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Objectives

This basis of this research is to apply novel techniques from Artificial Intelligence
and Expert Systems in capturing, integrating and articulating key knowledge from
geology, geostatistics, and petroleum engineering to develop accurate descriptions of
petroleum reservoirs. The ultimate goal is to design and implement a single powerful
expert system for use by small producers and independents to efficiently exploit reservoirs.

The main challenge of the proposed research is to automate the generation of
detailed reservoir descriptions honoring all the available "soft" and "hard" data that ranges
from qualitative and semi-quantitative geological interpretations to numeric data obtained
from cores, well tests, well logs and production statistics. In this sense, the proposed
research project is truly multi-disciplinary. It involves significant amount of information
exchange between researchers in geology, geostatistics, and petroleum engineering.
Computer science (and artificial intelligence) provides the means to effectively acquire,
integrate and automate the key expertise in the various disciplines in a reservoir
characterization expert system. Additional challenges are the verification and validation of
the expert system, since much of the interpretation of the experts is based on extended
experience in reservoir characterization.

The overall project plan to design the system to create integrated reservoir
descriptions begins by initially developing an Al-based methodology for producing large-
scale reservoir descriptions generated interactively from geology and well test data.
. Parallel to this task is a second task that develops an Al-based methodology that uses
facies-biased information to generate small-scale descriptions of reservoir properties such
as permeability and porosity. The third task involves consolidation and integration of the
large-scale and small-scale methodologies to produce reservoir descriptions honoring all
the available data. The final task will be technology transfer. With this plan, we have
carefully allocated and sequenced the activities involved in each of the tasks to promote
concurrent progress towards the research objectives. Moreover, the project duties are
divided among the faculty member participants. Graduate students will work in teams
with faculty members.

The results of the integration are not merely limited to obtaining better
characterizations of individual reservoirs. They have the potential to significantly impact
and advance the discipline of reservoir characterization itself.




Summary of Technical Progress

1. Decomposition of System

We have decomposed the overall system development into smaller component
parts to allow us to focus on the expert knowledge required for that component. In
addition, the decomposition will facilitate the implementation of the system and its
validation and verification. The three component systems will be representative of how
each of the experts in geology, geostatistics, and engineering characterizes the reservoir.
Figure 1 describes a model for this breakdown. The concurrent development of these
component systems fits into the development of the large and small scale aspects of the
system as originally stated in the proposal. In Figure 1, each component system in the
model is depicted as interfacing (through the bi-directional links) with a central repository
of reservoir descriptions. Though, portions of these description will essentially be passed
from component to component as more information is gathered (as shown by the bi-
directional links in Figure 2), the model of a central repository is an accurate account of
how the components are integrated, i.e., the final descriptions in the repository are
consistent will all of the information given by the components systems. This system model
allows us to develop the system using an Artificial Inteiligence technique called a
blackboard system, in which information is centrally located, i.e., on a blackboard, and
experts take their turn to update, change, and correct the information on the blackboard.

well test
system

geological
system

Figure 1: Expert System Decomposition

The entire system is now under development using the C/C++ programming
language. Changes were made to this platform from the initial Kappa-PC development
environment because Kappa-PC could not interface with C and Fortran code as it
advertised. Kappa-PC code that has currently be developed is being ported to the C/C++
environment. In this report, we discuss the new development platform and the building of
a customized expert system inference engine. We update the status of the geostatistical
and geological systems. Finally, we introduce the concept of wavelets that we will believe




may be useful in integrating all of the systems into one. Both the well interpretation
system and the correlation system await redevelopment in the new platform.

2, Customized Inference Engixie

Rules are an essential part of an expert system and are being used in different parts
of the project. This includes the Well fest Interpretation System and the Marker bed
Identification System. These rules are presently coded in KAPPA-PC and use the features
provided by KAPPA for functions like asserting facts and chaining. Porting the code from
KAPPA-PC to C++ requires building these functions to be used in a C++ program to
create and use these rules as in KAPPA-PC. A major component of a rule-based system is
the inference engine. The inference engine takes care of the chaining process. This
functionality is provided by KAPPA, which provides a convenient way use the inference
engine with rules coded in KAPPA-PC. An inference engine was required along the same
lines that could provide the same functionality as that in KAPPA, and could be usedina C
program. It was decided to develop an inference engine in C++ that was best suited for
the problem and provided the functionality required to implement the expert systems in
this project. The following sections present the details of the inference engine developed.

2.1  Inference Engine Features

The inference engine was to be developed in C++ in the form of a library function
that can be called from any C program. The following features were required:

1. Representation of rules: The user was to be given a fixed representation to be used to
write rules. The rules consist of a condition and an action part. The structure of the
rule was modeled along the lines of OPS-5 rules, which is a popular development
environment for rule-based systems. Use of free variables (variables used in rules for
the purpose of binding values) in the rules was also required. Another feature required
in the rule-base was the ability to assign priorities to rules. This value is used to
decide which rule fires first in case multiple rules are selected.

2. Assertion of facts: The user needs to assert known facts before the chaining process.
Functions were required for this purpose.

3. Forward chaining: The forward chaining process starts with the known facts and
selects rules to be fired successively till the goal is reached, or no more rules satisfy the
known facts.

4. Backward chaining: The backward chaining process starts with a goal, and finds
subgoals that need to be satisfied. The subgoals act as goals and the process is
repeated to see if the subgoals match the known facts. ‘

The rule representation and other components of the inference engine, including
assertion of facts, are discussed in detail in the following sections. The forward chaining
process has been implemented in C++. Forward chaining in its simplest form is an
interactive program that performs a loop of substitution. It steps through the rule list until




it finds a rule in which premises match the fact or situation. The rule will then be used of
“fired” to assert a new fact. The fact concluded as the result of that rule’s firing is added
to the knowledge base. Once a rule fires, it is prevented from firing again to avoid
repeated firing of the same rule. This cycle of finding a matched rule, firing it, and adding
the conclusion to the knowledge base is repeated until no more matched rules can be
found. The following steps make the forward chaining process:

A fact is asserted.

The fact matches the premise of the rule.

The system computes the substitution that unifies the fact and the premise.
The substitution is applied to the conclusion of the rule.

This result is asserted and is available for further forward chaining.

Steps 1 through 5 are repeated.
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As shown by the above steps, the implementation of the forward chaining process
involves three elements, unify, substitute, and stash. The purpose of unify is to return a
substitution that will make the fact unify with the premise in the rule, i.e., will test the
compatibility of the fact and the premise. Unify can by designed in a narrow sense that
exactly matches the fact and the premise. The use of free variables in the rules requires
unify to be designed in a way that allows substitution of parts of the fact and the premise
to make the fact and the premise compatible. For example, consider the following
unification: _

Unify((welll .depth 7x) (welll . depth 300)) = (?x 300)

The above two statements can be unified by setting variable ?x to 300. This
approach is used in the inference engine designed to unify the premise of a rule with the
working memory. Once a variable is bound to a value, this value is used wherever the
variable is used in the rest of the rule. Substitute is used to compute the substitution that
unifies the fact and the premise; it performs a variable substitution on the proposition, as

-shown in the previous example. Stash is needed to incorporate the proposition
(conclusion) into the knowledge base. The rule representation does not allow disjunction
in the consequent of the rules. The literals in the consequent of the rules are thus in
conjunction, and this requires all the literals to be asserted for further chaining.

Backward chaining reasoning is used when the user makes a query as to whether a
certain fact is true and when there is a rule that can determine the query from known
information in the knowledge base of from answers given by the user. In other words,
backward chaining attempts to prove the hypothesis from the facts. The steps involved
backward chaining are as follows:

A request is made to achieve a fact (the goal).

The goal does not match any known fact.

The goal matches the conclusion of a rule.

The system computes the substitution that unifies the goal with the conclusion.
The substitution is applied to the premise of the rule.

This result becomes a new goal of the system.

ANk W




7. This new goal can do the following:
match a fact in the knowledge base
match a conclusion of a rule, leading to further backward chaining
ask the user for the needed information
fail, in which case the original goal fails
8. Steps 1 through 7 are repeated.

Forward chaining has been implemented this chaining procedure is used in most
parts of the project. Backward chaining process is still to be implemented.

2.2  Inference Engine Components

The working memory constitutes the facts known, and this information is used
during the chaining process. The premise of a rule is matched with the working memory.
The rule fires if it matches directly or with unification. Once a rule fires, the working
memory is updated by the facts asserted by the conclusion of the rule. The working
memory thus represent the state of the system at any time. In our implementation, the
working memory if implemented as a fact base, and is discussed in detail in this section.
The rule base is a collection of all the rules, and these used in the chaining process.

Rule base: The rule base consists of all the rules defined by the user. The user
defines the rules in a specific format. The rule is parsed to create an internal
representation. It is represented as a linked list. Rule parsing and the internal
representation of the rules is discussed in more detail elsewhere in the report.

Fact base: The fact base is the collection of variables used in the rules and their
values. The user is required to declare all the variables used in the rules. These variables,
along with the values (if known), 1s stored in the fact base. This fact base also acts as the
working memory of the system. The fact base is implemented as a linked list for fast
access.

name : string
value : string
type : character
ptr $ pointer
next : pointer

A single node in the fact base
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fact root

L‘1 Node 1 ¥ Node 2 -—1 Node 3 }— -—1 Node n |

Fact base represented as a linked list of nodes

A single node in the linked list that makes up the fact base consists of the following
elements. The name field is a character string and holds the name of the fact asserted.
This can either be a variable used in the program, or an object/slot pair. The value field
holds the value of the variable. This is also represented as a character string to maintain
consistency between types and easier comparisons. The character string representing the
value is later converted to the appropriate types at the end of the chaining process. To
identify the correct type of the variable, the fpe field is used. This is a single character
denoting the type of the variable. Ptr is a pointer to the actual location in memory where
the variable is stored. This information is required to update the variable at the end of the
chaining process. Without the actual address of the variable, it was not possible to update
the variable. The next field is a pointer to the next node in the linked list.

All the above fields, except next, are specified by the user before the chaining
process. All variables needed in the chaining process are entered in the fact base.
Variables that are used in the chaining process without being asserted in the beginning are
left with a NULL value in the value field. The functions developed in C++ to handle the
rule base, fact base, and their usage is discussed in more detail in the following section.

2.3 Rule Structure

Two primary components of a rule are the premise and the conclusion. The
premise is the condition under which the rule is said to “fire”. It is a proposition that is
not assumed to be true given an unknown environment, whose truth value will be
occasionally evaluated. The conclusion of the rule is the result of firing the rule. The
firing of the rule frequently affects the knowledge base through the addition or
modification of facts. The rule premise and action can contain conjunction (and) and
disjunction (or) phrases. Presently only conjunctions are allowed in the premise and the
action. Free variables are allowed in the right-hand side of the literals in the premise and
the actions. The following is the grammar used for the rules:
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rule := IF antecedent THEN consequent

antecedent := literal | literal logic_op literal
literal := variable predicate var_val

var_val := free variable | value

consequent := literal | literal logic_op literal
literal := variable = var_val

var_val := free variable | value

logic_op := AND (to be extended)
predicate === | I= | < | > | <= | >=

free variable := ?variable

variable := identifier

value := alnum (alnum)® (value is represented as a string)

(alnum is alphanumeric characters)

The above grammar is being extended to allow disjunctions in the premise. It is
also being extended to allow a less restrictive use of free variables, and allow function calls
in the premise and action of the rule. The functions developed to write rules is discussed
in the following sections.

2.4  Inference Engine Functions

This section presents the C++ functions developed for different parts of the
inference engine, and their usage. The following sections also represent the steps to be
followed to create a rule base and run the inference procedure.

2.4.1. Writing rules
The first step in the process is to create rules for the rule base. The WriteRule
function has been developed for this purpose. The function prototype is as follows:

WriteRule{char *rule, int priority

The argument for this function is a character string that represents the rule. The rule
consists of an antecedent and a consequent. Presently it allows only conjunctions in the
antecedent and the consequent, and this is being extended. The antecedent and the
consequent may consist of any number of literals connected by conjunctions. The second
argument indicated the priority associated with the rule. This value is used in selecting
rules in case of a conflict. The following example shows how this function is used.

WriteRule(“IF welll.group = vertically_fractured AND welll porosity == single
THEN welll. group = vertically_fractured_single_porosity_system”),

Free variables may be used in the rules as shown by the following example:




WriteRule(“IF welll.depth == ?x AND well2.depth = ?x THEN print(equal depth wells)”);

The rules written using the above function are parsed and an internal representation of the
rules is created. This is discussed in more detail later in this report.

2.4.2, Assertion of facts

Facts need to be asserted before the chaining process. These are the facts that are
used by the inference engine to match rules. As rules are matched and fired, the
consequents of those rules are used to assert other facts. The way the inference engine is
implemented, the user if required to declare all the variables used in the rule base. This is
done to maintain a reference to the memory location of the variables, to be used to update
facts at the end of the chaining process. The function asser? is used to assert variables.
The variables that do not need to be asserted at the beginning of the chaining process are
still asserted, but their value field is left empty. This provides the inference engine with a
reference to the variable without specifying any value. The function prototype is as
follows:

Assert(char *name, void *ptr, char type, TYPE value);

The first argument is the name of the variable. P#r is the pointer to the memory
location of the variable. 7)pe represents the type of the variable. The final argument if
the value of the variable. This argument can be of any type since this function is
implemented as an overloaded function. Specifying a value as the last argument asserts
the variable with that value. Keeping this field empty would just add the variable in the
fact base without asserting any value. All variables are entered into the fact base whose
internal representation is shown in the previous section.

2.4.3. Chaining procedure

Once all the rules are written and the necessary facts asserted, the chaining
function may be called. The function for the forward chaining process is ForwardChain().
This function does not take any arguments and uses the existing fact base and the rule
base. Rules are selected by matching the conditions of the rules with the fact base (i.e.
working memory), and using the rule priority if required. Rules are fired by executing the
consequents and asserting the corresponding facts.

The forward chaining process continues till no more rules match the working
memory. At this point the chaining process stops, and the fact base is updated. The new
values that result from the chaining process are updated in the corresponding memory
location. The forward chaining process is to be extended to allow goal directed chaining.
The code is also being extended to handle backward chaining.

25 Conclusion




Porting code from KAPPA-PC to C/C++ required us to convert the rules written
in KAPPA-PC to be converted to C. Also the unavailability of an inference engine
required us to develop our own code in C++ to suit the purpose. Code for the inference
engine was thus developed in C++. This has been written in the form of C library
functions and can be called from any C program by including the required headers and
linking the library. It presently provides the basic functionality required for our problem.
This code is to be extended to handle more complicated features like goal directed
chaining, backward chaining, and more sophisticated conflict resolution schemes. Code
written for the expert systems in KAPPA-PC is presently being ported to C++.

3. Geostatistical System

The work undertaken during this period focused on the flow simulation part of the
simulated annealing (SA) algorithm. As mentioned before, the inclusion of flow
simulation has a severe impact on the execution time of the algorithm —- even when the
LTFD (Laplace Transform Finite Difference)’ methodology is used. The areas of
investigation included an analysis of the algorithm, a comparison of matrix solvers, an
analysis of one of the default parameters used, upscaling and the two-scale approach.
Below are further details of this work.

3.1.  Analysis of Flow Simulation Algorithm

It was previously reported that the results from the Laplace Transform Finite
Difference (LTFD) simulator showed good agreement when compared with the results
from the ECLIPSE-100 (ECL)’ simulator. While this is true in a general sense, we found
that when multiple production rates are used, the pressure responses from the LTFD
simulator are “smoother” than the ECL results at the times when the rates are changed.
This was determined to be caused by using the Laplace transform. Even though we
attempted to correct for the variable rates, our modification could not completely correct
these effects. However, recent work’ has resulted in a possible solution to this problem.
The ability to include the use of this solution in our work is being studied.

3.2. Matrix Solvers

We considered matrix solvers from the SLAP,* ITPACK® and Templates®
packages. Some solvers hold promise of faster execution times. However, because of the
specialized nature of those approaches e.g. red-black ordering, they have not yet been
tested. For example, red-black ordering implies parallelization of the code - something
which we are not considering at present. From ITPACK the solvers considered included
the Reduced System Conjugate Gradient (RSCG) and the Symmetric Successive
Overrelaxation Conjugate Gradient (SSORCG). We have not implemented the Templates
code because of time constraints and the apparent lack of benefit to be derived from




pursuing it. The table below summarizes the results obtained with the packages tested. A
224-block dataset was used for the testing.

Package Method RunTime (CPU Sec)
ITPACK | Jacobi Conjugate Gradient (JCG) 14096
Symmetric Successive Overrelaxation
Semi-Iteration (SSORSI) 44084
SLAP | Conjugate Gradient (CG) 13824
Generalized Minimum Residual (GMRES) 22045
Bi-Conjugate Gradient Squared (BCGS) 14283

Based on the above results, we have selected the SLAP CG code for use.
Discussions with a professor in the Mathematics Department have also suggested that CG
may be the method of choice for our problem. Further, he has suggested that the usage of
a symmetric storage format for the coefficient matrix may not result in significant gains in
the matrix solution time but the storage requirements are reduced. Of course, further
efficiencies may be realized by considering the specialized storage systems alluded to
above.

3.3. Default Parameter: NVAL

NVAL is the parameter used to represent the number of pressure values per well
used for matching in the flow simulation part of the objective function of the simulated
annealing algorithm. This is defined in the following equation:

EN\ = L[AP(’)]O

NDIFF| [,
Flow Simulation Part for Iteration, k = wth* Z [ [AP(I)L }

where
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wgt2 =weighting applied to the flow simulation part
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NVAL =Number of summation terms per well

NWELL =Number of wells
NDIFF =NWELL*NVAL=number of terms used in the summation

2
1] = Initial Flow Simulation Energy

L[Ap] = the Laplace transform of the change in the flowing bottomhole pressure

To date, ten values were being used. Because the run time of one iteration in the
algorithm is directly proportional to the value of NVAL, we decided to analyze the effect
of the value of NVAL on the performance of the code. Values of NVAL ranging from
five to twenty were used. The observations so far are:

- The lower the value of NVAL the shorter the cycle time, but, in some cases, more
cycles are needed for convergence. This suggests that there is/are optimum values for
NVAL. It seems that this value is about six or seven. However, a word of caution is
that these results are with just one dataset so far.

- The relative “goodness of fit” of the distributions obtained using the different NVAL
values is difficult to determine by visual inspection (i.e. whether one description is
better than another) and, since we are still researching an appropriate objective
measure of goodness of fit, has not yet been determined.

34. Upscaling

It was previously stated that the production behavior of upscaled grids agreed well
with the production behavior of the “true” grid scale. This is true in the sense that the
upscaled responses “tracked” the true-scale responses with a small -- but discernible --
difference. A more detailed analysis was undertaken in which the relative errors defined
as:

"true” scale p,. —upscaled p,, 100

Relative Percentage Error = :
"true" scale p,,

It was found that at very early time, the errors were quite large -~ of the order of
40% at a time of about 1.5 minutes, but decreasing to about 10% at a production time of
about 0.1 day. However, the error did not decrease much below 10% except at very late
times. These results were found to be about the same for both the geometric average and
the renormalization upscaling methods. In view of the tolerance required of the objective
function of the SA algorithm, such errors are not acceptable. We are currently




S

-

considering various options -- based on the suggested reasons for the differences -- for
obtaining better matching between the true and the upscaled grids. Two of these are:

- local grid refinement®

- consideration of the flow geometry in grid design; this implies using cylindrical or
radial geometry in the near-well regions.’

3.5. Two-Scale Approach

As we have repeatedly noted, the most computationally-expensive part of the
simulated annealing algorithm (in which a two-part -- variogram and flow simulation --
objective function is considered) is the flow simulation. The larger the number of grid
blocks used -- or the finer the scale of gridding -- the longer the flow simulation takes.
The idea therefore, was to “speed up” the execution of the algorithm by performing the
flow simulation at a coarser scale while we undertake the variogram analysis at the finer
scale. As noted in the previous section, upscaling is the major problem to be solved to be
able to use this approach. While the upscaled distribution “resembles” the true distribution,
matching the flowing bottomhole pressures obtained from flow simulation at the different
scales is the problem (two upscaling factors were used: 9 -> 1 and 25 -> 1). The results
however have been encouraging, in that the descriptions obtained are similar to the true
image, but still somewhat “diffuse”. It is anticipated that correction of some of the
problems we face may improve the description match we get.

4. Geological System: Marker Bed Identification

In this section, we update the progress on the geological model with respect to
marker bed identification. The log facies description system and the correlation system are
currently be evaluated using more complex examples. In addition, these systems need to
be ported to the new development platform. ‘

4.1 Introduction

In order to identify log facies and correlate stratigraphic units within wells across a
reservoir, a reference point must be available that identifies the interval of observation for
such analysis to take place. Marker bed identification provides the beginning and ending
interval depths for this analysis.

A marker bed is a specific unit of formation that is widely distributed and laterally
stable across an area. Marker beds can be traced universally between different continents,
regionally across a whole basin, locally in a field-scale area, or for a very limited area of
interest of some formation interval. The scope of study extends to marker bed
identification in a local field-scale area.
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The focus of our study is to identify the main marker beds that are common across
all the wells within a field and their corresponding beginning and ending depths. While a
marker bed can be easily identified in the logging curves by the naked eye of an expert, the
prototypical expert system requires the processes, rules, and experiences be captured in
order to arrive at the same conclusions as the expert.

4.2 The Approach

In order to identify marker beds across a field, we have limited our domain to a
field consisting of three wells. Our three wells are dispersed across the field. Two wells
lie at either ends of the field, and the third well lies in-between the first two wells.

Our approach to identifying marker beds involves two steps. These two steps
were described in detail in the last quarterly report. To briefly summarize these steps, we
first identify all the potentials marker beds in a single well. This is determined by applying
a set of heuristics that characterize marker beds to the gamma ray, resistivity, and sp logs
of a single well. These heuristics were derived by experts in the field and are available in
Figure 1. Second, we apply a cross-correlation algorithm to the gamma ray or resistivity
log of one well with the gamma ray or resistivity log of the potential marker bed of
another well. Positions of high correlation between these two logs should show areas
where the real marker beds lie across these two wells.

Figure 1: Heuristics applied to identify a potential maker bed

Top 10% gamma ray, top 10% spontaneous potential, and low 10% resistivity
Top 10% gamma ray, top 10% spontaneous potential, and low 30% resistivity
Top 10% gamma ray, top 10% spontaneous potential, and low 50% resistivity
Top 10% gamma ray, top 30% spontaneous potential, and low 10% resistivity
Top 10% gamma ray, top 30% spontaneous potential, and low 30% resistivity
Top 10% gamma ray, top 30% spontaneous potential, and low 50% resistivity
Top 10% gamma ray, top 50% spontaneous potential, and low 10% resistivity
Top 10% gamma ray, top 50% spontaneous potential, and low 30% resistivity
Top 10% gamma ray, top 50% spontaneous potential, and low 50% resistivity
Top 30% gamma ray, top 10% spontaneous potential, and low 10% resistivity
Top 30% gamma ray, top 10% spontaneous potential, and low 30% resistivity
Top 30% gamma ray, top 10% spontaneous potential, and low 50% resistivity
Top 30% gamma ray, top 30% spontaneous potential, and low 10% resistivity
Top 30% gamma ray, top 30% spontaneous potential, and low 30% resistivity
Top 30% gamma ray, top 30% spontaneous potential, and low 50% resistivity
Top 30% gamma ray, top 50% spontaneous potential, and low 10% resistivity
Top 30% gamma ray, top 50% spontaneous potential, and low 30% resistivity
Top 30% gamma ray, top 50% spontaneous potential, and low 50% resistivity




4.3 Results

The results of executing the first step of our approach, identifying the potential
marker beds from a set of heuristics, was successful. Applying the heuristics resulted in
identifying as series of potential marker beds which included among them the main marker
beds of that particular well. Using these potential marker beds and their corresponding
depths, we then applied the cross-correlation algorithm. The output of the cross-
correlation algorithm are correlograms. High correlations on these correlograms indicate
instances where the main marker beds lie in the two wells being compared.

To give an example of this cross-correlation technique, assume we are comparing
only two wells in a field. The cross-correlation algorithm was applied to the entire gamma
ray log of the first well and a potential marker bed of the second well. This process was
repeated for the gamma log of the first well and the gamma ray logs of all the potential
marker beds of the second well. This process was also repeated for the resistivity logs.

Figure 2 shows a resulting correlogram from applying the cross-correlation
algorithm to a resistivity log of Well61 and a potential marker bed (which happens to be
the main marker bed) of Well82. Note that the match positions along the x-axis contain a
set of corresponding depth intervals created in a separate file. High correlations in several
points of the correlogram indicate that the real marker bed of Well61 can lie at any of
those match positions or depth intervals where the high ratios exist.

Results of the correlograms, as the one in Figure 2, indicate that a series of high
correlations exist between both the gamma ray and resistivity logs of the well and potential
marker bed compared. Since the depth intervals under consideration of our wells only
contain two main marker beds, the correlogram should indicate roughly two sets of depth
intervals with high correlation ratios. On the contrary, our results show more than two
sets of depth intervals with high correlation values. As a result, our current approach to
identifying the main marker beds across a set of wells is not sufficient.

Figure 2: An example correlogram

RD LOG: Well61 and Real Marker Bed Welis2

Correlation Ratio




4.4 Conclusion

The results of our approach indicate that it alone will not suffice in identifying the
main marker beds. Our approach does reduce the search of main marker beds from a
series of wells by identifying the potential marker beds within a single well. While our
approach will identify potential marker beds within a single well, it still needs to be
modified to identify the main marker beds across a set of wells. The experts are currently
considering extensions to this approach as well as other alternatives.

4.5 Future Work

Several alternative courses have been considered for the marker bed identification
problem. For example, given a gamma ray log, experts are considering calculating
derivatives to determine areas of sudden changes in slope. Such sudden changes in slope
indicate areas where main marker beds may lie. By expanding our current approach and
incorporating other main marker bed characteristics such as sudden slope change, we
hope to narrow down the margins of which marker beds may be the main marker beds
across a series of wells. Currently our research group is examining a set of characteristics
similar to the one mentioned above to incorporate into our marker identification approach.

s. Wavelets

There are many different kinds of wavelets. One can choose between smooth
wavelets, compactly supported wavelets, wavelets with simple mathematical expressions,
wavelets with simple associated filters, etc. The most simple is the Haar wavelet.
Wavelets have many desirable properties which include linearity, completeness, unitary,
appropriateness to problem at hand, no redundancy or at least “useful” redundancy, and
they utilize fast algorithms.

Unlike sines and cosines, which define a unique Fourier transform, there is not one
single unique set of wavelets; in fact, there are infinitely many possible sets. One of the
distinctions between the different sets of wavelets are the different trade-offs between how
compactly they are localized in space and how smooth they are. Wavelets have compact
support because they are localized in time which makes them zero outside of a certain
interval.

The Discrete Wavelet Transform (DWT) consists of applying a wavelet coefficient
matrix hierarchically, first to the full data vector of length N, then to the “smooth” vector
of length N/2, then to the “smooth-smooth” vector of length N/4, and so on until only a
trivial number of “smooth-...-smooth” components (usually 2) remain'’. This procedure is
sometimes called a pyramidal algorithm. The output of the DWT consists of these
remaining components and all the “detail” components that were accumulated along the
way.

A wavelet transform is essentially a family of orthogonal functions that separates a
function or a signal into distinct frequency packets that are very localized in the spatial




domain. In other words, a projection of a function or a discrete data set onto a wavelet
space tells us how the function behaves in a certain scale of measurement at any point in
space. Wavelet transform is a multiresolution framework and, thus, it is well suited for
analyzing non-stationary data. Because wavelets have compact support, it is easy to apply
this transform to large data sets with limited computer resources’”.

5.1 Fourier Versus Wavelet

The Fourier transform works under the assumption that the original time-domain
function is periodic in nature. As a result, the Fourier transform has difficulty with
functions having transient components, that is, components localized in time. This is
especially apparent when a signal has sharp transitions. Another problem is that the
Fourier transform of a signal does not convey any information pertaining to translation of
the signal in time. Applications that use the Fourier transform often work around the first
problem by windowing the input data so that the sampled values converge to O at the
endpoints. Attempts to solve the second problem, such as the development of the short-
time Fourier transform have met with marginal success. The computational complexity of
the Fast Fourier Transform (FFT) is O(n log»(n)). For the fast wavelet transform (FWT),
the computational complexity goes down to O(n).

5.2  Compression

The data being used in this project is constructed by using an exponential
covariance function with no sine or cosine components. This data is then run through a
flow simulator and specific characteristics are found. Once the data has been compressed
using a wavelet transform, then it will be uncompressed and sent back through the flow
simulator. If the uncompressed data demonstrates enough of the same characteristics as
the original data set, then the wavelet compression was successful and be used in a
practical sense.

A general two dimensional transformation can compress data. This would be a
functional compression and the reconstruction is not exact, but its accuracy is measured
with respect to an error norm like square sums. A compromise between compression ratio
and characteristic retrieval is inevitable. Using a 2D wavelet or wavelet packet transform
to decorrelate the data along with one of the Daubechies wavelets should do the best job
at concentrating the data’s energy content into the lower coefficients for a given filter
length. After the transform, the coefficients below a given threshold will be zeroed out.
The threshold is set to trade-off between the degree of compression and the degradation
of the reconstructed data set. The thresholding can be followed by quantization (scalar
and/or vector) and a Huffman or algebraic compression. Decompression performs the
above operations in reverse.

The FBI has standardized the use of wavelets in digital fingerprint image
compression. The compression ratios are on the order of 20:1, and the difference between




the original image and the decompressed one can be told only by an expert'®. This type of
compression works by discarding coefficients below a certain threshold.

After successfully compressing the data, the next step is to capture the “global”
reservoir features on a large scale grid system and then fill in the fine scale features using
wavelets. For example, once a fractal is characterized, then it can be reproduced on any
scale. So, once a reservoir feature has been characterized, we should be able to reproduce
it at any scale. '

5.3  Purpose

The purpose of using wavelets is to reduce the flow of simulation computing cost
for the implementation of a two part simulated annealing objective function'?. The local
nature of wavelets and their ability to localize in time-frequency or phase space, along with
a natural scheme for fast computation, has made wavelets the approach of choice in
certain applications'®. Traditional methods, such as spectral methods involving frequency
representation of data, usually assume stationarity. These methods, therefore, extract only
the average information and hence are not suitable for analyzing data with isolated or
deterministic discontinuities, such as faults or fractures in reservoir rocks'. The study of
nonstationary signals, where transient events appear that cannot be predicted (even
statistically with knowledge of the past), necessitates techniques different from Fourier
analysis. These techniques, which are specific to the nonstationarity of the signal, include
wavelets of the “time-frequency” type and wavelets of the “time-scale” type. “Time-
frequency” wavelets are suited, most specifically, to the analysis of quasi-stationary
signals, while “time-scale” wavelets are adapted to signals having a fractal structure®.

5.4  Expert Advice

There is a multitude of information on wavelets and wavelet transforms. There is
not much information on the practical application of wavelets though. Most of the
information we have obtained has been through contacting wavelet experts via Internet.

We have been in contact with Brani Vidakovic, co-author of Wavelets for Kids.
She is currently examining our data set in order to forward any suggestions on what
approach to take and which wavelet packages would prove useful. Even before seeing the
data, she suggested looking into Nason’s Wavethresh 2.2.

Wavethresh 2.2 was successfully downloaded from Internet, but there were
problems with the installation. I contacted Guy P. Nason, co-author of Wavethresh at
Bristol University in the United Kingdom. After several correspondences, it was finally
discovered that the system is based on a program called S/S+. This is a statistical package
for which the University of Tulsa no longer has a license; therefore, Wavethresh is unable
to run on our system. Mr. Nason is quite interested in this application of wavelets and
asked that we keep him advised as to the progress of the project.




There is an electronic publication called Wavelet Digest available on the Internet.
A notice was posted to this publication stating the problem and asking for any
suggestions. Through a series of different people, we came in contact with Christian
Cenker, a professor in the Department of Statistics at the University of Vienna in Austria.
He suggested the use of Daubechies S8 symmlet for compression because it is a
compromise between length and smoothness. With this, only the » largest wavelet
coefficients of the expansion need to be stored and a reasonable reconstruction of the
function should be possible where 7 depends on the regularity and length of the signal. He
also suggested the use of a wavelet package called WaveLab.

WaveLab is a library of MatLab routines for wavelet analysis, wavelet-packet
analysis, cosine-packet analysis and matching pursuit. The library is free of charge over
the Internet. Versions are provided for Macintosh, UNIX, and Windows machines. The
material is copyrighted and requires advanced permission for any commercial use. There
has also been problems with the installation of this package. These problems are currently
being worked out through corresponding with the authors via the Internet. '

5.5 Future Work

Through the available written material and the corresponding with experts, it has
become quite clear that the only way to find the proper wavelet transform is trial and error
and expert suggestions. As soon as WaveLab is up and running, we can being the
experimentation. Data sets can be compressed using a certain transform, then
uncompressed and run through the flow simulator. The flow simulator will determine
whether or not the compress is acceptable. A successful compress is a trade off between
the compression ratio and the amount of pertinent information retained. Once a successful
compression has been found, then work can begin on the enhancement portion of this
project.
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