
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where subscripts ¢, d and o represent total, perturbed and original values, respectively.

The boundary conditions of the system are defined at the far field and at the interfaces

between the two phases. At the far-field, the perturbed flow rate vanishes, namely
U-t =Uy

At the surface of the ganglia, the normal flow velocity is zero, therefore we can write

(Ut)n =0

where 7 is the outward unit normal vector at the surface of the ganglia. This can be further

written as

© On °
(5)

where 8 is the angle between the normal vector, 7, and the direction of flow.
In order to make equations dimensionless, the following reference quantities are intro-

duced

P

- Pp=—: Lp=
D P*’ D (6)

b]

L
l
where p, U,, k andl are dynamic viscosity, flow rate,

Sl

Up =

Here we have defined P* = @2,
permeability and the characteristic pore length, respectively. In this notation, Laplace’s

equation and the boundary conditions can be rewritten as
(7)

V4(Pi)p =0
(8)

on the interface

0(Pi)p
5 cos 8
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and

(U)p =1 T — 00 (9)

From this point on, subscript D will be omitted for simplicity, however all parameters are
assumed dimensionless. Solving Darcy’s equation for the original state, results in P, = —z,

therefore the total pressure is given by

Pt:Pd—II? (10)

where P; is the solution to Eqn.(7).

There is a wealth of material regarding the solution of (7) with different boundary condi-
tions. These methods can be classified in two different general categories, differential methods
and integral methods. In differential methdds, the differential form of Laplace’s equation is
used for the solution (for example, using Finite Differences (FD)). In the integral equations
approach, the Green’s function technique is employed, where the pressure (potential) is ex-
pressed in terms of the integral of the Green’s function. As Eqn.(8) suggests, the boundary
condition is expressed in terms of the normal derivatives of pressure. Using the integral
equation approach to solve (7) with boundary condition of (8) results in a Fredholm integral
equation of the second kind. These equations are similar to potential problem in electrostatic.
For example, this problem is similar to the charge distribution on a surface (simple layer and

double layer). We use techniques from potential theory to solve the problem, as shown below.

Method of Solution: 1. Infinite system

Since the potential theory of electrostatic is well understood, we will use the terminology
of electrostatic to describe the solution procedure. The free-space potential due to a point
source in two dimensions ¢(p), is defined

1 — /
p(p) = 5-lnlp -7l (11)
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where p' is the location of the source and p is the observation point. If we consider the
distributed sources with density ¢, on C, by superposition the potential of the entire charge

distribution at point p will be

— n L
¢(p) = /Oqz(p')gln lp— 7’| diz/ (12)
Here, contour C represents the location (cross-section) of a two-dimensional charge distri-

bution and can be a closed or open contour. Define, next, @Q;(p’) = qi(p’), then we have

2= [ L) 15— 5 aly (13)

Now, if 7 is not on C we can calculate dp/0n by differentiating (13). We obtain

°°S(’7 P20 g, vpg Co(14)

/@@5 Pmm 7'l = [ Qup) et

anp
The boundary condition is specified on the contour C, thus we need to evaluate the above
in the limit p — C. To avoid the possible singularity we divide the contour C into two
complementary parts Cs and Co, and let C approach zero. In the limit when p approaches

C, e.g. at point C, (see Fig.(1)), then equation (14) becomes

) cos(p—p', 1) cos(p p',n)
= e dl ’ — T dl.
p—>c+ 8n—( Q) 2n|p—p'| + / Qi 27r| p—p'] dly (15)

The second integral contains a possible singularity as p — p'. At the limit C; approaches
zero and can be considered as a straight line. For a smooth C;, we set up the following
geometry by assuming the origin at the center of Cj, see Fig.(1). Asp — p’, h — 0.

Therefore, the second integral in (15) can be rewritten as

lim [lim /w cos(h — z,7) @i(0) dz (16)

w00 [h—0 J oy 27T|h |

where

h
cos(h —z,M) = —=—=—= and |h —z|=Vh?+2?
h? + z?
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Figure 1: The local geometry as point 5 (denoted as point %), approaches contour C' at point

C, along the normal to the contour.
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Eqn.(16) is evaluated as
' h
N P R/ =) o .-th(O)/w dz B
JI—I& [}f_% /_w orVR2 + 22 Qu(0) dw} = lim [}IL% o )| =

0) = =«
GG +5) =500 1)

Using the result obtained in Eqn.(17) in (15),we arrive at

. Oy 1 cos(p —p’, f)
— (D) = - O / Fhy==xF Fo -
31_1{5& Gn;(p) -i—2 Qi(C) + o, Q") 375 —5'] diz (18)
Equation (18) is a Fredholm integral equation of the secondkind which can be solved numer-

ically by applying a methods of Moments as explained below.

The Method of Monents

The basic idea of this method is to reduce a functional equation to a matrix equation, and
then solve the matrix equation by known techniques [2]. When the equation is reduced to a
suitable matrix form, the solution can be found by matrix inversion. The problem can be cast
in the form L(f) = g, where we must identify the operator L, its domain (the functions f on
which it operates), and its range (the functions g resulting from the operation). Furthermore,
we usually need the scalar inner product < f,g >. If the solution to L(f) = g exists and is

unique for all g, then the inverse operator L™! exists such that

f=L"(g) (19)
If g is known, then (19) represents the solution to the original problem. Let f, the unknown,

be expanded in a series of functions fi, f2, fs,... in the domain of L, as

f = Zanfn (20)

where the a,, are constants. We shall call f,, ezpansion functions or basis functions. For exact

solutions, (20) is usually an infinite summation and f, form a complete set of basis functions.
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For approximate solutions, (20) is a finite summation. Substituting (20) in L(f) = g, and

using the linearity of L, we have
Yoonl(fn) =g (21)

It is assumed that a suitable inner product < u,k > can be defined as

<u,k>= /u(:c)k(:c)da: (22)

Now let us define a set of weighting functions, or testing functions, w;,wz,ws, ... in the range

of L, and take the inner product of (21) with each w,,. The result is

> an < Wm, Lfp >=<wm,g> m=1,2,3,... (23)

This set of equations can be written in matrix form

[lmn][etn] = [gm] (24)

where
<w,Lfi > <w,Lfy>

[lmn] =| <wyLfi > < wy, Lfa> ... (25)
(83 <w,g >
[an] = | 02 | l9ml =] <wsg> (26)

If the matrix [{] is nonsingular, its inverse [{™!] exists. The o, are then given by

(o] = (7] [grm] (27)

and the solution for f is given by (20).
The choice of the functions f, and w, decides if this solution is exact or approximate.
The f, should be linearly independent in order to approximate f reasonably well by super-

position of (20). The w, should also be linearly independent in the product < w,,g >. We
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choose point-matching and subsectional bases methods to decide what kind of functions we
must use for our weighting and basis functions respectively. A simple way to obtain approx-
imate solutions is to require that equation (21) be satisfied at discrete points in the region of
interest. This procedure is called a point-matching method. It is equivalent to using Dirac
delta functions as weighting functions. Another approximation is the method of subsections
involving the use of basis functions f, each of which exists only over subsections of the do-
main of f. Using pulse function as basis function can satisfy this purpose. Then each a, of

expansion (20) affects the approximation of f only over a subsection of the region of interest.

Numerical Solution of the Two-Dimensional Problem
The governing equation and the boundary conditions in our case read as follows. We

recall that Laplace’s equation for the perturbed pressure is

V7Py() = 0 (28)

At the interface between the two phases, the boundary condition is

0Pqy(p) _
T =cosf pc C (29)
Using the previous result, we have
0P, _ cos(p —p',1iz) _
Jim 520) = 500) + [ 00) ST d pec (30)
therefore, we obtain
_Ql + / Ql COS(P p nP) dl , = C080 (31)
2r|p—7'|

Boundary condition Eqn(31) must be satisfied for all points on C. Result (28) is of course

valid at a general point outside C, where
~ Ll
Py(p) = /CQI(P )o-lnlp 7' dly (32)
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The following will describe an application of the Moment Method with subsectional bases
and point-matching to numerically solve the integral equation (31).

An arbitrary two-dimensional contour of reasonable smoothness (here the ganglion) can
be approximated by N straight segments, given sufficiently large V. We then assume that the
unknown function @, is constant on each straight segment. The Moment Method enables us
to numerically find the unknowns of the problem (Q; on each segment). Once the distribution
of Q, is obtained, (32) can be used to find the pressure at an arbitrary point outside C. Our

problem can be formulated in the following form

Lf=g (33)
where f (the unknown) is approximatedas
N
f=>af; (34)
=1
therefore (33) becomes
N
LY oifi=g (35)
Jj=1
Because of linearity,
N
Yoeilfi=g (36)
7=1
In our problem, the operator L is
cos (p—7p',1%) _,
+ / ti di; Vp'eC 37
()] (") 2 —7] p (37)

The inner product deﬁned for two functions v and k is

<uk>= / u(2)k(z) dz (38)
This definition satisfies the linear properties required for an inner product. Using this def-
inition, we find the inner product of a weighting or testing function w;, with both sides of

Eqn. (36). This results in
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N

<Za]-ij, w; >=<g,w; > for1=1,2...,N (39)
Jj=1

or
N
Soj <Lfj, ws>=<g,w;> fori=12,...,N (40)
Jj=1

Applying Eqn. (40) at N points is required for the boundary condition to be satisfied on all
N segments. We thus arrive at a system of N equations with /N unknowns. At this point we
need to choose approximate functions f and w. For simplicity and computational efficiency

these functions are assumed to be pulse and delta functions respectively

1 ony th segment
fi= (41)
0 elsewhere
5(pS) on the center of ith segment
w; = (42)
0 elsewhere

where, i and j represent field and source points, respectively. The inner product of L f; and

w; 18

<Lf;, wi>= /C(ij cw;) dl = _/C(ij - 8(pi)) dl = ijlﬁ (43)

which can be written as

1., _n cos(p; — p;, 1)
< Lf; 3 ;> = =]\ P / (7} . dl=
f] w 2f](p) + CfJ(p]) 27I_|E_EI| Py

In the case that the source and the observation points are the same (z = j), then we have

(44)

fi(p") = 1 and, cos(pi—p; ,7i) = cos(n/2) = 0

which gives

1
<Lf_7', w; > = -é-
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If 5; and p’ do not coincide (¢ # j) then
fi(p) = 0 and fi(p;") =1

therefore, we have

<Lfy, wi>= / cos(pi — 75 ', 1) i (45)

jthsegment 27 |p; — p; |

In general, the left hand side of equation (40) is

% fori=j
I Mdl,’—j' fOI‘Z?é]

jth Zﬂ'ﬁ—p_j Il

<ij,w,->=

and the right hand side of equation (40) can bewritten as

<gwi>= [ g-8@)d = g(7) = cos(t) (46)
h

Note that 7;¢ is the center point of the i segment and §; is the angle between normal

vector 7;, and z coordinate (the direction of flow). Equation (40) in matrix form reads as

r T B 7 B T

< Lfl,wl > < sz,’wl > .. < LfN,'U)l > [a7] < g,w; >
< Lfi,wy> < Lfy,wy> ... <Lfn,wy> g < g,wy > (47)
< Lfi,wun> <Lfs,un> ... <Lfy,wn> ] | on | | <g,wn > |

After finding @, the pressure can be found for each segment by evaluating (32). The
pressure at each segment 7 is of course influenced by the total effects of all j segments.
When the observation point, 7, is on C and we have p = p’, the singularity in the integral
is integrable. For example, consider the segment ¢ as a flat segment, see Fig. (2).

Then,

. ) ;]2 Qli Qli 1i/2
P =lim [ Stinfh—alde = 5 /_mln 2| dz (48)
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-1/2 X 1/2

Figure 2: Illustration of segment ¢, with origin of coordinates at its center.
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and

P = () tim [ [ Inlelde + /e"/zln j2ldz] = (2 [ (n(/2) — 1)) (49)

- 21 " e=0 —1;/2 2—71'

Therefore, the total perturbed pressure at segment ¢ is

Qu, — _
= Inl|p; — ;'] di;) (50)

thsegment 2T

. N
P) = Ll -0+ 2 (f

2m =t
- The matrix equation (47) is solved numerically by using the back-substitution technique. By

substituting the solution in equation (50) the pressure in each segment can be calculated.

Accuracy of the numerical results

In order to examine the accuracy of the numerical solution, we compare it with an
analytical solution. In two-dimensional systems, the pressure distribution on the surface of
a circle or an ellipse can be found analytically, when they are located as a stationary solid
object in an irrotational flow field, or they move with a uniform velocity in a stagnant fluid.
Consider circle of radius a moving with velocity U perpendicular to its length, in an infinite
mass of liquid which is at rest at infinity. By taking the z, y axes in the f)lane, with z in the

direction of the velocity U, Lamb [3] has found that the resulting pressure, ¢, is

T7 2
¢:ga—cos0 (51)

T

If we add a velocity —U, the problem is equivalent to a fluid flowing with the far-field velocity
U past a stationary circle. Adding to ¢ the terms Ur cos 6 we get

2

p=U(r+ a?)cosﬁ (52)

We are interested in finding the pressure distribution at the surface of the circle (r = a),

which is

é=Uacosh (53)
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Note that pressure is not dimensionless in this equation.
A comparison between the numerical and the analytical solutions is shown in Fig.(3) for
the circle discretized as shown in Fig.(4). The center of the circle is at the origin of the

Cartesian coordinates and its radius is equal to one. For the numerical solution, the circle

was divided into 50 equal segments.

15 T T T T T T T T T
—%— Numerical Method

-~ Analytical Method

Pressure

1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50
Number ofthe segments

_1.5 1 1 1 L

Figure 3: Comparison of the analytical solution of equation (53) and the numerical solution

(P = Ppisturbed)- The far-field velocity is 1.

We see an excellent agreement between the two results.
Another case for which a comparison is possible is with flow past an ellipse. Lamb has
given the solution in terms of an Elliptical coordinate system. Elliptical coordinates ¢, 7, are

related to Cartesian coordinates by

z + 1y = ccosh(é + i), (54)
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First segment

Figure 4: Numerical discretization of the unit circle. The segment numbering increases in

the counter-clockwise direction.
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or ¢ = ccosh { cosn
y = csinh ésiny

(35)

where £ ranges from 0 to oo, and 7 from 0 to27. The relation for the complex potential

(streamfunction ¥ and pressure ¢) is
¢ +il = Cem 6+

where C is a real constant, equal to

o

[SIES

Ubc _ Ub(a-l—

a—-2>5 a—

C =

)

(=

where a and b are the semi-axes of the ellipse. Thus,
¥ =—Ce ¢siny

and

= Cecosny

In z — y coordinates, we have

A++VA?-4B

u =

2
where
u=cosh’¢, A=2z+y*+1, and B =2z
then:
£ = Arc(cosh(v/v)) and cosn = =
Vu
therefore

¢ = C exp(—Arc(cosh(v/u))) —\;%

(56)

(57)

(60)

We consider the example of an ellipse with ¢ = /5 and b = 1 (Fig. (5)). The resulting

numerical and analytical solutions are compared in Fig. (6).

We observe excellent comparison for this case as well.
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15F

0.5

First segment

25

Figure 5: The numerical discretization of an ellipse with center at the origin with ¢ = v/5 and
b = 1. The first segment is indicated. Segment numbering increases in the counterclockwise

direction.
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25 T T T T T T T

T I
—*— Numerical Method
—©— Analytical Method

1.5

Pressure
o
o o0

]
o
o

-15
-2
_2 5 Il 1 Il 1 1 L 1 1 Il
"o 5 10 15 20 25 30 35 40 45 50

Number ofthe segments

Figure 6: Comparison of analytical and numerical solutions for the ellipse of Fig. (5).
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Method of Solution: 2. Finite system

In the previous part the solution described was for an infinite system, where we used
the Green’s function of the free space. In a real situation, the flow typically occurs in a
finite domain (e.g. between two impermeable plates). Then, the above solution needs to
be modified. For this reason, we consider a system constrained by two parallel boundaries
with a no-flux boundary condition prescribed. One needs to find the Green’s function for
this new problem. We use the method of images [4]. This method is useful for symmetric
domains. Here, the problem in a finite system with one source transforms into an infinite
system with an infinite number of image sources and sinks. By superposing the potentials
produced by each source/sink, we can find a potential that satisfies the specified no-flux
boundary conditions.

Consider a porous medium with thickness d along the y-axis. The source point is located
at (zo,y0). and we need to find the potential or the pressure at an arbitre’u"y point (z,y).

The complex potential, w, for an infinite array is

w= 84 il =3 o Inl(e —20) +ily — (nd+ (—1)")] =

e 1 . e 1 )
S —hl-s0)+ily—go—nd] + 3. =lnl(z - 20) +i(y + yo — nd)]
n=0,£2,%4,... 2m n=+1,+3,45,... 2m

(61)

For an infinite array of equidistant sinks, with distance d apart along the z-axis, Bear [4]

shows that the complex potential is

w=m)_ In[z—nd = —mlnsin % (62)

-0
where z = z+1y. Applying the above solution, one can then find the solution for the pressure

Green’s function

1 1 T T
2(2, 4320, 0) = g In gleosh (e = a0) = cos gy — yo)] +
1 ]. v T
a7 M ploosh gz = wo) —eos Gy vo = ] (63)
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Eqn.(63) gives the potential at the observation point (z,y) caused by a source point at
(z0,Y0). Denote the observation point as p and the source point as p’ and consider a dis-
tributed charge with density ¢ on C, where C is the contour of all source points. By working

as before, using superposition, the potential at the observation point is

7) = /C qifr) {In %[cosh g(:c—:co)—cos E(y—yg)]—l-lnl

7r m
y 2[cosh Ei—(a:—:vo)—cos E(y-l—yo—d)]}dl;:

(64)
As in the infinite system case, the boundary condition at the interface is %% = cosf. In
the present problem, this can be obtained by differentiating Eqn. (64). Note that 7 is the

outward unit normal vector on the contour C. We find

a@( / ) sinh §(z — o) sinh Z(z — zo) R
on"’ T 4d np cosh Z(z — o) — cos 5(y — yo) cosh §(z — xo) — cos 5(y + yo — d)
sin 2(y — ) sin 5(y + yo — )

+ ( )dy} - rizdls

cosh Z(z — o) — cos §(y —yo) ~ cosh Z(z — z0) — cos Z(y + yo — d)
Vo & C(65)

Eqgn.(65) is valid for all observation points not on the C contour. Since our boundary

condition is given on C, we need to evaluate this relation when p — C. Again, we divide

the contour C into two complementary parts, Cs and C,, and let C; approach zero. In the

limit when p approaches C, let point p be on Cs, then Eqn.(65) becomes

8<D(_)_l _|_i
9P T ad e, T 4d o,

The first integral is well behaved as p # p’. The second must be evaluated as  — 5'.

(66)

Working as previously we find that in the limit, the contribution is the same, namely

4(pc)
2

where p, represents the center of the observation segment. Therefore we have

00 q(p sinh Z(z — zo)
p_irCnJr EE) (?) 2 4d Jo a(r cosh Z(z — z0) — cos 2y = o) *
sinh Z(z — zo) Vi + ( sin Z(y — o)
al‘
cosh 5(z — 2o) — cos Z(y + yo — d) cosh 5(z — zo) — cos Z(y — yo)
sin Z(y + yo — d) v . .
)dy} - rizdly (67)

cosh Z(z — zo) — cos 5(y + yo — d)
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From this point on, we can employ the Moment Method for solving the integral equation, as
before, except that now L is given by Eqn.(67). The procedure is exactly like that for the
infinite system. The only difference is in the calculation of the potential, which is computed
from Eqn.(64). We note that when p = p’, the first part of (64) has an integrable singularity.

To evaluate this contribution at p¢ (the center of segment 7), we write for segment :

2 q(p;) , 1 m - 3
/_zi/z 4(171‘ In §[C05h §($i — ;) — cos §(yi - yﬂ]dl;; (68)

Integral (68) can be rewritten in two parts as

: -c tifz _ @), by, "
lim{ _H/z...+/5 Y= L) I S+ liln 5] - 1)) (69)

Therefore the potential can be computed as follows

) by, ow

®(p;) = o [(2)1n4d2 +lz(ln|2| D]+
Q(ﬁi) _1_ TN T, o

»Z""segment 47 In 2[COSh d(xl xj) cos d(y’ + Y; d)]dlﬁi +

N —

a@i) g Lo T T

jzlz’i#j '/J"hsegment 47 {11’1 Z[COSh d(ml I]) cos d(yl - y])] +

1 m T
tn gleosh Zlei = 2;) = cos Glys +y; = )}l (70)

III.Results

The boundary integral method enables us to study the effects of the presence of discon-
nected ganglia in a porous medium. The presence of the ganglia perturbs the fluid flow.
This perturbation is a function of the shape and size of the ganglia and their configuration.
Consider, first, a square shape ganglion, located in the middle of a porous domain limited by
two boundaries at the top and the bottom, see Fig. (7). The pressure profile on the surface
of the ganglion was calculated both for an infinite system as well as for a finite system when
the two boundaries are located at y = =2 and y = 2 (d = 4). The resulting pressure profiles
are shown in Fig.(8). The pressure drop for the finite system is clearly higher than for the

infinite system, as expected. This difference decreases as the width of the system increases.
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Figure 7: A square-shaped ganglion in the middle of a finite domain with thickness d = 4.

Pressure for a rectangular object with 10 segments in each side
T T T

—#—Infinite system
-6~ Finite system

T T

Figure 8: Comparison between the pressures at the interface of the square ganglion for the

two cases of a finite and an infinite system (d = 4).
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-0~ Finite system, d=100
—A- Infinite system

Figure 9: Comparison between the pressures at the interface of the square ganglion for the

two cases of a finite and an infinite system (d = 100).

Fig(9) shows the corresponding results when the distance between two boundaries is d = 100.
Clearly the pressure profiles for two systems are almost the same.

To see the effect of the presence of more than one ganglia, consider the geometry described
in Fig.(10). The corresponding pressure profiles are calculated for each situation as shown
in Fig.(11). As the number density of ganglia increases, the pressure drop across the initial
ganglion is also increasing. This crowding effect will affect the mobilization and movement
of the respective ganglia. Similar effects apply to the other ganglia in the system.

The effect is less when the pressure is computed using the solution for an infinite system
(Fig. (12)). Although the overall behaviour is the same, the differences between the four
cases are not as pronounced as for the finite system (please note the difference in scales as
well).

As mentioned previously, a stranded ganglion can become mobilized, if the applied pres-
sure difference is sufficient to overcome the capillary forces. Using the above approach, the
mobilization and subsequent movement of each ganglion can determined as a function of
various factors, including the capillary number, the size and the distribution of ganglia and

so on. For each ganglion, a critical capillary number can be identified, above which the gan-
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Figure 10: Four different configurations involving an increasing number of disordered ganglia.

Finite System

-5k

Pressure
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T T T

—+— One ganglion
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-©- Three ganglia
—— Four ganglia

1 OO L

Figure 11: The pressure profile on the ganglion shown at the top left of Fig.

15 20

Number of segments

40

function of the addition of other ganglia. Computation for a finite system.
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Infinite System
T

—+— One ganglion
A -&~ Two ganglia
-4r 5-q -6~ Three ganglia
—%~ Four ganglia

Pressure
L
°

L L L L L L L
5 10 15 20 25 30 35 40
Number of segments

Figure 12: The pressure profile on the ganglion shown at the top left of Fig. (10) as a

function of the addition of other ganglia. Computation for an infinite system.
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