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ABSTRACT

Numerical simulation was used to determine if the pseudosteady-state method presented
by Eggenschwiler e al. (1980) can be applied to a long and narrow, rectangular swept-zorie
geometry,

Two simulators were developed to generate transient pressure responses for a reservoir
with a rectangular discontinuity. Cases with different width to length ratio (W/L) for the
inner-zone were simulated for a mobility ratio of 200. The reservoir has a square geometry
with closed outer boundaries. Sufficiently large distance was provided between the well and
reservoir boundaries to prevent boundary effects during the time of interest. Results were
analyzed with the pseudosteady-state method to find inner zone volumes.

Results from the analysis indicate that pseudosteady-state flow does not exist for the inner
zone for low W/L ratio cases. The curvature of the Cartesian plot of the pressure responses
increases as W/L ratio decreases. For cases with W/L ratio below 0.4, the curvature becomes
significant and many straight lines can be drawn through segments of the data. For cases with
WIL ratio below 0.1, there is clearly no pseudosteady-state flow, and the Cartesian plot of pres-
sure versus time is a continuous curve.

It was found that swept-zone volume calculations are extremely sensitive to the slope of
the pseudosteady-state straight line, if one exists. If the distance between the burning front and
the ‘well is not approximately equal in all directions, the slope will usually be too flat, and the
volume calculated will be too large,

A comparison between Cinco’s type curve for a finite conductivity fracture and a case
with an extremely low W/L ratio was also performed. The results show a favorable match.
However, for a rectangular burned zone to behave like a fracture at early time, the dimensions
of the burned zone must be similar to that of a fracture,






1. INTRODUCTION

Economic incentives prior to the recent changes in oil prices have accelerated the
development of thermal oil recovery processes such as in-situ combustion and steam injection.
Knowledge of the volume swept at intermediaic stages yields critical information and makes
economic evaluation of the project possible. The determination of the swept volume in a com-
posite reservoir has traditionally been obtained by coring and/or temperature surveys made at
wells during passage of the displacement front. This process is costly and time consuming,.

Numerous researchers have presented methods to estimate the swept volume by means of
pressure transient data. Van Poollen (1965) utilized the radius of drainage concept to estimate
the swept zone radius. Kazemi (1966) used a thermal simulator and calculated the distance to
the burning front by solving a pressure falloff test model numerically. Merrill et al. (1974)
proposed a method to calculate the distance to the radial discontinuity. Their method uses the
intersection point of the two semilog straight lines for the swept and unswept zones. Eggen-
schwiler et al. (1980) analytically determined the pressure response of a radial composite reser-
voir and found a simple method to estimate the volume of the swept zone. They discovered
that there is a pseudosteady-state flow period for the swept zone immediately following the
first infinite-acting period. This method is suitable for high mobility ratio situations and is
powerful, yet simple to use.

All methods mentioned were developed for composite reservoirs of radial geometry, and
are suitable for use in analyzing a normal injection well situation. However, recent field data
suggest that there are thermal injection wells which are intercepted by a natural vertical frac-
ture. In such cases, the displacement front will move in a direction which is normal to the
plane of the fracture at early time. The swept region at early times can be idealized as a low
width to length ratio rectangle. As time goes on, the front moves outward and the width to
length ratio of the rectangle will increase.

It is suspected that the pseudosteady-state method presented by Eggenschwiler et al. can
not be applied at early times for a system when the rectangular swept zone is very narrow and
long. At the initial condition, the pressure transient response of an injection well, intersected
by a vertical fracture, can be described by the type curves for vertically fractured wells
presented by Cinco et al. (1978) There will be no pseudosteady-state flow period at this time
since there is no swept region. However, as the front propagates and the size of the rectangu-
lar swept region increases, the behavior of the system will begin to depart from Cinco’s type
curves. Eventually, there will be a time when the system will exhibit a pseudosteady-state
flow period for the swept region and the Eggenschwiler et al. method can be applied.

The purpose of this study was to generate transient pressure responses of an injectivity
test for a rectangular composite reservoir via numerical simulation, and to determine the neces-

sary width of the rectangular burned zone before the pseudosteady-state method can be
applied to such systems.

In this study, a high mobility ratio case is considered and the fluid properties are typical
of those found in an in-situ combustion operation. The mobility ratio used in this study is 200.
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2. PREVIOUS WORK

Two areas of research directly related to this study are the analyses of composite reser-
voirs and a well intercepted by a vertical fracture with finite conductivity. Previous work
related to these two areas will be discussed in this section.

2.1. TRANSIENT PRESSURE BEHAVIOR OF COMPOSITE RESERVOIRS

A number of studies have analyzed transient pressure data from thermal injection wells in
order to define a composite reservoir. A radially composite reservoir is usually created by an

in-situ combustion or steam injection process. The physical system can be described as shown
in Fig. 2.1 (Eggenschwiler et al., 1980).

R

4

Fig. 2.1 Radially Composite Reservoir

For an injection test performed on such a system, the pressure response usually consists
of four different stages on a semilog plot of pressure versus time. There is an initial period
where wellbore-storage effects dominate followed by a semilog straight line whose slope is
related to the permeability-thickness product of the swept zone. The semilog straight line is
then followed by a transition period. Finally, a second semilog straight line appears which
characterizes the permeability-thickness product of the unswept region.

The parameter one would try to determine in analyzing a composite reservoir is the swept
volume or the swept-zone radius. There have been several major publications in this area.

Van Poollen (1965) presented a method to calculate the radius to the discontinuity by
using the radius-of-drainage concept. He presented a series of actual field fall-off curves of an



-3 -

in-situ combustion project as shown in Fig. 2.2 to illustrate how fall-off curves change with
time.
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Fig. 2.2 Field Fall-Off Curves

Van Poollen suggested that the permeability of the burned zone can be calculated from
the slope of the first semilog straight line by :

‘= 1637(}”127" o1
mn

The radius to the discontinuity can then be estimated by :

;
$1iLicy

where ¢ is the time when the curve starts to deviate from the first semilog straight line.

The idea of Van Poollen’s method is theoretically correct. However, in practice, the
swept volume does not have a constant thickness, and the transition region following the initial
semilog straight line is usually long. Because the point of deviation from the semilog straight
line is not always clearly defined, it is difficult to pick a single point where deviation starts.
Also, wellbore storage and boundary effects may affect the shape of the curve, making it
difficult to base an entire calculation on a single point.

Kazemi (1966) presented a method that utilized a numerical model in the determination
of the burning-front location. He calculated the effective permeability of the burned zone from
the first semilog straight line, then a trial and error method was used to calculate the radius of
discontinuity. Several burned-zone radii were first assumed, then the temperature distribution
was determined by using a model developed by Chu (1963). A numerical radial model was
used to determine the pressure distribution in the reservoir and that result was compared with
the actual field falloff data. The radius that produced the closest match with the field data is
taken to be the radius to the discontinuity.
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This process was tested by Kazemi with a field case which is shown in Fig. 2.3. He
concluded that the average distance to the front for this case is 150 feet.
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Fig. 2.3 Fall-Off Curves

Kazemi also presented a discussion of probable causes of error in the interpretation of
field data in his paper. He emphasized that a highly irregular shape of the burning front as
compared to an ideal cylindrical front will cause significant error.

Carter (1966) presented an analytical solution for a composite reservoir with a closed
outer boundary. His results for an example case are shown in Figs. 2.4 and 2.5, Carter con-
cluded that the properties of the swept zone can be determined from the initial semilog straight
line. However, the transition to the second semilog straight line is quite long and boundary
effects will prevent the forming of the second semilog straight line. Therefore, a reliable 4
value for the outer zone cannot be calculated.
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He also concluded that there is a period during which the data form nearly a straight line
when plotted on Cartesian coordinate graph. He calculated a volume somewhat greater than
the volume of the inner zone using this Cartesian straight line. He did not continue to investi-
gate this straight line portion and seems to have overlooked the importance of this Cartesian
straight line.

What Carter found is remarkably supportive of the pseudosteady-state method developed
by Eggenschwiler et al. (1980), at a later date. This method utilized the Cartesian straight line,
and results have some similarity to Carter’s findings.

Bixel and van Poollen (1967) solved the problem by using a one-dimensional radial
single-phase numerical simulator. They reported correlation charts for the interpretation of
flow tests for a wide range of mobility and storage capacity ratios. A curve-matching tech-
nique was used for analyzing field data. They provided dimensionless pressure solutions in
graphical form for mobility ratios ranging from 0.001 to 100, and storativity ratio from 0.001
to 1000. An example of their solution is shown in Fig. 2.6. The mobility ratio and the stora-
tivity ratios used in their study are defined as follows:

(¢C)zone2

Storativity Ratio =
(<)

(2.3)

zonel

k)0
Mobility Ratio = Kzoner (2.4)

(k/ p’)zane 1

Bixel and van Poollen proposed to analyze field data by a curve matching technique. The
field data are first made dimensionless by the following equation:

Pp=1.15122 2.5)

nt

where m is the slope from the initial semilog straight line. The dimensionless field data are
then plotted against the log of time and matched against his curves. When a match is found,
the distance to the discontinuity can be found by the following equation:

. ”
R=A /———l— (2.6)
tpdiiycy

When examining Bixel and van Poollen’s dimensionless pressure solution, one can notice
that quite a few curves have the same shape. Therefore, it is possible that a unique match is
difficult to find when both the mobility and storativity of both zones are unknowns.

Odeh (1969) presented an analytical solution for the same formulation, assumptions and
boundary conditions as in Carter’s study. He reported the same findings as in Carter’s paper,
but proposed a different method to calculate the distance to the discontinuity. He proposed to
use the point of intersection between the two semilog straight lines in calculating the front
radius. Odeh developed a set of charts for correlation between the intersection point of the two
semilog straight lines and the dimensionless front radius. An example is shown in Fig, 2.7.
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The calculation procedures for locating the burning front involves the graphing of field
data as shown in Fig. 2.8. The dimensionless time at the point of intersection of the two semi-
log straight lines is then determined. From the radial discontinuity distance versus time chart
(Fig. 2.7), the dimensionless radius of discontinuity is found. Figures like 2.7 are then used to
determine the end of the first semilog straight line and the start of the second semilog straight
line. If these values disagree with the values deteiinined from the field data plot, the process is
repeated. A trial and error method is ermployed to find the burning-front radius.
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Fig. 2.8 Example Draw-down Plot

The weakness of this method is that it requires the presence of both semilog straight lines
in order to calculate the front radius. As Odeh reported in his paper, the transition zone
between the two semilog straight lines is very long, and boundary effects will mask the second
semilog straight line. In practice, it is difficult to obtain field data that gives a second semilog
straight line. Therefore, this method is of limited use.

A method based on the time of deviation from the [irst semilog straight line was
presented by Merrill er al. (1974). Their idea was similar to that of van Poollen. Mertill et al.
solved the problem with an implicit finite-difference method, and made test runs with different
mobility ratios and storage ratios. From the data generated by the finite-difference model, they
developed a correlation between the slope ratio of the two semilog straight lines and the
dimensionless time at intersection. This correlation is shown in Fig. 2.9,

To analyze field data, the slope ratio of the two semilog straight lines is found from a
semilog plot of the falloff data. The dimensionless intersection time Atpy, is then determined
from Fig. 2.9. The front radius is then calculated by using the following equation:

0.000263 7/(Afﬂ
Ry = @7
q)“ClAthl

where Aty is the intersection point in the semilog plot of the falloff data.
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The weak point of Merrill et al.’s method is the same as in Odeh’s method. Both require
the second semilog straight line, and the storativity of the second zone. A long transition zone
or boundary effects will mask the second semilog straight line, and calculation will become
impossible.

The latest publication in analysis of composite reservoirs is by Eggenschwiler et al.
(1980). They solved the problem analytically, and discovered a new and powerful method to
determine the swept-zone volume.

The problem was formulated for a swept region in an infinite reservoir and solved, using
Laplace Transformation followed by numerical inversion. In order to study the important zonal
effects, the gas in the reservoir was considercd to be a liquid of slight and constant compressi-
bility. The simulated result for an example in-sine combustion injection test is shown in Fig.
2.10.

It was discovered that for cases with a high mobility ratio, the discontinuity behaves like
an impermeable boundary for several hours. This is evident by the existence of a Cartesian
straight line for the period immediately following the initial semilog straight line in a pressure
versus time graph. This Cartesian straight line is the key element which enables the estimation
of the swept volume. The following two equations are employed in the calculation of the
swept-zone volume and radius to the discontinuity if a Cartesian straight line is evident.

y, = 985615 2.8)
NIC”
Vy = tRhiy, (29

Eggenschwiler et al. also substantiated findings by plotting the data presented by Kazemi
(1966) in Cartesian coordinates and found a straight line following the inflinite-acting period.
This Cartesian graph is shown in Fig. 2.11.
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In a later study, Satman et al. (1980) investigated the effects of wellbore storage and
mobility ratio on the pressure response of a radially composite system. The wellbore storage
effect dies rapidly for injection conditions typical of in-situ combustion operations. It was ori-
ginally expected that the large pore volume of the displaced burned zone would be evident as a
very large apparent wellbore storage effect. However, the dimensionless storage coefficient,
Cp, was found to be very small whether based upon either the wellbore or the displaced zone.

It was also found that the mobility ratio had a significant effect on the pressure response.
For low mobility ratio cases, the Cartesian graph is not perfectly straight, and the slope of the
Cartesian straight line is difficult to define. In order to obtain an accurate estimation of the

burned volume, they introduced the pseudosteady-state deviation factor. The pseudosteady-
state deviation factor was defined as:

R
Pseudosteady —State Deviation Factor = —? (2.10)
b :

where Rp, is the correct value of the dimensionless radius of discontinuity and RZ) is the radius
calculated from the slope of the apparent straight line on a graph of p,, vs. time at a certain
time. Satman provided correlation charts of pseudosteady-state deviation factors at different
dimensionless times as a function of mobility ratio with diffusivity ratio as parameter. One of
the correlation charts is shown in Fig. 2.12.

To calculate the radius to the discontinuity, the slope of the apparent*Cartesian straight
line immediately following the initial semilog straight line is used to find Rp. An appropriate
correlation chart is then used to find the pseudosteady-state deviation factor. This factor is
directly applicable to correct the R*D to find the radius to the discontinuity. Strictly speaking, it
would have been better to work in terms of the displaced volume.

Several conclusions were made in this study. The duration of wellbore storage is usually
very short, and the properties of the swept zone can be calculated from the first semilog
straight line. It was also concluded that the Cartesian straight line immediately following the
first infinite-acting period can be used to find the swept-zone volume for high mobility ratio
cases. For low and intermediate mobility ratio cases, the pseudosteady-state deviation factor is
needed to correct the calculated swept-zone volume,

2.2. TRANSIENT PRESSURE BEHAVIOR FOR A WELL WITH A
FINITE-CONDUCTIVITY VERTICAL FRACTURE

The first study of finite-conductivity fractures was done by Arihara et al. (1977). How-
ever, the most complete set of studies performed on a well with a finite-conductivity vertical
fracture is by Cinco et al. (1978). They solved the problem semifinite slab reservoir inter-
cepted by a finite-conductivity fracture as shown in Fig. 2.13.

Cinco et al. formulated the problem for the flow in the fracture and in the reservoir, and
then coupled them through the continuity condition. The fracture was considered as a homo-
geneous, finite, slab porous medium of height, A, half length, x; and width, w. Fluid entered
the fracture at a rate g(x,z) per unit of fracture length; and flow across the edge of this porous
medium was negligible. The assumption of a no-flow boundary at the fracture tip allows the
flow in the fracture to be linear, and the well production is simulated by a uniform flux plane
source of dimensions 4 and w. This fracture flow model is shown in Fig. 2.14.
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Fig. 2.14 Fracture Flow Model

The flow in the reservoir is modeled by considering the fracture as a plane source of
height, A, length, 2x, and flux density gr (x,). The reservoir model is shown in Fig. 2.15.
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Fig. 2.15 Reservoir Flow Modcl
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The two models were then coupled using the continuity condition. ‘The dimensionless
pressure drop and flux density in the fracture model must equal that on the plane source of the
reservoir model.

They found that the dimensionless pressure solution could be correlated by one parame-
ter, namely, the dimensionless fracture conductivity. This parameter is defined as:

KpWnp = 2.11
oW =~ (2.11)

where :

kg = relative fracture permeability

Wy = dimensionless fracture width

ke = fracture permeability

w = fracture width

k = formation permeability

xp = fracture half length

Large values for the product (kW) represent highly conductive fractures, and small
values represent fractures of low conductivity. Small values of the product may be caused
either by low fracture permeability or large fracture length. The results were presented in a
graphical form as shown in Fig. 2.16.
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Fig. 2.16 Dimensionless Pressure Solution for an
Infinite Reservoir with a Finite Conductivity
Vertical Fracture (No Storage, No Skin)
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It can be scen from Fig. 2.16 that as the value of kﬂ,‘$7f,) increases, the dimensionless
wellbore pressure drop for a fixed time decreases. For kp)Wg, values greater than 300, the
solution is esgentmlly equal to the infinite-conductivity solution of Gringarten et al.. For Luge
times, all curves in Fig. 2.16 approach a straight line of slope 1.151, characteristic of the semi-
logarithmic methods of pressure analysis. However, for finite reservoirs, boundary effects will
affect this straight line, and the semilogarithmic technique is not applicable.

At small values of dimensionless time, the curves have a distinct form for different values
of dimensionless fracture conductivity. This feature of the solution can be used to analyze
field data by a type-curve matching technique. However, early time data must be available
before a type-curve matching technique can be used. Otherwise, a uniqueness problem will
arise since all the curves in Fig. 2.16 have similar shapes at late times; therefore, care and dili-
gence are needed if type-curve matching is attempted.

The dimensionless pressure solution presented in Fig. 2.16 did not include the effects of
wellbore storage and skin. Cinco and Samaniego investigated the effects of these two parame-
ters in a second paper presented in 1977. They found that both skin and wellbore storage have
significant effects on the pressure response.

Cinco modeled the skin as a zone of reduced permeability caused by fluid loss around the
fracture. This model is illustrated in Fig. 2.17.

FINITE CONDUCTIVITY FRACTURE

IR, 2
AT

WELL

Fig. 2.17 -Damaged Fracture Model

They found that when the pressure response is graphed as a function of log p,,, versus
log t; for early times, results show flat, almost horizontal lines, that later become concave

upward curves asymptotically approaching the curve for undamaged fractures. This is shown
in Fig. 2.18.

Because the log-log curves for an undamaged fracture shown in Fig. 2.16 never have 4
slope less than one-fourth at small values of time, they suggested that a fracture that is skin
damaged may be detected when the slope of the log-log curve of pressure data, at small values
of time, is less than one-fourth. However, if early time pressure data are not available, errone-
ous conclusions may be reached because a finite-conductivity fracture may be taken as an
infinite conductivity fracture with a skin damage.

The effect of wellbore storage on the transient behavior of a fractured well with no skin
is shown in Fig. 2.19. This graph indicates that wellbore storage greatly affects the transient
pressure behavior of fractured wells. TFor short times, there is a wellbore storage dominated
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flow period characterized by straight lines of slope one. There is a transition period after the
unit slope straight line, whose duration depends on the (kwlkx) value and Cpy values. Later in

time, the pressure behavior is not affected by wellbore storage and approaches the curves for

no skin and no storage cases.
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In general, the curves in Fig. 2.19 have different slopes, and a type curve matching tech-
nique can be used to analyze field data. However, problems of characterization may arise
when insufficient pressure data match the type curve in the region of lines of one-fourth slope.
Therefore, the use of the type curve matching technique becomes practical only when a large
span of pressure data are available.

Cinco and Samaniego reported further investigations of the subject in two papers in 1978
and 1981. They presented the possible flow periods in the fracture system during different
periods of time, and their effect on the pressure response. They concluded that there are four
possible flow regimes for a fractured system. These four regimes are illustrated in Fig. 2.20.
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Fig. 2.20 Finite Conductivity Fracture Flow Periods

At very early times, there is a fracture linear-flow period. During this period, most of the
fluid entering the wellbore comes from the expansion of the fluid within the fracture, and the
flow behavior is essentially linear on a log-log graph with a slope of one-half. Following the
fracture linear-flow period, there is a bilinear-flow period. During this period, there is a linear
incompressible flow within the fracture and a linear compressible flow in the formation. The
pressure behavior exhibits a straight line whose slope is equal to one-fourth on a log-log graph
of p.p versus fp,. The existence of this bilinear-flow regime depends on the value of dimen-
sionless fracture conductivity and dimensionless storage coefficient. Following the bilinear-
flow period, there is a formation linear-flow period for cases where the dimensionless fracture
conductivity has a value greater than fifty. The pressure behavior during this period exhibits a
half-slope straight line on a log-log plot of pressure versus time. After the formation linear
flow period, the pressure behavior of a fractured well will eventually reach pseudoradial flow
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conditions, regardless of the fracture conductivity value, provided boundary effects are not
present. During this period, a graph of p,,;, versus the log of Ipys Bives a straight line of slope
equal to 1.151, no matter what the fracture conductivity. The conventional semilog analysis
technique can be applied for this period.

In a later study, Cinco and Samaniego (1981) presented a new type curve that has great
utility for practical applications. As mentioned before, the type curve shown in Fig. 2.16 has a
problem of application because all the curves have a similar shape. Cinco and Samaniego

showed that in practice the problem can be overcome by

tpx/(Kﬂ)Wﬂ))z. This type curve is shown in Fig. 2.21.
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3. PROBLEM STATEMENT

A horizontal finite square slab reservoir with a centrally located well intercepted by a
vertical fracture is shown in Fig. 3.1.

YOI IDIV

L/
/ f
; %

|/
/] «f %
/ F——X‘—-" L/
/] L/
§ %
7 #
/]

PPl aedd

Fig. 3.1 A Vertically Fractured Well in a Finite Reservoir

If an in-situ combustion project is to be commenced with this well as an air injector, the

burned zone will propagate in a direction normal to the plane of the fracture at early times as
shown in Fig. 3.2.
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Fig. 3.2 A Rectangular Burned Zone in a Finite Reservoir

This burned zone can be idealized as a rectangular region of length, 2x; and width, w,
with properties different from those in the unburned region. As time goes on, the rectangular
burned zone volume will increase. If boundary effects are not present, the burning front will

eventually achieve a radial geometry and can be approximated by a radial discontinuity. This
is shown in Fig. 3.3.

As explained in the previous section, Epgenschwiler et al. presented a pseudosteady-state
method for finding the swept-zone volume for a radial, composite reservoir. The method can
be applied to a composite system with an injection well intercepted by a vertical fracture if the
burning front has alrcady achieved a nearly cylindrical shape. However, during the early stage
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of the operation, the burned zone resembles a long and narrow rectangle as shown in Fig. 3.2.
Therefore, it is of interest to know if the pseudosteady-state method can be applied to such a
rectangular burned region geometry.
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Fig. 3.3 Pscudoradial Flow Regime

Egpenschwiler et al. concluded that pseudosteady-state involves only a material balance
depletion of a closed volume of any shape. Therefore, the detection of the burned volume is
not dependent on burned volume geometry. However, the method is based on the similarity
between the closed and the composite radial system. As a result, it is of importance to know if
the concept can be applied when the system in consideration has a geometry substantially
different from that of the composite radial system.

The purpose of this study was to determine the necessary width of the rectangular burned
zone before the pseudosteady-state method may be applied.
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4. METHOD OF SOLUTION

Two numerical simulators were developed to generate the necessary pressure responses
for an injection test for this study. Both simulators are isothermal, two-dimensional, single-
phase simulators in a Cartesian coordinate system. One was formulated for a slightly compres-
sible fluid with a constant compressibility and the other was for a compressible gas. A detailed
description of simulators is provided in Appendix A and Appendix B.

In an in-situ combustion operation, the region behind the front contains mostly air, while
the region ahead of the front contains hydrocarbon, water and gas. However, the mobility of
the gas in the swept zone is so much greater than that of the liquid phase ahead of the burning
front, only gas flow will be considered.

In order to study the most important effects, the fluid in the reservoir was treated as a
liquid with slight and constant compressibility rather than as a gas. Handling the fluid as a
liquid permitted the investigation of the effects of certain important parameters. However, the
pressure gradient in the reservoir is small; therefore, treating the gas as a liquid with constant
compressibility is acceptable. This will be shown with the results obtained by utilizing the
compressible gas simulator, as compared to those obtained using a slightly compressible fluid.

Other assumptions implicit in this study are listed as follows:

(1) The formation is horizontal, of uniform thickness, and homogeneous.
(2) The front is considered stationary throughout the testing period.

(3) The front is of infinitesimal thickness.

(4) Gravity and capillary effects are negligible.

(5) Darcy’s law applies.

A complication in the system being simulated, however, is that the temperature is not
uniform throughout the reservoir. It would be expected that the temperature of the burning
front would be around 1000°F (540°C) while the rest of the reservoir is at a much lower tem-
perature. However, in order to study the most important effects, it is assumed that the reser-

voir exists at some mean temperature. The mean temperature used in this study is 500°F
(260°C).

In this study, only a high mobility ratio case is considered. A mobility ratio of 200 and a
diffusivity ratio of 12 are used in all simulation runs. The definitions of this two quantities
are:

(k/ u)zanel
A = e EONE 4.1

(k/u)zoneZ ( )

(k/q)ucl)zonel
P AL 4.2)
! (k/q)uct)zoneZ (

Fluid and rock properties used in this study are typical of those found in an in-situ
combustion operation. They can be found in Appendix D.
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The viscosity and system compressibility were held constant in this study. Therefore,
permeability and porosity of the two zones were adjusted to achieve the desired values for
mobility ratio and diffusivity ratio.

Due to the symmetry of the problem, all simulation runs were performed for one quarter
of the reservoir, with a grid of 21x21 blocks. Fine grid spacing was used near the well for all
runs. However, when a simulation run is performed for a burned zone which is very long and
narrow, similar to a fracture, fine grid spacing was also used at the tip of the rectangular zone.
This is illustrated in Fig. 4.1.

well
Fracture Tip

Fig. 4.1 Grid Spacing Used in Simulation Runs

Drainage boundaries were chosen far enough from the well and the burned zone so that
the pressure response would be unaffected by their presence during times of interest. The
drainage area used for this study is a square 7500 feet per side.

A series of simulation runs were performed for different width to length ratios (W/L) of
the rectangular burned zone. Starting from a square burned zone of 300 ft. (100 m) per side as
shown in Fig. 4.2, the width of the burned zone was then reduced successively to yield
width-to-length ratios from 0.9 to 0.00157. Since the length of the burned zone is a constant
of 300 ft. (100 m), which is the total length of the fracture, therefore, 2x,= 300 ft. (100 71) and
xp= 150 ft. (50 m). Table 4.1 presents the width-to-length ratios for all the simulation runs per-
formed in this study.
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Fig. 4.2 Dimensions of Square Burned Zone for Simulation Runs

Table 4.1  List of W/L Ratios Simulated

Case No. | Length (L) ft | Width (W) ft W/L
1 300 300.0 1.0
2 300 270.0 0.9
3 300 240.0 0.8
4 300 210.0 0.7
5 300 180.0 0.6
6 300 150.0 0.5
7 300 120.0 0.4

v 8 300 90.0 0.3
9 300 60.0 0.2
10 300 30.0 0.1
11 300 23.5617 0.078539
12 300 11.7809 0.039269
13 300 4.7121 0.015707
14 300 2.3561 0.007853
15 300 1.1780 0.003926
16 300 0.4712 0.001570
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S. RESULTS AND INTERPRETATIONS

In this section, we will present the pressure responses in both dimensionless form and in
the form of pressure (psia). Pressure responses presented in dimensionless form are used to
show general trends. However, pressure versus time graphs are used to illustrate the calcula-
tions involved in semilogarithmic analysis and in the determination of the burned - zotis
volumes. For the sake of brevity, semilog and Cartesian plots of the pressure responses are
shown for selected cases only. Pressure versus time graphs for all cases can be found in
Appendix E.

We will start by presenting the pressure analysis of the case with the square burned zone.
Then proceed to present the pressure responses in dimensionless form for various width-to-
length ratios. Geometrically, the square burned zone is not a great departure from a radial-
burned region. Therefore, the pseudosteady-state method should predict a correct burned-zone
volume. In order to illustrate the pressure response of the system from very early times to late
times, a simulation run of very long duration was performed for this case. :

Figure 5.1 is a semilog plot of the pressure response for this run. There is a short initial
period where the storage effect of the inner zone dominates. Then there is a semilog straight
line, characterizing the inner zone conductivity, followed by a long transition when the discon-
tinuity is felt. It is in this transition period where the pseudosteady-state flow period exists.
The second semilog straight line began to form after the transition period, however, boundary
effects prevented the completion of the second semilog straight line, and the pressure response
began another transition. The entire reservoir eventually enters pseudosteady-state flow.
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We will now consider a realistic time frame. Figure 5.2 is a semilog plot of the same
case from 0.0001 day to 0.1 day. As expected, the storage effect diminished rapidly, and was
followed by a semilog straight line. From the slope of this straight line, the permeability of
the swept zone could be calculated from : ‘

162.6g9B, 1L

k= —— 5.1
mh ; (5.1)

where B, is the gas formation volume factor at the average pressure where the semilog
straight line exists.
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Fig. 5.2 Semilog Plot of Pressure Versus Time
for the Case with the Square Burned Zone

The following calculation was performed to calculate the permeability for the burned
zone:

Slope =m =2.2491 psi/day

Pavg, = 147.17 psia

B ___ZRT___ _ 1837 RV/STV
2 380,69 ey,

k =7913.7 md
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The computed value of the permeability of the burned zone

agrees favorably with the

input value of 8000 md. The end of the semilog straight line is at 0.006 days which

corresponds to a tpa, of 0.1053. This value compares favorably with an analytical value
0.1.

When the data are graphed on a Cartesian coordinate graph
See an apparent straight line form almost immedi
straight line. The word "apparent"
This is not a true pseudosteady-state straight line. The

of

as shown in Fig. 5.3, we cun
ately following the end of the first semilog
is used because the data did not form a perfect straight line.
pressure response actually had a slight

curvature and continually bent downward. This is also evident in the data presented by Eggen-

schwiler et al. (1980). However, for a short period of time immedi
first semilog straight line, the data almost forms a Cartesian straight line. Therefore, it

ately after the end of the

18

essential to have an initial semilog straight line to locate the Cartesian straight line. The

straightness and duration of the Cartesian line depends 1
This is not a new finding. The same dilemma occurs i

argely on the plotting scale of p,, v.s.
n the classic case of determining when

L

pseudosteady-state starts for a closed square reservoir. In this study, scales that are similar to
those found in a realistic field pressure analysis are used.
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Fig. 5.3 Cartesian Plot of Pressure Versus Time
for the Case with the Square Burned Zone

The slope of the pseudosteady-state straight line for this case is m = 104.46 psi/day. The

burned-zone volume is related to this slope as follows:

98, 5.615
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n
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The quantity B,_is the gas formation volume factor at the average pressure where the Cartesian
straight line begins.

Using Eq. (5.2), the burned-zone volume was calculated to be 944,670 f». This value
compares favorably with the correct value of 945 OOOft with an error of 0.03 %.

As mentioned before, the second semilog straight line is affected by the outer closed
boundaries, therefore, the slope of the second semilog straight line should be too high, and
should yield a low value of permeability for the outer zone. The slope of the second semilog
straight line obtained from Fig. 5.1 is m = 165.49 psi/day. Using Eq. (5.1), the computed per-
meability for the outer zone is 27.1 md. As expected, this value is too low when compared
“with the true value of 40 md. The second line on Fig. 5.1 would have continued to bend down
had the outer boundary not caused a pseudosteady state.

From this analysis, we can see the pseudosteady-state method yields favorable results for
the case with the square-burned zone. We will now show the effects of reduction of the
burned zone width on pressure responses.

Figure 5.4 is a semilog graph of dimensionless pressure versus dimensionless time for
different W/L ratios of the burned zone. The dimensionless variables have the following
definitions: '

kihA(p?)
= 5.3
PwD = Tanaquzr (5:3)

0.000264k;t (5.4)
t T e .
> ¢1LL1011If2

From Fig. 5.4, we see that for a W/L ratio of 1.0 to 0.2, there is an initial semilog
straight line characterizing the inner zone. There is no initial semilog straight line for cases
with W/L ratio below 0.2. However, for cases with W/L ratios below 0.0157, the pressure
responses behave like those for a well with a finite-conductivity fracture in late times and then.
show a semilog straight line for the outer zone. It is of interest to determine whether the simu-
lation results are similar to the results presented by Cinco et al. for the case with the lowest
W/L ratio. This will be discussed later in this section.

A detailed semilogarithmic analysis was performed for each case. For the sake of brevity,
the results are summarized in Tables 5.1 and 5.2. All semilog graphs can be found in Appen-
dix E. Table 5.1 summarizes the results of the semilogarithmic analysis for the burned zone,
whereas Table 5.2 is for the outer zone. Semilogarithmic analysis for the outer zone was only
performed for cases with W/L ratio that are less than unity.

The results shown in Table 5.1 indicate that there is no semilog straight line for the
burned region for cases with W/L ratio that is below 0.2. However, for cases with W/L ratio
below 0.5, the duration of the semilog straight line is short, and yields excessive error in per-
meability calculations. This is illustrated with a graph of W/L ratio versus % error in permea-
bility calculatons as shown in Fig. 5.5.
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for Burned Zone

sSammary of Hesulls for Semilogarithmic Analysis

Approximale Approximale
Start of Iind of
W/L ~Semilog Semilog Permeability
Straight Line Straighl Line Calculated % Lrror
(days) Lper (days) Epcr (ma)

{ 1.0 0.0008 0.066179 | 0.008 0.421344 7913.8 1.08
0.9 0.0008 0.056179 | 0.00565H 0.386232 THIZ2.H 2.09
0.8 0.0008 0.066179 | 0.006 0.351120 THH2.0 1.47
0.7 0.0008 0.056179 | 0.0056 0.351120 7852.8 1.84
0.6 0.0007 0.049156 | 0.004 0.280896 7904.2 1.20
0.5 0.0007 0.049156 | 0.0033 0.231739 7833.4 2.08
0.4 0.0006 0.042134 | 0.0031 0.217694 7284.0 8.95
0!¢ 0.00056 0.036112 | 0.0014 0.098313 T042.4 11.97
0.2 0.000105 | 0.007387 | 0.000300 | 0.021432 67566.9 16.50
0.1
0.078539
0.039269 ‘

0.015707 No Initial Semnilog Straight Line .
0.007853
0.003928
0.001570
Table 5.2 Summary of Resulls for Semilogarithmic Analysis
for Ouler Zone
Approximale Approximale
Start of Start of
’ Semilog Semilo Permeabilit
W/L Y Straight Line Straight l?ine Ct:\lculaLedy % Error
kazs Presented by Cinco
(days) (days) (md)
53¢
833258(; lr)(): No Semilog Straight Line for Oulter Zone
0.016707 2 0.8 0.756 J4.3 4.25
0007853 m 0.7 0.65 348.6 3.5
0.003926 m/2 0.6 0.6 319.0 2.5
0.001570 /5 0.6 0.143 an.2 2.0
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From Table 5.2, it appears that there is a semilog straight line for the outer zone for cases
with W/L ratio below 0.0157. The permeabilities calculated for the outer zone from these
straight lines agree favorably with the input values. These results indicate that at a low W/L

ratio, the burned zone behaves more like a fracture and will have no semilog straight line for
the swept region.

We will now discuss the main objective of this study. From the semilogarithmic
analysis, we can see that as the width of the burned zone is reduced, the duration of the semi-
log straight line shortens and eventually vanishes. We would expect the same would be true
for the pseudosteady-state straight line for the inner zone. Below a certain WL ratio, there
probably will no longer be a Cartesian straight line for the burned zone.

Figure 5.6 is a Cartesian graph of the dimensionless pressure response,
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Fig. 5.6  Cartesian Plot of Dimensionless Pressure Responses
for Different W/L Ratio

From Fig. 5.6 for W/L ratios below 0.1, there is no pseudosteady-state Cartesian straight
line. However, due to the coarsencss of the scale, the curvature for the lines of W/L ratio
above 0.1 might have been masked. A detailed Cartesian analysis was performed for each case
to calculate the burned-zone volume. The result is summarized in Table 5.3.

From the Cartesian analysis, the results indicate that for W/L ratio below 0.4, the curva-
ture of the pressure response becomes significant and many apparent straight lines can be

drawn through segments of the data. For cases with WIL ratio at 0.1 or below, no Cartesian
straight line exists. '
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Table 5.3 Summary ol Resulls for Cartesian Anélysis
for Burned Zone

Approximale
Starl of True Calculated
W /L Cartesian Burned-Zone | Burned-Zone
Straight Line Volume Volume 7% Lrror
(days) Lner ste 7o

1.0 0.0111 | 0.7794808 945000.0 944669.7 0.035
0.9 0.0145 | 1.0182503 850500.0 931201.9 9.488
0.8 0.017 1.193810 756000.0 B37412.3 10.768
0.7 0.024 1.685379 661500.0 743635.0 12.416
0.6 0.043 3.019639 567000.0 662291.2 15.042
0.5 0.056 3.611208 472500.0 551094.2 16.630
0.4 0.069 4.1432256 378000.0 450768.6 19.250
0.3 283500.0
0.2 189000.0
0.1 894500.0
0.078539 No 74219.3 No
0.039269 Cartesian -37100.7 Cartesian
0.015707 Straight Line 14843.1 Straight Line
0.0078563 7421.0
0.003926 3710.0
0.001570 1484.3

The results also confirm Kazemi’s conclusion that when the distance to the discontinuity
is not equal in all directions, significant error will result in the calculation of the burned-zone
volume. Table 5.3 shows that the % error in calculated burned-zone volume increases rapidly
when the W/L ratio is decreased even slightly. As the burned-zone geometry departs from a
perfect square, the correct straight line that will yield a correct burned-zone volume may be a
tangent at some point of the pressure response.

An analysis was performed to find the locations of tangent points for cases with no
Cartesian straight line. The result is summarized in Table 5.4. The results presented in Table
5.4 have error of less than 2% in calculated burned-zone volumes.

Table 5.4 presents some interesting results. For cases with W/L ratio larger than 0.1, the
tangent point which yields a correct calculated burned-zone volume stays approximately where
the pseudosteady-state straight line starts for the case with the square burned zone. However,
for cases with W/L ratio at or below 0.1, the tangent point moves backward and locates at
much earlier time.

Figure 5.7 is a graph of the location of these tangent points versus the corresponding W/L
ratio. From Fig. 5.7, as W/L ratio decreases, the tungent point moves to earlier times. How-
ever, for W/L ratio above 0.1, the tangent point remains approximately at 0.01 days
(tpyr = 0.702) which is where the pseudosteady-state straight line starts for the case with the
square burned zone.
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Localions ol Tanpgent Poinls

which Yield Correct
Burned-Zone Volumes

Localions in Time of
Tangent Point Which Yields
W/L ‘ Correct Burned-Zone Volume
(days) ey Lpa,
1.0 0.0111 | 0.778488 | 0.194872
0.9 0.0111 | 0.779488 | 0.216524
0.8 0.0111 0.779488 0.243590
0.7 0.0105H 0.737353 0.2063340
0.8 0.01 0.702241 0.292600
0.5 0.01 0.702241 | 0.351120
0.4 0.009 0.632017 0.395010
0.3 0.009 0.632017 0.5266081
0.2 0.009 0.632017 0.790021
0.1 0.0075 0.5260681 1.316703
0.078539 0.007 0.49156069 1.564729
0.039269 | 0.0055 | 0.386232 | 2.45945H5
0.015707 | 0.0035 | 0.245784 | 3.912022
0.007853 | 0.0015 | 0.10H336 | 3.35337H
0.003926 | 0.0011 | 0.077246 | 4.918911
0.001570 | 0.0006 | 0.042134 | B.706324
A __//J/
D.2 0.3 D.4 0.5 0.5 0.7 0.8 0.9
W/L

Fig. 5.7 Locations of Tangent Points that Yield

Correct Calculated Burned Zone Volume
as a Function of W/L Ratio
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From the Cartesian analysis, we conclude that as the burned-zone width is decreased, the
error involved in calculated burned-zone volume increases. For W/L ratio below 0.4, the cur-
vature of the Cartesian plot become signiflicant, and many straight lines can be drawn through
segments of the data. For W/L ratios at or below 0.1, there is clearly no pseudosteady-state
flow period for the burned zone.

Since the semilog graph of the dimensionless pressure response has different shapes for
different W/L ratios, we suspect a log-log plot of the dimensionless pressure response could be
used for a type-curve matching purpose. Figure 5.8 is a log-log plot of the dimensionless pres-
sure response.
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Fig. 5.8 Log-Log Plot of Dimensionless Pressure Responses
for Different W/L Ratio

From Fig. 5.8, the curves do have different shapes for different W/L ratio. Therefore, a
type-curve matching technique may be used to find burned-zone properties. However, in prac-
tical terms, Fig. 5.8 might not have value in realistic field data analysis. Most of the curves
have similar shapes over a range of dimensionless times. A uniqueness problem may arise in
the process of type curve matching. Therefore, type curve matching techniques will be practi-
cal only if a long range of data are available. Recently, pressure-time derivative type curves
have been shown to have great details for some cases. Perhaps an analysis of this possibility
will be useful.

1000
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The log-log plot does illustrate some general trends. For W/L ratio below 0.0157, the
- curves show half slopes at early times. This indicates a formation linear flow, and is a
behavior of wells with a vertical fracture. At late times, all curves approach each other. This

is expected, because the system should achieve pseudoradial-flow afier a long time, regardless
of the burned-zone geometry.

It is of interest to find out how the simulation result would compare with the Cinco et al.
type curves for the case with the lowest W/L ratio, which is the case that has the smallest
‘width and is most similar to a fracture. We would not expect the result to agree with the type
curve at early times because the two models are fundamentally different. Cinco et al. assumed
a fracture model which has a length much larger than the width and no flow at the tip. The
model simulated here has a significant width, and flow is allowed at the burned-zone tip. Also,
the burned zones simulated in this study have significant volume, and will generate a storage
effect. The combination of these three factors will produce a pressure response lower than that
reported by Cinco et al. at early times. However, we would expect the pressure response to
match Cinco et al’s type curve after the pressure influence has passed the burned zone. The
burned zone or fracture dimension and storage effect play no role in the pressure response after
the pressure influence has passed the fracture and propagated into the reservoir.

Figure 5.9 is a log-log graph of the dimensionless pressure solution and Cinco et al’s
type curve. The curve is for a W/L ratio of 0.001570. This curve corresponds to a dimension- -
less fracture conductivity of 1t/5.
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Fig. 5.9 Comparison with Cinco’s Type Curve
for W/L Ratio of 0.001570
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From Fig. 5.9, the simulation results do show a lower pressure drop response than Cinco
et al’s type curve at early times. However, the simulation result shows a favorable match
with the Cinco et al.’s type-curve at later times. The dimensionless time that the curves begin
to show good match is = 3. This time agrees reasonably well with the time of 2.7 reported
by Cinco et al. for start of the semilog straight line for the reservoir.

As mentioned before, the fluid in the reservoir is handled as a constant compressibility
liquid, instead of gas. To show that this is reasonable we simulated the case with the square
burned zone utilizing a gas flow simulator. Figure 5.10 is a semilog graph of the pressure
response of both runs. The figure shows an excellent match between the results obtained from
the gas simulator and the liquid simulator. The results show a better match at early times than
at late times. This is expected, since the pressure gradient is higher at later times, and the
assumption of constant compressibility is poor. lowever, for the purpose of this study, the
assumption of constant compressibility is acceptable.
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Fig. 5.10 Comparison of Simulation Results
From Liquid and Gas Simulators
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6. CONCLUSIONS AND RECOMMENDATIONS

The following conclusions and recommendations can be drawn from this study :

6.1. CONCLUSIONS:

1. It can be concluded that pseudosteady-state flow does not exist for the inner zone
for low WI/L ratio cases. The curvature of the Cartesian plot of the pressure
responses increases as W/L ratio decreases. For cases with W/L ratio below 0.4, the
curvature becomes significant, and many straight lines can be drawn through seg-
ments of the data. For cases with W/L ratio below 0.1, there is clearly no
pseudosteady-state flow, and the Cartesian plot of pressure versus time is a curve.

2. Burned zone volume calculation is sensitive to the slope of the pseudosteady-state

Cartesian straight line but less sensitive to the average pressure when the Cartesian
straight line exists.

3. The calculated burned-zone volume will have significant error if the distance from
the well to the burning front is not similar in all directions. The volume calculated
will usually be too large when an uneven burning front distance exists. However,
trial and error corrections may be possible if W/L can be established.

4. There is a semilog straight line characterizing the burned zone for cases with a W/L
ratio higher than 0.2. However, for cases with W/L ratio below 0.4, the semilog

straight line becomes short, and results in significant error in the calculated permea-
bility for the burned zone. '

5. Itis of advantage to have a semilog straight line for the burned zone to locate the
Cartesian straight line, if one exists. However, the existence of a semilog straight

line does not guarantee a pseudosteady-state Cartesian straight line that will yield a
correct burned-zone volume.

6.  Using the type-curve matching technique to find burned-zone properties is possible.
However, it is practical only when data that spans a long time is available. Other-
wise, a uniqueness problem might arise.

7. For a rectangular burned zone to behave like a fracture at early times, the dimen-
sions of the burned zone must be similar to those of a fracture, or the rectangular
burned zone will not behave as a fracture.

6.2. RECOMMENDATIONS:

1. It is of interest to determine if pressure-time differential type-curve matching has
more practical value in finding burned-zone properties.

2. Finite-difference modeling might not have enough accuracy to permit analysis of
early time data. A theoretical approach may yield more quantitative results.
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NOMENCLATURE
A = cross-sectional area (ft?)
A" = accumulaton matrix at time level n
B = fluid formation volume factor (RV/STV)
B, = gas formation volume factor at p,,, (RV/STV)
;5 = gas formation volume factor at p,,, (RV/STV)
Bsre = fluid formation volume factor at standard conditions (RV/STV)
Cg = well geometric factor
¢ = fluid compressibility (psi™')
Cr = rock compressibility (psi_l)
c = total compressibility (psi‘l)
¢ = total compressibility in burned zone (psi™h)
o, = total compressibility at p,,e_ (psi™!)
Cp = dimensionless storage coefficient
CDf = dimensionless fracture storage coefficient
f = fraction of well associated with the well block
h = thickness of reservoir (ft)
k = formation permeability (md)
ky = permeability of burned zone (md)
k, = permeability of unburned region (md)
k¢ = permeability of fracture (md)
kp = relative fracture permeability
kpWp = dimensionless fracture conductivity
m = slope of semilog or Cartesian straight line (psi/day)
M = molecular weight of gas
PwD = dimensionless well pressure
Pavg, = pressure at which the apparent Cartesian straight line starts
Pavg, = arithmetic averaged pressure where the semilog straight line exists
P = initial reservoir pressure (psia)
Do = calculated well block pressure (psia)
PsIC = standard pressure (psia)
Pw = bottom hole pressure (psia)
P = flowing bottom hole pressure (psia)
q = flow rate (STB/D or MSCF/D)
g = production (mass per unit volume per unit time)
T, = equivalent well block radius (ft)
" = wellbore radius (ft)
R = radius to discontinuity (ft)

Rp = dimensionless radius of discontinuity
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Rp = apparent dimensionless radius of discontinuity calculated from the Cartesian
straight line

t = time (hrs)

T = temperature °R

DA, = dimensionless time based on burned-zone area

IDxf = dimensionless time based on fracture half-length

Atpy, = dimensionless time of deviation

Atpy, = dimensionless intersection time

Aty = intersection point of first and second semilog straight line

Wi = bulk volume of burned zone (ft’)

AV = control volume (length?)

w = fracture width (ft) -

WIL = width to length ratio of burned zone

W, = dimensionless fracture width

xf = fracture half length (ft)

Ax = block length in the x direction (ft)

Z = Standing-Katz gas compressibility factor

Greek symbols:

L = fluid viscosity (cp)

K; = fluid viscosity in the burned zone (cp)

Hy = fluid viscosity in the unburned region (cp)
¢ = formation porosity (fraction)

¢; = porosity in burned zone (fraction)

¢, = porosity in unburned region (fraction)

p = fluid density (Ibm/ft)
pstc = density of fluid at standard conditions (1bm/ft3)

Y, = specific gravity of gas
n = diffusivity ratio
A = mobility ratio

Subscripts:

i = block number

Superscripts:

n = time level
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APPENDIX A

- TWO-DIMENSIONAL, AREAL-IMPLICIT SINGLE-PITASE, SINGLE-COMPONENT
NUMERICAL SIMULATOR FOR SLIGHTLY COMPRESSIBLE FLUIDS
WITH CONSTANT COMPRESSIBILITY

This appendix contains a description of the captioned simulator and the associated user
instructions. Since the theory behind the simulator is standard and well established, only a
brief description is included here. Detailed theoretical development can be found in references
by Abou-Kassem and Aziz (1983), Aziz and Settari (1979), and Peaceman (1978).

A.1. DERIVATION OF GOVERNING EQUATIONS

The governing equations for fluid flow in porous media are derived from a material bal-
ance for a contro! volume based on the fundamental laws of conservation of mass, momentum
and some empirical relations concerning transport laws and PVT behavior of the fluids.

A control volume is constructed based on the continuum approach. The actual porous
medium is replaced by a fictitious continuum at any point of which variables and parameters
may be assigned. Continuous functions of the space and time coordinates can be .assigned as
variables and parameters.

In this section, the governing equation for one-dimensional flow in Cartesian coordinates
of a single fluid, modeled as a slightly compressible fluid is derived. The derivation is then
expanded to two-dimensional flow.

For one-dimensional flow in Cartesian coordinates, the control volume is constructed as
illustrated in Fig. A.1.

- Production

T

Flow in ——— — Flow out

Accumulation

i-o__-Ax

.-l

Fig. A.1 Control Volume

In the control volume, a material balance will result in the following equation:

Flow in — Flow out = Accumulation + Production (A1)
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Several terms are defined as follows:

A = cross-sectional area
Ax = control volume thickness in the x direction
+ g = production (mass per unit volume per unit time)

m,|, = mass flux vector (mass flow per unit area per unit time in the x
direction at x)

At = time elapsed

p = density of fluid

0] = porosity of medium
AV = AxA

Then :

Flow In = m,|AAt

Flow Out = ni),4,AAt
- d
Accumulation = N (POAV)AL
G

Production = gAVAt

Substitute in Eq. (A.1):
My (AAE) — mif i a(AAL = —g—; (POAV)Ar + [}AVA!

Divided by AVA &

A dJ

(';lzlx - ’7:111):+Ax) AI‘V = ot (Pq’) + (—I
Substitute AV = AxA
d T.lxlx = 7‘1xlx+Ax ) -
—— T = +
5, (P9 +4q

Take limit as Ax — O:

— dmy,

I
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Substitute m, = pu, (1, is the fluid velocity in x direction) results in the following equation:

SRAGLENN (1)
ox ot

+q (A2)

This equation is for flow in one spacial variable, namely, in the x direction. In general,
Eq. (A.2) can be written for any spacial coordinate system by using the Laplace operator. In
general Eq. (A.2) can be written as :

- V-(pu) = ﬂ%ﬂ + (} (A3)
Darcy’s law for one-dimension in x is:

k|, 8 02
= {ax+ e ax}

In general, Darcy’s law can be written as:

u=-— * (Vp - yVz)
I

where ;
v=-pE
8c
Substitute Darcy’s law in Eq. (A.3):
V- [Jz—:‘—(vp - ’YVz)jl = @%m +q (A4)
C

Recall that the formation volume factor is defined as :

v "
B = kC _ Psrc (A5)
Vst Pre

where:
Vrc = volume of fluid at reservoir conditions
Vsre = volume of fluid at stock tank conditions
Prc = density of fluid at reservoir conditions
pste = density of fluid at stock tank conditions

Divide Eq. (A.4) by pgye, and substitute Eq. (A.5) into (A.4):

V.

* vy - CH )
W (Vp ’sz)} = {B} +gq (A.6)
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where:

q —-— _l....
Psrc

Define A = k/lLB  and substitute into Eq. (A.6):

V- [MVp —9yVz)] = 385 [%] +q (A7)

Recall that isothermal fluid compressibility is defined as:

_Llv,_13dp
7= aPl p Dp[

If constant compressibility is assumed, the preceding equation becomes an ordinary differential
equation:

P
Integrating from p to pgrc and p to pgre:
cfp — psre) = In—L— (A.8a)
Psrc
(AP P o (A.8b)
Psrc

From Eq. (A.5) and (A.8), the relationship between formation volume factor and pressure
can be written as : '

Bgre I B R ) , (A.9)
B Pstc

The right-hand side of Eq. (A.9) can be expanded with an infinite series, resulting in the fol-
lowing equation:

1 2

cfp = psrc) '
ej(P Psrc — 1 + C/(P “PS[‘C) + 2 cf(p _I)SI‘C)2+ ve (A.lo)
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Since the fluid being modeled has a constant and small compressibility, the third and fol-
lowing terms on the right hand side of Eq. (A.10) are much smaller than unity. Therefore, Eq.
(A.10) can be written in an approximate form by retaining only the.first two terms of the
expansion. The resulting equation is:

B¢

SrC=_9_=1+C — <) (A.11)
Psrc

B Psrc

Similarly, the change in pore volume with respect to pressure in a medium with constant
and small matrix compressibility can be represented by :

0

=1+ cpp = psro) (A.12)
bsrc

The time derivative in Eq. (A.7) can be written as :

] k],

ot dp ot

(A.13)

Substituting Eqs. (A.11) and (A.12) into Eq. (A.7), and expanding the time derivative as
shown in Eq. (A.13) results in the following equation:

C C
V - [MVp - yV2)] = {¢ st;c + dsre f ]%fti +q (A.14)

Equation (A.14) is the equation for flow of a single-phase, single-component fluid with a
constant and slight compressibility.

If the system being modeled is at a low pressure, the matrix can be considered to have
zero compressibility. Therefore, the term that involves matrix compressibility can be
neglected, and resulted in the following equation:

g
V- [MVp = V)] = ¢FL %’tl +q (A.15)
Sic

Since flow in the areal sense is considered in this development, the gravity term can be
neglected. This results in the final equation for simulating horizontal flow of a fluid with slight
and constant compressibility.

V-(Wp)=¢BCf %ﬂ +q (A.16)
src ot
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A.2. COORDINATE SYSTEM

Since this study involves simulation of fluid flow in a square, closed-boundary system,
the Cartesian coordinate system was chosen. In a two-dimensional Cartesian coordinate sys-
tem, the Laplace operator in Eq. (A.16) can be expanded in the following manner:

9 (AVp) + 9 (AVp) = Q)———CL— ap +q
ox dy

Bgrc dt
ox [uB ox ]+ dy [pB oy } ¢Bsrc ot T4 (A7)

When K; |L and B in Eq. (A.17) are functions of pressure, the equation has no closed

form solution to this date, and can be solved only by one of the many available numerical
methods.

A.3. FINITE-DIFFERENCE SCHEME

The classical implicit method of Central Difference in space, and Backward Difference in
time was chosen for this development.

A.3.a. Discretization in Space

Central Difference is used for spacial discretization. The Central-Difference approxima-
tion for first derivatives is obtained in the following manner:

di; - Uy = Ui

(A.18)
dx Xiyl T X1

The nomenclature for the discretization process can be found in the next section.

A.3.b. Discretization in Time

Backward Difference is used for time discretization. This is the classical implicit method
and the approximation for first derivatives is obtained as follows :

du; G ut A9
dt T A (A-19)
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The left-hand side of Eq. (A.16) may be written at the time level n +.1:

ool n
. ¢ P — P
VAVt = (i)B L [ = } + q; (A.20)
: S1C
i=1,23,N
n=20,1,2,

All p*! are unknowns, therefore, Eq. (A.20) will result in N algebraic equations for a
given time level #» and must be solved simultaneously.

A.4. GRID SYSTEM AND NOMENCLATURE FOR DISCRETIZATION

The popular "Block Centered" grid system is used for this study. This grid system is
constructed by dividing the length L, into M blocks and then locating grid points in the centers
of these blocks. This process is illustrated in Fig. (A.2).

! 2 3 PR B
——xX
1 f‘“ Bxy = | . et g
0 L
X

Fig. A.2 Block Centered Grid(1-D)

In two dimensions, the length L, and L, are divided into A and N blocks and then grid
points are located in the centers of these blocks. This process is illustrated in Fig. A.3.

In Fig. A3, M =4 and N =5, notice the block size is not necessarily a constant. The
consequence of this irregular grid, and the treatment of variuble coeflicients will be discussed
in later sections.

The nomenclature used for discretization will be described by showing an arbitrary point
(i, /) and the four neighboring points as shown in Fig. A.4.



- 47 -

L4 L L .

0 l“A"z, ﬁ -

Fig. A.3 Block Centered Grid(2-D)

T -————Ayii,j
A . i-1, ® ™
Y {J } J i,] 141,53
—0Yy 3
.__i_. [ )
i,4-1
DI Y

Fig. A.4 Nomenclature for Grid Construction

—y

i,i+s

*yi,j‘!i
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A.5. TREATMENT OF VARIABLE COEFFICIENTS

The transmissivity A in Eq. (A.20) is located at block boundaries, i + 1/2 and i — 1/2
locations after discretization. This will be shown clearly in the next section. However, the
transmissivities are known only at grid points but not at block boundaries. Therefore, some
manipulation must be done to obtain the values Ay and Apyjp.

In this development, the transmissivity is considered in two parts, as shown in the follow-
ing equation:

L [_1__] (A.21)

Therefore, after discretization, Eq. (A.21) will have the form:

i
1 .
M = kiin 5 ] (A.22.a)
M Jin
1
Micin = kiap | == ] (A.22.b)
M i

In this study, the pressure gradients are small and the pressures are expected to be in a
low range. The fluid viscosity and fluid formation volume factors are functions of pressure.
Therefore, if pressure gradients are small, the nonlinearities of | and B are weak, and a simple
arithmetic average may be used to find the values of i and B at block boundaries. Therefore,
the term 1/UB in Eq. (A.22) may be calculated in the following manner:

1 1
[ 1 ] [LLB dir1 [HB ].
+1/2

A.23.
193] 2 ( 2)
e
L = il (A.23.b)
HB |ian 2

In fact, in this study, the fluid viscosity will be kept constant. Therefore, Eq. (A.23) will
yield an adequate approximation, '
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The permeability in Eq. (A.22) will be a step function with respect to spacial variables in
this study, and therefore cannot be averaged by arithmetic means. Rather, the permeability at

block boundaries are calculated by using harmonic mean shown as follows:

Ax; + Axyyy

A.6. DISCRETIZATION

Recall that ¢ = g/psrc and Eq. (A.17):

(el o) 92,
ox |uB ox dy |MB 9y Bsrc ot Psre

(A.24.a)

(A.24.b)

(A.25)

Using the nomenclature demonstrated in Fig. A.3, and carrying out the discretization pro-

CESS:

nt+l n+l1 n+l
k Pis1j — Pij k yt (pij ~ Pi1y
— = = Y-z

HB Xyl j = Xij wB T N = xiy

Xir1124 — Xi-12,

+1/2,4

k n Pijr1 ™ Pij \n k n Pij— Pij-1 |
(__)+1 (___:_/i___‘_x/_)+1_(_ll_§)+l (__x/____i__)-i-l

[Y)) ij-112
+ nB Yijr1 = Yij Yij— Yij-1
Yijrz = Yij-172
T T Pisery n o, _dij

=g APy T ij
Bgrc, At Byrc, At Psrc

(A.26)



-50 -

Break up the transmissivity as shown in Fig. A.23, and collect terms:

f n+l
i) 5 |, [ )
i~1/2,j
KB Jiry (MB Jil

-1
2(x;; — X1 )X — Xic12,)

n+l1 n+l
1 1 1 1
LLHB Jiyy (BB iy N BB iy (BB iy

20x;5 — x X1 — Xiciny) 2(xi1j — X)Xy — Xie12,))
1 1 n+l . 1 1 n+1
+ KB Jijn  (MB iy + KB Jim (BB Jiy
200112 — Yig12)Oij — Yig-1) 20¥ij01 = YipOijrz — Yij-112)
i cr, il
BSTC‘-JAt W

1 I n+1 1 1 n+l
o B oy WB Lyl B i (BB

Pijt N
Wiy = %) Givig = Xicany) Y 2012 = Yijar) Oij— YigD) Y
1 1 n+l
12
+ hB it et b n+l
]
2001 = Yip) Oigrn = Yijan) 7
— ¢ y " )
=y, i (A.27)

Apply the conversion factor associated with permeability and the appropriate units for
each term as shown in the following :

conversion factors associated with k = 7.3243814 x 1075:

At = second p=psia g =lbm/sec.
psrc = Ibm/ft®  Ax= ft Ay = ft
L=cp h = ft k = Darcy

B = RBISTB
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The final discretized equation is shown as follows:

1
=124 | |~ —
MB Jiyy (MB Jiy il

_ 7i-1,
Axi.,'Ax"J

n+l1 . n+l
- x 4 x
BB oy (BB BB iy (MB

+

Ax; A Ax; jAx;

n+l n+l
. 12, HB i LLB J N JH1/2, HB L I-LB y

Ay; Ayi; Ay; Ay

27306.06 ¢, c;,

4
Bgrc, At !

1 1 Tntl . 1 n+l
K ll=—= | +|— Kl ||= | +|=5
H/ZJXHHB Lw‘ [HB ]i.i_ p1 WIIZ’HHB ]AH B Jigl

Pir1j t — Pij-1
sz.,Axff, Ay; Ay j

. n+l
g H 1 ] ' [ 1 ] }
ij+1/2,
N MB Jipr (B il

" Pij+1
Ay; Ay

+

— 27306.06 ¢iJCf.‘,/ - 27306.06 q;j

o (A.28)
Bgyc, At Y psrchAx; Ay,

A.7. BOUNDARY CONDITIONS

In this study, the boundaries of the reservoir are modeled as closed boundaries. There-
fore, all boundaries which are normal to the x-direction will be described by the following:

ky

v

P _w, ] =0 : (A.29)
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and for all boundaries which are normal to the y direction:

ky |op
2 |ep _ =
M [ay YVz ] 0 (A.30)

In this study, Eq. (A.29), and (A.30) are satisfied by setting the transmissivities of the
boundary blocks equal to zero. In the simulator, the transmissivities of the boundary blocks
are set to zero by setting the k;y, and k;_j of the boundary blocks equal to zero. Therefore,
the elements in the coeflicient matrix for the boundary blocks will be zero. '

A.8. INITIAL CONDITION

Since this is a simulation of single-phase, single-component fluid flow, any given initial
pressure distribution can be simulated. The initial pressure distribution will be used as the first
guess in the iteration scheme to obtzin the pressure distribution at the end of the time step.

In this study, a constant initial pressure throughout the reservoir is used.

A9. METHOD OF LINEARIZATION

Equation (A.28) can be written in the form:
Tn+1pn+l = A" (A31)

where T™*! is the coefficient matrix which consists of the transmissivities of the blocks. Equa-
tion (A.31) is nonlinear because the transmissivities are functions of the dependent variable
p”“. Since this study involves single-phase flow, the nonlinearities are weak. Therefore, a

simple successive iteration scheme was used to solve the set of nonlinear equations.

The simple iteration scheme can be expressed by the following equation:
TO P = gr (A32)

where v is the counter for the iteration level. The original pressure distribution is used for the
first guess for the first iteration. The iteration is continued until convergence is obtained. For
this simple, single-phase flow problem, the iteration process converges quite rapidly.

A.10. SOLUTION OF MATRIX EQUATIONS

It can be seen from Egs. (A.28) and (A.31) that the coefficient matrix T is a banded
matrix with five nonzero diagonals. In this study, this system of algebraic equations is solved
by a band-elimination routine based on a band solve algorithm developed by Graska and Poliak
[See Aziz and Settari (1979)]. In this study, a grid of 21 by 21 blocks was used, and this
direct-matrix solution scheme was more efficient than iterative methods, such as LSOR.
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A.11. INTERPRETATION OF WELL-BLOCK PRESSURES

The pressure calculated for a block that contains a well is different from the flowing bot-
tomhole pressure of the well. Usually some kind of well model is included in a simulator to
calculate the flowing bottomhole pressure of a well from the block pressures.

In this study, a well model was not included in the simulator. The flowing bottomhole
pressure was obtained by giving the well block dimensions which could simulate a given
wellbore radius. The interpretaton method proposed by Peaceman (1978) was used to obtain
the well-block dimensions.

Through a series of numerical experiments, Peaceman reached the conclusion that for sin-
gle phase flow, the well-block pressure is essentially equal to the actual flowing pressure at a
radius of 0.2Ax. If we use the equation for steady-state radial flow, it allows calculation of the
flowing bottomhole pressure. In this study, the well-block dimensions are set so that the block
pressure is equal to the flowing bottomhole pressure for a given well bore radius. Combining
the equation proposed by Peaceman and the steady-state radial flow equation, the relationship
between flowing bottomhole pressure and the well-block pressure can be expressed by the fol-
lowing equation:

qi In "w
2ntkh 0.2 Ax

Puf=Po+ (A.33)

where p, is the flowing bottomhole pressure, and p, is the well-block pressure. It can be seen
from Eq. (A.33) that if Ax is set so that 0.2Ax = r,,, then the bottomhole flowing pressure can
be approximated by the unaltered well-block pressure.

The preceding method is valid only for a square well block that is an interior block, i.e.,
none of the well-block boundaries coincide with the reservoir boundaries. Furthermore, the
well is located in the middle of the well block. However, due to symmetry, a lot of reservoir
geometry can be simulated in symmetrical parts to obtain the responses of the reservoir as a
whole by proper modification of the data. The most obvious example is the quarter of a five
spot injection. 1In this study, the two-zone reservoir can be simulated by the same quarter of
the system in order to obtain a detailed pressure map. In such a case, the well block is not an
internal block, and the well is no longer located in the middle of the well block. The system
simulated has the well block at one corner, and one quarter of the well located at a corner of
the well block. The system simulated is illustrated in Fig. A.S.

In such a case, the approximation proposed by Peaceman no longer applies, and proper
modification must be applied. Abou-Kassem and Aziz (1983) proposed the following equation
for calculation of the equivalent well-block radius:

¢y = - (A34)
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well

i

@

reservoir ____/ —

boundary

Fig. A.5 Well-Block Representation (2-D)

where:
cg = well geometric factor
f = fraction of well associated with the well block
A = area of the well block

The well geometric factor can be calculated by the following equation:
TC 1 Tib
ey = (B )21 (exp (= anpymry" (A35)

The definition of the terms in Eq. (A.35) is lengthy, and can be found in Abou-Kassem
and Aziz (1983).

In this study, Eq. (A.35) was not used to calculate the well-block dimensions due to the
fact that there are two unknowns in Eq. (A.35), namely, cg and A. The well-block dimensions
are calculated by using Eq. (A.34), which still contains the two unknown cg and A. However,
according to Abou-Kassem and Aziz, a typical ¢, value for a corner well block with a five-
point discretization scheme is 0.63888. This ¢, value is then used to find the well block
dimensions, and then adjustment to the well block dimensions was performed until the calcu-
lated pressure values for the full well block and the quarter well block differed less than 0.2%.



- 55 -

A.12. MATERIAL BALANCE ERROR CALCULATIONS

The simulator calculates material balance error for every time step in order to check the
quality of the calculated pressures. Original fluid in place is calculated at the onset of each
simulation run. Two material balance error values were calculated at each time step; an incre-
mental material balance error, and a cumulative material balance error.

The incremental material balance error is calculated by comparing the theoretical mass of
fluid produced for that time step to the calculated mass of fluid produced for that time step.
The calculated mass of fluid produced is obtained by subtracting the calculated mass in place
of the current time step from that of the previous time step. The mass in place of each time
step is calculated based on the pressure distribution of the current time step. The cumulative
material balance error is obtained by comparing the theoretical mass in place to the calculated
mass in place. Therefore, the cumulative material balance error will only increase, whereas the
incremental material balance error may increase, decrease, or stay constant. However, if the
simulator is functioning correctly, the incremental material balance error should stay relatively
small and constant.

In theory, this is not the best indication of the quality of the calculated pressures, since a
wrong pressure distribution could give a correct material balance value. However, in a single-
phase flow situation, the material balance error calculation presented here is an adequate indica-
tion of the quality of the calculated pressures.

A.13. USER INSTRUCTIONS AND INPUT FORMAT

The simulator described in the preceding is written in FORTRAN WATFIV for the pur-
pose of maximum portability. However, this version is designed to run under FORTRAN 77.
The only command that is nonstandard WATFIV is the OPEN statement on line 51, and the
WRITE statement on line 914, and 915. These two statements perform the automatic output of
the well-block pressure as explained in the following paragraph. Deletion of these two lines
will return the program to standard FORTRAN WATFIV, and the program can be run with
any machine with a FORTRAN 66 compiler, Deletion of these two lines will also remove the
automatic well-block pressure output capability.

This program will automatically output the calculated block pressure of one chosen block
to a file named PWOUT. The file PWOUT must exist in the same directory where the pro-
gram is located in order for the program to function. This option is designed so that the well-
block pressure can be recorded in a file for immediate plotting as soon as the simulation run is
finished. The I and J coordinates of the chosen block is to be supplied in the input data file.

The current version of this simulator is written for the purpose of this study. Therefore,
it lacks some features that could be found in a general simulator. This program does not have
the capability of a restart mechanism, and must use a grid of 21 by 21 blocks. However, both
of these features can be added to the program without a large effort. The program is currently
set to perform calculations for up to 500 time steps. To increase or decrease this capability,
the dimensions of the variables TIME and IPRINT will need to be changed accordingly.

Since this study involves the simulation of gas as a fluid with slight and constant
compressibility, the material balance calculations in the simulator must be capable of gas
material balance calculations. In this version, both liquid and gas material balance calculations
are included. However, this current version has an active liquid material balance routine and
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the gas material balance routine is deactivated. To switch to the gas material balance routine,
deactivate lines 468,469,812,813,829,835 and activate lines 465,466,815,816,831,837.

To use the program, an input file must be created following the format listed in this sec-
tion. Each line in the given format represents one line in the input file. Commas or spaces
must be used to scparate numbers if more than one number is required on a line. The input
format is self explanatory. However, the convention used in the input format is illustrated as
follows:

No. of the line Data required Special instructions

N / /

(X) XXXXXXXXXXXXXKKXXKK( XXXKXXXXXX )
xx (x)

Variable name used in the program i for integer and r for real number

When a real number is called, the number supplied must contain a decimal point. When
an integer is called, the number supplied must not contain a decimal point.

Line 52 is the [ and J coordinates of the block pressure desired printed, if the omit pres-
sure map option is chosen. Line 53 is the / and J coordinate of the block pressure desired
transfered to the flile PWOUT. The two blocks chosen do not have to be the same block.

INPUT FORMAT FOR LIQUID SIMULATOR

(1) No. of blocks in the x direction (always use 21 [or this version)
1B (i)

(2) No. of blocks in the y direction (always use 21 for Lhis version)
‘ IB (i)

(3) Thickness of the reservoir (L)

H (r)

(4) Uniform block length indicator for the x direction (0 for yes, 1 for no)

IX (i)

(5) Base length lor blocks in the x direction (fL)
BX (r)

—(6) No. of blocks that have a different length in the x direction

IDX (i)
omit
i (7) Tofthe block , length of the block (1)
line (1) NOX (i) BX1 (r)
is=0

IDX times

! 4
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(8)  Unilorm block length indicator for the y direclion (0 Tor yes, 1 for no)
1Y (i)

(8) Base length for blocks in Lthe y direction (ft)
BY (r)

™ (10) No. of blocks that have a different length in the y direclion

IDY (i)
omit
it (11) lof the block, Length of the block (It)
line (8) NOY (i) BY1 (r)
is=0

IDY times

! l

(12)  Uniform k; indicator (0 for yes, 1 for no)
KXI (i)

(13) k. base value (md)
BKX (r)

!—(14) No. of blocks that has different k,

NKX (i)
omit,
if (18) I of the block , J of the block » k2 of the block (md)
1'1?: _(102) I (i) I (i) XK1 (r)

NKX timcs

_ |

(16)  Uniform k indicator (0 for yes, 1 for no)
KYT (i)

(17)  k, base value (md)
BKY (r)

F(IB) No. of blocks that have a different ky

NKY (i)
omit
. if (18) 1of the block , J of the block , k, of the block(md)
fine (19) 1(3) 1 (i) YK (1)

|

NKY times

#
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(20) Uniform ¢ indicator (0 for yes, 1 for no)
IPHI (i)

(21) ¢ base value (fraction)
BPHI (r)

F(EZ) No. of blocks that have a different ¢

NPHI (i)
omit (23) I No. of the block , I No. of the block , ¢ of the block (fraction)
if I(i) J (i PHI
line (20) 0 (r)
is=0 '

NPHI times

|

(24) Uniform initial pressure indicator (0 for yes, 1 for no)
IPOL (i)

-

(25) Initial pressure base value (psia)
BPOI (1)

—(26) No. of blocks that have a different initial pressure

NPOI (i)
or.nlfit (27) 1of the block , J of the block , Initial pressure (psia)
line (24) I(i) J (i) POI1 (r)

is=0 l

NPOI times

! |

(28) Density of luid at STC (lbm./ ft3)
ROOW (r)

(29) Compressibility of fluid at STC (psi~!)
CFL (r)

(30) Formation volume factor of fluid al STC (RB/STB)
BSTD (r)

(31) Reservoir temperature (°TF)
TEMP (r)

(32) No. of PVT entries (maximum 50)
NPVT (i)
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(33) P (psin) . i1 (cp)
PT (1) VT (r)

NPVT times

(84) Uniform time step indicator (0 for yes, 1 for no)
' NTIME (i)

(35) Total No. of time step assigned (maximum 500 for this version)

NTOT (i)
omit . ‘
it r(36) Constant time step size (days)
line (34) TIME1 (r)
is =1

r(37) - No. of groups of different time steps

omit NGT (i)
if .
line (34) (38) Time step size(days) . Duration of this time step(no. of times)
is=0 TIME1 (r) LAST (i)

(39) Standard pressure (psia)
PSTD (r)

(40) Standard temperature (°F)
TSTD (r)

(41) No. of blocks that have injeclion or production

NPOD (i)
r(42) Tof the block , Jof the block , Rate (STB/D, - for inj., + for prod.)
omit (i) I (1) Q1 (r)
if |
line (41) NPOD times
is=0

(43) Maximum no. of iteration allowed
MAXIN (i)

(44) Maximum no. of time steps allowed to be executed
MAXEXE (i)

(45)  Durmmy (always input a 0)
ICHECK (i)
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(46) Convergence criteria (psia)
CONVER (r)

(47) Force iteration indicator (0 for no, 1 for yes)

IFORCE (i)
omit
it (48) No. of iteralion forced to perform
line (47) NFORIT (i)
is=0

(49) No. of time steps Lo be printed (enter 0if all is Lo be printed)

NPRINT (i)
—(50) The corresponding numbers of the time steps to be printed
omit NOPRT (i)
ir
line (498)
is =0 NPRINT times
L

(51) Omit pressure map indicator (0 for not omit, 1 for omit)
ISKIPP (i)

omit
if (52) lof the block to be printed =, J of the block to be printed
line (51) : IBLPR (i) ~JBLPR (i)
is=0
(83) I of the block » J ol the block (to be output to file PWOUT)

IBLPR2 (i) JBLPR2 (i)



-61 -

APPENDIX B

TWO-DIMENSIONAL, AREAL-IMPLICIT, SINGLE PHASE, SINGLE COMPONENT
NUMERICAL SIMULATOR FOR A REAL GAS

This appendix contains a description of the captioned simulator and the associated user
instructions. This appendix contains only a brief description for the same reason stated in
Appendix A. Detailed theoretical development can be found in Ref. by Abou-Kassem and
Aziz (1983), Aziz & Settari (1979), and Peaceman (1978).

B.1. DERIVATION OF GOVERNING EQUATIONS

The derivation of the governing equation for gas flow in a porous medium follows the
same procedure as in the derivation for slightly compressible fluid illustrated in Appendix A.

Start with a material balance for the control vdlume, and substitute Darcy’s law to pro-
duce the general partial differential equation:

V- {%‘- (Vp —yV2) =ﬂ§-t‘?)— +g (B.1)

For gas flow, the assumptions of constant and slight compressibility are usually not valid.
However, gravitational force can be neglected, since the effect of gravity on gas is relatively
small.

An equation of state is used to replace the density term. Recall the equation of state for
areal gas: ‘

- M B
P= nT (B.2)

where :

M = molecular weight for gas

Z =real gas compressibility factor

T = temperature in °R

R = constant of 10.72 for English units
p = pressure in psia

Assuming k is independent of pressure, and substituting the equation of state in to Eq.
(B.1):

-9

v ot

L2 (Vp — YVz)
Lz

Yp | L RT -
Z]+Mq (B.3)



-62 -
If the gravity term is neglected, the equation becomes:
£p g, =2 [M]+RT& (B.4)

Viluz Y21 |z

B.2. FINITE-DIFFERENCE METHOD AND COORDINATE SYSTEM

The finite-difference method and coordinate system used are the same as for the slightly
compressible model.

B.3. TREATMENT OF VARIABLE COEFFICIENT

The averaging technique used to find the quantity kp/pLZ at block boundaries is the same
as described in Section 5 in Appendix A.

The transmissivity is broken into two parts:

k
"u%hn/z = ki1 '&—Iiﬂm (B.5.a)
k
—“%li~1/2 = kli_12 ‘“BZ‘|.'—1/2 (B.5.b)

The permeability in Eq. (B.5) is at the block boundaries, and is found by weighted
harmonic average as shown in Appendix A.

There is no unique way of finding p/pZ at block boundaries. However, since LZ is not a
direct function of distance, it should not be averaged by harmonic mean. An arithmetic aver-
age is used in this study. There are two ways to determine the quantity p/iZ at block boun-
daries. It can be determined by averaging p; + 1 and p; to determine p; + 1/2, then determine
p/pZ at i + 1/2 from p; + 1/2. Another way to determine p/pZ at i + 1/2 is to average p/|.Z at
i and p/Z at i + 1. The difference between the two methods is usually small however, the
quantity p/pZ is usually less non-linear than |L or Z as a function of pressure. Therefore, the
method of averaging p/pUZ at i and i + 1 to obtain p/pZ at i + 1/2 is used in this study.

B.4. DISCRETIZATION

Recall Eq. (B.4) and expand the Laplace operator in a Cartesian coordinate system:

o |k p|, 2 |&p|_2 |ep]|,RT: |
o [uz 8x]+8y le y | "z |Tm? (B-6)
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Using the same nomenclature shown in Fig. A.4 of Appendix A, and carry out the
discretization process:

_ n+1 n+1
Pt et | Pirly T Piy Lyt et (P P
uz I1+1/2,1 +1/2,5 1—1/2,/ 1—1/2,

i+l Xij Xij = Xi-1,

Xis1/24 — xi—l/l,j

n+l
L [Piﬁl"pi.i] _g_|n+1 i [PIJ‘Pi.i—l}

ij+1/2 ,/+1/2 1j—1/2 1,}—1/2
pz i~ Vi i~ Yij-1

Yijrvia = Yig112

+

oi'pl  Okpl  RT -
I +—q (B.7)
Ziiar Ziae M
j
Break up the transmissivity as shown in Section B.3, and collect terms:
n+l n+l
Ko, [ lic1y + 'P—Ii./] Ktk [‘L‘iﬁl + Lli,/}
w2 wz ntl wz nz n+l
Pi-1 ,/ Pij+1
2 [xi,j - xi—l,j] [xi+1/2,j - xi—l/z,j] 2 {)’i,}n - )’i,j] [}’mllz - )’i,i—l/ZJ
ntl n+l1
kfl/z,,{ iy + il + -l
LLZ J ’J‘Z J J HZ J H-Z J
+
20— xi0 Xy — Xicwzy) 21 — XXz — Xicn)
n+l n+l
Kt [—ugz—li,/—1 + ‘Léli,j] kit [‘le?ﬁl + “L:Lz'li,j]
+ +
200012 = Yij1dOij — Yig-1) 2000 — Yi)Oijriz — Yij-112)
q)n+1 jl
1
P
Zae |
n+l n+l1
k7+1/2,,[ i1y + "E—Ii,j} Kt {“E‘U L'i,}—l]
Wz pz o nz V4 .
t
20415 — X Y (Xir12j = Xie112) / 20ipm1n = Vi) Oij — Yij-1)
RTa, . :
- O, dij (B.8)

ZEAt Mian— Xiap Qe — Yig-uh
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U _ Gy

AxAy h AV

Notice ‘}‘J =

Apply the conversion factor associated with permeability and the appropriate units for
each term:

Conversion factor associated with k& = 7.3243814 x 107

At = sec p = psia q = lbm/sec
3
v pSTC=1bm/ft Ax = Tt k=Darcy
_ [L=cp Ay=ft M = (28.97)(v,)
B = RB/STB h=ft R =10.73

The final discretized equation is:

N+l n+1
il [—LI"'F Lo ] 2l .[_P_!._ .+_L|..}
i j—1/2 i i1 i—1/2,j i-1j if
Wz Nz o nz HZ "
Pij-1 : ; Pl—lJ

AYi iy, AxiAXij

n+l n+l
K [‘u%li—lj + ‘uﬂz‘h,j] K [’fz—liﬂ.j + "u%h,j] ;
+

Ax; Ax; Ax; iAxf;

n+l n+1
) Kt [“HEZ‘L',‘,'—i + ‘éh.i] X k7f+11/2 [{Zli,jﬂ + _L%Ii‘}}
Ay; Ay Ay; Ay

n+l1
) prﬁ-l
3.6621907 x 1022 Ar |7

n+l il
1
N o . -
Pivij 2]
AX; Ay Ay
OiPhy 10115.589 T q;

_ + B.9
3.6621907 x 102" At (Yg) hAx; Ay; B2

The final simulation Eq. (B.9) is solved by the same method described in
Appendix A.
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B.5 USER INSTRUCTIONS AND INPUT FORMAT
The user instructions are similar to the ones mentioned in Appendix A.13 (page 55).

INPUT FORMAT FOR GAS SIMULATOR

(1) No. of blocks in Lthe x direclion (always use 21 for this version)

lh(o

(2) No. of blocks inthe y direction (always use 21 for this version)

IB (i)

(3) Thickness of the reservair (l'L)
H (r) .

(4) Uniformi block length indicator for the x direction (O Tor yes, 1 for no)

IX (i)

(&) Uu-:n lvnglh [ol hlm ks ln lh(‘ X dn('( tion (N)

BX (r)
—(G) N() of bIO( ks thal have different length in the x direction
X (1)
o';m (7) Tofthe block , léngth of Lthe bluck (ft)
line (4) NOX (i) BX1 (r)
js=0
IDX times
L
(8) Uniform blo( k length mdlcator for the Y dlr('( tion (0 for yes, 1 for no)
Iy (x)

(9) Uusn longth for blocks in the y direction {fL)
 BY (r)

~(10) No. of blocks that have different length in the y direction

DY (i)
orir;lt (11) Iof the block, Length of the block (ft)
line (8) NOY (i) BY1 (r)
is=0 :

IDY times

L

(12) Uniform k. indicntor (0 for yes, 1 for no)
KXL (i)




(13) Kk, base value (ind)
BKX (r)

~(14) No. of blocks that have different kg

NKX (i)
omit
¥ (15) I of the block , J of the block , k; of the block (md)
line (12) L) ‘ J (i) XK1 (r)
is=0

NKX times

(16) Uniform &, indicator (0 for yes, 1 for no)
KYI (i)

(17) Kk base value (md)
BKY (r)

—(18) No, of blocks that have different Icy

NKY (i)
omit
it (19) I ofthe block , J of the block , Ix'.u of the block(md)
line (16) I (i) J (i) YK1 (r)
is =0

NKY times

(20)  Uniform ¢ indicator (0 for yes,1 for no)
IPHI (1)

(1) ¢ base value (fraction)
BPIIL ()

—(22) No. of blocks that have different ¢
NPHI (i)

omit (23) 1 No. of the block , J No. of the block , ¢ of the block (fraction)

it I (i) O I(3) PHI (r)
line (20)

is =0

NPIII times
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(24) Uniform initial pressure indicator (0 for yes, 1 [or no)
IPOL (i)

(25) Initial pressure base value (psia)

BPOI (r)
—(26) No. of blocks that have a different initial pressure
NPOL1 (i)
omit
if
line (24) (27) Tofthe block , Jof the block , Initial pressure (psin)
is=0 I (i) J (i) POI1 (r)
NPOI times
S
(28) S.G.of gas
5G (r)

(29) Reservoir temperature (° )
TEMP (r)

(30) No. of PVT entries (inaximum 50)

NPVT (i)
(31) P (psia) , L {ep) , 7
PT (r) VI (r) 271 (r)

NPVT times

(32) Uniform time step indicator (0 for yes, 1 for no)
NTIME (i)

(33) Tolal No. of time step assigned (maximum 500 for this version)

NTOT (i)

omit
i —(34) Constant time step size (days)
line (32) L TIME1 (r)
is =1
—(35) No. of groups of different time steps
omit v (s
NGT (i
n o)
line (32)
is =0 (36) Time step size(days) , Duration of this time step(no. of tirmes)
TIME1 (r) LAST (i)
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(37) Standard pressure (psia)
PSTD (r)

(38) Standard temperature (°F)
TSTD (r)

(39) No. of blocks that have injection or production

NPOD (i)
—(40) 1 of the block , I of the block , Rate (SCF/D, - for inj., + for prod.)
°{’;“ L (i) J (i) Q1 (r)
i
line (30)
in=0 NPOD times
L
(41) Maximum no. of iteralion allowed
MAXIN (i)

(42) Maximum no. of time sleps allowed Lo be execuled

MAXEXE (i)

(43) Dummy (always input a 0)
ICHECK (i)

(44) Convergence criteria (psia)
CONVER (r)

(45) Force ilteratlion indicator (0 for no, 1 for yes)

1IFORCE (i)

omit
if [(46) No. of iteration forced Lo perform

line (4%) ———Nl"Ulli;lT_—(“i)

is=0 ‘

(47) No. of time sleps to be printed (enter 0 if all is to be printed)
NPRINT (i)

—(48) Numbers of the time steps to be printed
NOPRT (i)

omit
if
line (47) NPRINT times

ia=10




- 69-

(49)  Omil pressure mep indicator (0 for not omit, 1 for omit)
ISKIPP (i)

omit
if 50) I of the block to be printed , 4 of the block to be printed
line (49) [ IBLPR (i) JBLPR (i)
iz =0
(61) I of the block , J of the block (to be output to file PWOUT)

IBLPR2 (i) JBLPR2 (i)
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Al’l’ENl)lX C
VALIDATION OF THE SIMULATOR
FOR SLIGHTLY COMPRESSIBLE FLUIDS

It is mandatory to check the simulator with a test case for which analytical results are
available in order to determine if the numerical model is functioning correctly. The case of a
single well located in the center of a closed square reservoir was chosen. The analytical solu-
tion for this case is well known and can be found in the reference by Earlougher et al. (1968).

Figure C.1 shows the physical system to be simulated.

YOOIV

-

~

60

c

NIOUONNONONNNNN NN
~~ \\\\\\1‘ NN

ST

600'

Fig. C.1 Well in the Center of a Closed Square Reservoir

\

Table C.1 shows the results of an analytical solution to this problem. Table C.1 is the
dimensionless pressure solution for a closed outer boundary square reservoir with VA/r,, equal
to 2000, and one well located in the center of the square. The quantity A is the arca of the
reservoir, and r,, is the wellbore radius. The dimensionless pressure pp and the dimensionless
time #5, have the following definitions:

ki (pi = piy)

C.1
141.2q8Bp D

_ 0.0002637kt
bpeA

DA (C.2)
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where :
k = permeability (md)
h = formation thickness (ft)
pi = initial pressure (psi)
pws = well pressure (psi)
q = flow rate (STB/D)
B = formation volume factor (RV/STV)

.,_
=
Il

viscosity (cp)

t = time (hrs)
¢ = porosity (fraction)
¢, = total system compressibility (1/psi)

TABLE C.1

DIMENSIONLESS PRESSURE AT VARIOUS POINTS {N A CLOSED SQUARE WiTH A WELL AT THE CENTER,

NO WELLBORE STORAGE, NO SKIN, VAir, = 2,000
Alier Earlougher, Ramey, Milier, and Mueller, (|‘16 8)

Po

g T T LT L LTI T PP P PR
sDwb. 000 ADss, 050 ITTI R EY ] 900,300 a0ap, 400 ¥0e0,%00 50u0, 130 Enet. 139
Toa YDeD, 000 Vpe0,000 Yneo,J%0 Y0e0,000 YDe0,?3¢ Ynen,s00 10=0,000 Tpec,. 730
AL L LA LYt ] srsesney emmevevy Sespseva ewmnavewe LI XYY RY ] Pespavew wessavse ®eesccse
$.0019 331 00071 0,n000 e,0000 91,0000 8,0000 6,0000 0,0000
0,001y 8,154} ¢.0100 ,00008 0.0000 9,0000 0.,0000 $,0000 €.0000
$.0079 [ A ] s, 018! [ FLLRR] ¢,0000 0,0000 8.,0008 0,0000 86,0000
1,002y 3,000! e, 0038 240038 e.0001 0,0000 n.0000 #,0000 e,0000
. 00)0 3.1000 [N Y33) [ XX I114 0,000¢ e,0001 a,nnng s, 0008 a,onnn
s.0000 S, re0t 0,1 0.0181 e.00l4 0,0000 2.0000 e,0000 0,0000
$.00%0 3.1%4) o, 0400 0,00%% e,00%8 o,norl 0.800] 06,0001 n,00048
", 0080 .00 0,10%) [T1124) 0,0109 [N YXYS e,000¢ e,0007 0,000l
0008 3,320 8,009 R 1111 8,0178 NI 0,001 0,0004 ©,000)
n.ore 3,971) [ T%114! [ ZIRLN! 0.038% 0,01)% 0,002 o,0n1p e,on0l
1.000 3.4%012 a,121) [ RIX] 0,000 o.nIve €,00)0 €, 000 9,00112
3,700 e.3307 [EREY'L] [ 1Y} 0,014) 20,0044 €,0004 v.0011

3,90%% 0,304) 0 2074 0,101) 0,01 0,078 0,83 e, 0000

s, 000 [ [FR232] c.1000 0,102 $,00%9 6,011 0,068

s.1040 0. r1et n)ry 02100 S.140¢ 0.07)9 c.0yer 0.00l8

s, nn 0. 1Y [FR11}} 0,141) 9,700 0.1012 [T 0.071¢

v 6,013 0,0 ea8220 03010 $,2900 0.1080 9,100y 0.12¢)

04,9000 1,027 [RARER] Q.0000 0,.1810) LERRAN] [ PR ARA] LS RY)

s,00%0 [ RL) [ XX XLE] 0.3102 0,0013 0.1900 a1y 0,200

s, 4000 LI b)Y 0,908 0.%112 [ X231 0018 .30

e, 1030 bolt2d (YKL 0.ab0] 0,918 [ FYERY] 0,000} [P XAN]

LRI Foda)s 1,021 0,r))4 6,004 0.alsg 0,000 0, 1)

a,004) batdine pebo0? L ANE} 0,703 e, 90047 99N 0,004)

r.mnii 1,100 [FEERL) Folioe 1,018 0,03%8 f,000) ®,0108

T.3000 21,8300 1003 1,00}y 10000 1.410¢ Lol lelrod

[ L I3N! 1,008 1.00)0 1,7000 1.694) fe000) f.ar1a IFXE L1

8,11%) 1,070 141350 P,0420 1,000y [KRALS] 1,100 1731

0,803 3,304 T1.0000 1.400) T.9080 PR 3AY) 1,010 IR ERY]

v,8)10 [IXREY (YRS} 1.3400 IR 22]] Js03e0 3,000 J.o0rs

0,8000 10,080} 1,50)8 | IR ALL | ITRE) 3.08)) I, 0089 Y4
[Ra 2 1] 10,4004 3. AN a,37%2 4,088 s.)114 1,101} 7080
#0000 11,0188 S, 8201 3.0072 9,200 (R RRA) a0 a, 11y a. 0007
s.%000 11,983 4,000 [YYEAL) 3.1 1,re08 .3882 Y,3610 9.3100
L.ho00 11,303 r.ersd s.7320 64,0007 t000) 6,190 s.1v0p e, 131
1.000n Ve, 0t 13,1400 13.0)10 11.700) 12,4919 17,8100 17,40) 17,030y
.,0000 T,.e2)0 ¢3.v18) 13.40)) 13,3000 ,01802 23.0040 1,00 23.000¢
s.0000 LYPS E3Y $1.0390 $8.1)00 0,840y 30,0909 so.yrar .11y 0,130
18,000 ,1178 $),823%) 9))02) 4y, noet ety ar.rang 87,7)88 s7.8900
Cy 30.0018 1637 2 108 33040108 8303 s 10% 1370 109 1068 0 100 0oy st ey oot
v A {122 ~Lhos “anr 1030 LA -1313 -1400 1804 <1133

Waler was used as the flowing fluid in the test case for the purpose of simplicity.
An arbitrary r,, value of 0.3 ft was chosen. Therefore, from the equation VA/r,, = 2000,
A is set to be 360,000 ft%,

Figure C.2 and Table C.2 show the physical dimensions of the system to be simu-
lated and the fluid data.
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Fig. C.2 Physical Dimensions of Well in the Center
~of a Closed Square Reservoir

TABLE C.2 FLUID DATA

Pstp = 62.4 ll)m/ﬂ3
Bgrp =1 RB/STB
¢ =3.0 x 107%1/psi
h = 100 ft
b =02
k =25 md
Pi = 1000 psia

Trascrvoir = 150°F

Two sets of grid dimensions were used to test the validity of the well-block pressure
interpretation method described in section A.11 of Appendix A. Both runs utilized a grid of
21 X 21 blocks. The first run was a full-scale simulation with the well block dimension chosen
so that 0.2AX = r,,. The second run simulated one quarter of the reservoir with the flow rate
reduced to one quarter of the first run, The well-block dimension of the second run was calcu-
lated with Eq. (A.34) as described in Appendix A.

Figure C.3 presents the results from the first run, and Fig. C.4 presents the results from
the second run. They agree favorably with the analytical solution. The results agree favorably
with a maximum difference of less than 0.25% between the two runs, The quarter-reservoir run
gave a closer answer to the analytical solution than the full-reservoir run. This is expected

since the second run has a higher resolution in grid spacing than the first. Both sets of results
indicate that the simulator functioned correctly.
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Fig. C.3 Dimensionless Pressure Solution for a Well in a Closed,
Square Reservoir (Full-Scale Reservoir Simulation)
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Fig. C.4 Dimensionless Pressure Solution for a Well in a Closed
g d )
Square Reservoir (One-Quarter Reservoir Simulation)
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APPENDIX D

FLUID AND ROCK PROPERTIES
USED FOR SIMULATION RUNS

Reservoir Fluid = air

Reservoir Temperature = 500°F
Reservoir Initial Pressure = 134.5 psia
Reservoir Thickness =30 ft

Injection Rate = 650000 STB/D
Viscosity of air = 0.0275 ¢p
Compressibility of air = 0.003333 1/psi
Porosity in Zone 1 = 0.35

Porosity in Zone 2 = 0.021

Permeability in Zone 1 = 8000 md
Permeability in Zone 2 = 40 md
Diffusivity Ratio =1n=12.0
Mobility Ratio = A = 200.0



PV (pesig}

PY (psiq)

=76 -

APPENDIX B

SEMILOG AND CARTESIAN PLOTS OF PRESSURE RESPONSES
SEMILOG PLOT OF PRESSURE RESPONSE FOR W/L = 1.0
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SEMILOG PLOT OF PRESSURE RESPONSE FOR W/L
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SEMILOG PLOT OF PRESSURE RESPONSE FOR W/L = 0.2
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SEMILOG PLOT OF PRESSURE RESPONSE FOR W/L = 0D.078539
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83 -

BDOD

700

500 |-

400 +

NS |

TIME (doys)

SEMILOG PLOT OF PRESSURE RESPONSE FOR W/L = 0.001570

10

700

400 -

w""“

o

s
»
}JY

0.0001

TIME (days)

10



PV (psig)

PV (pesig)

160

155

%
—
150 *'/‘
. ****#**
ol
us!r
¥
140 L 1 1 ! 1 1 ) 1 1
D D.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.08 O.1
TIME (daye)
60 CARTESIAN PLOT OF PRESSURE RESPONSE FOR W/L .= 0.9
185
pnt ¥
ek
150 | L
s
****
o *
O
145 !'
¥
140 1 ] 1 ] 1 1 1 1 1
D 0.01 0.02 0.03 0.04 0.05 0.086 0.07 0.08 0.08 0.1

- 84 ~

CARTESIAN PLOT OF PRESSURE RESPONSE FOR W/L. = 1.0
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CARTESIAN PLOT OF PRESSURE RESPONSE FOR W/L = 0.8
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0.01 0.02 0.03 0.04 0.05 0.06 0.07 D.08 0.0B 0

TIHE (dayse)

.



PY (peig)

PY (pmig)
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CARTESIAN PLOT OF PRESSURE RESPONSE FOR W/L = 0.6

165
160 -
155 |-
m**~
» T
m**‘**
%
"ﬁ'*‘*,*****
150 |- o
«f
ot

ot

o
l‘S{ 1 i L 1 1 i 1 ] 1

o] 0.01 0.02 0,03 0,04 0.05 0.06 0.07 0.08 0.08 0.1
TIME (daye)
- CARTESIAN PLOT OF PRESSURE RESPONSE FOR W/LL = 0.5
165 ,
160 }- o
P
o
M"ﬂ**
¥
155 - o
m***
v****
ot
¥
ot
"
t“‘
150 |- *‘1‘
,w*‘
Low¥

ot

- *¢

%
145[ 1 1 A 1 1 1 1 1 i

0 0.0! 0.02 0.03, D.04 0.05 0.06 0.07 0.08 0.09 0.1

TIHE (days)



PV (pwig)

P¥ (peial
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1s CARTESIAN PLOT OF PRESSURE. RESPONSE FOR W/L = 0.4
170 |
{65
"
W"‘*w
180 | '
&*****
w*****
155 | LA
: ot
o
o
o
150 L - “‘f‘ :
*‘;i*
LA
145 f 1 1 i 1 i i i 1 1
0 0.01 0.02 0.03 D.04 0.05 D.06 0.07 0.08 0.08 0.1
TIME ldoya)
s CARTESIAN PLOT OF PRESSURE RESPONSE FOR W/L = 0.3
‘ .
*u*"“
X
170 o'
n‘*“
****‘
o
]
165 ,m*“*
N
.‘
t"*
ot
o
160 W
o
o
o
v*‘*
n '
]34 ‘¢*
*!
o
o
N
o
o
5D ‘.n
[ ]
-
’45 15 I3 1 3 ] i i i 1
0.01 0.02 0.03 0.04 0.05 0.06 0.07 "D.08B 0.08 0.1



PV (peidq)

PV (pslo)
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CARTESIAN PLOT OF PRESSURE RESPONSE FOR W/L = 0.2

100 -

185 | . “.‘

L : "
175 ot
170 |-

165 |- ot

155 |- ot

150 F

145:’ 1 1 1 It 1 I i 1 1

0 0.01 D.02 0.03 0.04 0.05 0.06 0.07 0.08 0.008
TIHE (doys)

CARTESIAN PLOT OF PRESSURE RESPONSE FOR W/L = 0.1

240

230 +

210 -

100 |-

180 |
170 |- N
160 |- ot

150 - *

140 1 L 1 1 L 1 A ] 1
0 0.01 0.02 0.03 0,04 0.05 0.086 0.07 0.08 0.08

TIHE (doys)



PV (psio)

,’50(

PV (psig)

240

2lo

100 |
180 |-
170 |

160 +

CARTESIAN PLOT OF PRESSURE RESPONSE FOR W/L = 0.078539

] 1 1 1 1 1 1 i 1

0.01 D.02 0.03 0.04 . 0.05 0.08 . 0.07 0.08 0.09
TIHME (doye)

CARTESIAN PLOT OF PRESSURE RESPONSE FOR W/L = 0.039269

300

280 |-

260 -

220 -

180 |-

1 iy vl 1 | 1.. t 1. _

D.01 - .B.02 0.03 0.04 0.05 0.06 0.07 0.08 D.00. -
TIHE (doys) )




PY (peio)
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CARTESIAN PLOT OF PRESSURE RESPONSE FOR W/L = 0.015707

840

260 |-

240

180

140

1

I}

o
!

0.05

TIME (doye)

0.06

CARTESIAN PLOT OF PRESSURE RESPONSE FOR W/L = 0.007853

400

350

PY (psia)

150

1

0.05
TIHE (doyse)




PV (peial

. 450 |-

PY - (peig)

450

400

300

£50

i~ -

0.003826

CARTESIAN PLOT OF PRESSURE RESPONSE FOR W/L =

150

0.05
TIHE (daye)

CARTESIAN PLOT OF PRESSURE RESPONSE FOR W/L = 0.001570

E50

EOD }-

400

350

300

250

150

Iy 1 L 1 L 1 L . 1 i}

0.04 0.0S .. 0.07 0.08 D.09
-TIHE tdoys)

D, 1
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APPENDIX F
PROGRAMS SOURCE CODES

LIQUID - SIMULATOR

Ct***tﬂ'**t*kﬂ**tﬂkﬂ*ﬁ*ﬁ*ﬁ**tn***i****ﬁ**N*ﬁ***i**tn*wﬁ*w*ﬂ****tﬁti**ktittﬁ

Two Dimensional Single Phase Single Component Numerical Simulator
for Ltquid with Sl1ight and Constant Compressibility

This simulator Is written {n standard Fortran WATFIV for the purpose
of maximum portabtlity. However, this version 1is desfigned to run under
UNIX{BSD 4.2)-FORTRAN 77. The only command that 1s non standard WATFIV
fs the OPEN statement on 1ine 5! and the WRITE statement on 1Tine 914 & 915. .
These two statements perform the automatic output of one well-block
pressure as explained tn the following paragraph. Deletion of these
two lines will return the program to standard FORTRAN WATFIV and
the program can be run under any machine with FORTRAN 66 compiler.
Deletfon of these two Tines will also remove the automatic weli-block
pressure output capability.

This simulator will automatically output the calculated block
pressure of one chosen block to the file PWOUT. The file PWOUT
must exist before the simulator can be run. The I and J co-ordinate
of the one chosen block is to be supplfed in the finput data file.

This version will perform calculations up to 580 time steps. To
tncrease or decrease this capab!lity, change the dimensions of the
vartables TIME and IPRINT on line 44 accordingly.

This versfon has a materfal balance calculation scheme that Is
destgned for lfiquid with slight and constant compressibility. If
gas fs to be the flowing flufd and the gas Is to be simulated as
a flufd with constant compressibility. The material balance scheme
must be changed accordingly, Included tn this version is the mod{fied
matertfal balance calculatlion for gas. However, the matertal balance
for 1tgquid s currently active In this version. To switch to the
gas materfal balance calculation, deactivate 1lines 468,469,812,813
B239,835 and activate lines 465,466,815,816,831,837.

For more detalled explaination and the thput format please

see the user fInstructions In Appendix A in the master report by
E.Y. Teng(Sept. 1984), ‘

*ﬁtw***ﬂ*k**kw***t********k**ﬁ****ﬁ*****ﬁ*ﬁ****k****k****w*******t********ﬁ

OaOOOOOOO00NOn00000000000O0OOO0O00O0OONO0N00

IMPLICIT REAL*B{A-H,0-2Z)

DIMENSION DX(21),DY(ZI).PERMX(ZI,ZI),PERMY(ZI,21),PHI(21.21).
+PO(21,21),PT(SB).VT(SH),TIME(SBH).O(ZI,21),IPRINT(SEE)
+.PG(21.21).A(21,21).B(Zl,21),C(21,21).D(Zl,Zl).E(Zl.Zl)
+,FL21,21),AA(441),BB(441),PGO(2]1,21)
+.XX(441),CC(441).DD(441),EE(441),FF(441),AAA(IBSGI)

INTEGER KDR({441) .
C***ﬂ*ﬂ***k******k*********i**i**** Open the f‘]e PWOUT to accept P 'nput
C

OPEN(UNIT=2,FILE='PWOUT',ACCESS='SEOUENTIAL’,STATUS=‘OLD')

o

C*ﬁ**i*t****tk*************l***************ﬁ***********ﬁ**ﬁ*****ti*

o]

C Read in data from data file, detall explatntlion of each term can be
C found in the user fnstructions
C

READ(5,*)IB
READ(5,*)JB
READ(5,*)H

READ(5,*)1IX
READ(5,*)BX
DO 1 I1=1,21
DX{11)=0.0



——

28
22

CONTINUE
DO 2 12-1,18
DX(12)=BX

CONTINUE

IF(IX.EQ. 0160 TO 5
READ(5,*)1D
DO 3 13=1,
READ(S,
DX (HOX )
CONTINUE
CONTINUE

DO 6 I6=1,2]

*)

=1
*)NOX,BX1
=BX1

CONTI
CONTTI!
DO 11
DO 12
PERMX(
PERMY(

=
— et et bt (e e D -

CONTINU
READ(5,*)KX1
READ(5,*)BKX
BKX=BKX/100F.8
DO 13

CONTINUE
IF{KXI.EQ.H)GO TO 17
READ({5,*)NKX

DO 15 T15=1,NKX
READIS,*)1,J,XKl
XK1=XK1/1000.0
PERMX(T1,d)=XKl1
CONTINUE

CONTINUE
READ(5,*)KYI

READ(S

CONTINUE
IF(KYI.EQ.P)GD TO 22
READ(S5,*)NKY

DO 28 128=1,NKY
READ(5,*)1,J,YKl
YK1=YK1/1000.0
PERMY(1,J)=YKI
CONTINUE

CONTINUE
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PHI(12
CONTINUE

CONTINUE

DO 26 126=1,18B

DO 27 127=1,J8
PHI(I26,127)=BPHI
CONTINUE

CONTINUE
IF{IPHI.EQ.9)GO TO 39
READ{5,*)NPHI

.DO 28 128=1,NPHI
READ{S,*)1,J,PHII
PHI{I . J)=PHII
CONTINUE

CONTINUE

READ(5,
READ(S , *
DO 31 13
I3
.
CONTINUE
CONTINUE

DO 33 133=1,18

DO 34 134=1,J8B
PO(I133,134)=BP0O]I
CONTINUE

CONTINUE

IF(IPOI.EQ.9)GO TO 38
READ(S5,*)NPO]

DO 35 135=1,NPOI
READ{(5,*)],J,P0I11
POCI,J)=P0OI]

CONTINUE

CONTINUE .
READ(5,*)R0OOW
READ{5,*)CFL
READ{5,*)BSTD
READ(5,*)TEMP
TEMP=TEMP+463.0
READ(5,*)NPVT

DO 41 I41=1,NPVT

READ(S ,*)PT(I41}),VT{141)

CONTINUE
READ(5,*)NTIME
READ(S5,*)NTOT

DO 42 142=1,NTOT
TIME(T42)=0.9
CONTINUE

IFUNTIME.EQ.1)GO TO 58
READ{S ,*)TIME]
TIMELI=TIME1*B864900.9

DO 43 143=1,NTOT
TIME(I43)=TIME]
CONTINUE

CONTINUE
IFINTIME.EQ.8)GO TO 60
READ(5,*)NGT

1C=1

DO 51 I51=1,NGT
READ(S,*)TIME1,LAST
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1893 TIMEL1=TIME1*B6400.0
194 DO 52 152=1,LAST
195 TIMECIC)=TIME]

196 IC=1C+]1

197 52 CONTINUE

198 51 CONTINUE

199 68 CONTINUE

200 READ(5,*)PSTD

201 READ(5,*)TSTD

262  TSTD=TSTD+468.8

203 ~ READ(5,*)NPOD

204 DO 53 [53=1,21

205 PO 54 154=1,21

206 Q(153,154)=0.0

207 54 CONTINUE

208 53 CONTINUE

209 IFINPOD.EQ.8)GO TO 61
210 DEN=ROOW }

211 DO 55 I55=1,NPOD

212 READ(5,*)1,J,0Q1

213 Ol=(Q1/BG6A00.8)*DEN*5.615
214 at1,d)=q01 »

215 55 CONTINUE

216 61 CONTINUE

217 READ(S,* )MAXIN

218 READ (5, * )MAXEXE

219 READ(S,*)ICHECK

220 READ(5,*)CONVER

221 READ(5,*)IFORCE

222 IF(IFORCE.EQ.Q)GO TO 509
223 READ(5,*)NFORIT ‘
224 508 CONTINUE

225 DO 62 162=1,NTOT

226 IPRINT(I62)=8

227 62 CONTINUE

228 READ(5,*)NPRINT

229 IF(NPRINT.EQ.Q)GQ TO 74
230 DO 63 I163=1,NPRINT

231 READ(5,*)NOPRT

232 IPRINT(NOPRT)=1

233 63 CONTINUE

234 GO TO 75

235 78 CONTINUE

236 DO 71 171=1,MAXEXE

237 IPRINT(171)=]

238 71 CONTINUE

239 75 CONTINUE

240 READ(5,*)ISKIPP

241 IF(ISKIPP.EQ.B)GO TO 518
242 READ(5,*)IBLPR,JBLPR
243 518 CONTINUE ,

244 READ(5,*)IBLPR2,JBLPRZ
245 C

246 Ct*ﬁ**ﬁ************i****************ﬁ*ili*i*t**ﬂ************ﬁ***tﬁiﬂti*tilnﬁ

247 C

248 C The following part of the program perform the echo check of all

249 C read in data by writing them to the standard output

250 C

25] Cﬁ*ii**t******************k*ﬁ*iﬁﬁ**ﬁii*****ﬂ*******Iﬁ****ﬁ*****ﬁ***ﬁﬁ'lﬁi**'
252 C

253 WRITE(6,99)

254 99 FORMATI(1IX,® ')

255 WRITE(6,108)

256 lgg FORMAT(//' lx' '***********i*ﬁ*******i***************f**' .



257
258
259
268
261
262
263

265
266
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+-w*w*nw*wa**w**ﬁ*w*wwwanw***ﬁnw**w***t**ww*n**ww*w*tﬁﬁ****n*n'
+‘ww**w*w**nw*w*kw***n') '
WRITE(G,1081)

191 FORMAT (11X, "** [ 11BX, '*')
WRITE(6,182)

192 FORMAT(1X, *" 3X, ' TWO DIMENSIONAL SINGLE PHASE AREAL' [ 1X,
+'HORIZONTAL LIQUID SIMULATOR (CONSTANT & SLIGHT Ccf)',5X,
+'ELT.T,BX,"MAY  B4' ,Bx,'%')

WRITE(6,183)

183 FORMAT(IX, *' 118X, '*")

WRITE(6,104) .

184 FORMAT 1X, '**************w***w********w********m*tk***w*****n"
+‘***k*lk***tn**k****ﬁk****k*******i(********'****k*t***********ﬁ' ,
+‘**ﬁﬁ!*****‘) ’

WRITE(G,105)
185 FORMAT(//, 50X, ' = o cmmmmmmmeee ')
WRITE(6,106) 4

1086 FORMATI53X, " INPUT DATA®)
WRITE(G,187)

187 FORMAT(BOX, '=—mmmmm e ')

1JB=1B*J8B
WRITE(6,189)1J8B ]

189 FORMAT(///,18X,'TOTAL NO. OF BLOCKS ASSIGNED = 'WI13)
WRITE(6,110)18B

118 FORMAT(18X,'NO. OF BLOCKS IN X DIRECTION = ',13)

WRITE(BE,111)08B
111 FORMAT(1@&X,'NO. OF BLOCKS IN Y DIRECTION = ',13)
WRITE(E,112)H
112 FORMAT(//,18X, 'RESERVOIR THICKNESS = YWF9LALIX,UFTY )
WRITE(GE,113)TEMP
113 FORMAT(18X, 'RESERVOIR TEMPERATURE = 'WF9.4,1X,"(R)")
WRITE(B,114)RO0W
114 FORMAT(//,10X,'FLUID DENSITY (LBS/FT**3) = * F7.4)
WRITE(6,5081)CFL

581 FORMAT(18KX,"FLUID COMPRESSIBILITY = '+wE15.8,1X,'(1/psgta}’)
WRITE{(6,115)PSTD - '

115 FORMAT (10X, 'STANDARD PRESSURE = 'WvF9.4,1X,"(PSIA) ")
WRITE(E,116)TSTD . :

116 FORMAT( 18X, STANDARD TEMPERATURE = "WFOLALIX, T (RY )
WRITE(G6,117)

117 FORMAT(//,106X, BLOCK ORDERING CONVENTION : ')
WRITE(G

118 FORMAT!
WRITE(G

119 FORMAT{ UL, DY 01,2y (1,3 L L L )

WRITE (6

128 FORMAT( X {(2,1) t2,2) (2,3 . . . )
WRITE(G

121 FORMATI
WRITE(G

122 FORMAT(
WRITE(G

123 FORMAT(
WRITE(G

124 FORMAT(

DO 125
WRITE(SG

126 FORMAT(

125 CONTINUE
WRITE(E,127)

127 FORMAT(//,18

)

(3,1) 13,2) (3,3) . . . .")

X,'BLOCK LENGTH & ")

X,'BLOCK NO. ', 16X, 'DX(FT)"',25X, ' DYL{FT) ")
)

—
o2l
x

1

|

i

]

1
~N
[44]
>

1

!

i

t

i
~

8
5
9
g
g
1
2
1
3
3]
4
5
6
3

WDX(1125),DY(1125)
18X, F208.13,10X,F20.13)

'POROSITY MAP (FRACTION) :°*)
DO 128 L1=1
WRITE(6,129

+PHI(LL,B),PH



321
322
323
324
325
326
327
3728
329
338
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
359
351
352
353
354

356
357
358
359
368
361
362
363
364
365

367
368
368

371
372
373
374
375

377
378
379

381
382
383
384

—-0Q7 —

*PHI(LI.lZ),PHI(Ll.lB),PHl(Ll,14).PHI(L1,15).PHI(L!.IS).
+PHI(L1,17).PHI(Ll.18).PHI(LI.19),PHI(L1,ZH).PHI(LI,21)‘

129 FORMATI{/,2X,21F6.3)

128 CONTINUE
WRITE(6,130)

138 FORMAT(//,18X,'X DIR. PERMEABILITY MAP {DARCY) 1)
DO 131 L2=1,21
WRITE(6.132)PFRMX(12.1).PERMX(L2,2),PERMX(L2,3).PERMX(L2.4),
+PERMX(L2.5).PERMX(LZ.S),PERMX(LZ.?).PERMX(IZ.B),PERMX(LZ,S),
+PERMX(L2.lﬂ),PERMX(LZ.ll),PERMX(LZ,)Z) PERMX(L2,13),
+PERMX(L2.14),PERMX(LZ.15).PERMX(L2,16) PERMX(LZ2,17),
fPERMX(LZ,18),PERMX(LZ.lS).PERMX(LZ,ZH) PERMX(L2Z2,21)

132 FORMAT(/,2X,21F6.3)

131 CONTINUE
WRITE(6,133)

133 FORMAT(//,18X,'Y DIR, PERMEABILITY MAP (DARCY) ')
DO 134 L3=1,21 )
WRITE(B.lBZ)PERMY(L3.1),PERMY(LB,Z).PERMY(LB,B),PERMY(L3,4).
+PERMY(L3,5).PERMY(LB,G),PERMY(L3.7),PERMY(L3.8),PERMY(LB.S),
+PERMY(L3,18),PERMY(L3,11),PERMY (LT, 12),PERMY(L3,13),
+PERMY(L3,14).PERMY(L3.15),PERMV(L3 16).PERMV(L3,17).
+PERMY(L3.lB),PERMY(LB,lS),PERMY(L3 28, PERMY(L3,21)

134 CONTINUE
WRITE(6,135)

135 FORMAT(//,18X, ORIGINAL PRESSURE MAP (PSIA) 1)
DO 136 L4=1,21
WRITE(6.137)PO(L4.1),PO(LA.Z)'PO(L4.3).PO(L4.4),P0(L4,5).PO(L4
+.6).PO(L4,7).PO(L4.8).PO(L4.9),PO(Ld,lB) O{L4,11),P0(L4,12),
+PO(L4.13).PO(LA.IA).PO(L4.15),PO(Ld,lE).P L4,17).
+PO(L4.18).PO(LA,19).PO(L4,ZH).PO(L4,21)

137 FORMAT(/,2%X,21F6.8) :

136 CONTINUE
WRITE(6,138)

138 FORMAT(//,18X,'FLOW RATE MAP (LBM/SEC) ', 1X,

+°(- FOR INJ,. + FOR PROD.) 1. ")
WRITE(6,148
+Q{L5,7),Q(L

) L5,2),Q(L5,3),Q

5
+Q(L5,14),00L

[

(L5,
),QlL5,108),Q(L5,11)
»16),Q(L5,17),Q(L5,

uryg ~

+QUL5,28), Q¢
149 FORMATI(/,2X
139 CONTINUE .
WRITE(6,141)
141 FORMAT(// 50X, mommmmm e ')
WRITE(6,142)
142 FORMAT(51X,'FLUID P.V.T. DATA')
WRITE(6,143)
143 FORMATI(EOX, "= mmmm o m e e mmee e ')
WRITE(6,144)
144 FORMAT(//.BX.'PRESSURE'.Z?X,' 'y25X,'VISCOSITY', 28X,

WRITE(
145 FORMAT
WRITE(
146 FORMAT

—_ e~
. e

45)
.‘(PSIA)',SAX,'(CP)')
46)

I

WRITE(E,

148 FORMAT(/

147 CONTINUE
WRITE(6,146)
WRITE(G,150)

158 FORMAT{// 58X, "=~ -pmm e ')
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WRITE(6,151)
151 FORMAT(SHY 'TIME STEP CONTROL’)
WRITE(G,]SZ)
152 FORMAT(BBOX, ' —-rommmmmm e ')
WRITE(6,153)NTOT
153 FORMATI(//,1X,'TOTAL NO. OF TIME STEP ASSIGNED = ',14)

WRITE(6,154)

154 FORMAT(//,28X, ' TIME STEP NO.',2@8%X,"TIME STEP SIZE (DAYS)')
WRITE(6,155)

155 FORMAT(20X, '===-=-=mmeum- T 2BX, e ")
DO 156 [156=1,NTOT , :
TIMTEP=TIME(1156)/86400.8
WRITE(6,157)1156, TIMTEP

157 FORMAT(/,24X,14,23X,F17.11)

156 CONTINUE :
WRITE(6,158) ‘
158 FORMAT(/ 28X, "~ m e e m e e e e e L S ———
+ l_____l) N
WRITE(E 159)
159 FORMAT(//.SDX.' ———————————————————— ')
WRITE(GE,168) ‘
168 FORMATI(51X,'EXECUTION CONTROL ')
WRITE{(6,161)
161 FORMAT(BOX, "—mm—mm e ')
WRITE(6,162)MAXEXE .
162 FORMAT(//,1X,"NO. OF TIME STEP ALLOWED TO BE EXECUTED = *,14)
WRITE(E,163IMAXIN :
163 FORMAT(1X, 'MAX. NO. OF ITERATION ALLOWED = 'y14)
IFUIFORCE.EQ.8)WRITE(6,502) } )
562 FORMATIUIX, 'FORCE ITERATION = NOT ENGAGED')
IFLIFORCE.EQ.IMWRITE(6,503)
583 FORMAT(1X,'FORCE ITERATION = ENGAGED')
IF{IFORCE.EQ.1)WRITE{(6,504)NFORIT
504 FORMAT(I1X, 'NUMBER OF ITERATION FORCED TO PERFORM = *L1X,18)
WRITE(G6,164)CONVER
164 FORMAT(1X, CONVERGENCE CRITERIA = 'YW FBL541X,"(PSIA)').
WRITE(6,165)
165 FORMAT(// ,50X, " —~wme e e meme e ')
WRITE(6,166)
166 FORMAT(51X,'OUTPUT CONTROL ')
WRITE(6,167)
167 FORMAT(50X, ' mmmm e ')
IFCISKIPP.EQ.@)WRITE(6,511)
511 FORMAT(//,1X,'PRESSURE MAP OMIT = NOT ENGAGED')
IF(ISKIPP.EQ.I)WRITE(G[SIZ)
512 FORMAT(//,1X,"PRESSURE MAP OMIT = ENGAGED ')
IF{ISKIPP.EQ.1)WRITE(G, 513)IBLPR,JIBLPR
513 FORHAT(IX ‘THE ONE BLOCK THAT HAS PRESSURE PRINTED = BLOCK(®
12, 12 ')
WRITE(S 168
168 FORMAT(//,ZSX 'TIME STEP NO. PRINTED®,25X,'TOTAL TIME ELASPED')
WRITE(E6,169) . )
163 FORMAT(65X, 'FROM START OF SIMULATION (DAYS) ')
WRITE(GE,178)
178 FORMAT({28X, " mmmm e e e e e YL IBX T '
I il T ")
WRITE(6,171)
171 FORMATI(/,1X," ')
ADDTM=0.0
DO 188 11B8=1,MAXEXE
ADDTM=ADDTM+TIME(I188)
ADDTMI=ADDTM/B6400.0
IF(IPRINT(IIBH).EO.I)WRITE(G,ISH)IIBH.ADDTMI
199 FORMAT(/,30X,14,33X,F17.11)



449
450
451
452
453
454
455
458
457
458
459
460
461
462
463

464
465
466
467
468
469
479
471
472
473
474
475
476
477

478
479
480
481
482
483
484
485
486
487
488
489
499
491
492
493
494
495
496
497
498
499
500
501
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189 CONTINUE
WRITE(6,181) ‘
181 FORMAT(/, 28X, * === m o .. '

WRITE(E,182)

182 FORHAT(//'lx"ﬁuk*******kw******ﬁ********n**t**it*wﬁﬁ*"
+-*u*w********u*w*nw*w****w*ww*www***u*ww*nw****wwt*"
+'**wk**t*w***************ﬂ**********k*w**')

c ‘
C"‘#######*##################### START OF PROGRAM FHRRRERRARR N
C

C&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Calculate Inftial mass in place

TMASS=90.9

DO 288 12pP=1,1B

DO 201 12p1=1,08
deactivated gas m.b. c¢alec

TMASS=TMASS+(DX(1200)*

+((28.97*PO(IZHH\1291))

lation
YUIZOL)*PHILI1288,128]1)%H)*
(1.0%19.72%960.2))

sXeleNel

u
b
/
TMASS!TMASS+(DX(IZHH)*DY(IZZI)*PHI(IZHH.IZHI)*H)*
+((1.H+CFL*(PO(IZHE.IZﬂl)—PSTD))*ROOW)
201 CONTINUE
280 CONTINUE
C&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
C set all block pressure to fnit{al pressure
DO 205 1205=1,21 :
DO 206 1206=1,21
PG(IZHS.IZES)-PO(IZHS,IZﬁE)
206 CONTINUE
25 CONTINUE
C start time step :
DO 900 '18008=]1 ,MAXEXE
C set all block p to p of last time step
DO 388 138p=1,21" , ’ o
DO 381 1381=1,21
POU1300,13081)=PG{1300,13081)
391 CONTINUE
308 CONTINUE
INNUB=0O
Bl CONTINUE
INNUB=INNUB+1 :
C set all pgo of current Iteration to current P» pPgo . is the p of
C fteration
DO 207 1207=1,21
DO 208 1288=1,21
PGO(I207,1208)=PG(1207,1208)
288 CONTINUE
207 CONTINUE
C inftfal the 5-diagonal matrix to @
DO 283 3=1,441

[SRORCESRAR-]

283 CONTINU

- NN

Bt e et bt et 4 [T e e o e e e
Qo ~—

Danaan—
~ o~~~ -1 1
L I A
anang- -

Tast



=100 -

513 FOI211,121@8)=0.9

514 210 CONTINUE

5158 211 CONTINUE

516 C calculate transmissibilities for all blocks

517 DO 888 J=1,21 .

518 DO 850 I=1,21

519 IF(I.EQ.1)PERMXM=0.0

5280 lF(I.NE.l)PERMXM=(DX(I)+DX(I-1))/((DX(I-I)/PERMX(I—].J))+
521 +{DXCI)/PERMX(1,3))) -
522 IF(I.EQ.21)PERMXP=Q.0 .

523 IF(I.NE.ZI)PERHXPE(DX(I)+DX(I+1))/((DX(I+l)/PERMX(I+l.J))
524 ++(DX{I)/PERMX(1,d)))

525 IF(J.EQ.1)PERMYM=0.g

52 IF(J.NE.])PERMYM=(DY(J)+DY(J~1))/((DY(J-I)/PERMY(I,J—I))+
527 +{DY{(J)/PERMY(],J))) : ‘ ’

528 IF{J.EQ.21)PERMYP=0.0

529 IF(J.NE.ZI)PERMYPE(DY(J)+DY(J+1))/((DY(J+1)/PERMY(I,J+1))+
530 +{DYU{IY/PERMY(T,d))) e :

531 IF(IL.EQ.IIDELXM=DX(T)

532 IFCT . NELI)DELXM=(DX{I)+DX(I-1))%g.5

533 IFII.EQ.21)DELXP=DX{(1])

534 IF(I.NE.ZI)DELXP=(DX(I)fDX(I+1))*H.5

535 IF{J.EQ.1)DELYM=DY(J)

536 TF{J.NE.1)DELYM=(DY(J)+DY{J-1))*p.5

537 IF{J.EQ.21)DELYP=DY(J)

538 IFCI.HE.Z1IDELYP={DY(J)+DY{J+1))*g. 5

539 CALL SSCH(NPVT.PT.VT.PG(!.J).VCOIJ,NCODE,G)

540 PVB=1.H/(VCOIJ*(BSTD/(1.H+CFL*(PG(I,J)~PSTD)))) _

541 IFCI.NE.1)CALL SSCH(NPVT.PT.VT,PG(I-I.J),VCOIMI,NCODE,G)

542 IF(I.NE.l)PVBIM1=1.H/(VCOIMI*(BSTD/(I.E+CFL*(PG(I—1,J)—PSTD))))
543 IFCI.NE.21)CALL SSCH(NPVT,PT,VT,PG(I+1.J),VCOIP1,NCODE,6)
544 IF(I.NE.Zl)PVBIP1=1.ﬂ/(VCOIPI*(BSTD/(1.E+CFL*(PG(I+1.J)—PSTD))))
545 IF{I.NE.1)CALL SSCH(NPVT,PT.VT.PG(I,J—l).VCOJMl,NCODE;E)

546 IF(J.NE.I)PVBJM1=1.E/(VCOJMI*(BSTD/(1.E+CFL*(PG(I,J-1)-PSTD))))
547 IF{J.NE.21)CALL SSCH(NPVT.PT,VT.PG(I,J+1),VCOJPI.NCODE,S)
548 IF(J.NE.ZI)PVBJP1=1.H/(VCOJPI*(BSTD/(1.ﬁ+CFL*(PG(I,J*l)-PSTD))))
543 C set matrix element to the calculated values : '

550 A(I,J)=(PERMYM*(PVB+PVBJM1))/(DY(J)*DELVM)

551 B(I.J)=(PERMXM*(PVBIM1+PVB))/(DX(I)*DELXM)

552 D(I,J)=(PERMXP*(PVBIPI+PVB))/(DX(I)*DELXP)

553 E(I;J)=(PERMYP*(PVBJP1+PVB))/(DY(J)*DELYP)

554 C(I.J)=(B(I,J)+D(X.J)+A(I.J)+E(I.J)+

565 +((273UG.HB*PHI(I.J)*CFL)/(BSTD*TIME(ISHZ))))*(—I.H)

556 F(X.J)=(((—27306.06)*PHI(1.J)*CFL*PO(I,J))/(BSTD*TIME(ISEB)))+
557 +((27335.06*0(IWJ))/(ROOW*H*DX(I)*DY(J))) :
558 858 CONTINUE

559 888 CONTINUE

568 C routine used to check matrtx, ft will print all elemants out

561 IF(ICHECK.EQ.9)GO TO 1248

562 DO 1234 11234=1,21

563 DO 1235 11235=1,21

564 WRITE(G.1236)A(11235,11234),B(I1235.11234),C(11235.11234)
565 +.D(11235.11234).E(11235.11234),F(11235.11234)

566 1236 FORMAT(6(2x,F15.8))

567 1235 CONTINUE

568 1234 CONTINUE

569 1248 CONTINUE

570 C align matrix element to go into GBAND matrix solver
571 DO 608 1680=1,21 .

572 AA(160D)=ALI1600,1)
573 BB(IGOQ)=B(1608,1)
574 CClI608)=Cl1600,1)
575 DD(Il6o@)=D(1600,1)
576 EECIBOOT)=E(IGRO, 1)
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FFU168@)=F(1608,1)
CONTINUE
DO 641 1601=22,42

AACTER 1) =A(T1601-21,2)

- BB(1601)=B(160N1-21,2)
CClIeBl)=CllBOI-21,2)
DDCI6OIY=D(16P1~21,2)
EE(I681)=E(1601-21,2)
FFOIBO01)=F({16081-21,2)
CONTINUE
DO 682 1682=43,63
AA(LTBB2)=A(1602-42,3)
BBI6RZ)=B({1602~-42,3)
CCUI602)=C({I60M2~42,3)
DDC1602)Y=D(1602-42,3)
EE(IGO2)=E(1602-42,3)
FFEUI6D2)=F(16P2-42,3)
CONTINUE i
DO 603 1603=64,84
AALTEA3)Y=A(1603-63,4)
BBOI603)=B(1603-63,4)
CC{1603)=Cl1603-63,4)
DD(1603)=D(1603-63,4)
EE(1603)=E(1683-63,4)
FFU1603)=F(16A3-63,4)
CONTIHUE
DO 684 1604=85,105
AA(1654)=A(1694—84,5)
BB(1604)=B(1684~84,5)
CCl16@84)=C(1604-84,5)
DD{1604)=D(1604-84,5)
EE{I604)=E(]1604~84,5)
FF(1604)=F(1654—84,5)
CONTINUE
DO 685 16085=106,126
AA(1695)=A(1605—155‘6)
BB{I6B5)=B(1605-105,6)
CCU16085)=C{1605~-105,6)
DD(I605)=D(1605-105,6)
EE(I605)=E(I605-185,6)
FFU1605)=F(1605-105,6)
CONTINUE
DO 606 1606=127,147
AALTBAB)=A(1606-126,7)
BB{16G6)=B(1606-126,7)
CCl1606)=C(1606-126,7)
DDOIBOE)=D(1606-126,7)
EE(IB06)=E(I606-126,7)
FFOIB0B)=F(1606-126,7)
CONTINUE
DO 607 1607=148,168
AACTG6O7)=A(1607-147,8)
BB{IGO7)=B(I1G607-147,8)
CCUIBO7)=CLI607~147,8)
DODUI6O7)=D(1607-147,8)
EE(I6B7)=E(1607-147,8)
FFOIBO7)=F(1607-147,8)
CONTINUE
DO 608 1608=169,189
AAL160B)=A(1688-168,9)
BB(1608)=B(1608B~168,9)
CC(1688)=C(160B8-168,9)
DD(]l668B)=D(1608-168,9)
EE(I60B)=E(160B~168,9)

=~ 101 -
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7065 FF{1616)=F{1616-336,17)
706 616 CONTINUE

787 DO 617 1617=358,378

768 AALIB17)=A(1617-357,18)
709 BBI{IBI7)=B(1617~-357,18)
710 CCI617)=C(IB17-357,18)
711 DDU1617)=D(I617~357,18)
712 EE(I617)=E{(IB17-357,18)
713 FF{IB17)=F(1617-357,18)
714 617 CONTINUE

715 DO 618 1618=379,399

716 AA{I61B)=A(1618B-378,19)
717 BB(I61B)=B(I618-378,19)
718 CC{1618)=C(1618-378,19)
719 DD(I1618)=D(I1618-378,19)
720 EE(I6IB)=E(]1G18B-378,19)
721 FFUIB618)=F(1618-378,19)
722 618 CONTINUE

723 DO 619 1619=490,420

724 AA(I619)=A(1619-399,29)
725 BB{I1613)=B(1619-399,20)
72 CClI619)=C(1619-399,29)
72 DD(I1619)=D(1619-399,28)
728 EE(I619)=E(1619-399,209)
728 FFOI619)=F(1619-399,20)
730 619 CONTINUE

731 DO 2000 12900=421,441

732 AALI200@)=A(12000-420,21)
733 BB(12R00)=B(12000-420,21)
734 CClI2000)=C(12000-420,21)
735 DDU12P20)=D(12000-420,21)
736 EE(12000)=E(12000-420,21)
737 FFU12B08)=F{12000-420,21)

738 2088 CONTINUE :
739 C routine used for debugging, will print matrix out

748 IF(ICHECK.EQ.8)GO TO 1241

741 DO 778 1778=1,441

742 URITE(6.771)AA(1776),BB(I77B).CC(I77E),DD(I77H),EE(I77E)
743 +,FFLI770) :
744 771 FORMATIB(2X,F15.8))

745 778 CONTINUE

746 1241 CONTINUE

747 DO 544 1544=1,18501

748 AAA(]1544)=0.90

749 544 CONTINUE

750 DO 5490 1540=1,441

751 FDRUISAD)=g

752 549 CONTINUE

753 FDR{1) =1

754 DO 541 L541=2,44]

755 IF{L541.G7.21)G0 TO 542

756 KDR{L541)=KDR{L5A41-1)+21+L541

757 GO TO 541

758 542 1F(LS541.GT.4208)G0 TO 543

759 KDR{L541)=KDR{L541~-1)+43

760 GO TO 541

761 543 KDR(LE41)=KDR(L541-1)+441-1541+23
762 541 CONTINUE

763 DO 545 1545=1,441

764 AAATKDR{1545))=CC(1545)

765 545 CONTINUE

766 AAATZ)=DD(1)

767 - AAA(22)=EE(1)

768 DO 546 1546=2,21
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AAA(KDR(I546)-1)=BB(I1546)
AAA(KDR{I546)+1)=DD(I546)
AAA(KDR(I546)+21)=EE(1546)
546 CONTINUE
DO 547 1547=22,420
AAA(KDR(1547)-1)=BB(1547)
AAALKDR(I547)-21)=AA{1547)
AAA{KDR(IB547)+1)=DD(1547)
AAA(KDR(I1547)+21)=EE(1547)
547 CONTINUE
DO 548 [548=421,440
AAALKDR({I548B)~21)=AA(]548)
AAA(KDR(1I548)-1)=BB(1548)
AAA(KDR(I54B)+1)=DD(1548)

548 CONTINUE
AAA(1B500)=BB(441)
AAA(1B480)=AA(441) e
CALL GBAND(AAA,FF XX,441,21,1.9,1ERR,Q)
C set pg to the calculated pressures
LLL=8
DO 752 J752=1,21
DO 753 1753=1,21
LLL=LLL+1
PGLI753,Jd752)y=XX{LLL)
753 CONTINUE
752 CONTINUE
C calculate the difference, If converged, go to print out subroutine
DO 782 1782=1,21
DO 783 1783=1,21
DIFF=PG(1782,1783)~PGO(17082,1703)
DIFFA=DABS(DIFF)
IF{DIFFA.GT.CONVER.AND.INNUB.LT.MAXIN.AND.IFORCE.EQ.B)GO .TO 821
783 CONTINUE
782 CONTINUE
C check {f the force fteration option is engaged
IF(IFORCE.EQ.!.AND.INNUB.LT.NFORIT)GO TO 881
IF{I900.NE.1)CMASOLD=CURMAS
QTO0=g.48
CURMAS=g.8
C calculate current mass {n place
DO 718 1718=1,21
DO 71} I711=1,21

CURMAS=CURMAS+I(D
+ (1. B+CFL*(PG(I7
deactivate m.b. cal
D

P*OYUCI711)*PHICIZIR, 1711 )*H)*
1)-PSTD))*ROOW)

ons for gas
Y*OYCIZILI)*PHICLI71R,1711)%H)»
/UL @*1R.72*960.08))

C

C CURMAS=CURMAS+{(
C +{(28.87*PG(1718
C

—_xX N =X
~N A~ -~
[
—— Ny
R
- -

QTOo=Q70+Q{1718,1711)
CONTINUE
CONTINUE
PROMAS=TMASS~-CURMAS
IF{1900.EQ. 1)CMASP=TMASS~CURMAS
IF(I900.NE.1)CMASP=CMASOLD-CURMAS
TIMETO=90.90
DO 715 1715=1,1900
TIMETO=TIMETO+TIME{(1715)

715 CONTINUE
CRAJAEELABLERKABLLEREEALEAEALELEREEERALRBLLLALLE

PROD=TIMETO*QTO

C deactivated m.b. calculation for gas
C PROD=TIMETO*(QTO/ROOW)*®.Q76135636
CEELALALAALEEEABAB AL ELELARALESLELEELRE
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GRTHEO=TMASS-PROD

CAELBALAEBEBLALLLLELLELLLLAZLLE,

PRODCT=QTO*TIME(1900)

C deactivated m.b. calculation for gas

PRODCT=({(QTO/ROOW)™Q.0B76135636)*TIME(19080)

CaaALALALALBLAEREBZMARALELLLLIALLLEKALLELLL

ERR={(GRTHEO-CURMAS)/GRTHEO)*100 .8
IFCIPRINT(I9QQ).NE.1)GO TO 9589
CALL OUTPUT(PG,INNUB,1908,TIME(I92D),
+PROMAS,TIMETO,PROD,PRODCT,TMASS ,CURMAS,ERR,CMASP ,GRTHEO,
+ISKIPP,IBLPR,JBLPR,IBLPR2,JBLPR2)
958 CONTINUVE
Sg8 CONTINUE
STOP
END
SUBROUTINE OUTPUT(PG,INNUB,I198®8,TM,PROMAS, TIMETO,PROD,PRODCT,
+TMASS,CURMAS ,ERR, CMASP GRTHEO ISKIPP.IBLPR JBLPR, IBLPRZ JBLPR2)
IMPLICIT REAL*B(A H,0- Z)
DIMENSION PG(21,21)
WRITE(B,1)
WRITE(G,lS)
1 FORMAT( 1x' AR AAESE AR SRR NSRSl R 2 8 2223222 ’
4 Y ek d ke A e ok ok o N ok Y ok vl o o A o T Wt o A W R R W o T A o o T s e A W ok e Y S O R N W W A Y N
YRR o ke ok A A Y S o S e ok T e W R A W W N e ke ok ¢ )

WRITE(6,2)1900
2 FORMATU///,2X,'TIME STEP NO. = ',14)
WTM=TM/B6400.0
WRITE(GE,3)WTM
3 FORMAT(/,2X,"TIME STEP SIZE FOR THIS TIME STEP = ' ,F17.11,1X,
+' (DAYS) ")
WTM2=TIMETO/86489.0
WRITE(G6,4)WTM2
4 FORMAT(ZX 'TOTAL TIME ELASPED FROM START OF SIMULATION = °
+F17.11,1X,"{DAYS) ")
WRITE(S S)TMASS
5 FORMAT(/ 2X, ORIGINAL FLUID IN PLACE AT START OF SIMULATION = °
+F26.]l.1X.‘(LBS)')
WRITE(6,30)CMASP
3% FORMATI2X,'FLUID PRODUCED FOR THE CURRENT TIME STEP',IX,
+"{CALCULATED) = *,F26.11,1X,'{LBS) - FOR INJ. & + FOR -PROD.")
WRITE(6,6)PRODCT
6 FORMAT(2X,'FLUID PRODUCED FOR THE CURRENT TIME STEP (THEO.) = !
+F26.11,1X,'(LBS) ~ FOR INJ. & + FOR PROD.')

WRITE(6,7)PROMAS ’
7 FORMAT(2X,'TOTAL FLUID PRODUCED FROM START OF SIMULATION',1X,
‘(CALCULATED) = ",F26.11,1X,"(LBS) =~ FOR INJ. & + FOR PROD.*%)
WRITE(6,B)PROD
8 FDRMAT(ZX 'TOTAL FLUID PRODUCED FROM START OF SIMULATION',1X,
+'(THEO.) = *,F26. +1X,'(LBS) ~ FOR INJ. & + FOR PROD.')
WRITE{(6,9)CURMAS .
3 FORMAT(2X,'FLUID REMAIN {(CALCULATED) = ' ,F26.11,1X,'(LBS)")
WRITE(6,31)GRTHED

31 FORMAT(2X,'FLUID REMAIN (THEO.) = *,F26.11,1X,*'{(LBS)"*)
WRITE(6,10)ERR

19 FORMAT(/,2X,"MATERTAL BALANCE ERROR = ' ,FI5.11,1X,'(X)"')
IF{ISKIPP.EQ.1)GO TO 52#

WRITE(6,11)

11 FORMAT(//.ZX,'
DO 12 Tle=1,21
WRITE(6.13)PG(

+PG{I12,6),PG(!

13 FORMAT(/.ZX.IE

12 CONTINUE
WRITE(6,28)

PRESSURE MAP (LEFT HALF) ')

y,PG(I12,5),
) :

L}

1
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897 20 FORMAT{(//,2X,'PRESSURE MAP (RIGHT HALF). 1)

898 DO 21 121=1,21

839 WRITE(E,2801)PG{I2]1,11),PG(I21, 12),PG(121,13), 21,14),
9040 +PG(I21,15),PG(121,16),PG (121,17) PG(I21,18), PG(I »19),
901 +PGLI21,20),PG(I21,21)

302 2801 FORMAT(/, 1X.11Fll 5)

383 21 CONTINUE

904 528 CONTINUE

905 IF{ISKIPP.EQ. I)WRITE(S 521)IBLPR JBLPR PG(IBLPR,JBLPR)
306 521 FORMATI(//,1X,'P(",12, v') = " F15.8,1X, 'PSlA')
907 WRITE(G, 14)INNUB :

S08 14 FORMAT(//,ZX.‘NO. OF ITERATION PERFORMED',IX,
989 +'FOR THIS TIME STEP = ',14)

91g WRITE(6,1)

91t WRITE(6,15)

312 15 FORMAT(1X," ')

913 Ck**i**k*w*ﬁ********************k***************ﬂlﬁ****
914 WRITE(2,3P@08)WTM2,PG({IBLPR2,JBLPR2)

915 3880 FORHAT(ZX F20.11, 5X Fe.11)

915 C*kﬁi***i\I****N****R******************ﬂﬁ*****ﬁ********
917 RETURN

918 END

919 SUBROUTINE SSCH{N,X,Y,XIN,YOUT, NCODE W)

828 IMPLICIT REAL*B(A-H,0-2Z)

821 DIMENSTION X{N),Y(N)

922 IF(X!N.LT.X(I))NCODE=88

92 IF{XIN.LT.XU1))YOUT=0.0

924 IF(XINJLT.X(I))IWRITE(G,10)

925 18 FORMAT(//,"INPUT DATA EXCEED LOWER LIMIT?)

326 IF{XIN.GT.X(N))NCODE=99

927 IF(XIN.GT . X{(N))YOUT=0.8

g2 IFOXIN.GT.X(N))WRITE(6,11)

8929 11 FORMAT(//,"INPUT DATA EXCEED UPPER LIMIT")

838 TFOXIN.LT.XC1)LOR.XIN.GT.X(N))GO TO 9993

831 K=1

332 GO TO 1

933 2 K=K+1

534 1 CONTINUE

935 IF(XIN.EQ.X{K))YOUT=Y(K)

936 IFIXIN.EQ.X(K))GO TO 999

937 IFIXIN.GT.X(K))GO To 2

938 YOUT=Y(K-1)+{Y(K)-Y(K-1))*{XIN- “XAK=1) )/ (XLKY=X{K=1))
939 959 CONTINUE

940 NCODE=1

941 9939 CONTINUE

942 RETURN

943 END

944 SUBROQUTINE GBAND(A.D,X,N,M, EPS,IERR,IFRST)

945 IMPLICIT REAL*8(A-H, O Z) :

946 DIMENSION A{18581) D(441).X(441)

947 IERR=8 )

948 J=1

949 DO 18 I=1,N

950 TE=M

851 IF(I+M=-N)21,21,22

952 22 TE=N-1

953 2] TEAUX=M

954 IF{I1-M)23,23,24

955 23 JTEAUX=

956 24 IE1=]E+I1EAUX

957 MBIG=1E

958 J1=J+1E1]

9583 J2=J1

868 IF(IFRST.GT.#)GO TO 27



961
962
963
964
965
966
967
968
369
870

971

372
273
374
975
976
977
978
979
980
981
982
983
984
985
986
987
988
389
950
9391
992
993
994
995
996
997
398
999
logap
1001
1002
1003
1004
1805
1006
1007
10088

25
27
26

.38
35

32
31

33
34

18

43

50
44

52
51

53
54

Ly}

A
=]ERR+1
BIG)1#@,19,26
gJdg=1,MBIG
J1IY/A(J)
F
g
J

—— D

AlJ1K)I=A(JIK) -A(JIK)*S
CONTINUE

TIAUX=30+1
DUTAUX)Y=D(IAUX)=D(1)*S
TE=M
IFLTAUX+M-N)31,31,32
TE=N-TAUX

TEAUX=M

F{IAUX-M)33,33,34
AUX=TAUX
=]E+]1EAUX

1+1E1

— Nl e
+
—

CretCZ i T e G U=Vl | M

IINV=1 N
=1INV

T
+

“NYAL, 41,42

S ] A~ 2
— O T

o ~m

N o~ >

e

- o~

W+ +XRNONA 1+

- XXX
—

-NP1)61,561,52
1

=
i

1-M)53,53,54
X=1-1
=TE+TEAUX
J=J-1E1~-1
CONTINUE

RETURN

END

1 XTT +

1
1
1
J
J
J
N
D
1
1
1
1
M
X
1
D
)
J
X
X
1
I
I
1
1
1
I

S(A{J))-EPS)25,25,27

KY*A{JK) -
)

-107 -
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GAS - SIMULATOR

o0

Two Dimensional Stngle Phase Singfe Component Numerical Sifmulator
for Fully Compressible Gas )

This simulator is written in standard Fortran WATFIV for the purpose
of maximum portability. However, this version Is designed to run under
Unix(BSD 4.2)-FORTRAN 77. The only command that s non standard WATFIV
Is the OPEN statement on line 39 and the WRITE statement on 1ine 879 & BBO.
These two statements perform the automatic output of the well-block
pressure as explained In the following paragraph. Deletton of these
two lines will return the program to standard FORTRAN WATFIV and
the program can be run under any machine with FORTRAN 66 compiler.
Deletfon of these two lines will also remove the automatic well-block
pressure output capability.

This simulator wili automatically output the calculated block
pressure of one chosen block to the file GPWOUT. The file GPWOUT
must exist before the simulator can be run. The I and J co-ordinate
of the one chosen block Is to be supplied {n the tnput data file.

This verston will perform calculations up to 18P time steps. To
fncrease or decrease this capability, change the dimensions of the
variables TIME and IPRINT on 1ine 33 accordingly.

For more detalled explaination and the Input format pleases
see the user Instructions In Appendix A in the master report by
E.Y. Teng(Sept. 1984)

k3
*
*
*
»
*
2
*
%
*
*
*
*
*
*
*»
*
*
*
*
*
*
*
%
%*
%
b 3
%
k3
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
»
*
*
*
*
»
*
*
*
*
*
*
*
*
*
*
*
*
»
*
*
»
*

OO0000aO00000000000000000000

IMPLICIT REAL*B(A-H,0-2)

DIMENSION DX(21).DY(ZI).PERMX(ZI.ZI),PERMY(ZI,ZI),PHI(21,21),
+PO(21.21).PT(SH).VT(SB).ZT(SH),TIME(130),0(21,21).IPRINT(lHB)
+,PMZ(56).PG(21,21).A(21.21),8(21,21).C(2l.21).0(21,21);E(21.21)
+,F021,21),AA(441),BB(441),PGO(2],21) -
+.XX(441).CC(441),DD(441).EE(441),FF(441),AAA(IBSHI)

INTEGER KDR(441)

C % R R K K o R Y R e R W R W R o e ok sk open the file GPWOUT to accept P Input
OPEN(UNIT=2,FILE='GPWDUT'.ACCESS='SEQUENTIAL',STATUS='OLD')

C**i******ﬂ*ti*ﬁ***********ﬁ****ﬁ*wﬁ**ﬁ*****k********w***ﬁ*****t********i***
c

C Read 1n data from data file, detat] explaination of. each term can be
C found in the user fnstructions
c

—

DX (NOX
3 CONTINUE
5 CONTINUE

DO 6 I6=1,21
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DY(I16)=0.0
CONTINUE
READ{5,*)1Y
READ(5,*)BY
DO 7 17=1,JB
DY(17)=BY
CONTINUE
IF(IY.EQ.Q)GO TO 19
READ(5,*)IDY
DO ® 1,10Y
)NOY BYl1
BY!

IF{KX1.EQ.9)GO TO 17
READI(5 *)NYX

Do 15

READ(5
XK1=XK
PERMX (

5=1,NKX
)I
IBHH i)
J)=

BKY=BK
18
DO 189
PERMY (
CONTIN
CONTINUE
IF{KYI.EQ.8)GO TO 22
READ({5,*)NKY
DO 28 1208=1,NKY
READ(5,*)1,0,¥YK!
YK1=YK1/10808.8
PERMY{T1,3)=YK1
CONTINUE
CONTINUE
READ(5,*)IPHI
READ(5,*)BPHI
DO 24 124
DO 25 125
PHI(124,1
CONTINUE
CONTINUE
DO 26 126=1,18
DO 27 127=1,98
PHI{126,127)=BPHI
CONTINUE
CONTINUE

11
‘*
1/
Iv
UE
CONTINUE
L]
2
v/
11
11
11
UE
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28
39

34

33

35
38

41

42

43
50

READ(S5,
PHI(I,J)
CONTINUE
CONTINUE

POLTI3L,I
CONTINUE
CONTINUE
DO 33 133=1,18B

DO 34 134=1,J8
PO{133,134)=BP01I
CONTINUE i
CONTINUE .
IF{1POI.EQ.QF)GO TO 38
READ(5,*)NPO1

DO 35 135=1,NPOI

READ{5,*)I,J,P0I1
POLI,J)=POI1
CONTINUE

CONTINUE

READ(5,*)SG
READ(5,*)TEMP
TEMP=TEMP+460.0
READ(S5,*)NPVT

DO 41 T41=1,NPVT
READI(S,*)PT(I41),VT{141),ZT(141)
CONTINUE

READ(S5,*)NTIME

READ(5,*)NTOT

DO 42 142=1,NTOT

TIME(I42)=0.80

CONTINUE

IF(NTIME.EQ.1)GO TO 58
READ(5,*)TIME1
TIMEI=TIME1*864002.0

DO 43 143=1,NTOT
TIME{(T43)=TIME!
CONTINUVE

CONTINUE
IFINTIME.EQ.@)GO TO 6@
READ{(5,*)NGT

IC=1

DO 51 151=1,NGT
READ(5 ,*)TIMEL,LAST
TIMEI=TIME1*B6400.9
DO 52 152=1,LAST
TIMELIC)=TIMEL
IC=1C+]

CONTINUE

CONTINUE

CONTINUE

READ(5,*)PSTD
READ(5,*)TSTD
TSTDO=TSTD+460.0
READ({5,*)NPOD
DO 53 153=1,21
DO 54 154=1,21
Q(153,154)=0.0

110 -
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54 CONTINUE

53 CONTINUE
IF(NPOD.EQ.2)GO TO 61
DEN={28.97*SG*PSTD)/(18.73*TSTD)
DO 55 I55=1,NPOD
READ(5,*)1,J,qQl
Q1=(Q1/B6400.90)*DEN
t1,3=01

55 CONTINUE

61 CONTINUE
READ(5,* )MAXIN
READ(5,* YMAXEXE
READ(5,*) ICHECK
READ(5,*)CONVER
READ(S5,*) IFORCE
IF(IFORCE.EQ.¥)GO TO 580
READ(S,*)NFORIT

588 CONTINUE
DO 62 162=1,NTOT
IPRINT(162)=8

62 CONTINUE
READ(5,*)NPRINT
IF(NPRINT.EQ.#)GO TO 79
DO 63 163=1,NPRINT
READ(5,*)NOPRT
IPRINT{NOPRT) =1

63 CONTINUE
GO TO 75

78 CONTINUE
DO 71 171=1,MAXEXE
IPRINT(171)=1

71 CONTINUE

75 CONTINUE
READ{5,*)ISKIPP
IFUISKIPP.EQ.2)GO TO 5180
READ(5,*)IBLPR,JBLPR

519 CONTINUE
READ(S,*)IBLPR2,JBLPR2

****it***i******ﬁ***iﬁ*w*ﬁ*ﬁit*

The following part of the program perform the acho check of all
read in data by writing them to the standard output

WRITE(6,99)
99 FORMAT(1X,® ')
WRITE(6,100)

*****ﬁ********ﬁ******************ﬁﬁﬁ*t***t**ﬁ

lgg FORMAT(//'lx"*w**************************************"
+‘**ﬁﬁ********w****************w*********ﬁ*********ﬁ******ﬂ***"

+'**********i*********')

WRITE(6,181)
11 FORMATUIX, *',118X,***)
WRITE(6,182)

182 FORMATUIX, ™' 3X,*TWO DIMENSIONAL SINGLE PHASE AREAL',1X,
+*'HORIZONTAL GASVSIMULATOR'.BIX.'E.T.',SX,’MAY 84" ,8X,'x

WRITE(6,183)
183 FORMATUIX, ' *' 118X, '**)
WRITE(6,104)

)

134 FORMAT(lx"**w*******'ﬁ******ﬁ******t******ﬁ*******ii*i**ﬁ***"
+‘ﬁ****k***t***ﬁ******W***k***********************l********ﬁ**"

+‘k*******ik')

WRITE(6,185)

185 FORMAT(// 50X, " ~=—mmommoemm ")

WRITE(6,106)
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186 FORMAT(53X,'INPUT DATA') ,
WRITE(6,1087)

187 FORMAT(BOX, ' m=mm e e mee e ')
DO 188 118B=1,NPVT
PMZ(XIZB)=PT(IlﬁB)/VT(IlHB)*ZT(IlﬂB)

188 CONTINUE
1JB=1B*JB
WRITE(6,189)1J8B

189 FORMAT(///,18X,'TOTAL NO. OF BLOCKS ASSIGNED = *LI13)
WRITE(6,110)1B

118 FORMAT(18X,'NO. OF BLOCKS IN X DIRECTION = ',13)
WRITE(6,111)J8B

111 FORMAT(1€X,'NO. OF BLOCKS IN Y DIRECTION = 'WI3)
WRITE(6,112)H

112 FORMAT(//,18X, " RESERVOIR THICKNESS = TWFOLALIX,UFTY )
WRITE(6,113)TEMP

113 FORMAT{18X, 'RESERVOIR TEMPERATURE = ‘LW F9.4,1X,(R)")
WRITE(B,114)S6G

114 FORMAT(//,18X, 'GAS GRAVITY = * F7.4)
WRITE(E6,115)PSTD

115 FORMAT( 10X, 'STANDARD PRESSURE = 'WF9.4,1X,"(PSIA)")
WRITE(B6,116)TSTD

116 FORMAT( 18X, 'STANDARD TEMPERATURE = 'WF3L 4, 1K, (R )
WRITE(B,117) :

117 FORMAT(//,10X,'BLOCK ORDERING CONVENTION 1 ')
WRITE(B,118)

11B FORMATI(/,35X,'Y")
WRITE(6,119)

119 FORMAT{/,2@8X,"{1,1) (1,2) (1,3) . . . .")
WRITE(G,128£)

128 FORMAT{15X,'X (2,1) (2,2) (2,3 . . . .")
WRITE(6,121)

121 FORMAT(20X,'(3,1) (3,2) (3,3) . . . .*)
WRITE(G,122)

122 FORMAT(//,18X,'BLOCK LENGTH : *)
WRITE(6,123) ,

123 FORMAT(/,28X%X,'BLOCK NO." 15X, "DX(FT)*,25X, ' DY(FT)")
WRITE(B,124) :

‘124 FORMAT (28X, ' --~—~—w-= 'L IBX, e 'h2BX, ' mmm e )
DO 125 1125=1,21
WRITE(6,126)1125,DX{1125),DY(1125)

126 FORMAT(/,23X,12,18X,F28.13,108X,F28.13)

125 CONTINUE
WRITE(6,127)

127 FORMAT(//,18X, 'POROSITY MAP (FRACTION) 1')
DO 128 L1=1,21
URITE(B.IZS)PHX(LI.1).PHI(L1,2).PHI(L1,3).PHI(L1.4).PHI(Llr5).
+PHI(L1.6).PH1(L1.7).PHI(L1.B).PPI(LI,B).PlI(Ll.lﬂ).PHI(Ll.ll).
+PHI(L1,lZ),PHI(Ll.lB).PHI(Ll,ld),PHI(LI.IS).PHI(LI.!B),
+PHI(L1.17).PHI(L1.lB).PHI(Ll,lS).PHI(Ll,Zﬂ),PHI(Ll,Zl)

123 FORMAT(/,2X,21F6.3)

128 CONTINUE
WRITE(6,1308)

139 FORMAT(//.,18X,*X DIR. PERMEABILITY MAP {DARCY) 1)
DO 131 L2=1,21
VRITE(G,132)PERMX(L2.1).PERMX(LZ.Z).PERMX(LZ,B) PERMX(L2,4),
+PERMX(L2,5),PERMX(L2,6),PERMX(LZ, 7)) PERMX(L2,B),PERMX{L2,9),
+PERMX(L2.IH).PERMX(L2.11).PERMX(LZ,IZ).PERMX(LZ 13),
+PERMX{L2,14),PERMX(L2,15),PERMX(L2Z, 16),PERMX (L2, 17).
+PERMX(L2,18),PERMX(L2,19),PERMX(L2, 25).PERMX(L2,21)

132 FORMATI(/,2X,21F6.3)

131 CONTINUE .
WRITE(6,133)

133 FORMAT(// 18X,'Y DIR. PERMEABILITY MAP (DARCY) :')
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DO 134 L3=1,21
WRITE(6,132)PERMY{L3,1),PERMY(L3,2), PERMY(L3,3),PERMY(L3,4),
+PERMY(L3,5),PERMY{L3,6),PERMY{L3,7), PERMY(L3,8),PERMY(L3,9),
+PERMY(L3.IH),PERMY(L3 11) PERMY(L3.12).PERMY(LB.X3).
+PERMY(L3,14),PERMY(L3,15), PERMY(L3,16),PERMY(L3,17),
+PERMY{(L3,18),PERMY(L3,19), PERMY(L3,202),PERMY{(L3,21)
134 CONTINUE
WRITE(6,135)
135 FORMAT(//,)BX.‘ORIGINAL PRESSURE MAP (PSIA) 1')
DO 136 L4=1,21 ’
WRITE(6,137)PO(L4.1),PO(L4.2),P0(L4.3),PO(L4.4).PO(L4,5),PO
+{L4,6),POCL4,7),PO(L4,B),PO(LS,T), PO(L4,IH).PO(L4.11).PO(L4
+PO(L4.13).PO(L4.14).PO(L4,15),PO(L4.16).F0(L4.17).
+PO(LA4,18),PO(L4,19),PO(L4,20),PO(L4,2]) .
137 FORMATI(/,2X,21F6.8)
136 CONTINUE ‘
WRITE(6,138)
138 FORMAT(//,18X,'FLOW RATE MAP (LBM/SEC)’, 11X,
+°(- FOR INJ. & + FOR PROD.) : ')
DO 139 L5=1,21
WRITE(SG, IAH)Q(LS.I),O(LE.Z).O(LS.B),O(LS.A).Q(LS.S).O(LS.G).
+Q{L5,7), (LS.B).O(LS.S).O(LS,IH),O(LS,ll).O(LS.!Z),O(LS.IB).
+O(L5.14) O(LE,15).Q(LS.IG),Q(L5.17),Q(LS,IB),D(LS.IS),
+Q(L5,28),0(L5,21)
148 FORMATI(/,2X,21F6.2)

139 CONTINUE
WRITE(6,141)

141 FORMAT(//,5BX, ' ~~wcmmmmmmmems 'Y
WRITE(6,142) ‘

142 FORMAT(51X,'GAS P.V.T. DATA")
WRITE(6,143)

143 FORMATI(S

T T e e e e e e e e e e e e mm e s

DO 147 11
WRITE(G,1
14B FORMAT{(/,
147 CONTINUE
WRITE(G
WRITE(6

WZTUILA7) ,VT(1147),PMZ
X FB8.5, 25X Fl1e.7, 25X F

mv
—
U‘!n—q

/
WRITE(6,
151 FORMATI(5
WRITE(G,
152 FORMATI(S
WRITE(B )
153 FORMAT( X,'TOTAL NO. OF TIME STEP ASSIGNED = ',14)
WRITE(6 )
154 FORMAT(
WRITE(®
155 FORMAT(
DO 156
TIMTEP=T
WRITE(B,
157 FORMAT(/ 2
156 CONTINUE
WRITE{(6,158)

/7,28X, TIME STEP NO.',28X,'TIME STEP SIZE (DAYS)')
,155)

2 A

I TOT

6)/B6480.0

6, TIMTEP
V39X ,FB8.3)

&~z
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158 FORMATI(/, 20X, " == mm o oo o e e o e ——————— '
) ' '

4,0 e

WRITE(6,159)

159 FORMAT(// 58X, " ==mmmommmm e ')
WRITE(G,168)

168 FORMAT(51X, 'EXECUTION CONTROL')
WRITE(6,161)

161 FORMAT(BEX, ' =mmmmmmmommme ")
WRITE(G.IGZ)MAXEXE

162 FORMATL(//, «*NO. OF TIME STEP ALLOWED TO BE EXECUTED = ', 14)

WRITE(B,lGB)MAXIN

163 FORMAT(1X,'MAX. NO. OF ITERATION ALLOWED = *,14)
IF{IFORCE.EQ.@)WRITE(6,502)

582 FORMAT(1X,'FORCE ITERATION = NOT ENGAGED')
IF(IFORCE.EQ.1)WRITE{(6,503)

583 FORMAT(IX,'FORCE ITERATION = ENGAGED')
IF({IFORCE.EQ.1)WRITE(6,5M4)NFORIT

584 FORMAT(1X,'NUMBER OF ITERATION FORCED TO PERFORM = tLIX,14)

WRITE(6,164)CONVER

164 FORMAT{1X, 'CONVERGENCE CRITERIA = *WFB.5,1X,"(PSIA) ")

WRITE(6,165)

165 FORMAT(// ,BBX, =-m=mmmcmmemmem o ")
WRITE(6,166)

166 FORMAT(51X, 'OUTPUT CONTROL®)
WRITE(6,167)

167 FORMAT{50X, " ~~==--=-moemomo. ")
IFCISKIPP . EQ.8)WRITE(6,511)

511 FORMAT(//,1X,'PRESSURE MAP OMIT = NOT ENGAGED')
IFCISKIPP.EQ.1)WRITE(6,512)

512 FORMAT(//,1X,'PRESSURE MAP OMIT = ENGAGED®)
IFCISKIPP . EQ.1)WRITE(6,513)IBLPR,JBLPR

513 FORMAT(IX 'THE ONE BLOCK THAT HAS PRESSURE PRINTED = BLOCK("

A2, 12 ")
WRITE(B 168)

168 FORMAT(//,25X,'TIME STEP NO. PRINTED',25X,'TOTAL TIME ELASPED")

WRITE(6,169)

163 FORMAT{65X, 'FROM START OF SIMULATION (DAYS)')
WRITE(E,178)

178 FORMAT{25X, " === mmm oo "L1BX, tmmmmma

WRITE(6,17
171 FORMAT(/,1
ADDTM=#, H
DO 1BO 118B0=1,MAXEXE
ADDTM=ADDTM+TIME(118@)
ADDTMI=ADDTM/B6400O.Q
IFCIPRINT(118B08).EQ.1)WRITE(6, 19€)1188,ADDTMI
198 FORMAT(/,38X,14,39X,F108.4)
180 CONTINUE
WRITE(6,181)

')

181 FORMAT(/ 25X, " === m oo e e e e .

WRITE(6,18B2)

)
182 FORMAT(//'lx' ****************Nﬁ**********************'
+'*t*k********k**k*******************************ﬁ**’,

+'**k**kﬁ*i*k********t******************ﬁ*')

fnitfal mass

in place

C
CHEAXRRBRARERRREHND R RRERERREHNRELRRRO R START OF PROGRAM A#X#AREFRNRRAE
C
CoBLAALBEABEBELEARAEEEEBABELEBLEALAAEALE LA, Calculate
TMASS=90.8

DO 2088 1200=1,18B
DO 2&1 I1281=1,JB
CALL SSCH(NPVT,PT.ZT.PO(IZEH,IZﬂl).ZOMAS.NCDDE,S)
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449 TMASS=TMASS+{DX{I2@00)*DY(I201)%PHI(I1288,12081)"H)*
459 +{(28.97*SG*PO(120@,1201))/(ZOMAS*19. 73*TEMP))
451 281 CONTINUE

452 229 CONTINUE

453 TVOL=TMASS*((2B.97*SG*PSTD)/(1@. 73*TSTD))
454 C set all block pressure to ftnitfial pressure
455 DO 285 1285=1,21

456 DO 286 1236=l.21

457 PG(I285,1206)=P0O(1285,1206)

458 286 CONTINUE

459 205 CONTINUE

4680 C start time step

46 . DO 988 1988=1,MAXEXE

462 C set all block p to p of last time step

463 ° DO 390 13pO=1,21

464 DO 391 1381=1,21

465 PO(1387, IBEl)nPG(ISGH 1331)

466 381 CONT]NUE

467 308 CONTINUE

468 INNUB=0O

469 BO1 CONTINUE

470 INNUB=INNUB+1

471 € set all pgo of current fteration to-current P, pgo {s the p of last
472 C {teration L

473 DO 287 1287=1,21

474 DO 288 1288=1,21

475 PGO(1207,1208)=PG{12087,1208)

476 208 CONTINUE

477 287 CONTINUE

478 C {inftialize the S-dfagonal matrix to &

479 DO 283 1283=1,441

ABE AA(1293)=0.0

481 BB(I1Z2R3)=0.0

482 CC(1203)=0.0

48B3 DD(1203)=0.9

484 EE{(]1283)=0.8

485 FF{1203)=0.8

486 283 CONTINUE

487 DO 211 I1211=1,21

488 DD 219 121@=1,21

488 AlI211,1218)=0.0

490 B(I211,1210)=0.8

491 C(I1211,1218)=0.0

492 D(1211,1210)=0.9

433 ECI211,1210)=0.9

494 FU1211,1210)=0.8

495 210 CONTINUE

496 211 CONTINUE

497 C calculate transm!ssibilities for all blocks

498 DO 8PP J=1,21

4399 DO 856 I=1,21

508 IF(T. .A)PERMXM=0 .9

501 IF(I. NE 1)PERMXM=(DX{I)+DX{I-1))/({(DX{I~1)/PERMX(]- 1,0))+
502 +{DX({I)Y/PERMX(TI,J)))

5083 IF(I1.EQ. Zl)PERMXP .9

504 IFUI.NE. 21)PERMXP=(DX(I)+DX(I+1))/((DX(I+1)/PERMX(I+1 J))
585 ++{(DX{I)/PERMX(I1,J3)))

506 IF(J.EQ. I)PERMYM g.9

507 IFUI.NE.L)PERMYM=IDY(J)4DY(J=-1))/{(DY{(J~ 1)Y/PERMY(1,3~-1))+
508 +{DY{(J)/PERMY(1,3)))

509 IF{J.EQ. Zl)PERMYP =g.0

518 IF{J.NE. 21)PERMYP=(DY(J)+DY(J+1))/((DY(J+1)/PERMY(I J+1))+ .
511 +(DY{(J)/PERMY(1,d)))

512 IF(I.EQ. l)DELXM DX(1)



vrmomomm
PN v o v e e
QWD U W

554
555
556
557
558
559
560
561
562
563
564
~565
566
567
568
568
570
571
572
573
574
575
576

.NE
.EQ
.NE
.EQ
. NE
.EQ
.NE

ELXM={DX
DELXP=DX
DELXP=(D
ELYM=DY{
ELYM=(DY
DELYP=DY

m™m

D
)
)
D
D
)

- 1)
.21
.21
. 1)
. 1) J)
.21 J)
.21

-NE.1)CALL SSCHINPVT
+NE.21)CALL SSCH{NPV
SSCHINPVT,PT,ZT,PO(
lements to the cal
PERMYM*{PVZ+PVZJIM]
PERMXM*(PVZIMI+PVZ
PERMXP*{PVZIP1+PVZ
PERMYP*{PVZIP1+PVZ
B

set

Q-—«»—q.—-—.—.ﬁ;—,\n,\—-\r—r—,\hﬁ—\a
Fe o e e e YU

(TR RSN E Y Y S

+
TINO MO WD T (et et (3 (O b 1t st ok 5t 1t et

Q@YY )™
1.A)Y*PHI
1r+(1a11

. @)

eSS~ PO

(
(1
. (-
+*TIME(1988
B58 CONTINUE
BPP CONTINUE
routine used to check matrix,
IF(ICHECK.EQ.2)GO TO 1240
DO 1234 11234=1,29
DO 1235 1123
WRITE(G
+,D(I123
1236 FORMAT!
1235 CONTINUE
1234 CONTINUE
1249 CONTINUE
C align matrix element to go
DO 600 1600=1,21
AA(IBUH)=A(IBGH.
BB(I60O)=B(l600,

—

(-1
(I,
5.5

12
5,1
6(2

X —-w

DD(I1688)=D(1609,
EE(I6OO)=E(1600,
FFU1600)=F(1600,

608 CONTINUE
DO 601 1601=22,42
AALTI601)=A(1601~-21,2)
BBUIBO1)=B(1601~21,2)
CC{I601)=C(l601~21,2)
DD{Il6@1)=D(IBO1-21,2)
EE(I681)=E(]l6R1-21,2)
FFEOIBD1)=F(1601-21,2)

681 CONTINUE
DO 682 1602=43,63
AA(1602)=A(1602-42,3)
BB(1602)=B(1602-42,3)
CClIleR2)=Cll6P2-42,3)
DD{16082)=D(1682-42,3)
EE(1682)=E(16£2-42,3)
FFU16B2)=F{1602-42,3)

682 CONTINUE
DO 603 1603=64,84
AA(1683)=A(16083~63,4)
BB(I683)=B(1683-63,4)
CCl1603)=C(16@3-63,4)

1,034001,0)+A41,9

cu
)

)
)
)
)

)

SSCH{NPVT,PT,ZT,PG{(1,J),
-NE.1)CALL SSCHINPVT,PT,P
-NE.21)CALL SSCH(NPVT,PT,

- 116 -

+DX(I-1))*p.5

+DY(J-1))*@.5

Y+DX{I+1))*@.5

JDELYP=(DY{J)+DY(J+1))*g.5
SSCHUNPVT,PT,PMZ,PG(I,J)

+PVZ ,NCODE, 6}

Z1J,NCODE, 6 )
MZ,PG(I-1,J)
PMZ ,PG(1+1,
W PT,PMZ PG(1,d-1)
T,PT,PMZ,PG(I,J+1)
1,J)

PVZIM1,NCODE,6)
wPVZIP1,NCODE,6)
PVZJIMI,NCODE,6)
+PVZJIP1,NCODE,6)

)

+Z0IJ,NCODE, 6)
lated values
{(J)*DELYM)

JIY*POI(T,
BI*TEMP*

- o~

I
J)
J)

I)*DELXM)
Y*DELXP)

*DELYP)

H{PHILI,0)/(3,.6621987D-@5%

6
Y/

6219A7D-95*201
{SG*H*DX(1)*DY(J))

ft will print all elements out .

11235.11234)

fnto GBAND matr{x solver
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578
579
580
581
582
583
584
585

[salealieaioalealealiealsalca W oaloa e,

[SE SIS N USSP U,
N~ QWD NO U & WN —

623

; 684

685

606

647

608

609

61

DD(I683)=D(16£3-63,4)
EE(I603)=E(1683-63,4)
FFLI6@3)=F(1683-63,4)
CONTINUE

DO 604 1604=85,105
AA(I604)=A(1604-B4,5)
BB(1604)=B(1604-84,5)
CC{I6P4)=C(1604-84,5)
1604-84,5)
)
)

DD(I1604)=D{
EE(1604)=E(1604-B4,5
FF(1604)=F(1604-84,5
CONTINUE

DO 685 1685=106,126
AALI685)=A(1605-105,6
BB(I605)=B(16085~105,6
CC(I1605)=C(1685-1085,6
DD(1605)=D(I16085-185,6
EE(1605)=E(1605-105,6
FF(1685)=F(16085-185,6
CONTINUE

DO 606 1606=127,147
AACT606)=A{1606-126,7
BB(I606)=B(1606-126,7
CC(1686)=C(16086~126,7
DD(1686)=D(1686-126,7
EE(1606)=E(I16086-126,7
FF(16086)=F(1686-126,7
CONTINUE

DO 687 1607=148,168
AA(1687)=A11687-147,8
BB(1607)=B(1687-147,8
CC(1687)=C(1687-147,8
DD(1687)=D(1687-147,8
EE(1607)=E(16087-147,8
FF(1687)=F(1687-147,8
CONTINUE _

DO 688 1608=169,189
AA{1608B)=A(1608-168,9
BB(1688)=B(1608-168,9
CC(16@88)=C(I6AB8-168,9
DD(I160B)=D(1608-168,9
EE(I60B)=E(160B-168,9
FF(I6OR)=F(1608B-168,9
CONTINUE

DO 609 1609=190,210

)
)
)
)
)
)

AALTG6O9)Y=A(1609-189,10)
BB(I609)=B(1609-189,18)

CC{1609)=C(1609-189,18)
DD(1683)=D(16089-189,18)
EE(I609)=E(I6H9-18B9,18)
FFU1609)=F(16089-189,18)
CONTINUE

DO 618 1610~211,231
AALIG1E)=ALIG1B-210,11)
BB(IG1O)Y=B(IGIP-210,11)
CCllel@)=Cl(Ipl@~-210,11)
DDUI61@)=D(I161@-219,11)
EE(1610)=E(1610-210,11)
FFUIBIA)=F(161R-210,11)
CONTINUE

DO 611 1611=232,252
AA(CI611)=A(1611-231,12)
BB({I611)=B(1611-231,12)
CC(Iell)=ClIp11-~231,12)

= 117
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785 DD{1619)=D(I619-399,27)
706 EE(I613)=E(1619-399,2%)
787 FFUI619)=F(1619-399,24)
708 619 CONTINUE

709 DO 2808 120 421,441
718 AA(12008)=A(12000-420,21

L.l
CC(I2000)=C(12000- 420,21
DD(IZ2800)=D 2R00-429,21
EE(I2080)=E 2000-420,21
FF{12000)=F 21

2088 CONTINUE
C routine used for debugging, wil] Print matrix out
IF(ICHECK.EQ.2)G0 TO 1241
DO 778 1778=1, 441 .
WRITE(G, 771)AA(I77H).BB(177ﬁ),CC(I775),DD(I77ﬂ).EE(I77ﬂ)

2@=

(1 )
BB(IZDH@)=B(IZGGG—4ZU.7 )

Cll )

D1 )

E(I )

(1 )

2RPRO-428,

NN NN NN N
PN e bt bt e et et e s e
QUONTYU & WA -

721 + FF(I77B)
722 771 FORMAT(S(ZX F15. 8))
723 778 CONTINUE

- 724 1241 CONTINUE
725 DO 544 1544=1,185@01
726 AAATIS44)=0.0
727 544 CONTINUE
728 DO 548 1549=1,441
729 KDR(I548)=g
730 542 CONTINUE
731 KDR({1)=1
732 DO 541 L541=2,44]
733 IF{L541.GT.21)G0 TO 542
734 KDR(L541)*KDR(L541—1)+21+L541
735 GO TO 541
736 542 [F(L541.GT.420)G0 TO 543
737 KDR(L541)=KDR(L541~1)+43
738 GO TO 541
739 543 KDR(L541)=KDR{L541-1)+441- -L541+423
748 541 CONTINUE
741 DO 545 1545=1,44]
742 AAA(KDRI(1545))=CC(1545)
743 545 CONTINUE
744 AAA(2)=DDI(1)
745 AAA(22)=EE{])
746 DO 546 1546=2,21
747 AMALKDR(I546)-1)y=BB(1546)
748 AAA(KDR(1546)+1)=DD(1546)
749 AAA{KDR(I546)+21)=EE(1546)
7508 546 CONTINUE
751 DO 547 1547=22,4280
752 AAA(KDR(I547)~1)=BB(]I547)
753 AAA(KDR(I547)-21)=AA(1547)
754 AAA(KDR{I1547)+1)=DD(1547)
755 AAA(KDRUI547)+21)=EE(I547)
756 547 CONTINUE
757 DO 548 1548=421,449 » :
758 AAA(KDR(1I548)-21)=AA11548)
759 AAA(KDR(1548)-1)=BB(1548)
768 AAATKDR(IS548)+1)=DD{1548)
761 548 CONTINUE
762 AAA(1B5008)=BB{441)
763 AAA(1B48BO)=AA(441)
764 CALL GBANDUAAA,FF,XX,441,21,1. 2,I1ERR,®)
765 C set pg to the ca]culated pressures
766 LiL=g
767 DO 752 J752=1,21

768 DO 753 '1753=1,21
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778
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775
776
777
778
778
789
781

782
783
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785
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LLL=LLL+1
PGUI753,3752)=XX(LLL)
753 CONTINUE
752 CONTINUE
calculate the difference, 11f converged, go to print out subroutine
DO 702 1782=1,21 . o
DO 783 1783=1,21
DIFF=PG({17082,1783)~-PGO(170£2,1703)
DIFFA=DABSI(DIFF)
IF(DIFFA.GT.CONVER.AND.INNUB.LT.MAXIN.AND.IFORCE.EQ.H)GO TO 891
783 CONTINUE :
782 CONTINUE
check if the force {teration option s engaged
IF(IFORCE.EQ.1.AND,INNUB.LT.NFORIT)GO TO BZ1
IF(ISOO.NE.1)CMASOLD=CURMAS
QT70=0.0 :
CURMAS=g .8
calculate current mass In place
DO 718 1718=1,21
DO 711 171t=1,21

CALL SSCHINPVT,PT,Z7,PG{I171®,1711),ZRM,NCODE,5)
CURMAS=CURMAS+(DX(1715)*DY(1711)*PHI(I716.1711)*H)*
+{(28,.97*SG*PG(1718,1711))/(ZRM*1@.73*TEMP))
QT0=Q70+Q(1718,1711)

711 CONTINUE
718 CONTINUE
PROMAS=TMASS-CURMAS
IF(190@.EQ.1)CMASP=TMASS-CURMAS
IF{I908.NE.1)CMASP=CMASOLD-CURMAS
TIMETO=90.80
DO 715 1715=1,19@8
TIMETO=TIMETO+TIME(I715)
715 CONTINUE
PROD=TIMETO*QTO
GRTHEO=TMASS~PROD
PRODCT=QTO*TIME( 1900}
ERR=((GRTHEO-CURMAS)/GRTHEO)*1g0.¢
IFCIPRINT{(I900).NE.1)GO TO 958
CALL OUTPUT(PG,INNUB,1908 . TIME(I908),
+PROMAS,TIMETO.PROD.PRODCT.TMASS,CURMAS,ERR.CMASP,GRTHEO.
+ISKIPP,IBLPR,JBLPR,IBLPR2,JBLPR2Z)
958 CONTINUE
988 CONTINUE
STOP
END
SUBROUTINE OUTPUT(PG,INNUB.ISﬁH,TM.PROMAS.TIMETO,PRDD.PRODCT,
+THASS.CURMAS.ERR.CMASP.GRTHEO.ISKIPP,IBLPR.JBLPR.IBLPRZ.JBLPRZ)
IMPLICIT REAL*B8{A-H,0-2Z)
DIMENSION PG(21,21)
WRITE(E,1)
WRITE(6,15)
1 FORMAT( lx' '************ﬁ*****************ﬂﬁ*********ﬁi***ﬁ***' N
+'tﬁ*****i*\i***i******************N*N*******ﬁ*****ﬁﬂ'
+lﬁ***#*******************ﬂ***k*') !

WRITE(6,2)]1908
2 FORMAT(///,2X,'TIME STEP NO. = *',14)
WIM=TM/B86408 .80
WRITE(6,3)WTM
3 FORMAT{(/,2X,'TIME STEP SIZE FOR THIS TIME STEP = ‘WF29.11,1X,
+' {DAYS) ")
WIM2=TIMETO/86400.0
WRITE(6,4)WTM2
4 FORMAT{2X,'TOTAL TIME ELASPED FROM START OF SIMULATION = °
+F28.11,1X,'(DAYS)")

L



833
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835
836
837
B34d
839
840
841
B42
843
844
845
845
B47
B48
849
BS @
B51
852
B53
BS54
855
856
B57
. Bb58

859
B60
B61
862
863
864
865
866
867
BE8B
869
870
871
872
873
B74
875
B76
B77
878
879
88O
BB1
B82
B8B83
884
885
BB6
887
888
BB9
BS@
891
B892
893
894
B95
896
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30

6

7

8

31
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34

2881
21
52¢
521
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15
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WRITE(E,5)TMASS

FORMAT(/,2X, ORIGINAL GAS IN PLACE AT START OF SIMULATION = °

+F26.11,1X,7(LBS)")

WRITE(6,30)CMASP

FORMAT(2X,’GAS PRODUCED FOR THE CURRENT TIME
'(CALCULA1FD) = ',F29. +IX, ' {LBS) = FOR 1INJ.
WRITE(6,6)PRODCT

FORMAT(ZX,'GAS PRODUCED FOR THE CURRENT TIME
+F28.11,1X,'{LBS) =~ FOR INJ. & '+ FOR PROD.')
WRITE(6,7)PROMAS

FORMAT(2X, 'TOTAL GAS PRODUCED FROM START OF SIMULATION®

'(CALCULATED) = ',F26.11, v '{LBS) - FOR IN
WRITE(G B8)PROD

WRITE(G.Q)CURMAS

FORMAT(2X, GAS REMAIN (CALCULATED) = ' ,F26.1
WRITE(6,31)GRTHEO

FORMAT(2X,'GAS REMAIN (THEO.) = * F26.11,1X
WRITE{(6,18)ERR

FORMAT(/,2X, 'MATERIAL BALANCE ERROR = °',F28
IFUISKIPP.EQ.1)GO TO 528

WRITE(6,11)

STEP',

1

4

Xy
L& * FOR PROD. ")

STEP (THEO.) = °*,

11X,
J. & + FOR PROD.")
X

FORMAT(ZX 'TOTAL GAS PRODUCED FROM START OF SIMULATION®
+'(THEO.) = * ,F26.11,1X,'(LBS) - FOR INJ. & + FOR. PROD.

M

-

1
)

11X, (LBS) ")

v ' (LBS)'

)

LI, 0K, 0% )

),PG(I12,5),
)

FORMAT(//,2X,'PRESSURE MAP (LEFT HALF) :')

DO 12 I12=1, 21 :
WRITE(6.13)PG(112.1).PG(IlZ.Z).PG(112.3),PG(112,4
+PGLI112,6),PG(I12,7),PG(112,8),PG(I12,9),PG(I12,1#
FORMAT(/,2X,18F12.5)

CONTINUE

WRITE(E,28)

FORMAT(//,2X,'PRESSURE MAP (RIGHT HALF) :1')

DO 21 121=1,21 .
WRITE(6,20601)PG(121,11),PG(I21,12),PGLI21,13),PG(I2
+PG(I121,156),PG(I21,16),PG(121,17), PG(121,18),PG(I21,
+PG(121,28),PG(121,21)

FORMAT(/,1X,11F11.5)

CONTINUE

CONTINUE

IF(ISKIPP. EQ l)WRITE(B 521)IBLPR JBLPR PG{IBLPR,JBLPR)
FORMAT{//, VPO T2, 0,12, = ' F16.8,1X, 'PSIA')

WRITE(B,IA)INNUB

FORMAT(//,2X,'NO. OF ITERATION PERFORMED',I1X,

+'FOR THIS TIME STEP = ',14)

WRITE(6,1)
WRITE(6,15)
FORMAT (11X, ')

L N e R A I I I T I I T I ™
WRITE(2,3809)WTM2,PG(IBLPR2,JBLPR2)
FORMAT(2X,F28.11,5%,F28.11)

LR R e i i I I Im ™M™
RETURN
END
SUBROUTINE SS

H Y,XIN.YOUT,NCODE, IW)

CH{ LRAN
IMPLICIT REAL*8(A-H,0-27)
DIMENSION X{N),Y(N)
IF(XIN,LT.X(1))NCODE=88
IF{XIN,LT.X{1))YOUT=0.0
IFIXIN.LT.XCL1IIWRITELE, 18)
FORMAT{(//,"INPUT DATA EXCEED LOWER LIMIT')
IF(XIN.GT.X{N))NCODE=99
IFIXIN.GT.X{(N))YOUT=0. 8
IFIXIN.GT.X{N))WRITE(6,11)
FORMAT(//,"INPUT DATA EXCEED UPPER LIMIT')
IFAXIN.LT.XC1).0R.XIN.GT.X(N))GO TO 9999
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958
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K=1
GO TO !

K=K+1

CONTINUE
TF(XINCEQ.X{K))IYOUT=Y(K)
IFIXIN.EQ.X(K))GO TO 999
IF(XIN.GT.X(K))GD TO 2
YOUT=Y(K~1)*(Y(K)-Y(K-l))*(XIN—X(K—I))/(X(K)—X(K-l))
CONTINUE

NCODE=1

CONTINUE

RETURN

END

SUBROUTINE GBAND(A,D,X,N, M,EPS,IERR,IFRST)
IMPLICIT REAL*B(A-H 0 Z)

DIMENSION A(18501), D(ddl),X(dAl)

IERR=Q

J=1

DO 1@ I=1,N

IE=M

IF{I+M-N)21,21,22

IE=N-1

AUX=I

RST.GT.8)GO TO 27
BSUA(J))-EPS)25,25,27
TERR+1

IG)10,198,26

Jo=1,MBIG

Lo > T

ATJIK)Y=A{JIK) -A(JIK)I*S
CONTINUE

TIAUX=J8+1

DLTAUX) =DUTAUX)-D()*S
TE=M
IFCTAUX+M-N)31,31,32
TE=N-T1AUX

TIEAUX=M
IFUIAUX-M)33,33,34
TEAUX=T1AUX

IE1=TE+I1EAUX
J1=J01+1E]

J=J2+1

J=J-M-1

NPI=N+]

DO 48 T1INV=],N
I=NP1-1INV

1E=M
IFCI+M=-N)41,41,42
IE=N-1

MBIG=IE
X(I)=D{(1)
IF(MBIG)44,44,43
DO 58 K=1,MBIG
IK=1+K



961
962
963
964
965
966
367
968
969
974
971
972
973
974

50
44

52
51

53
54

49

K0+
~—
~N
—~
o

K)*A{JK)
)

——
P x
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TINUE

RETURN

END
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