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ABSTRACT

This study has been carried out in two related sections. In the first
section, exact analytic equations have been derived to define breakthrough
curves (displacing fluid cut versus pore volumes injected, or area swept
versus pore volume Injected) for different developed flooding well patterns
for unit mobility ratio. In the derivation of equatlioms, it was assumed that
the displacements were piston-like with no capillary and gravity effects. The
analytic solutions are various forms of elliptic integrals which differ
depending on the geometry of the pattern. The exact elliptic integral solu-
tions for the breakthrough curves have been correlated into a single curve by
defining a correlating parameter, we have called the dimensionless pore
volume. Since breakthrough curves for the patterns considered in thls study
(five-spot, inverted seven-spot, direct line drive, and staggered line drive)
all correlate into a single curve, it 1is concluded that the breakthrough
curves for any other repeating patterns should also lie reasonably near this
same correlating curve.

The first section also includes an extension of an analytical definition of
pattern breakthrough curves for mobility ratio other than one. In the
derivations, it was assumed that the streamlines of a pattern did not change
with mobility ratio. The results of the analysis showed that the breakthrough
areal sweep efficlencies at various mobility ratios were nearly independent of
mobility ratios, while the post breakthrough data were different for each
mobility ratio.

The second part discusses flow of a tracer slug in various patterns. In each
system, the longitudinal mixing of the tracer slug in a general streamtube of
the pattern has been formulated mathematically. A line integral along a
streamtube was derived which represents the length of the mixed zone. When
this line integral was substituted into the mixing equation, an expression for
the concentration of tracer at any location within a streamtube resulted.
Furthermore, these expressions integrated over all the streamlines produced a
set of equations describing tracer production curves from homogeneous repeated
patterns. The study shows that the effluent tracer concentration depends upon
the pattern geometry and size, and the dispersion constant of the formationm.

Tracer production curves for the different patterns considered have also been
correlated into a set of curves depending on a/a, (a = distance between like
wells, @ = dispersion constant)}. The correlation was achieved by deriving two
sets of correction factors, one for tracer peak concentration, and another for
a/o ratio. As a result of this correlation, a tracer response from any
repeated homogeneous pattern can be estimated from the response of an
equivalent five-spot system by utilizing the correction factors.

A computer program based on a non-linear optimization technique was developed
which decomposes a detected tracer breakthrough profile from a multilayered
system into responses from individual layers. The program computes porosity-
thickness and fractional permeability-thickness for each layer. The algorithm
utilizes the equations of the five-spot pattern in conjunction with the
developed correction factors. A five-spot field example which has been
successfully decomposed into several layers Is shown to illustrate the use of

this research.

- viii -



1. INTRODUCTION

Reservoir heterogeneities play an important role in 0il recovery by improved
recovery techniques., In any fluid injection operation, high permeability
streaks divert substantial quantities of the injected fluid. This unequal
distribution of the injected fluid greatly reduces the volumetric sweep
efficiency of the reservoir and, hence, lowers the efficlency of the displace-
ment processes. Therefore, detection of high permeability zones and channels
would be helpful in the understanding, design, operatiomn, and interpretation
of injection projects.

A means to follow fluid movement in a reservoir would be an important tool in
determining the characteristics of a formation directly. Radiocactive and
chemical tracers provide the capability to achieve this purpose. Information
on reservoir heterogeneity supplied by flow of tracers in a reservoir is
invaluable in the design of assisted recovery operations and also useful in
reservoir simulation studies. This informatlon, whether qualitative or
quantitative, is generally extracted from tracer breakthrough profiles
detected at the production wells. Often, tracer breakthrough profiles are a
summation of tracer responses from several layers which constitute the
formation. 1In practice, the number of the layers is unknown and only a tracer
breakthrough curve from a stratified system is available. This is a classic
inversion problem. To analyze tracer breakthrough profiles, results must be
deconvoluted into the constituent layer responses. From the constructed layer
responses, it would be possible to compute important parameters for the layers
such as permeability, porosity, and thickness.

Several works (Brigham and Smith, 1965; Baldwin, 1966; and Yuen et al. 1979)
have been published on tracer flow which have attempted to obtain quantitative
information about the nature of reservoirs. Each of these had limitations
which led to incorrectly defined reservolr parameters and also each of these
methods considered only fully developed five-spot patterns and unit mobility
ratio.

This study draws from these earlier works and was initiated to develop an
analysis for tracer tests which could be used for any repeated pattern within
the limitation of mobility ratio of one. To do this a mathematical descrip-
tion of tracer breakthrough curves for any developed homogeneous pattern is
required. For the breakthrough curves to be precise, the analysis must
include a rigorous treatment of the mixing of tracer in the patterns. Also, a
correlation of these tracer production curves into a single curve {(or a single
set of curves) could simplify the analysis. Finally, a method which could
analyze tracer elution curves from stratified reservoirs without adopting
lengthy trial and error procedures could reduce the needed time for an
analysis. With these points in mind, a new tracer analysis method has been
developed.



2. LITERATURE REVIEW

In the past several decades, both radiocactive and chemical tracers have been
used as effective tools for evaluation of various subterranean formations such
as petroleum and geothermal reservoirs and underground aquifers. The tracer
tests conducted are usually of two types: 1) well-to-well (interwell) tests
in which a tracer is injected in an injection well and detected continuously
at a production well; or 2) single well tests in which the tracer is injected
into a well and is allowed to react with the formation fluid before being
produced from the same well. In this study, only the well-to-well tracer flow
tests are considered.

This chapter has been divided into four main parts. In the first, literature
related to qualitative interpretation of tracer tests is presented. The
second part discusses the mechanism of tracer flow in porous media. 1In this
part, dispersion (mixing) in linear and non-linear flow geometries is covered
at length. Quantitative analysis of tracer test data from various underground
reservoirs is presented in the third part. The last part provides a summary
to this chapter. -

2.1 QUALITATIVE INTERPRETATION OF TRACER DATA

The results of interwell tracer tests usually have been interpreted on a
qualitative basis. Therefore, only general ideas about the characteristics of
the formation have been extracted from the tracer tests. Strum and Johnson
(1951) verified the occurrence of crevices and jolnt-plane partings in the
Pennsylvanian Bradford Third Sand formation by qualitatively studying the
results of several tracer tests conducted iIn this sand. Three different
tracers were used: brine, fluorescein and a surface active compound. The
results verified the existence of directional permeabilities which had already
been measured from core samples. Based on this finding, subsequent waterflood
well patterns were designed to improve the swept volumes.

Carpenter et al. (1952) used boron in the form of Borax and boric acld as a
water soluble tracer to find the main features of three oil-bearing forma-
tions. They concluded that in two of the formations, several channels were
present instead of a single "pipe-line” channel, and the third formation did
not have channels or by-passing zones. Their conclusions were based upon the
concentration levels of boron detected at the producers, and the elapsed time
between the injection of the tracer and its appearance at the producing wells.

A comprehensive list of information obtainable from tracer tests was presented
by Wagner (1977), who studied the results of twenty tracer programs conducted
in reservoirs undergoing waterfloods, gas drives and water—solvent injection
operations. His list included the following items:



1) Volumetric sweep—The volume of fluid injected at an injection well to
breakthrough of the tracer at an offset producer is iIndicative of the
volumetric sweep efficiency between that pair of wells. A small break-
through sweep efficiency indicates the existence of a fracture or a thin,
high permeability streak between the two wells.

2) Identification of offending injectors—-With different tracers injected
into a formation, a comparison of arrival times of tracers at the
production wells can determine the injectors responsible for early break-
through in specific producers. Remedial treatment of the injectors would
normally be necessary.

3) Directional flow trends—When different tracers are injected into regular
patterns, the existing directional flow trends are identified by early
tracer breakthrough at the producers located along the preferential flow
direction.

4) Delineation of flow barriers—Lack of response to an Injected tracer at a
production well indicates the existence of a barrler or a sealing fault
between the pair of wells.

5) Relative velocities of injected fluids—When different fluids tagged with
different tracers are injected simultaneously or sequentially in the same
well, the individual arrival time of the tracers at the producers can be
used to measure the relative velocities of the injected fluids. This
information is useful in determining the appropriate fluid to use for
mobility control to achieve a more uniform sweep in tertiary oil recovery
operations.

6) Evaluation of sweep improvement treatments-—The success oOT effectiveness
of sweep efficiency tLreatments can be evaluated by comparing the break-
through times of tracers before and after the treatment.

As an implementation of Wagner's work, D'Hooge et al. (1981) simultaneously
injected four radiocactive tracers (carbon-14, cobalt-57, cobalt-60 and
tritium) into the West Sumatra formation (Pennsylvanian age sandstone) to
track the movements of the injected fluids. A qualitative interpretation of
tracer concentration arrival curves at different production wells provided
valuable information on the direction of flow, reservoir discontinuities, and
probable areas of poor sweep efficiency. These investigators, however, did
not analyze the tracer elution curves in detail to obtain quantitative
information about formation heterogeneity.

2.2 MECHANISM OF TRACER FLOW

To perform detailed quantitative analysis on interwell tracer breakthrough
curves, one must have a thorough knowledge of the mechanism of tracer movement
in the formation. In general, the transport of tracer material in a porous
medium is subject to two phenomena--convection and hydrodynamic dispersion
(Bear, 1972).



2.2,1 Convection

Convection 1s used here to describe bulk movement of fluids as governed by
Darcy's law. This flow results from potential gradients imposed on the
system. In a reservoir, the potential differences are established either by
density differences between the flowing fluids, or by production and injection
wells drilled into a formation. Convection depends mainly on the well
arrangements and operating conditionms, such as flow rates of the wells. A
comprehensive survey of the work done on convection for different well
patterns was provided by Crailg (1971).

2.2.2 Hydrodynamic Dispersion

Hydrodynamic dispersion is composed of two parts—molecular diffusion and
mechanical dispersion. Molecular diffusion results from component concen-
tration gradients established between two miscible fluids, and is independent
of flow velocity. Mechanical dispersion, on the other hand, is the result of
movement of individual fluid particles in tortuous pore channels of a porous
medium. On a microscopic level, dispersion results from variations in
velocity of tracer material as it flows through the separating and rejoining
pore passages. In two dimensional flow, a distinction has been made between
mechanical dispersion occurring in the direction of flow (longitudinal
dispersion), and that occurring in a direction perpendicular to the mean flow
(transverse dispersion).

As a consequence of hydrodynamic dispersion, tracer material gradually spreads
and occupies an increasing portion of the flow domain beyond the region it
would occupy according to fluid convection alone. The amount of spreading (or
mixing) depends on the dispersivity of the porous medium and the geometry of
the flow system. Considerable work, both theoretical and experimental, has
been done to study the phenomenon of dispersion (mixing) in porous media for
various flow geometries.

2.2.2.1 Linear Flow

Aronofsky and Heller (1957) presented a mathematical analysis of mixing
(dispersion) that occurs between two miscible fluids as one fluid displaces
the other linearly through a porous medium. They solved the following
continuity equation for the fluid concentration:

aC _ -
X S (2-1)

C0,t) = C,
c(x,0) = 0
C(=,t) = 0



Where,

C = concentration of displacing fluid, mass fraction
K = effective mixing coefficient
v = microscopic velocity, q/A¢

The Aronofsky-Heller solution is:

v
C(ié.t) - % [erfc (x - vt) + eK erfc (x + vt):l (2-2)
o 2 YKt 2 YKt

The authors showed that the second term in the brackets was quite small except
at small values of x or large values of K.

Aronofsky and Heller used this solution to analyze data from miscible flow
experiments that were available in the literature. They were able to match
the data reported by von Rosenburg (1956), as well as data provided by Koch
and Slobod (1957). Fromthe analysis of von Rosenburg's data, they discovered
that the effective mixing coefficient, K, was a function of fluid velocity.
Furthermore, the K-values computed from von Rosenburg's data when graphed
against flow rate on log-log graph paper resulted in a straight line with a
slope equal to 1.2. From this observation, Aronofsky and Heller concluded
that the effective mixing coefficient was proportional to flow velocity to the
power l.2.

Ogata and Banks (1961) independently solved the one-dimensional convective
diffusivity equation (Eq. 2-1) with the same boundary conditions considered by
Aronofsky and Heller, and obtained a solution identical in form to Eq. 2-2.
Ogata and Banks showed that the concentration profiles corresponding to Eq.
2-2 solution were not symmetrical about the plane of x = vt for small values
of vx/K. For vx/K > 500, a maximum error of 3% was introduced by neglecting
the second term in Eq. 2-2, and the corresponding concentration profiles
became symmetric about the x = vt plane. In ordinary experiments, errors of
the order of magnitude of experimental errors are introduced if a symmetrical
solution is assumed instead of the actual asymmetrical one. This implies that
the second term can be neglected for all practical purposes.

Rairmondi et al. (1959) found that mixing between miscible fluids was con-
trolled by two parameters: coefficient of molecular diffusion, and a constant
determined by structure of the porous medium. They concluded that the
effective mixing coefficient was given by K = D' + av. In this relationship,
D' is the apparent coefficient of molecular diffusion within the porous
medium. It is less than the actual molecular diffusion coefficient by product
of formation resistivity factor and porosity. The term a is a constant which
depends on the structure, pore size and graln size distribution of the porous
medium. For consolidated Berea sandstone cores, the experimental values of «
were between 0.15 and 0.25 cm. For packings of uniform size particleg, o was
equal to €24 , where d Is the average grain diameter and € is a
characteristic” constant og)the packs which was found to be equal to 0.68 for
uniform spheres. The experiments showed that molecular diffusion was the
dominating factor at low flow rates, and became negligible at high flow rates.
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Handy (1959) designed an experiment to study the effects of molecular
diffusion on the mixing-zone size for miscible displacements. He added
methanol and sucrose as double tracers to the displacing fluid. Methanol has
a higher molecular diffusion coefficient than sucrose. The methanol and
sucrose concentration profiles detected at the outlet end of the linear core
showed no appreciable differences at two displacement rates: 0.5 ft/day and
16.5 ft/day. This indicated that molecular diffusion was not an important
factor in the mixing of displacing and displaced fluids in the frontal
regions.

A thorough experimental Investigation of hydrodynamic dispersion in 1linear
miscible displacements was carried out by Brigham et al. (1961). They studied
the effects of fluid velocity, distance travelled, bead size (type of porous
medium), viscosity ratio of the fluids and pack diameter on the amount of
hydrodynamic dispersion which they called length of mixed zone. Their conclu-
sion was that mixing phenomenon in displacements with favorable viscosity
ratio could be explained by:

E&%&El =<% erfc (5Ll21ﬂi> (2-3)
0 2 VKt

K = 2+ av (2-4)

The first term on the right hand side of Eq. 2-4 is the apparent molecular
diffusion, which is equal to the ratio of the molecular diffusion constant
divided by the product of the formation resistivity factor and porosity of the
system. The second term is the mechanical dispersion. Constant o, known as
the dispersion constant, depends on the nature of porous medium as well as the
viscosity ratio of the fluids. For consolidated cores, values of o were found
to be 10 to 100 times greater than the values of o for unconsolidated cores.
This implied that substantial mixing had occurred in consolidated cores com—
pared to the packed beds. The authors also discovered that the effect of
molecular diffusion on mixing was negligible except at very low velocities.
Their Fig. 5 is reproduced here as Fig. 2.1, and illustrates these points
clearly. Brigham et al., however, did not present the effects of lateral
(transverse) dispersion on mixing.

Blackwell (1962) studied both longitudinal and transverse dispersion in sand-
packed columns. He found that mixing in both directions was dominated by
molecular diffusion at low rates, and by mechanical dispersion at high rates.
However, mass transport by molecular diffusion was more important for trans-
verse mixing than for longitudinal mixing. At sufficiently high rates,
transverse mixing coefficients were found to be smaller by a factor of about
24 compared to those in the flow direction for both 20-30 mesh Ottawa sand and
40-400 mesh silica sand., Figure 7 of their paper is reproduced here as Fig.
2.2, and shows the mixing coefficients for various packs.
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Fig. 2.1: EFFECT OF RATE AND TYPE OF POROUS MEDIUM ON MIXING
COEFFICIENT (Brigham et al., 1961)
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Fig. 2.2: LONGITUDINAL AND LATERAL MIXING COEFFICIENTS
FOR VARIOUS SANDS (after Blackwell, 1962)
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Harleman and Rumer's (1963) expﬁr%mental work showed that the Ilongitudinal

mixing coeff%f'ent was K; = v , while the transverse mixing coefficient
was Kq = aqv */.  The velocity, v, is the microscopic average velocity along
the main fﬁow direction. The ratio of the dispersion constants /G, was

18.3. This was in good agreement with the value of 24 reported by Blackwell.
Although molecular diffusion was not reported in this study, the authors
speculated that the effects of molecular diffusion would be minimal.

Besides the diffusion model (error function type solutions) describing mixing
phenomenon, other models have also been presented to predict mixing in a
porous medium. The simplest one 1is the mixing cell, or stirred-tank model,
presented by Aris and Amundson (1957). In this model, the porous medium is
viewed as a series of cells or tanks connected to each other by tubes having
no volumes. Complete mixing 1s assumed within each cell, resulting in a
uniform composition in each cell. For a small number of such cells in series,
the calculated concentration profile is asymmetrical. However, for Ilarger
numbers of cells, the concentration profile approaches the symmetrical normal
distribution curve computed from a diffusion model.

In some linear miscible flow experiments, especially those run with short
cores, a “"tailing” in the effluent concentration profile 1s observed and the
effluent profile is asymmetric. The degree of asymmetry is more pronounced in
consolidated porous media than in laboratory packed columns. Usually, the
deviation Is not serious and the diffusivity equations provide a good approxi-
mation to actual observations. However, several investigators have attempted
to explain the asymmetrical concentration profiles quantitatively. Deans
(1963) considered the porous medium as a series of normal pores with frequent
dead-end passages, or stagnant zones distributed throughout the system. These
stagnant pockets store fluids, thereby elongate the mixing zone, and give a
tail to the concentration profile. To describe this phenomenon mathemati-
cally, Deans modified the mixing cell model to include mass transfer from the
flowing stream into the stagnant volumes. As a result, he produced a capaci-
tance model which has three parameters: number of mixing cells (equivalent to
dispersion coefficient); amount of stagnant volume (1-f), f being the flowing
volume as a fraction of total pore volume; and a rate constant for the mass
transfer into the stagnant volumes. Because of the existence of three degrees
of freedom (three constants), the capacitance model fits experimental data
better than does a diffusion model which contains only one constant (the
dispersion coefficient, K).

Coats and Smith (1964) augmented the diffusion equation with Deans' modified
mixing-cell model and produced a differential capacitance model. They used
the new model to match their data obtained from displacement of calcium
choloride solution by a sodium chloride solution in linear cores. The cores
were both consolidated and unconsolidated, and between 8 and 9 inches long.
The effluent concentration profiles from the consolidated cores exhibited
considerable asymmetry, while the unconsolidated cores yielded nearly sym-

metrical profiles. Coats and Smith demonstrated that the differential
capacitance model matched the data significantly better than a simple
diffusion model. This behavior was rationalized on the basis that the

capacitance model attributed a certain amount of mixing to dead end pore
volume effects, while the disperslon model considered only part of the mixing
generated in the experiments. The degree of contribution of capacitance
effects could be estimated from a dimensionless group defined as a = KmL/V,
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( = mass transfer rate, L = length of the system and v = velocity). For
their laboratory experiments, “"a" was a small number which indicated a signi-
ficant contribution to the mixing by capacitance effects. However, for field
cases, where "a" is a large number (small v and large L), the capacitance
effects would be virtually absent and mixing would be controlled almost
entirely by a dispersion mechanism. Thus, danger arises from attributing the
total mixing observed in short laboratory cores to the dispersion mechanism
alone, and subsquently extrapolating the results to field scale. An easy
alternative would be to use longer cores in the experiments designed to study
dispersion characteristics of a specific porous medium., Because it is often
impossible to retrieve long cores from a formation, the results of experiments

conducted with short cores should be interpreted with special considerations.

A specific study of mixing in short linear cores was performed by Brigham
(1974). For such systems, the boundary conditions used in solving the
convective diffusivity equation (Eq. 2-1), greatly affected the resultant
solutions., However, by differentiating between the in-situ concentration and
the flowing concentration, and allowing for this difference at the boundary
conditions as well, Brigham showed that the results computed from various
forms of solutions to the diffusivity equation were nearly identical. The
solution given by Aronofsky and Heller and Ogata and Banks (Eq. 2-2) was found
to generate values for concentrations which were in good agreement with other
solutlons. The dead-end—-pore models (capacitance and differential capacitance
models) were found to have been based on the in-situ concentrations, while
Coats and Smith had used them to match the flowing concentration data.
Although Coats and Smith obtained good matches to their experimental data, the
parameters computed from the differential capacitance model would not properly
represent the behavior of the same porous medium with longer lengths. Brigham
adjusted Coats and Smith's solution (Eq. 28 in their paper) to comsider the
difference between flowing and in-situ concentrations. He showed that with
the new solution, the behavior of large systems might be computed correctly by
parameters obtained from small cores (Fig. 6 in Brigham's paper). Brigham
concluded that for large systems, the corrected capacitance model behaves like
the ordinary diffusion model with a somewhat greater effective dispersion
constant, and that the simple error function solution (Eq. 2-3) to the diffu-
sivity equation yields satisfactory results.

2.2.2.2 Non-~linear Flow

The preceeding considers mixing or disperslon In linear systems where the flow
is uniform and the average velocity is constant. For other geometries, fluid
velocity 1s a function of position, and correspondingly, the mixing coeffi-
clent varies from point to point. Therefore, any study of mixing in systems
that do not exhibit uniform flow must consider the dependence of dispersion on
velocity. The varing dispersion coefficient makes it very difficult, if not
impossible, to derive analytic equations to describe mixing in non-uniform
flow fields. Even for a simple geometry, such as a diverging radial flow, the
exact analytic solution to the convective diffusivity equation has not been
obtained in a usable form, according to Bear (1972). However, several
approximate solutions are available which describe mixing in radial flow
systems with good accuracy. Raimondi et al. (1959) derived an approximate
solution based on the assumption that “the influence of dispersion becomes
small in comparison to local convection as the displacing fluid (or tracer)
moves away from the source (injection well). Ralmondi's solution is:
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c 5 erfc (2-5)
© é-ar3 +-2'r4
3 0
where,
Q = gq/2m¢h
q = injection rate
a = disperslon constant
D' = apparent molecular diffusion coefficient
In this solution, the initial condition c(r,0) = 0 is not satisfied. This

implies that the approximate solution assumes a finite amount of tracer mass
present initially in the porous medium. Although this error is large in the
immediate vicinity of the injection well, it is virtually negligible at larger
distances from the injection well.

Another approximate solution for dispersion in a radially diverging flow was
obtained by Lau et al. (1959). The approach was based on the assumption that
the growth of the length of the mixed zone in a radial miscible displacement
was a linear sum of two effects: one due to distance travelled {longitudinal
dispersion), and the other due to the geometry of flow (divergence of stream-—
lines). The distance effects were obtained from the mixing equation for a
linear system. The - geometry effects were derived from consideration of
material balance, noting that the volume of the dispersed zone had to remain
constant at a given point regardless of the geometry of the system. The
solution presented by Lau et al. is:

r - T

L —

= % erfc (2-6)

L
C
o

where T is the average radius of the displacing fluid. Raimondi's solution
(Eq. 2-5), also redq&;s to this equation by using the material balance rela-
tionship,_ Qt = 0.5, neglecting the molecular diffusion term and assuming

that r + ¢ = 2r in Eq. 2-5. ©For systems In which the size of mixed zone is
small, these assumptions are realistic.

Lau et al. (1959) and Bentsen and Nielsen (1965) verified the applicability of
Eq. 2-6 experimentaly. Bentsen and Nielsen conducted thelir experiments in a
homogeneous slab of circular consolidated Berea sandstone which had a radius
of 91.4 cm and a thickness of 1.9 cm. The viscosity of the displacing fluid
was higher than the viscosity of the displaced fluid to aveoid viscous
fingering. The concentrations were measured in~situ using the dielectric
constants of the fluids at each radius.

An extension of Lau et al.'s method was made by Baldwin (1966) to describe
mixing in convergent—?aéfal flow. Baldwin was primarily interested in com-—
puting the tracer effluent concentration profile from a developed five-spot
pattevrn for a batch of tracer injected into the system. Be divided the five-
spot flow domain into a series of radially divergent-convergent flow tubes and
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computed the tracer concentrations entering the production well from each flow
tube. By this method, he matched the experimentally determined tracer break-
through curves reasonably well.

Gelhar and Collins (1971) developed a general approximate analytic solution
for longitudinal dispersion in steady flows with variations in velocity along
streamlines., Their solution contains two integrals related to velocity. When
this general solution was applied to a radial flow, it generated the same
approximate solution as proposed by Raimondi et al. (1959). A comparison of
results computed from Raimondi-type solutions with those obtained from numer-
ical simulation of a radial miscible flow was made to determine the accuracy
of the approximate solution. The comparison indicated that Ralmondi’s
solution would yield good results after the front had travelled a distance on
the order of 100 times the dispersivity of the porous medium (r/¢ > 100)., In
reservoirs, this condition is easily met because the overall scale of the flow
is much larger than the dispersivity of the formation. This illustrates the
fact that in field applications the approximate solutions usually generate
acceptable results. Although the solution given by Gelhar and Collins is a
general one, for complicated velocity fields it becomes difficult to evaluate
the velocity integrals. Therefore, more simple approximate solutions would be
more desirable for practical applicatioms.

Brigham (1973) derived simple equations to describe mixing in systems in which
the width of the flow passage varied linearly with the distance travelled.
Although this might impose some restrictions on the applicability of his
equations, Brigham showed that by breaking the flow system into segments in
which width was a linear function of distance, and by repeated use of his
solution, mixing could be computed for a variety of geometries. Despite the
fact that this method contains several approximations, it has a definite
advantage over numerical schemes and other complex solutions. The method is
simple, fast and produces reliable results.

The preceeding survey on hydrodynamic dispersion reveals the following facts.
Molecular diffusion and transverse dispersion play mnegligible roles in the
amount of mixing in miscible displacements. An equation similar to Eq. 2.6
can adequately describe mixing in linear and non-linear flow geometries for
practical purposes.

2.3 QUANTITATIVE ANALYSIS OF TRACER DATA

The rest of this section will focus on works which have dealt with quantita-
tive analysis of tracer breakthrough profiles from petroleum and geothermal
reservoirs and underground aquifers.

2.3.1 Petroleum Reservoirs

Perhaps Wallick and Jenkins (1954) were the earliest investigators who tried
to extract quantitative information about the characteristics of a formation
from tracer output data. They developed a theoretical method to compute the
results of a short—time tracer test. In this, a pulse of tracer material was
injected under steady state flow conditions Into one well and was detected at
a second well. In the analysis, the reservolr was assumed to be homogeneous
and infinitely large. The dispersion of tracer in the formation was ignored,
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meaning that the tracer material did not mix with fluids ahead or behind it,
The theoretical computation of tracer concentration profiles at the production
well was then achieved by computing the tracer travel times on various stream-—
lines of this isolated source-sink system. Therefore, only convection was
considered. Wallick and Jenkins applied their method to analyze the results
of a field tracer test in which helium was injected with air Into a reservoir
undergoing in-situ combustion. The computed concentration profile was in
qualitative agreement with the observed data, and the average permeability and
porosity values computed for the formation were reasonably close to those
determined from core data.

Brigham and Smith (1965) performed a detailed quantitative analysis on tracer
elution curves for developed five-spot patterns. First, they derived an
equation to compute the tracer response curves for a homogeneous developed
five-spot pattern for a slug of tracer injected into the system. The deriva-
tion of thls equation was accomplished by combining the tracer dispersion
effects with the areal sweep effects for this particular pattern. The disper-
sion effects were evaluated by approximating the flow field as radial flow to
the production well and using the simple mixing equation (Eq. 2-6) for radial
flow systems. This approximation, however, introduced errors in the computa-
tion of dispersion effects. Brigham and Smith extended the theoretical
analyslis to developed five-spot patterns with vertical variations in the
permeability. They modeled this type of reservoir as a stack of non-
communicating homogeneous layers. The overall tracer breakthrough curve from
this composite model was computed by volumetrically adding the tracer arrival
curves from individual layers. The model was applied to analyze tracer
breakthrough curves from a field test conducted in a five-spot pattern. The
computed tracer curves had the same trends as the field data. To arrive at
these matched curves, Brigham and Smith used three layers, and had to vary the
permeability and thickness of the layers by a trial and error procedure. This
process was time consuming.

Baldwin (1966) also analyzed the field tracer data reported by Brigham and
Smith. He modeled the reservoir with twenty homogeneous, non-communicating
layers with permeability of layers ranging from 34 to 4200 md as determined
from core data. Based on his equations for radially convergent—divergent
flow, he calculated a tracer response curve from this layer-cake model.
Figure 8 of his paper is reproduced here as Fig. 2.3 to illustrate the
results, The match is good for the early portion of data, but it deviates
from the later data appreciably. Since the major portion of tracer flow is in
the high permeable zones, the low permeability values used by Baldwin are not
important. In reality, Baldwin's match is with fewer than 20 layers.

Yuen et al. (1979) revised Brigham and Smith's analytical solution to include
the eéffect of diverging-converging flow on dispersion. Based on the revised
solution, a computer program was developed which would decompose an overall
tracer curve from a multilayer developed five—spot pattern into the constitu-
ting layer responses, and compute ¢h and kh/Ikh of the layers. The algorithm
could handle four layers. As input, peak data (concentration and volume) of
tracer breakthrough curves from the layers were required. Yuen et al.

demonstrated that peak locations in the overall tracer efflux curve did not
correspond exactly to peak locations in the individual layer responses.
Therefore, the peak data for the layers had to be determined by a trial-and-
error procedure.
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Fig. 2.3: MATCH TO PRODUCED TRACER CONCENTRATION FOR WELL A,
REPORTED BY SMITH AND BRIGHAM, AFTER BALDWIN (1966)

Yuen et al's work was modified by Brown and Brigham (1981) to handle a larger
number of layers. This modified algorithm was used to analyze one of the
tracer breakthrough curves reported by Brigham and Smith (1965). Several
matches were obtained with different numbers of layers, the best match being
with ten layers. The method is useful but cumbersome as it requires many
trials to obtain the optimum match for any chosen number of layers.

2.3.2 Undefground Aquifers

Besides petroleum engineers, hydrologists have also been interested in
defining aquifers in adequate detail. Halevy and Nir (1962) introduced a
pulse of radioactive Co60 in the form of K3Co(CN)6 into a fairly homogeneous
aquifer and continously recorded activity of the water at a pumped well
located 250 meters from the input well., This test differed from usual inter—
well tracer tests because the injected batch of tracer was not displaced by a
chase fluid. Instead, the tracer flowed towards the pumped well as a result
of regional pressure gradients established by the pumping action. Since the
flow fleld was essentially radial, it was assumed that produced tracer peak
concentration occurred after pumping a volume equal to the cylindrical pore
volume between the observation well and the pumped well. Porosity of the
aquifer was subsequently calculated from this peak tracer volume. This was
feasible because formation thickness had already been determined from
geological data. Halevy and Nir neglected dispersion of tracer. This
simplification detracted from the accuracy of their results.
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A similar test was conducted by Mercadoe and Halevy (1966) in a shallow
stratified aquifer. The same radioactive material was injected through a
dually completed observation well. The tracer arrival curve indicated that
the aquifer was composed of four distinct layers. The permeability-thickness
product of layers and average porosity of the formation were computed from an
analysis based on the method illustrated by Halevy and Nir (1962). Tracer
dispersion effects as well as interaction of tracer response curves from
individual layers were mneglected. These assumptions are unrealistic, and
therefore reduce the accuracy of the results.

Zaghi (1977) extended Wallick and Jenkins' (1954) work for a case of nine
doublets (nine injectors and nine producers) unequally spaced in a direct
line-drive fashion. He assumed that the tracer dispersion was negligible and
as a result, the tracer had sharp interfaces with the contacted fluids ahead
and behind. He developed a computer program to calculate the breakthrough
curves both for the leading and the trailing edges of the tracer slug at the
production wells, The effluent tracer concentration curve at each production
well was then the difference of these two breakthrough curves at that well.
Although this analysis correctly included the convective effects in the
transport of tracer material, a neglect of the tracer mixing effects did not
generate accurate tracer concentration curves at the wells.

Ivanovich and Smith (1978) included dispersion effects in analyzing tracer
data from a pilot investigation of an underground aquifer. The procedure for
the test was the same as the one reported by Halevy and Nir except the tracer
used was Br®%“. The tracer concentration profile detected at the pumped well
indicated that at least two different responses had been superimposed on each
other. A statlstical model was used to fit the observed field data with two
one-dimensional dispersion equations. As a result of the analysls, the layers
had different dispersion constants, permeabilities, porosities and average
linear velocities. The velocities were considered to be along the line
joining the input and the pumped wells.

The main drawback in this analysis was the use of an unidirectional dispersion
equation in the statistical model. For a radial drawdown, such as this one,
the streamlines are not linear and the actual amount of dispersion caused by
non-uniform velocity field is different from that predicted by one-dimensional
models.

2.3.3 Geothermal Reservoirs

Geologic characteristics of geothermal reservoirs can also be revealed through
detailed analysis of tracer tests conducted in geothermal formations. Unlike
petroleum reservoirs, most geothermal reservoirs are highly fractured and the
fractures are connected to each other forming a network of channels (Horne,
1981). Short circuiting and early appearance of injected material at the
production wells are common. A response from an injected pulse of tracer is
generally detected in a matter of hours and the response curve usually has a
single peak with a long tail. Although methods developed to analyze geo~
thermal tracer data are somewhat different from those of sedimentary
formations, the basic ideas are the same.
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Tester et al. (1979) concluded that a tracer response curve from a hydraul~
jically fractured granitic geothermal reservolr was also a combination of
several responses, each arriving from a subzone of the formation. A field
test Y?f conducted with a pair of injection and production wells using Br
and I as radioactive tracers. Tester et al. proposed a mathematical model
in which the reservoir was assumed to be composed of several porous zones,
each zone being homogeneous but different in characteristics from others. 1In
this model, a two-dimensional convective diffusivity equationm, with dispersion
coefficients being proportional to fluid velocity in each direction, was
solved to compute the tracer response profile from a homogeneous layer., The
analysis of tracer field data was performed basically by curve fitting the
observed field data with those computed from the model. The curve fitting
process automatically generated the parameters of the zomes.

Horne and Rodriguez (1981) derived an analytic expression to describe the flow
of tracers in a single fractured system. Based on Taylor's (1953) classic
work of convective dispersion in pipe flow, they obtained an effective longi-
tudinal dispersion coefficient for tracer flow in a fracture, Horne and
Rodriguez matched a tracer response curve from a geothermal field with their
model and computed the width and length of the fracture directly. Although
the- match did not include the tail end of the data, it was postulated that a
multiple fracture model similar to Tester's (1979) multizone or Brigham and
Smith' (1965) multilayer model could be developed which would match all the
data closely.

2.4 SUMMARY

From the preceding literature survey, it becomes evident that flow of tracers
in any formation--whether it be a petroleum, a geothermal or an underground
aquifer—-can reveal detailed information about the reservoir which may other-
wise be unattainable. This information can generally be obtained from a
detailed mathematical analysis of a tracer breakthrough curve. 1In most of the
analyses, the convective diffusivity equation has been solved in some geometry
to include dispersion of a tracer and some flow pattern has been assumed to
take into consideration the areal movement of the tracer. The accuracy of the
methods depends on how well disperslon is defined and whether the assumed
flowlines are close to the true streamlines. However, in most of the previous
works, either dispersion has not been formulated correctly (even sometimes
neglected) or the flow field has been approximated by too simple and unrea-
listic flow geometries.

Methods developed to analyze complex tracer breakthrough curves have only been
for bounded (repeated) five—spot patterns. These methods generally require a
direct and lengthy interaction with the computer in order to generate a good
match to the tracer production data from five-spot patterns. In these
methods, dispersion of tracer has not been formulated accurately. No studies
of tracer breakthrough curves for other patterns have been reported. It was
the purpose of this study to develop a method which would adequately analyze
tracer breakthrough curves not only for developed five-spot patterns but also
for other common developed flooding patterns. It was also the goal of this
research that the analysis technique be free of cumbersome trial-and-error
procedures.
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3. METHOD OF SOLUTION

This section provides a mathematical analysis of tracer flow in several
bounded flooding patterns for a mobility ratio of unity. The section is
divided into three main parts. In the first, analytic equations are derived
to define the performance of the flooding patterns for immiscible displace-
ments with unit mobility ratio. In this part, an attempt has also been made
to extend the analytical analysis for mobility ratios other than one. The
second part covers the flow of a tracer slug in homogeneous reservoirs,
Tracer dispersion effects are mathematically superimposed on the immiscible
pattern breakthrough curves to generate tracer production curves. The
analytically defined tracer production curves are correlated into a single set
of curves which represents tracer flow in various patterns. The last part of
this section studies tracer breakthrough curves from non-communicating,
stratified reservoirs. A technique developed to analyze tracer response
curves for these systems is presented.

3.1 PATTERN PERFORMANCE

The areal movement of displacement fluids is the prime feature in the recovery
performance of a pattern, In general, this is characterized by a pattern
breakthrough curve, or areal sweep efficiency curve. This section illustrates
the analytical derivation and correlation of these curves for a variety of
repeated flooding patterns.

3.1.1 Steady Multi-Well Flow Theory

As was discussed in the literature review, the transport of tracer solutions
in any flow system 1is subject to convection and dispersion. Convection
represents the gross movement of fluids in the system. Its effects are
obtained from displacements in which sharp fronts between the fluids are
preserved. To illustrate this point, consider a five-spot pattern initially
filled with fluid A. Fluid B is injected into the pattern continuocusly to
displace fluid A with a sharp front. Figure 3.la shows the location of fluid
B in the system after injecting a definite volume of the fluid. The break-
through curve describing the fraction of fluid B in the producing stream at a
production well is given in Fig. 3.1b. As this figure shows, there is no
production of B until breakthrough, after which production of B rises steeply
and approaches 1007 asymptotically. This situation corresponds to the fill-up
of the entire pattern by fluid B. The shape of the curve in Fig. 3.1b is a
function of two parameters: the geometry of the pattern, and the mobility
ratio of the fluids.

Consider another case in which a slug of fluid B is injected into the same
pattern and then followed by fluid A as shown In Fig. 3.2a. Because sharp
fronts are assumed between B/A and A/B, the breakthrough curve for A dis~
placing B is identical in shape to the curve in Fig. 3.1b except that it lags
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by an amount equal to the volume of slug B. Figure 3.2b shows the theoretical
breakthrough curves for B displacing A and for A displacing B. The break-
through curve for fluid B is then the difference of these two curves. This is
illustrated as a shaded profile in Fig. 3.2b. The peak concentration (or
fraction) of B produced from this system is considerably less than the concen-
tration flowing in the reservoir which is 100 percemt. The dilution of B is
the result of convection or areal sweep effects. For the case where B is
miscible with A, dispersion effects are imposed on the shaded curve, hence,
causing further dilution. The broken-line profile in the same figure shows
the breakthrough curve for fluid B from this pattern with dispersion
effects. To conserve a material balance, the areas under these two curves
must be equal.

In early phases of this research, it was speculated that any theoretical
description of tracer flow in patterns must be related to the pattern
breakthrough curves such as the one shown in Fig. 3.1b. Therefore, an attempt
was made to describe the pattern breakthrough curves analytically for several
common, bounded, flooding patterns at a mobility ratio of unity.

3.1.2 Pattern Breakthrough Curves

Any mathematical description of fluid movement in a flow system requires a
knowledge of a potential field for that system. For single-phase steady flow,
the potential field can usually be obtained either from a solution of the
Laplace equation with appropriate boundary conditions, or by application of
the superposition principle as indicated by Muskat (1949) and Prats et al.
(1955). Generally, it is simpler to solve the problem in a complex plane and
derive an expression for the complex potential of the geometry. This expres-—
sion can be decomposed into a real part and an imaginary part. The real part
is the equation for the potential distribution (proportiomal to pressures),
and the imaginary part is the stream function. Morel-Seytoux (1966) provides
the complex potentials for a variety of flooding patterns. Although he does
not give the pressure and stream functions for all patterns, they can be
generally derived from the complex potentials.

Since stream functions are available or can be constructed for a variety of
flow patterns, it is feasible to describe the displacement of two fluids in
different patterns mathematically. The displacements are assumed to be of
unit mobility ratio and piston-like. Fluids are assumed incompressible and
gravity and capillary effects are neglected. The following general procedure
is used to derive the analytic expressions for the breakthrough curve
(displacing fluid cut versus pore volumes injected) of any pattern:

1) Compute the time required for a particle to travel from the injection
well to a production well on a general streamline of a pattern. This is
the breakthrough time for that streamline.

2) Multiply the breakthrough time by the injection rate and divide by the

pattern area to obtain the pore volumes injected at breakthrough of that
streamline.

- 18 -



3) Compute the angle at which the considered streamline enters the produc-—
tion well or leaves the injection well. Divide this angle by the total
angle subject to flow at either the production or injection well to
obtain the displacing fluid cut at the producing stream. This calcu-
lation is correct because for mobility ratio of ome, the total flow rate
of each fluid is proportional to the total angle from which each fluid
enters the production well. The calculated cut corresponds to the pore

volume determined in item 2.

The mathematical formulation of breakthrough curves for four bounded homo-
geneous patterns--staggered line drive, five-spot, direct line 'drive and
inverted seven-spot—-are given in Appendices A.l, A.2, A.3, A.4, respec—
tively. Figure 3.3 shows breakthrough curves for these four patterns.
Staggered line drive and direct line drive patterns have different break-
through curves depending on their d/a ratios. The ratio d/a represents the
ratio of the distance between the unlike wells (an injector and a producer) to
the distance between like wells (two injectors or two producers).

These results are useful in computing oil recovery from displacement processes
wherein the assumption of unit mobility ratio can be justified. However, for
such calculations, areal sweep efficiency versus pore volume of displacing
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& ¢ . . ) d
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a R ; . d
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PORE VOLUMES INJECTED, va

Fig. 3.3: PATTERN BREAKTHROUGH CURVES FOR DEVELOPED SYSTEMS,
MOBILITY RATIO =1
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fluid injected would be more useful. Areal sweep efficiency may be computed
from the following (Craig, 1971):

\

pD
EA = (1 - fD) dva
0
(3-1)
VpD
= Vprt + (1 - fD) dVPD
Vprt

where,
E, = areal sweep efficiency
= displacing fluid cut in the production stream

Vprt = breakthrough pore volume or breakthrough areal sweep
efficiency

VpD = displacing pore volume corresponding to cut, fD

This integral corresponds to the area above the curves in Fig. 3.3. 1t is
alternatively given by:

fp

By = (1-£) Vo, + Vop 4fp (3-2)

The integrand is a function of fj and the functional relationships are given
in Appendix A for various patterns. The results of integration are shown in
Fig. 3.4,

3.1.3 Correlation of Pattern Breakthrough Curves

For patterns other than those included in this study, the same derivations
must be performed to obtain a breakthrough curve similar to the curves in Fig.
3.3, However, it would be desirable to relate all pattern breakthrough curves
and find a general correlation which would be applicable for all patterns.
Previously, Morgan (1977) in continuation of Morales' (1975) work concluded
that the breakthrough curves for different patterns could possibly be corre—
lated into a single curve for each mobility ratio of displacement. The
parameter that was used in the correlation was a dimensionless quantity
defined as:

V.-V
py = -PD__PDBEt (3-3)

D I~V opbt

The PVp term will be referred to as dimensionless pore volume in this study.
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Since Morgan was working with limited experimental data, he could not confirm

the accuracy of the correlation, although it appeared to be reasonably
accurate. In this study, however, it is demonstrated that by wusing the
dimensionless parameter defined by Eq. 3-3, all the analytically defined

pattern breakthrough curves collapse into virtually a single curve as shown in
Fig. 3.5. Staggered line drive and direct line drive patterns with various
d/a ratios are all included in this single correlation. A simple equation for
the curve in Fig. 3.5 is obtained by a non-linear curve-fitting method, as

follows:

0.792

—1.810(PVD)0'530 -O.715(PVD)

1 - 005 e + e (3—4)

f =
D

Equation 3-4 yields a maximum error of 2% in fj for all the curves, except for
very early parts of the curves where the error is large.

A comparison of the experimentally-measured data with the analytically
computed and correlated curve is illustrated in Fig. 3.6. The data for the
five-spot, direct line drive and the staggered line drive have been taken from
Dyes et al. (1954). The data for the inverted seven-spot pattern are from
Guckert (1961). Figure 3.7 shows a comparison of results for a repeated five-
spot pattern where several investigators have reported either numerical or
experimental data for the performance of this pattern (Fay and Prats, 1951;
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Dyes et al., 1954; and Caudle and Witte, 1959). The dashed curve in this
figure has been obtained by differentiating the equation for the areal sweep
efficiencies reported by Craig et al. (1955). It is believed that the
deviations of data from the analytic curve are due to smearing of the
displacement fronts by capillary forces (immiscible displacements) or mixing
(miscible displacements). Experimental errors also contribute to the
deviations.

The curves in Fig. 3.4 can also be correlated into a single curve. This
requires defining another parameter, called dimensionless areal sweep
efficiency, as follows:
E, - E
EAD = -*%_:—Eéhs (3-5)
Abt
where:

Eppe = breakthrough areal sweep efficiency = Vprt

The correlation is shown in Fig. 3.8. The equation for this curve obtained by
a non-linear curve-fitting routine is:

—O.7413(PVD)0°9273
E = 1 - e (3-6)
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A correlation of fy and
E,p is provided in Fig.
3.8 to complete the set
of correlations. Also
shown in this figure is
the correlation origi-
nally reported by Morgan
(1977). Tables 3.1
through 3.4 give the
numerical wvalues of the
dimensionless pore wvol-
umes and the dimension-
less areal sweep effi-
ciencies for different
patterns. Comparison of
these values for the
various patterns shows
the accuracy of the cor-
relations.

The fact that the break-
through curves and areal
sweep curves for all the
patterns studied could
be condensed into single
curves 1is important for
rapid calculation of
recoveries by flooding.
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From these results, one could expect that the generalized curves of Figs. 3.5
and 3.8 or 3.9 would be valid for any balanced patterns. Thus, one of the
correlated curves could be used as a basis for post-breakthrough calculation
of recovery versus volume injected for floods without resorting to complex
modeling calculations.

Table 3.1

VALUES OF BREAKTHROUGH AND AREAL SWEEP EFFICIENCY CURVES FOR
A DEVELOPED FIVE-SPOT, MOBILITY RATIO = 1

fD VpD PVD EA EAD
0.00 0.71777 0.00000 0.71777 0.00000
0.05 0.71887 0.00391 0.71884 0.00378
0.10 0.72222 0.01576 0.72192 0.01471
0.15 0.72786 0.03573 0.72684 0.03215
0.20 0.73589 0.06419 0.73346 0.05559
0.25 0.74645 0.10164 0.74164 0.08457
0.30 0.75976 0.14880 0.75128 0.11872
0.35 0.77608 0.20661 0.76228 0.15700
0.40 0.79576 0.27634 0.77456 0.20123
0.45 0.81926 0.35961 0.78806 0.24905
0.50 0.84720 0.45860 0.80270 0.30094
0.55 0.88038 0.57617 0.81844 0.35671
0.60 0.91993 0.71630 0.83522 0.41616
0.65 0.96742 0.88456 0.85299 0.47912
0.70 1.02514 1.08908 0.87170 0.54542
0.75 1.09666 1.34248 0.89130 0.61486
0.80 1.18789 1.66572 0.91173 0.68724
0.85 1.30986 2.09791 0.93291 0.76230
0.90 1.48714 2.72604 0.95475 0.83968
0.95 1.79710 3.82430 0.97709 0.91883
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Table 3.2

VALUE OF BREAKTHROUGH AND AREAL SWEEP EFFICIENCY CURVES FOR A
DEVELOPED INVERTED SEVEN-SPOT, MOBILITY RATIO = 1

fD VpD PVD EA EAD
0.00 0.74368 0.00000 0.74368 0.00000
0.05 0.74470 0.00390 0.74458 0.00350
0.10 0.74778 0.01592 0.74703 0.01305
0.15 0.75297 0.03616 0.75156 0.03072
0.20 0.76036 0.06499 0.75760 0.05447
0.25 0.77007 0.10290 0.76517 0.08382
0.30 0.78230 0.15061 0.77403 0.11838
0.35 0.79728 0.20905 0.78412 0.15775
0.40 0.81532 0.27942 0.79538 0.20168
0.45 0.83683 0.36337 0.80774 0.24990
0.50 0.86237 0.46299 0.82112 0.30214
0.55. 0.89265 0.58116 0.83549 0.35818
0.60 0.92869 0.72175 0.85077 0.41781
0.65 0.97187 0.89025 0.86694 0.48087
0.70 1.02426 1.09467 0.88392 0.54713
0.75 1.08905 1.34744 0.90168 0.61642
0.80 1.17153 1.66927 0.92014 0.68843
0.85 1.28162 2.72209 0.93925 0.76301
0.90 1.44137 2.72209 0.95894 0.83981
0.95 1.72088 3.81263 0.97908 0.91838

3.1.4 Pattern Breakthrough Curves for Non-Unit Mobility Ratio

Displacement of fluids with unequal mobilities differs from single phase flow
(mobility ratio equal to one) for two reasons. First, the overall resistivity
to fluid flow depends on the location of displacement interface. This implies
that for a constant flow rate displacement, the pressure drop between an
injection well and a production well varies continually as the displacement
front advances towards the production well. For a favorable mobility ratio
(M < 1), the pressure drop increases while for an unfavorable mobility ratio
(M > 1) it decreases. Second, potential distributions in the displaced reglion

- 26 -



06426°0 60%86°0 [ANAL IR 6568571 €L126°0 8(8(6'0 £88497€ 9998L°T 68%26°0 £9.96°0 TZLLL°C  0LE6T°Z G6°0

L19S8°0 9789670  299/9°C  8869E°T CLSS8'0  %9456°0  CSO89°Z  OSE6Y'I 96Y8°0  E£S€6°0  6STEL'Z  YESHL'T 06°0
06Y8L°0  SSZS6°0  00660°C  SwZZ°1 €E¥BL°0  £99€6°0  BTI0T°T  LEEZE'T €67LL°0  TIE06°0  T9YTI*T  LOY8Y'T 580
65HTL'0  HOLE6°0  TEW69'T  LTEST'T 6LE1L°0  S6ST6'0  £TS69°T  #1%0Z°1 0600£°0  SZT/8°0  0S869°T  9900€'T 08°0
8YS49°0  6L176°0  8LSBE'T  TISBO'T YOYM9'0  6SS68°0  LSSBE'T  EZETI'T 7RZ9°0  666£8°0  LIVLE'T  90TYT'T 10
68LLS°0  $8906°0  TZ6ET°1  TLOEO'T 299£5°0  L9S(8°0  LIBET'T  £S0%0°T 19660 85608°0  HYSTI'T  ZT0S0°T 0L0
€IZ1S°0  LE768°0  O%9€6°0  L6586°D 99015°0  O0E9SB°0  7LYE6°0  %8086°0 €S687°0  BZOBL'O  S%906°0  £L6S6'D $9°0
PCBYYT0 YERLYT0 TS99L°0 698670 T6979°0  8SLEB'0  Z¥YOL°0  ZBOE6"D PEHZH'0  OEZSL'0  LLTEL'O 869880 09°0
9vL8E°0  L8Y98°0  (STT9°0  €L9T6°0 VISBE'O  T96T8°0  SZ0Z9°0  8Y888°0 GOE9E'0  €8SZTL'O  CBLBS'O  652Z8°0 T
CZ62E°0  Z02S8°0  ¥866%°0  99683°0 0SLZE°'0  7SZ08°0  LYL6%°0  £57S8°0 EYS0E°0  EOTOL'0  SE99%°0  OEOLLO 05°0
8ZY.Z°0  066£8°0  00S6L°0  £5998°0 LSTLZ'0  6€9BL°0  TLI6ET0  L9178°0 L6152°0  TO8L9°0  6EYIE'0  THITL'D 50
76772°0  LSBZB'0  Z9SOETO  TBIYB"O SETZT'0  SEILL'0  €SE0E'0  8YS6L°0 €6202°0  16959°0  868LZ°0  %9689°0 0%°0
€9SLT°0  #IBI8°0 {8670  OIOES™O STYLT'0  TSLSL°0  808TZ°0  TLLLLUO ZSBST'0  6LL£9°0  YBLOZ'O  T0659°0 GE*0
S8ZET'0  0[808°0  6£99T°0  OT9I80 89TCT'0  TOSYL'0  S6Y91°0  8LYSL*0 L68TT°0  LL0T9°0  BI6YI'O  LLSE9°0 0E"0
70S60°0  SE008°0  STHILI'O  £S%08°0 TI760°0  B6EEL°0  LOETT'0  SS6EL°0 Z6780°0  ©6S09°0  09TOT°0  6Z€T9°Q 520
[9290°0  TZ€6L°0  SETL0°0  SES6L°0 07690°0  9S%TL°0  T9140°0  LELZL'0 €95S0°0  Z¥E6S°0  TOY90°0  TTL6S'O 0Z°0
SE9€0°0  TWLBL'O  6EO%0'0  OE8BLTO S65€0°0  069TL°0  966€0°0  S08TL°0 00Z€0°0  YEEBS'0  [SSE0'0  [8Y8S'0 $T°0
[99T0°D  [OEBL'0  98L10°0  €££8L°0 8v910°0  BITIZ'O  99L10°0  €ST1L°0 €9%TO'0  9LSLS°0  (9ST0'0  TE9L6°0 0T°0
0£900°0  ¥E08L°0  G¥400°0  ZLOSLTO SZWOD'0  6SLOL°0  09%00°0  %9L0L70 LL£00°0  BITLS'0  O6E00°0  HZTLS'O €0*0
00000°0  6€6LL°0  00000°0  6E6LL°0 00000°G  YE90L°0  00000°0  %£90L°0 00000°0  9S695°0  000O0D'C 956950 0070
4y Ya Ura | ad, Vg Va Ura ad, Va Va %ra ady a4
Z = '/p ¢*1=e/p T=e/p

1 = 0ILVY ALITIHOW °‘SNEJLLYd HATHA-ANIT LDAAIC
QAdOTIAIT 04 SHAUND ADNHIDI ALY JHAMS ‘Tvddv ANV HONOUHIAVHIE 40 SANIVA

£t °1qelL

27 -



0642670 60Z66'0 079t €L%6T°T £LLT6°0 0%686°0 %09L9°¢ LEZee 1 £8626°0 2£9786°0 TLviL e wZels't S6°0

07958°0  EI#86°0  6%9/9°C  T6v8T'T 9/6$8°0  S88L6°0  208L9°T  T09%Z'T 112680  LL896'0  07269°7  WELSE'T 06°0
06Y82°0  829.6°0  8860°T  OZTZI'T T9%8°0  6E896°0  07660°7  STIOT'T SZ6LL°0  BEESE'O  TITOT'ZT  TSZET'T €80
6CYTL 0 ZS896°0  TTWE9 T  LS9L0°T 86ETL°0  L0BS6'0  78569°T  ¢LIOT'T 86040  GZBE6'O  09889°T  OWSHI'T 08°0
696%9°0  06096°0  ZLSBE'T  ¥SZWO'T §LY79°0  26L%6°0  BBYBE'T  E79S0°T 9¥L69°0  SYEZ6'0  TSSLE'T  OE6LO'T $L°0
16£15°0  SHES6°0  GT6ET'T  GESTO'T CLLL5°0  008€6°0  OTSET'T  SZ0Z0'T 12696°0  %0606°0  €S9TT'T  TL9Z0°T 0L°0
9TCTS'0  6T9%6°0  IV9E6°0  66266°0 PETTS'0  9€876°0  0TSE6'0  0S066°0 9TE0S°0  80S68°0  SLTT6°0 6968670 $9°0
gcgyy 0 BI6€6°0  SS99L°0  SZ¥L6'O SLIY'0  W06T6'0  TES9LT0 095960 [S6EY°0  99188°0  0625L°0  I8LY6°0 09°0
T6/8E°0  SYZE6'0  €929°0  BEGS6'O 0L98€'0 600160  €%129°0  0S¥%6°0 I88/E°0  €B898'0  69609°0  8SL16°0 TR
1€62E°0  E0926°0  T666Y'0  #8¥¥6°0 ¥EgTE'0  9STO6°0  I8BEY'0  75976°0 [T1Z€'0  99958°0  BT88Y'0  T6T68'0 05°0
ENLZ'0  96616°0  BOS6E'C  BZEE6'O P9ELT 0 ISE68°0  TIP6E'0  LITT6'0 66992°0  7ZSY8'0  €8Y8E'0  0T0L8°0 TR
00£2Z°0  O0SWT6°0  DLSOE'0  ZWEZ6'O 6£722°0  00988°0  [8Y0E°0  60868°0 659TZ°0  8SHES'0  60L6Z°0  LSTSB'O 0%°0
TLSLT°0  60606°0 66120  LOST6'0 6TCLT°0  806[8'0  (2622°0  TOL88'0 SEOLT'0  T8YZ8'0  TOLZT'0  E65€8°0 <E'0
06Z€1°0  9E%06°0  SY99T°0  90806°0 692€1°0  Z87(8°0  Y6S9T'0  ZLLI8°0 ¢€98z1°0  109T8°0  9IT9T'0  £8728°0 0£°0
90S60°0  61006°0  OTYII'0  0€Z06'0 L%60°0  87{98'0  ¢BCIT°0  800/8°0 68T60°0  ST808°0  OWOTT°0  SIZI8"0 5z°0
0(Z90°0  29968'0  BEZL0'D  69168°0 8¥790°0  $S798°0  €1ZL0°0  [6£98°0 90900  29T08°0  68690°0  09€£08°0 0270
9£9€0'0  TLE68'0  TYOWO'0  9T68°0 $ZOLO'0  TL9S8°0  [ZOWD'0  OE6S8'O BOSE0°0  SZ96L°0  668€0°0  LOL6L'0 ST*0
§9970°0  $GT68°0  (BLI0°0  89T6E"D 79910°C  £8558°0  08LI0°0C 0095870 809T0°0  %ZZ6{°0  €2L10°0  8¥Z6L°0 01°0
0E%00°0  BT068°0  SYW00'0  07068°0 67900°0  Z0%S8°O  %YH00'0  ROWSR'O CTH00'0  TLEBL'O  6Z%00°0  SL6BL'O <0"0
00000°0  T/688°0  00000°0  T/688°0 0000070 6££58°0  00000°0  GEESS'O 00000°0  %888°'0  00000°0  %888L'O 00°0
,wmm% A Uha ad, Wy Va Ura ady Wq Vg Uha ad, 4
= e/p ST = ®/p T =e/p

I = OIIVY ALIIIHOW ‘SNAHLIVd HATYA-ANIT-GHYADOVILS
JAdOTIAAA Y04 SHANND ADNHAIDIAAH dHIMS TVHAV ANV HONOAHIAVIEY 40 SHNTIVA

't °Iqel

28 -



and the non-invaded zone continuously change with the movement of the dis-
placement front. As a result of these variable pressure fields, streamlines
deviate from those of a single fluid flow. The amount and nature of deviation
depends on the location of the interface.

If the shift of streamlines from those corresponding to a single fluid flow is
assumed to be minor, calculations can be made to predict recovery performance
of patterns for different mobility ratios. Appendix B presents the derivation
of equations for recovery performance of a developed five-spot pattern for
various mobility ratios. The derivation is based on fixed streamlines and
piston-like displacements. Table 3.5 and Figs. 3.10 and 3.11 show the
results. As these figures illustrate, the breakthrough areal sweep effi-
ciencies calculated using these assumptions are nearly independent of mobility
ratio. This conclusion has also been reached by Morel-Seytoux (1965), whose
mathematical approach is different from the one taken in this study. The
independence of areal sweep efficiencies for different mobility ratios 1is in
direct conflict with experimental data which show that breakthrough areal
sweep efficiencies are functions of mobility ratio (Dyes et al., 1954).
Therefore, the assumption of no streamline change with mobility ratio is
unrealistic and calculations of piston-like displacements based on this
assumption generate erroneous results.

One of the methods that has been extensively used in approximate calculatiom
of waterflood and gas flood performances is Higgins and Leighton's (1962)
streamtube method. This method is based on the assumption that streamlines
are independent of mobility ratio and that Buckley-Leverett theory can be
applied to calculate the fluid displacement in streamtubes comprising the flow
system. The principle justification of the method was the good agreement
between the recovery values computed from their method and the laboratory data
reported by Douglas et al. (1959) for a repeated five-spot waterflood in a

Table 3.5

VALUES OF BREAKTHROUGH AND AREAL SWEEP EFFICIENCY CURVES FOR A
DEVELOPED FIVE-SPOT PATTERN AT VARIOUS MOBILITY RATIOS

M= 0.5 M=1 M=3
fD D EA fD pD EA fD VpD EA
0.0000 0.7232 0.7232 0.00 0.7178 0.7178 0.0000 0.7093 0.7093
0.1646 0.7403 0.7385 0.10 0.7222 0.7219 0.1698 0.7142 0.7137
0.3437 0.7946 0.7787 0.20 0.7359 0.7335 0.3164 0.7305 0.7257
0.4399 0.8396 0.8063 0.30 0.7598 0.7513 0.4433 0.7611 0.7442
0.5410 0.9017 0.8381 0.40 0.7958 0.7746 0.5537 0.8106 0.7682
0.6473 0.9890 0.8734 0.50 0.8472 0.8027 0.6505 0.8863 0.7973
0.7591 1.1204 0.9133 0.60 0.9199 0.8352 0.7361 1.0002 0.8308
0.8767 1.3551 0.9556 0.70 1.0251 0.8717 0.8123 1.1752 0.8683
0.9253 1.5308 0.9732 0.80 1.1879 0.9117 0.8809 1.4619 0.9094
0.9749 1.9093 0.9910 0.90 1.4871 0.9548 © 0.9430 2.0190 0.9537
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sand model. Figure 3.12, which
is a reproduction of Fig. 1 im
Higgins and Leighton's paper,
shows the closeness of the
agreement,

Since waterflooding is a Buck-
ley-Leverett type displacement
process, the pore volumes of oil
produced in Fig 3.12 are equal
to the product of areal sweep
efficiencies and displacement
efficiencies, Displacement ef-
ficiency 1is defined as the
difference between average water
saturation behind the front and
irreducible water saturation.
At breakthrough, values of dis-
placement efficiencies can be
obtained from the fractional
flow curves generated from rela-
tive permeability data and oil=-
water viscosity ratios. Figure
3.13 shows the fractional flow
curves constructed for the four
oil-water wviscosity ratios used
in the Higgins and Leighton
paper.

From the fractional flow curves
and the recovery data in Fig.
3.12, the breakthrough areal
sweep efficiency for each dis-
placement is calculated by
dividing the computed break-
through oil recovery wvalue by
the corresponding breakthrough
displacement efficiency. Table
3.6 presents the results, As
this table shows, the computed
breakthrough areal sweep effi-
ciencies for viscosity ratios of
0.083 and 8.08 are practically
the same and close to that for
unit mobility ratio, while the
sweep values corresponding to
higher viscosity ratios are even
higher and are thus in error.
This discrepancy seems to be due
to the low breakthrough dis-
placement efficiencies obtained
from the fractional flow curves.
Although a good reason for this
discrepancy could not be found,
the invalidity of Buckley-
Leverett theory at high mobility
ratios might be a factor.
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Table 3.6

BREAKTHROUGH AREAL SWEEP EFFICIENCIES EXTRACTED FROM HIGGINS AND
LEIGHION MATCH TO DATA REPORTED BY DOUGLAS ET AL. (1959)

Oil-water viscosity ratio 0.083 8.080 141 754

Irreducible water saturation 0.125 0.087 0.087 0.087
Average water saturation behind front 0.895 0.600 0.340 0.245
Breakthrough displacement efficiency 0.770 0.513 0.2533 0.158

Pore volume o0il produced at breakthrough 0.600 0.380 0.210 0.140

Breakthrough areal sweep efficiency 0.770 0.740 0.830 0.880

Wu (1964) investigated the accuracy of the Higgins and Leighton method both at
breakthrough and after breakthrough. He conducted several displacement exper-
iments on a quadrant of a five-spot sand model in which water displaced oil at
different viscosity ratios. The same computer program developed by Higgins
and Leighton was used to match the experimental recovery data. Fractional
flow curves needed for the program were prepared from the pre-determined
relative permeability curves on a linear core with the same sand. From the
analysis, Wu concluded that: 1) breakthrough areal sweep efficiencies com-
puted by the streamtube method at various mobility ratios were not different
from each other, in contrast to his experimental observations that confirmed a
strong variation of areal sweep efficiencies with mobility ratio; and 2) post-
breakthrough oil recoveries computed from the streamtube program closely
approximated the experimental data. No reasons for this were given.

Despite the fact that Higgins and Leighton's method generates nearly identical
values for breakthrough areal sweep efficiencies at all mobility ratios, the
method appears to adequately describe recovery performance of Buckley-
Leverett—-type displacements. The main reason for this seems to be that the
effect of displacement efficiency on recovery calculations is more important
than the effect of areal sweep. On the other hand, in piston-like displace-
ments, such as miscible displacements in which the displacement efficiency is
100 percent, calculation of pattern breakthrough curves based on fixed stream-
lines will not generate accurate results. Because of this conclusion, the
computation of tracer flow in this study was only performed for unit mobility
ratio.

3.2 TRACER FLOW IN HOMOGENEOQOUS SYSTEMS

Besides pattern sweep efficiency (areal effects), mixing due to dispersion
influences breakthrough history of a tracer from a pattern. A mathematical
description of mixing in a general flow passage is provided in the first part
of this sBection. The second part utilizes this mixing equation to derive
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expressions for tracer production curves from various systems. Lastly, a
technique is presented which correlates tracer production curves into a single
set of curves.

3.2.1 Mixing Theory

When one fluid miscibly displaces another fluid in a porous medium, a transi-
tion zone (mixed region) is formed between them at the region of contact. The
establishment of the mixed zone is due to a phenomenon known as hydrodynamic
dispersion. In general, hydrodynamic dispersion consists of two parts:
mechanical dispersion and molecular diffusion. Mechanical dispersion results
from the movement of individual fluid particles which travel at varilable
velocities through tortuous pore channels of the porous medium. This random
fluid movement in irregular flow paths spreads the displacing fluid into the
displaced fluid, thereby gemerating a blended region between them. The amount
of spreading depends on the dispersive capability of the porous medium. The
property of porous medium that 1is a measure of its capacity to cause
mechanical dispersion is called dispersivity. In general, dispersivity is

considered to have two components: one in the direction of mean flow
(longitudinal dispersion) and one perpendicular to the direction of mean flow
(transverse dispersion). For practical purposes, however, transverse

dispersion has a small effect on the amount of mixing between fluids compared
to longitudinal dispersion, as was illustrated by Blackwell (1962), Harleman
and Rumer (1963), and Sauty (1980).

The second component of hydrodynamic dispersion--namely, molecular diffusion—-
occurs on a macroscopic level as a consequence of net concentration gradients
across surfaces perpendicular to the average flow direction. It is caused by
the random movement of the differing molecules. This molecular diffusion
contributes to the growth of the mixed region as well. However, it has been
verified that the effect of molecular diffusion on mixing is negligible unless
the displacement takes place at low velocities (Raimondi et al., 19539; Handy,
1959; Brigham et al., 1961; and Blackwell, 1962). Therefore, in most prac—

tical miscible fluid flow through porous media, longitudinal mechanical
dispersion is the major factor in creating a mixed zone between the fluids.

The concentration of each fluid in the mixed zone can be computed as a
function of position if the flow geometry and the dispersivity of porous

medium are known. For stable miscible displacements (in the absence of
viscous fingering), equations in closed form are available which describe
concentration of the f£fluids. These equations have been derived for non-

adsorbing, non-decaying and non-reactive miscible fluids. Aronofsky and
Heller (1957) and Ogata and Banks (1961) present exact solutions for linear
displacements (Eq. 2-2), while Ogata (1958) gives an exact equation for a
diverging radial flow. Ogata's solution involves a very difficult integral.
However, these exact solutions can be reduced to more simple forms, provided
that the physical dimensions of the flow systems are larger than the dis-
persion constant of a porous medium, and that the molecular diffusion effects
are negligible. The dimensionless group which characterizes this condition is
known as the Peclet number. It is defined as the ratio of the displacement
front position to the dispersion constant of the porous medium. For a linear
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uniform displacement with a Peclet number of x/a » 100 (Sauty, 1980), the
resulting equation is:

% = %—erfc ( x - x ) (3-7
o} hox
where: X
C = concentration at location x
C, = initial concentration of displacing fluid
x = front location corresponding to C = 0.5 C0
a = longitudinal dispersion constant, length unit, same as x
erfc = complementary error function = 1 - erf

The corresponding approximate equation for radial flow i1s given by Lau et al,
(1959) and Raimondi et al. (1959). The solution is accurate when the Peclet
number is greater than 100 (r/a » 100), as was shown by Gelhar and Collins
(1971) and Sauty (1980):

r - r

c _ 1
T erfc (3-8)

2
[s) p—
= or

For most field applications, the condition of Peclet number greater than 100
is wusually achieved because of the distances involved. Therefore, the
following equation can be viewed as a general defining equation to describe
mixing in different flow geometries with practical accuracy (Brigham, 1973):

= Loerse (225 (3-9)
0 2 2
20

s = location corresponding to concentration C

alo

where:

u|
[

location of the front corresponding to C = 0.5C,

o = measure of the length of the mixed zone computed at s. This corre-
sponds 50 the standard deviation term,in statistics. For linear
flow, ¢° = 2ax and for radial flow, ¢°= 2ar/3, as are deduced by
comparing Eqs. 3~7 and 3-8 with Eq. 3-9, respectively.

If o is known for a system, Eq. 3-9 can be used to compute the concentration
of the displacing fluid at various points in the system. Hence, it is only
necessary to derive an expression for ¢ in a general flow geometry. This can
be accomplished by noting that in an arbitrary flow passage, such as Fig.
3.14, the growth of the length of the mixed zone is affected by two factors as
the fluid moves from point A to point B:

1) The movement of fluid through porous media (the longer the distance
travelled, the longer the mixed zone); and
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Fig. 3.14: A GENERAL FLOW PASSAGE

2) The change of geometry of the flow path (the wider the passage, the
narrower the mixed zone).

Therefore, the total change in o is (Lau et al., 1959; Baldwin, 1966; and
Brigham, 1973):

do = do + do _ (3-10)
§ g

where, dog is the change due to movement along path s and do_, is the change
due to the geometry of the passage. Equation 3-10 is simila% to the super-
position principle in which independently computed effects are added to each
other to produce a combined effect.

In computing either of the changes in o, the other must be treated as a
constant, In this manner, dog is computed from the mixing equation for a

linear system for which ¢ = 2as. Differentiating this expression:
a ds
dos = e (3-11)

The geometry effects are obtained by noting that the volume of the mixed zone
at any location must remain constant, regardless of the shape of the system at
that position. Since the mixed zone is usually small compared to the flow
path, then ow = constant, where w is the width of the flow channel at that
position. Differentiating this relationship:

w ddg + odw = 0 (3-12)
then:

do = - g — (3-13)
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Since the width of the passage is inversely proportional to the velocity of
fluid at that point, Eq. 3~13 in terms of velocity becomes:

do =3 & (3-14)
g v

Substituting Eqs. 3-11 and 3-14 in Eq. 3-10, one gets:

do = —— + — (3-15)
. . 2
Multiply both sides by 20/v" and rearrange:
20 do 202 dv 2a ds
> T T3~ ) (3-16)
v v v
Or:
2
o] ds
d(—g) = m & (3-17)
v v
Integrating between point A and point B:
;2 2 °B
I ds (3-18)
2 2 2
Vo vy v(s)
A
If there is no mixing at the entry initially, then ay = 0 at s = 0 and:
s
o2 = ; v2(E) zds (3-19)
vo(s)
0

This is the general equation for o which is applicable for flow passages of
any geometry. For example, in radial flow in which ds = dr, v(s) = q/2nr, and
v(s) 5 q/2nr, it follows that ¢ = 2ar/3. For spherica} flow, ds = dr, v(s) =
q/4nr”, v(s) = q/4nr , the expression for ¢“ becomes ¢ = 2ar/5. This is the
same relationship as Gelhar and Collins (1971) reported, if r + r = 2r is used
in their equation.

3.2.2 Tracer Production Curves

In this section, equations are derived which predict tracer breakthrough
curves from several homogeneous flooding patterns for a slug of tracer
injected 1into the patterns. In the development of the equations, the
following assumptions are made:
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1) Originally, there is only one mobile fluid in the system.
2) Tracer material is miscible with the fluids both ahead and behind.

3) Tracer slug has the same mobility as the displaced and the displacing
fluids (unit mobility ratio displacements).

4) Tracer does not adsorb on the formation rock nor does it react with
either the formation fluid or the formation matrix.

5) Dispersion of tracer can be described by the general approximate mixing
equation (Eqs. 3-9 and 3-19).

6) Tracer slug size is small compared to the volume of the pattern.

7 A steady-state flow condition is established prior to and during tracer
injection.

The flow of different fluids with the same mobility is essentially equivalent
to a single-phase flow. Because in single-phase steady-state flow only one
pressure field is imposed on the entire system, the streamlines and the
isopotential lines for the system are unaffected by the location of the dis-
placement fronts, Such flow systems can be divided into several unvarying
streamtubes and fluid flow in each can be studied, As an example, consider a
repeated flooding pattern such as a staggered line drive (as shown in Fig.
3.15). Assume that a slug of tracer with an initial concentration C  is

Q —Q

Fig. 3.15: A STAGGERED LINE DRIVE PATTERN WITH TRACER
CONCENTRATION PROFILE IN A STREAMTUBE
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injected into the pattern, followed by a chase fluid to displace it through
the formation. The tracer slug will be distributed among the streamtubes that
comprise the pattern volume. In any streamtube, mixing will occur at both the
leading edge and the trailing edge of the slug, hence diluting the tracer slug
as it moves down the tube. The amount of mixing occurring at each edge can be
computed by assuming that the tracer slug behaves as though it was continuous
at that edge. Mathematically, the mixings at the edges are given by Eq. 3-9
with o defined by Eq. 3~19. At any point in the streamtube, the sum of three
concentrations—-—tracer concentration, chase fluid concentration, and formation
fluid concentration--is equal to the initial tracer concentration, C_. Thus:

C=C_ -C -C (3-20)
where:
C = concentration of tracer
C, = concentration of fluid ahead of the slug (formation fluid)

Cy, = concentration of fluid behind the slug (chase fluid)

From mixing equations, the concentration of fluid ahead of the slug is defined
as:

Ca s - sl
— =1 - <= erfc (3-21)
C0 2 >
2 cl
and behind the slug:
C g -8
b l—erfc 2 (3-22)
-Co 2 2
2 02

Combining Eqs. 3-20, 3-21 and 3-22, the concentration profile of the tracer
slug is expressed by:

8 - s — 8

Coederref —21) - Lerre —2 (3-23)
e 2 o2 2 g2
1 2

where:
s = location corresponding to concentration C
s, = location of the front at the leading edge
s, = location of the front at the trailing edge
o, = standard deviation computed at the leading edge

0, = standard deviation computed at the trailing edge
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Since adsorption and reaction (or decay) of the tracer material are assumed
negligible, the volume of tracer slug within the streamtube remains constant
at any time during the injection process. However, the undiluted width of
tracer is a function of position; hence, the width is a function of the width
of the streamtube at that location. The undiluted width of tracer is defined
as.

As = El - '52 (3-24)

If the tracer slug is small compared to the size of the streamtube (which is
usually the case), then Eq. 3-23 may be written as:

C_ ¢im [F(s - éi) - F(s +‘é§J = - As dF (3-25)
[#) 2 2 ds
o As+0 _
where, -
! & - 8§
F(s) = E—erfc ( (3-26)
2
\/20
Therefore,
-2
.g_ = __Ai_— exp —_ _(S_:._S—)- (3_27)
Co 2 202
2ng

Equation 3-27 implies that maximum tracer concentration in a streamtube occurs
at point s.- For small slug size, s can be viewed as the front location in an
immiscible displacement of the original formation fluid by the chase fluid
alone. The o is computed at s and it is given by Eq. 3-19.

The computation of tracer
concentrations from Eq.
3-27 requires calcula-
tions involving distances
along the streamtubes.
However, it is more con-
venient to replace the
distance terms with their
equivalent volumetric
terms in Eq. 3-27. This
conversion process is
accomplished by approxi-
mating the actual loca-
tion of the tracer slug
in the streamtube by a
rectangle as shown in
Fig. 3.16. The approxi-
mation is justified since Fig. 3.16: APPROXIMATE LOCATION OF A TRACER
the slug size is small. SLUG IN A STREAMIUBE

PRODUCTION WELL
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From Fig. 3.16, the equation relating the distance terms to volumes is:

(s - s)wh s, =V -V (3-28)
where,

width of the streamtube at volumetric location s

£
]

h = thickness of the streamtube

¢ = porosity

S = disélaced fluid saturation in the system

V = displaceable pore volume of streamtube up to location s
V = displaceable pore volume of streamtube up to location s

The width of the streamtube at s is related to the velocity of fluid at that
point by:

w = ;$%§; (3-29)
where,
v = microscopic velocity, darcy velocity divided by porosity
q = injection rate into the streamtube

Substituting Eq. 3-29 into Eq. 3-28:

s —-s=—(V-V) (3-30)

¥
q

Similarly, the undiluted width of tracer, As, is related to the volume of the

tracer slug injected into the streamtube, V .. This is:

As = —V (3-31)

v
q tr

Substitution of Eqs. 3-19, 3-30 and 3-31 into Eq. 3-27 and further simpli-
fication results in:

v -2
%_ - tr exp |- Sy—:iyl— (3-32)
o 2q \/naI 4aq I
where,
s
d
1= 5 (3-33)
0 vo(s)
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Equation 3-32 defines the tracer concentration at any Ilocation within the
streamtube in terms of volumes. At the production well, the concentration of
tracer is computed by substituting the total displaceable pore volume of the
streamtube for V. For this case, at any time, t:

V~-Vs= q(tbt -t) (3-34)

where ty, 1s the breakthrough time of the injected fluid in the streamtube,
The times, ty, and t, may be obtained from material balance considerations as
follows:

v
t = -2 (3-35)
qt
v
toe 3 (3-36)
t
where,
Vp = total volume of chase fluid injected into the pattern at time t
Vpbt = volume of chase fluid necessary to inject into the pattern in order

to get breakthrough from the streamtube under study
Qe = total injection rate into the pattern

Therefore,

v-v=31 (v

-V 3-37
AT Tpoe = %) (3-37)

In terms of pattern displaceable pore volumes, Eq. 3-37 reduces to:

- A¢hSWq

V-Vs= ( ) (3-38)

9 Vprt - VpD

where,
Vprt = displaceable pore volumes injected into the pattern at breakthrough
of the streamtube under study = V_, /A¢hS
pbt W
VpD = displaceable pore volumes injected into the pattern = Vp/A¢hSw

>
I

area of the pattern
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Similarly, the amount of tracer injected into a streamtube is proportional to
flow rate in the tube. This means that:

v =1y (3-39)

where Vq . is the total volume of tracer injected into the pattern. Tracer
volume in a streamtube can also be expressed in terms of displaceable pore
volume of the pattern:

- 9 -
Vtr_ a A¢hSwFr (3-40)
where,
v
Tr
Fr = Aghs (3-41)

F. is the tracer slug volume injected into the pattern expressed as a fraction
oE the displaceable pore volume of the pattern.

Since the flow around wellbores is essentially radial, the potentials in the
immediate vicinity of a wellbore can be expressed by ¢ = ¢ ¢n(r) + c, where
¢y and ¢, are constants. In general, the values of these constants can be
determined from the flow rate and the potential value at a wellbore. Because
absolute values of potentials and flow rates do not affect the nature of
tracer flow, for mathematical convenience, the constants c¢ and ¢, are chosen
to be equal to one and zero, respectively. Therefore, ¢ = in(rg and conse-
quently, the streamlines are defined in accordance with this latter potential
equation as shown in Appendix A. From Darcy's Law:

k 2% k
Qe =3 2ﬂrh<§;)r = Znh'a (3-42)

=r
W

Using this expression for g, in Egs. 3-40 and 3-39 and substituting the
subsequent expressions into Eq. 3-32, the following result is obtained:

2

2.2.2 ,2

c(v) u¢S_ AF ueTS ATV () -V
_ w r exp | - W pDbt pD) (3-43)

Co Lok ~/mal(y) l6w2k2a1(¢)

This is a general equation which describes tracer concentration in any
particular streamtube, (¢), at a production well for any repeated pattern.
Equations for specific patterns can be deduced from this equation if
expressions for the I integral (Eq. 3-33) for these patterns are available,
Derivation of expressions for the I integral for the developed staggered line
drive, five-spot and direct line drive patterns has been provided in
Appendices C.1, C.2 and C.3, respectively. With the aid of these appendices,
the following equations which define tracer concentration in a general stream—
tube, (y), of these specific patterns are obtained.
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Staggered Line Drive: Staggered line drive systems differ from each other by
their d/a ratios, where d is the distance between unlike wells (injector-
producer), and a is the distance between like wells (two injectors or two
producers). From Appendix C.l1 and Fig. C-1, the following relationships are
obtained:

A= 2 da (3-44)
K'(m) _d
X(m) ~ a (3-45)
and
’ 2
u¢S 2
I(y) = ( “’) e ¥(y) (3-46)
k 4 K(m) K'“(m)

Substitute Eqs. 3~44, 3-45, 3-46 in Eq. 3-43, and rearrange:

cw) VR K (m) 42 F, o | @ <P 2 (v )= v )

€ T VTIG) T2 Y(y)

2

(3-37)
The term V Dbt(w) defines the pattern breakthrough curve and is given by Eq.

A-35 in Appendix A.l with n term in that equation related to the streamline
Y. The term Y(y) is obtained from Eq. C-21 in Appendix C.l.

Five-Spot: The five-spot is a special case of a staggered line drive pattern
when d/a = 1/2. For the five-spot:
K(m) = K'(m) = 1.8540747

Equation 3-47 simplifies to:

2
C(y) _ 0.453384 [ _ 0.645776 a _ ) _
= ” Fr-exp (Vprt(w) VpD (3-48)

CO W Y(IL’) [+

For this pattemn, Vprt(w) and Y(y) are given by Eqs. A-49 and C-23,
respectively.

Direct Line Drive: Direct line drive systems are also characterized by their
d/a ratios. From Appendix C.3:

A= 2da (3-44)
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R'(m) _ d _
2K(m) a (3-45)
and,
oS ad2
4 K(m) K'"(m)
Therefore:
2 a 2
cw) Vx@m X @ k) K@) —( v ope® = Vop)
-exp -
Co T \/HY(w Ui Y(w)
(3-47)
The Vprt(w) term is given by Eq. A-73 and Y(y) is given by Eq. Cc-58,
Note that for these patterns, exactly the O 0
same form of equation describes tracer a8 W

concentrations in a streamtube at the pro-
duction well. Only the Y(y) term which is
related to tracer dispersion, and V ...,
which represents the convection of tracer,
are different. Therefore, it is speculated
that other patterns will also have the same
form as Eq. 3-47 but with different expres-
sions for the Y and Vprt terms.

For any pore volume of displacing fluid,
V_pn, Ainjected dinto a pattern, there 1is
tfacer flow from all the streamtubes to the
production well. Therefore, the output
tracer concentration from the production
well of a homogeneous pattern is the sum of
concentrations from the streamtubes. At the

O—

ELEMENT CONSIDERED

limit, the summation reduces to an integral Fig. 3.17:

and the streamtubes become streamlines. The IN COMPUTING TRACER
following presents evaluation of tracer pro- PRODUCTION CURVES
duction curves from the patterns considered FOR THE STAGGERED
in this study. LINE DRIVE PATTERN
Staggered Line Drive: Due to symmetry, only 1/8 of a staggered line drive

pattern is considered, as shown in Fig. 3.17.

Effluent tracer concentration, E, from this system is then given by:

(3-49)



Because of unit mobility ratio displacement, flow rates in the streamtubes are
constant and equal to each other, At the limit, when the streamtubes approach
the streamlines:

q, = 2 nq : (3-50)

Substitution for C(w)/Cofrom Eq. 3-47 and q, from Eq. 3-50 and simplification
yields:

/4 2 2
K{m) K'"(m) a
exp [' — 7. & (Vprt("’) - va) ]

_ Nk K'(@) 2y °
= 2 a¥
LI ! VI
(3-51)
where ED is a dimensionless quantity defined as:
T - C _
CD = - (3-52)
C F _{—
or Ya

Five-Spot: For this pattern, Eq. 3-51 with K(m) = K'(m) = 1.854074 reduces
to:

a 2
_ 75 = (Tpoe @) = Vpp) }
C_ = 0.577266 ay (3-53)

D
0 VY)

The term Eb is defined by Eq. 3-52.

/4 . [0.645776

Direct Line Drive: For a direct line drive, 1/4 of the pattern must be
considered, as shown in Fig. 3.18.

For this system, the effluent concentration integral is:

C .
T (3-54)

where C(¢)/Co is given by Eq. 3-47 and q, by Eq. 3-50. Therefore:

w/2 2 L2
K{m) K' (m) a
24K(m) X'(m) exp [' E(Vprt(‘p) - VpD) ]

3 n2¥ () a0

oy A \VE®)

(3-55)
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Again, the dimensionless quantity, Eb, is
defined in Eq. 3-52.

Figure 3.19 is a graph of C_. versus V p for
a developed staggered line drive, where d/a

= 1.5. As this figure shows, there is a % o
series of curves which depends upon a/a I i
ratio, a dimensionless quantity. This ratio > >

is equivalent to the Peclet number, as has

been reported 1in wvarious studies. For a g

large value of o, or an equivalently smaller ,;

a, the corresponding curve is broad. This

is due to the larger amount of mixing that

occurs for small values of Peclet numbers.

Another characteristic of these curves is

that they all exhibit tracer production at
values less than 0.85., This number is L

tﬁe breakthrough areal sweep efficiency for O O =0

a staggered line drive pattern, d/a = 1.5,

as computed from Eq. A-47 in Appendix A.l.

Tracer production prior to breakthrough pore

volume is also the result of mixing. Fig. 3.18: ELEMENT CONSIDERED

IN COMPUTING TRACER
Figures 3.20 and 3,21 show tracer production PRODUCTION CURVES
curves from a developed five-spot and a FOR THE DIRECT LINE
developed direct line drive, d/a = 1, for DRIVE

different a/a ratios. All the curves have

0.20 r
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Z .15
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=
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-
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0.5

PORE VOLUMES INJECTED, VpD

Fig. 3.19: DIMENSIONLESS TRACER CONCENTRATIONS VS PORE VOLUMES INJECTED,
DEVELOPED STAGGERED LINE DRIVE, d/a = 1.5
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DIMENSIONLESS TRACER CONCENTRATION, CD

DIMENSIONLESS TRACER CONCENTRATION, CD

Fig. 3.20:

Fig. 3.21:

0.15

0.10

0.05

0.20

0.05

PORE VOLUMES INJECTED, va

DIMENSIONLESS TRACER CONCENTRATIONS VS PORE VOLUMES IRNJECTED,
DEVELOPED FIVE-SPOT

afa = 500

PORE VOLUMES INJECTED, V

pbh

DIMENSIONLESS TRACER CONCENTRATIONS VS PORE VOLUMES INJECTED,
DIRECT LINE DRIVE, d/a =1
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1 DIRECT LINE DRIVE,
d/a =1

DIMENSIONLESS TRACER CONCENTRATION, CD

2 FIVE-SPOT

0.151~ 3 STAGGERED LINE DRIVE,
d/a = 1.5

~—— BREAKTHROUGH AREAL
SWEEP EFFICIENCY

0.10 =

0.05

PORE VOLUMES INJECTED, va

Fig. 3.22: TRACER PRODUCTION CURVES FOR DIFFERENT DEVELOPED AND
HOMOGENEQUS PATTERNS, a/a = 500

the same general characteristics. A comparison of tracer production curves
from these three patterns for a/a = 500 is illustrated in Fig. 3.22. Again,
tracer production occurs before the theoretical breakthrough areal sweep
efficiency of the patterns; the curves spread as the result of dispersion.

3.2.3 Correlation of Tracer Production Curves

In the previous section, it was shown that the tracer production curve from a
pattern was a function of Peclet number, a/o. Therefore, for each pattern, a
set of tracer response curves was obtained with a/a as a parameter. In this
section, the sets of tracer profiles from various patterns are correlated into
a single set of curves (a/o being the parameter) which represents the tracer
production curves from repeated homogeneous patterns.

The following approach was taken to accomplish the correlation. The peak data
(maximum tracer concentrations and corresponding pore volumes) of tracer pro-—
duction curves for different systems were plotted versus a/oa. Figure 3.23 is
the graph of dimensionless maximum concentration, and Fig. 3.24 is the graph
of peak dimensionless volume location where the maximum tracer concentration
occurs. The ordinate of the latter figure is the same dimensionless volume
parameter that was used to correlate the pattern breakthrough curves in
Section 3.1.3. In both of the figures, the data for every system yield a
straight line on log-log paper. A vertical shift of lines in Fig. 3.23 and a
horizontal shift of lines in Fig. 3.24 correlated the respective sets of lines
into a single line for each figure. The five-spot system was chosen as a
reference for correlation in both of the figures. The amount of shift of
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these lines with respect to the five-spot lines produced two sets of correc-
tion factors: one for maximum tracer concentration, and the other one for a/a
to calculate the peak location. The correction factors, which are in the form
of multipliers, are shown in Figs. 3.25 and 3.26. The tabulated values of
these correction factors are provided in Table 3.7. If the correction factors
from these two figures are applied to the peak data of a tracer breakthrough
curve from a five-spot system, they produce the peak data for the pattern
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Fig. 3.25: CORRECTION FACTORS ON PEAK CONCENTRATIONS
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corresponding to the selected correction factors. The following relationships
may be used for the conversion:

¢ ) - f (E ) (3-56)
( D,max pattern m \ D,max 5-spot

where, fm is the correction factor on the peak concentration (Fig. 3.25).

7 ] T 1 6
1.2 b J
1.0 5
0.8
. 4
~
=
o
= 0.6
= 3
=
- 0.4
2
0.2
0 il ! ] ] 1
0.5 1.0 1.5 2.0 2.5 3.0

d
a
Fig. 3.26: CORRECTION FACTORS ON a/o TO CALCULATE PEAK LOCATIONS
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Table 3.7

CORRECTION FACTORS ON TRACER PEAK CONCENTRATION AND a/a FOR
STAGGERED LINE DRIVE AND DIRECT LINE DRIVE AT VARIOUS d/a RATIOS

STAGGERED LINE DRIVE DIRECT LINE DRIVE
g- fp fm fP fm
-g-;O ______ 1_65‘ _____ ijda-_.— *._-_-_-_.‘-_’_-E-Eiig _____ i_ég
0.75 1.13 1.09 0.092 1.06
1.00 1.36 1.22 0.173 1.03
1.25 1.76 1.37 0.280 1.07
1.50 2.26 1.52 0.410 1.17
1.75 2.76 1.68 0.536 1.27
2.00 3.26 1.83 0.665 1.39
2.25 3.78 1.99 0.790 1.50
2,50 4,28 2.14 0.915 1.62
2.75 4.79 2.30 1.040 1.74
3.00 5.30 2.46 1.165 1.85
3.25 5.81 2.63 1.294 1.95
3.50 6.12 2.78 1.420 2.06

Substituting for ED from Eq. 3-52 and simplifying:

(e )

_ fm (Cmax) . pattern (3-57)

5-spot ( a )
@ 5-spot

The correction factor on Peclet number, fp (Fig. 3.26), relates a/o values:

(3) ()

pattern 5-spot

pattern
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Finally:

5-spot

(Cmax) = fm pr (Cmax) (3-39)
pattern

Pore volumes corresponding to peak concentrations are also convertible,
because maximum concentrations occur at the same dimensionless pore volumes,

i.e.:

VpD,max - vabt VpD,max - Vi)Dbt
= (3_60)
1 -V 1 -V
pDbt pattern pDbt 5=-spot
Or, equivalently:
VpD,max - Vprt
(va,max> = 1 - v ’ (1 - Vprt)
pattern pDbt 5-spot pattern
+ (Vprt) (3-61)
pattern
where, VPDbt is the areal sweep efficiency expressed as a fraction.

Having been able to correlate one point from each curve——namely, the maximum
point of the tracer breakthrough profile from various systems—-the analysis
was extended to correlate the tracer breakthrough curves over their entire
concentration versus volume range. To do this, first, the tracer breakthrough
profiles of systems were normalized by dividing the concentration values by
the maximum concentrations for each curve. An example of this for a developed
five~spot system is shown in Fig. 3.27. Second, the correction factors on a/a
in Fig. 3.26 were utilized to correlate the normalized curves of different
patterns into one curve. To accomplish this, the volume coordinate used on
the abscissa was the same dimensionless pore volume function that was found
useful in the correlation of pattern breakthrough curves discussed in Section
3.1.3. Figure 3.28 shows a particular correlation obtained when comparing a
five-spot with a/a = 700 to the equivalent direct line drive (d/a = 1, a/a =
120), and the equivalent staggered line drive (d/a = 2, a/a = 2280). The
values of afa for the latter two patterns were computed using Eq. 3-58 with
f = 0,17 and f_ = 3.26, respectively, obtained from Fig. 3.25. The corre-
lation is excellent in the vicinity of the peak. At smaller and larger pore
volumes, it is somewhat poor, but still adequate as will be seen later. Due
to the low concentrations at each end of the correlation, the relative errors
by the correlation are small at the volume extremes.
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Fig. 3.27: NORMALIZED TRACER PRODUCTION CURVES FOR A HOMOGENEQUS
DEVELOPED FIVE-SPOT

3.0

1'0 L L] L T L3 Ll 1] L L] L L
) 1 |
a/a
—— Five Spot 700
0.8
Direct Line Drive d/a =1 120
- - Staggered Line Drive, d/a = 2 2280
0.6 —
w
o]
E
o
0.4
0.2
0 |
-1 0 1 2 3
v _ -V /(1 -V
( pD prt) ( prt)
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For any value of a/a and for different geometries, the actual curves can be
related to a five-spot system by using the parameters in the coordinates of
Fig. 3.28, and the correction factors on Fig. 3.25 and 3.26 as follows:

C C
max max

pattern 5-spot

Substitute for maximum concentrations from Eq. 3-59:

Cpattern = fm pr CS—spot (3-63)

The pore volumes at which the concentrations in Eq. 3-63 occur are obtained
from the dimensionless pore volume abscissa coordinate of Fig. 3.28. The
relationship is similar to Eq. 3-61 and subsequently is given by:

va - VbDbt
V = T — L) —
( pD) 1 - v (1 vabt) + (vabt)
pattern pDbt S5-spot pattern pattern
(3-64)

By using Eq. 3-58, different patterns can be correlated into an equivalent
five-spot pattern; thereafter, breakthrough curves can be computed from the
five-spot tracer breakthrough profile through Eqs. 3-63 and 3-64 only.

3.3 TRACER FLOW IN HETEROGENEQOUS SYTEMS

This section focuses on the mathematical description of tracer movement in
non-uniform reservoirs. The non-uniformity of a reservoir is represented with
a stratified model.

3.3.1 Concept of Multilayered Modeling

Reservoirs often are sedimentary deposits laid down in a body of water over a
long period of time. After deposition, they undergo further physical and
chemical changes. As a result of the non-uniform nature of deposition and
secondary alteration, heterogeneities develop within the reservoirs. The
severity of the heterogeneity depends on the lithology and the external forces
acting upon the system. In general, sandstone reservoirs tend to be more
uniform than limestone or carbonate reservoirs. Levorsen (1956) details
sedimentary basins including the origin of heterogeneities in each basin.
Hutchinson (1959) presents an excellent review on reservoir inhomogeneity.

Since the sediments are deposited areally, it is expected that some lateral
uniformity exists over wide ranges of a reservoir. However, a variation is
anticipated in the vertical direction due to differences in the depositional
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time and environment. This scheme
of deposition indicates that the
sediments are generally laid down in
layers which are fairly uniform in
lateral direction but differ with
elevation. For many sandstone
reservoirs, this type of hetero-
geneity is a fair representation of
the reservoir. The fact that the
permeabilities measured in the ver-
tical direction are frequently a
small fraction of the horizontal
permeabilities emphasizes the
validity of this representation.
Figures 3.29a and b show outcrops of
sandstone reservoirs. These pic-
tures illustrate that formations are
often composed of layers. In some
cases, thin layers of shale or silt
are deposited Dbetween the sand
layers and prevent interlayer fluid
transport. However, in other cases
there is no Dbarrier between the
layers and hence, unrestricted or
partially restricted cross—flow
occurs between the layers. Some—
times, cross-bedding, pinching out
and local non-uniformities within
the layers distort the homogeneity
and the continuity of the layers.

Despite physical limitations, reser—
voirs can often be simulated as
though they are composed of parallel
layers with no interlayer communica-
tion. Based on this model, several
reservoir engineering calculations
can be made. Dykstra and Parsons
(1950) presented a method for calcu-
lating reservoir vertical coverage
in waterflooding operations using
this concept. Their method has been
found to match the results of many
waterflood operations. Elkins and
Skov (1962) matched the performance
of two gas-condensate cycling pro-
jects and an enriched gas-drive
project with a multi-strata model.
Fitch and Griffith (1964) also
matched the performance of an LPG
slug miscible drive in an 1isolated
five-spot pilot test by wusing a
stratified model with no cross—flow

Fig. 3.29a

Fig. 3.29b

Fig. 3.29:
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between the layers. The strata description for the pilot was obtained from
core data. Based on a stratified model, Hearn (1971) developed theoretical
pseudo-relative-permeability curves for a reservoir which included wvertical
permeability variation. The pseudo-relative-permeability curves converted the
stratified reservoir intce a mathematically-equivalent, two—dimensional homo-
geneous system with pseudo properties. This model was shown to match the
performance of a waterflooding operation conducted in a carbonate reservoir.
There was vertical communication among the layers of this reservoir.

Cross—-flow between the layers occurs as a result of the establishment of a
vertical pressure gradient between the layers. One or more of three forces
may cause vertical pressure gradients to develop. These are gravity,
capillary and viscous forces. In miscible displacements, vertical dispersion
also contributes to the amount of cross-flow. 1In a miscible displacement of
fluids with equal densities, there are no gravity and capillary forces. If
the fluids also have the same viscosity (mobility ratio equal to one), no
viscous forces will be present across the layers., A miscible displacement in
which these forces are absent will theoretically produce similar results in a
stratified system with no barrier between the layers, and in a system in which
impermeable layers prevent cross—flow. However, the systems which exhibit
cross—flow can also be modeled by a hypothetical system with no cross—-flow.
This was illustrated by Fitch and Griffith (1964), who matched the results of
a miscible test by a stratified model with no cross—-flow. The test was con-
ducted in laboratory layered-prototypes without barriers between the layers at
a mobility ratio of about twenty. The success of stratified reservoir models
in matching performance of miscible and immiscible displacements indicates
that this concept of modeling is often reasonable,

Similarly, the flow of tracers in heterogeneous reservoirs can be modeled by a
stratified system. Since the tracer material is miscible with both the
displacing and displaced fluids, and has the same density and viscosity as
these fluids, cross-flow can occur only as a result of lateral dispersion.
However, the effects of lateral dispersion are much smaller than longitudinal
dispersion, as has been discussed earlier. Therefore, for practical purposes,

the results of tracer flow in a stratified reservoir, with or without barriers
between the layers, would be similar.

3.3.2 Tracer Production Curves from Layered Systems

To compute tracer response curves from layered systems, the following assump-
tions are made:

1) The individual layers are homogeneous (uniform porosity and permeability
throughout each layer);

2) There is no cross flow between the layers;

3 The dispersion constant, a, is the same for each layer;

43 Water saturation is constant and is the same in each layer; and

5) The mobility ratio of the displacement is equal to unity.
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The justification of the third assumption stems from two facts: 1) for the
formations with the same sedimentary deposit origins, dispersion constants do
not vary appreciably within the same producing zones of formations; and 2)
tracer breakthrough curves do not depend strongly on dispersion constants.
This can be seen from either Fig. 3.19 or 3.23. The fifth assumption is valid
for the tracer tests run in gas reservoirs or watered-out reservoirs (prior to
tertiary operations) wherein the fluid flowing ahead of the tracer slug is
essentially water, and the chase fluid is also water. In secondary recovery
waterflooding in reservoirs with high connate-water saturation, the fluid bank
ahead of the tracer slug will be mainly water. Hence, the assumption of unit
mobility ratio would be applicable. In almost all gas cycling projects, the
assumption of unit mobility ratio is valid.

In a layered system, the overall tracer output curve is a combination of
responses from the constituent layers. The individual layer responses are
predictable and correlatable by the analysis discussed in the previous
sections. However, the tracer arrival time at the production well and the
tracer concentration contributed from each layer are functions of the
porosity, permeability and thickness of each layer. Because of the unit-
mobility ratio assumption, any material injected into a muitilayered system is
distributed among the layers in proportion to conductances, kh., If Vg is the
total volume (in barrels) of displacing fluid injected, then the pore volume
injected into layer j is:

(kh)j 5.615 VT kj 5.615 VT

Vop) = = *E (3-65)
p’, = “Ikn A(eh).S _ Ikh = A'S
D7 (eh) 8, ¢ w

At the producing wellbore, the tracer concentration is the volumetric sum of
tracer concentrations from the layers. This is given by:

n
¢ - J};l ig-%l ¢, (3-66)
where:
n = number of layers
Ej = tracer concentration flowing from layer j into the wellbore, com-—

puted at pore volume (va)

]
From Eq. 3-52 for layer j:

-— a -—
Cj = C0 ‘é; Frj CDj (3-67)

where F_ . is the tracer slug size injected into layer j in terms of fraction
of the pgre volume of layer j. It is thus given by:

(kh)j v k. v

. Tr J Tr
j .= = —3_ =2 (3-68)
rj tkh A (¢h)j Sw ¢j Ikh A SW
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and C_. is the dimensionless concentration from layer j calculated at VpD =
(VpD)j'J This dimensionless concentration is given by one of the Egs. 3-51, 3-
53" or 3-55, depending on the type of pattern. If thickness, porosity and
permeability of the layers are known, the tracer concentration profiles for
various patterns can be constructed. Conversely, the decomposition of a
tracer production curve from a multilayered system into the constituent layer
responses can yield the layer parameters. Yuen et al. (1979) presented a
method for the decomposition of overall tracer response curves from developed

five-spot systems.

To study the flow of tracer in layered systems, a hypothetical four-layered
staggered line drive with d/a = 1 was considered. The area of the system was
90,000 ftz, the Peclet number was a/a = 2000, and the total tracer injected
into the system was 10 ft-., Also, the system was considered to be of unit
thickness with a porosity of 0.25 and an initial water saturation of 60
percent. Table 3.8 shows the assumed parameters of the layers. The calcu-
lated tracer response from this system is presented in Fig. 3.30. There are
four distinct peaks in this figure which are widely separated from each
other. A computer algorithm, based on the Yuen et al.'s (1979) method, was
prepared which would deconvolve the overall tracer profile into the consti-
tuent layer responses, and thus evaluate the porosity thickness and fractional
permeability thickness products of the individual layers from the input peak
data (concentration and volume). The computer program would then regenerate
the entire tracer production profile based on the computed layer parameters.
This program will be referred to as "deconvolution routine” in this study.
Table 3.8 shows the computed results using the deconvolution routine based on
exact equations for a staggered line drive system. The corresponding computed
tracer curve was close to the original profile,

Table 3.8

ASSUMED AND COMPUTED PARAMETERS OF THE LAYERS FOR THE THEORETICAL
STAGGERED LINE DRIVE, EXAMPLE 1

COMPUTED PARAMETERS

USING EQUATIONS FOR COMPUTED PARAMETERS

ASSUMED STAGGERED LINE DRIVE, USING EQUATIONS OF
PARAMETERS d/a = 1 EQUIVALENT 5-SPOT SYSTEM

LAYER

kh kh kh

¢h Tkh ¢h Tkh ¢h Zkh
1 0.2850 0.2 0.2800 0.19750 0.27830 0.19630
2 1.0134 0.4 1.00601 0.39824 1.00197 0.39664
3 1.1403 0.3 1.13376 0.29921 1.13944 0.30071
4 0.5068 0.1 0.51094 0.10113 0.52816 0.10454
SUM 2.9455 1.0 2.93071 0.99608 2.94787 0.99819
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Fig. 3.30: TRACER RESPONSE FROM A FOUR-LAYERED STAGGERED
LINE DRIVE, d/a = 1, "FIRST EXAMPLE"

The correlating technique developed for tracer production curves was applied
to this multilayered system. The staggered line drive was converted into an
equivalent five-spot using Eq. 3-58 with fp = 1.36 obtained from Fig. 3.26.
This changed the value of a/a from 2000 to 1470. Next, the deconvolution
routine was modified to combine tracer concentration equations for the five-
spot system with the correlating Eqs. 3-63 and 3-64. This modified version of
the deconvolution routine was used, with appropriate multipliers and break-
through areal sweep efficiencies, to decompose the original tracer curve in
Fig. 3.30. The regenerated profile based on the correlation is seen in Fig
3.31. The match is good with only slight divergence in the vicinity of the
local minima. This divergence was expected because the original correlation
was not perfect at larger and smaller values of pore volumes. The parameters
of the layers computed by the program are shown in Table 3.8. The calculated

values of ¢h and kh are close to the values used to generate the data.

In the second hypothetical example, the same four-layer staggered line drive
system was considered. This time the parameters of the layers were changed to
obtain peaks near each other. Table 3.9 presents the selected parameters of
the layers. The tracer response from this system is shown in Fig. 3.32. As
before, the deconvolution routine was used with the input observed peak data
to generate a match to this curve, The resulting match, shown in Fig. 3.32,
is not a satisfactory one. Yuen et al. (1979) have illustrated that when
peaks are near each other, the observed peak locations do not correspond to
the exact peak locations from the individual layer responses. The individual
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Fig. 3.31: MATCH OBTAINED USING THE DECONVOLUTION ROUTINE AND TRACER
CORRELATION PARAMETERS

Table 3.9

ASSUMED AND COMPUTED PARAMETERS OF THE LAYERS F%R THE THEORETICAL
STAGGERED LINE DRIVE, EXAMPLE 2

COMPUTED PARAMETERS USING

ASSUMED PARAMETERS OPTIMIZATION TECHNIQUE

LAYER

G - S L -
1 0315 0.15 1.26 119.05 0.31499  0.149998 1.26  119.05
2 1.000 0.40 4.00 100.00  0.999957 0.399984 4.00 100.00
3 0.6875 0.25 2.75 90.91 0.687447 0.249983 2.75 90.91
4 0.6000 0.20 2.4 83.33 0.600065 0.200024 2.40 83.33
sm 2.6025 1.00 2.602066 0.999989
*The k and h values in this table have been computed for ¢ = .25 and

Ikh = 1000 md-ft.
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Fig. 3.32: TRACER RESPONSE FROM A FOUR-LAYER DEVELOPED STAGGERED LINE DRIVE
(d/a = 1) AND THE MATCH OBTAINED USING THE DECONVOLUTION ROUTINE,
"SECOND EXAMPLE"

tracer response curves interfere with each other and, hence, shift the
location of the observed peaks from their corresponding layer peaks. Brown
and Brigham (1981) have shown 2 method of handling this shift using a trial-
and-error procedure for each peak. This wusually requires many trials to
achieve a desirable match and can be tedious for large systems. In this
study, an attempt has been made to overcome this problem.

3.3.3 Optimization Technique

Non-linear optimization (or multiple regression analysis) is a powerful tech-
nique in fitting data by a set of variables. This procedure is also known as
a non-linear least-squares method for curve fitting. The idea is to minimize
the objective function F:

N
Fo= Qo (c; - G : (3-69)
=1

where:
* . . .
Ci = observed concentration at sample point 1
Ci = overall concentration computed at sample point i
N = number of data points or number of observed concentrations
i = an observation point
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For a multilayer system, the injected tracer and displacing fluid will be

divided into layers proportional to the kh of each layer. If (Vgp); is the
total volume (in barrels) injected at the time point i is observed, the pore
volumes injected into layer j at this time from Eq. 3-65 are:

5 5.615 (VT)i
(VpD). S A5 (3-70)
3, j W

b

The overall tracer concentration being produced at the time of observation
point i is the sum of tracer concentrations being supplied by each layer.
This concept is considered in Eq. 3-66 and is given by:

_ n (kh), _
& = X T 5,1 (3-71)
i=1
where C. . is the concentration flowing to the wellbore from layer j at the

. . ) . ; ; . . .
time and injection volume associated with point 1i. This concentration is
conputed from Eq. 3-67 as follows:

_ r _
€50 = % \/6? Frs (Cn)j ; (3-72)

where F.. is given by Eq. 3-68 and (C_). ., dimensionless concentration in
layer j, "is calculated at V D= (VpD)j i id’ the equation for tracer production
curves from homogeneous patgerns. ’

From Eqs. 3-51, or 3-53, or 3-55 (for the pattern of interest), and Eqs. 3-68
and 3-70 through 3~72, it can be concluded that‘Ci is only a function of
k./(¢j2kh), (kh)j/Zkh, (VT)_, and the number of layers. The functional form
. i

id:

k, kh) . k.
] ( )J

n
- ; ]
i Z_: T R (VT)_ (3-73)
=1 J J i

where T is a function given by combining Egs. 3-51, or 3-53, or 3-55 (for the
patterns) with Eq. 3-70 and 3-72. Denoting:

k. .
N _
. Ikh Zy (3-74)
and,
ky o (kh),
5. Ikh xR © % (3-75)
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Equation 3-73 becomes:

n

T, = XX T [zj , (VT)i] (3-76)

=1

The subroutine VARPRO at the Stanford Center for Information Technology (CIT)
can minimize the function F given in Eq. 3-69 when C. is in the form of Eq.
3-76. This subroutine requires initial estimates on non=linear parameters, Z.,
with no requirements on initial estimates for linear parameters, X.. 1In tge
case of interest here, the initial estimates on Z, can be obtained €asily from
Eq. 3-70 by assuming that the observed location gf peaks in the tracer break-
through curve correspond to the location of peaks from individual layer
responses. This is given by the following equation:

A Sw
(z,) . v (3-77)
j pD,max

est  5.615 (vT’max)i

where: )
(VT max)- = volume corresponding to the jth,peak in the observed tracer

’ J  profile, bbls

VpD max - Pore volume corresponding to the peak location in tracer

response from a homogeneous system. This can be obtained
from Fig. 3.24 combined with breakthrough areal sweep effi-
ciency equations provided in Appendix A for different
patterns

A computer program has been developed which utilizes the subroutine VARPRO to
perform the optimization. The input data for this program are as follows: N
data points from the overall tracer profile, number of layers expected (n)
where n is smaller than N, and n location volumes corresponding to peaks in
the observed tracer breakthrough curve. The program computes n non-linear
parameters and n linear parameters with the least possible errors. From these
parameters, ¢h and kh/Ikh of each layer are computed as follows: '

(kh). X.
Zkh? = zJ (3-78)
; .
X5
h), = —— 3-7
(¢ )J Z? ( 9)
hi

Based on the above computed parameters, the program regenerates the entire
tracer breakthrough curve.

The tracer profile in Fig. 3.32 was analyzed using this optimization tech-
nique. Twenty data points and four layers were chosen. The result of this
optimization is shown in Fig. 3.33. There is virtually no difference between
the original profile and the matched curve. The important point here is that
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Fig. 3.33: MATCH OBTAINED USING THE OPTIMIZATION ROUTINE WITH FOUR LAYERS,
"SECOND EXAMPLE"

Fig. 3.33 was obtained in one run, and no trial runs were necessary. Table
3.9 shows the numerical values of the parameters of the layers computed by the
program. The results are virtually identical to the input data. If the
layers are assumed to have the same porosity, and if average conductance of
the system is known, the thicknesses and permeabilities of the layers can be
computed. Table 3.9 also shows the computed permeability and thickness of the
layers for uniform porosity of 0.25 and Ikh of 1000 md-ft.

To study the effect of assuming a smaller number of layers or a greater number
of layers on the analysis, the profile in Fig. 3.32 was optimized using three
and five layers. The results are shown in Figs. 3.34 and 3.35, respectively.
Both figures have the same area under the curve for the algorithm maintains a
material balance. For the five-layer case, the program produced two peak
locations that were very close to each other (19,394 bbls and 19,399 bbls),
implying that the two layers belonging to the peaks are actually only one
layer and, therefore, the system is composed of four layers. Figure 3.34
shows that with three layers the analysis did not produce a good match. This
indicates that more layers are required for a better match. Table 3.10 illus-
trates the results of the optimization with three and five layers. Also shown
in this table are the computed values of permeabilities and thicknesses for
equal values of porosity in the layers. Since two of the layers in Table 3.10
have virtually the same permeability, it is concluded that the system 1is
actually composed of only four layers. Again, the results of this analysis
are virtually identical with the input data.
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Table 3.10

COMPUTED PARAMETERS OF THE LAYERS USING THE OPTIMIZAE}ON
TECHENIOUE WITH VARIOUS NUMBER OF LAYERS, EXAMPLE 2

COMPUTED PARAMETERS COMPUTED PARAMETERS

WITH THREE LAYERS WITH FIVE LAYERS
LAYER

T T T N - S S

1 0.33817 0.16066 1.35 118.76  0.31499 0.15000 1.26 119.05
2 1.17024  0.46375 4,68 681.02 0.62362  0.24942 2.49 99.99
3 0.94361 0.32965 3.77 87.34 0.37630  0.15055 1.51 100.01
4 0.68738  0.24996 2.75 90.61
5 0.60014  0.20005 2.40 83.33
SUN 3.45202  0.95404 9.80  2.60243 0.99998 10.00
*The k and h values in this table have been computed for ¢ = .25 and

Zkh = 1000 md-ft.

The optimization computer program developed in this study generated excellent
matches to theoretical tracer curves from multilayered patterns. The match
obtained with fewer than the actual number of layers was not good, while that
obtained with an excessive number of layers was excellent. The program also
produced the correct number of layers whenever more layers were used than
should have been. This proved that the program was capable of analyzing
theoretical tracer curves. However, it remains to test the practical use of
the method on field tracer response curves.
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4, FIELD EXAMPLE

After successful analysis of tracer responses from hypothetically constructed
multi-layered systems, the study was directed to the analysis of field data.
The following example was taken from the paper by Brigham and Smith (1965).

4,1 HISTORY AND DESIGN OF THE TEST

The system considered was an unbalanced, inverted five-spot pilot pattern
located in the Loco Field in Oklahoma. The reservoir had been under water-
flooding since early 1950. In 1959, hot water injection began. The pilot
location was selected in an area that had been depleted beyond the economic
limit by conventional waterflooding. Beside the pilot injection well, seven
other injectors had been also operating in the vicinity of the pilot area as
shown in Fig. 4.1. Martin et al. (1968) present the geological data on the
structure of the reservoir and the pilot area in particular.

Fig. 4.1: TISOPACH MAP OF LOCO WATERFLOOD PILOT AREA
(After Martin fﬂLEEL" 1968)
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A tracer program was initiated 260 BWPD 160 BWPD

in 1962 to measure travel
times and breakthrough char- /\ E;
acteristics for this pilot. (T\ 4/:)
Prior to the test, the injec~- K> N

tion and production rates were
stable and remained constant
during most of the test. Flow
rates and information regard-

ing the pattern and reservoir INJECTOR
are shown on Fig. 4.2. Be-

cause of operating problems, :

the injection pump was shut

down on the 18th day of the

project through the 2lst day. : 600 BWPD

Water injection was then re-
sumed at 600 BWPD, equal to
the injection rate prior to
the shut down. Total produc-

tion rate from the four wells Ny g

was 800 BWPD, implying , that (:/ 44‘“)

the production wells produced [: []

200 BWPD from outside of the

pattern area. This amount was 140 BWPD 240 BWPD
not enough to balance the

pattern completely. For an

isolated five-—spot pattern to PATTERN AREA = 2.5 acres
act as though it is confined, ’
it 1s necessary that the pro-  prgraNCE BETWEEN PRODUCERS, a = 330 ft
duction rate from each well be

equal to the injection rate. TOTAL TRACER INJECTED = 200 1bs
Two hundred pounds of ammonium NET PAY THICKNESS = 12 ft
thiocyanate and 150 pounds of

potassium lodide ~were dis-  \ypRAGE PERMEABILITY = 1500 md
solved in approximately ten

barrels of water and injected AVERAGE POROSITY = 0.26
into the formation as tracers.

The volume of tracers used was  ,ypp.cp WATER SATURATION = 0.55
chosen on the following basis.

Analytical measuring tech- MIXING CONSTANT, & = 0.05 ft

niques 1imposed a requirement
of 2 minimum 25 ppm peak con-
centration to define. the
tracer breakthrough curves Fig. 4.2: PATTERN CONFIGURATION AND
adequately. This required peak RESERVOIR DATA FOR THE FIELD TEST
concentration was doubled as a

safety factor. Hence, the test

was designed for a 50 ppm peak concentration. For design purposes, the
pattern was assumed to be a homogeneous, developed five-spot with h = 12 ft,
¢ = 0.26 and k = 1500 md. The dispersion constant, <, measured from

laboratory miscible displacements on linear cores from the formation was found
to be equal to 0.05 ft. Equation 23 in the paper by Brigham and Smith (1965)
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showed that the amount of tracer required was about 150 pounds. To compensate
for dilution caused by flow from outside the pattern, this amount was
increased by 800/600 which resulted in 200 pounds of tracer requirement.
Since laboratory analysis for iodide was more precise, the dilution effects
for this tracer were neglected, and only 150 pounds of potassium iodide were
used. The four producing wells were sampled every three hours for nine days,
every four hours for eight days, every six hours for six days, and daily for
twelve days to define tracer breakthrough curves adequately. Detailed
information on the sampling procedure is provided in Smith and Brigham (1965).

The amount of tracer required to result in a 50 ppm peak concentration from a
homogeneous, developed five-spot pattern was also calculated wusing the
analysis developed in this study. The result was different from Brigham and
Smith's designed value of 150 pounds. This was expected since Brigham and
Smith had not formulated the tracer dispersion effects correctly. From Egs.
3-4] and 3-52:

[
I - . Dmax (4-1)
D, max 2
. AR
o r VN
v
Tr
ey (4=2)
W
Mass of tracer is related to volume by:
= v -
mr = G Vo Pr (4-3)
where,
Ly = Mass of tracer, pounds
Ve = volume of tracer solution
C0 = jnitial tracer concentration, mass fraction
PT = density of tracer solution = density of water
From Eqs. 4-1, 4-2, and 4~3, the expression for mp is:
c P, A ohS
m = max T w (4__4)

T = a
CD, max‘ﬁg
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For A = 2.5 acres, the value of a is equal to 330_ft and hence, a/a = 330/0.05

= 6600. From Fig. 3.23 for this 5-spot pattern, CD max 0.07. Therefore,
’ X

o = £50 % 107%)(62.4)(2.5 x_43560)(0.26)(12)(0.55) -
T 0.07+/6600

The time to appearance of the peak for the assumed homogeneous pilot is
computed from Fig. 3.24 for a/a = 6600 as follows:

103 pounds

VpD, max Vprt
1 -

= 0.043
Vprt

For a developed five-spot pattern, Vprt = 0.,7178. Therefore,

VPD9 max = 0.73

The volume of fluid injected into the system at the peak:

<
It

A S Vv
max b w pD, max

It

(2.5 x 43560)(0.26)(12)(0.55)(0.73)/5.615 = 24,300 bbls

Time to the peak:

\Y
_ max _ 24300 _
tph " injection rate 600 40.5 days

If the system is stratified and the permeability of the most permeable layer
is known, the time at which this layer reaches a peak is estimated from:

k
too = ton (E;l) (4-5)

where,
tpp = time to peak of the most permeable layer
tph = time to peak of the homogeneous system
kp = permeability of the high permeable layer
ky = permeability of the homogeneous system
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The core data from the wells located in the pilot area had revealed a possi-
bility of a thin, high-permeability streak with permeability of 5000 md.
Therefore,

1500) = 12 days

tpp = 40.5 (3565

The time of 12 days can be viewed as an approximate time for tracer break-
through from this pilot.

At the completion of the
tracer test, there were
unequal amounts of tracer
flow from Wells A, C and
D, with absolutely no
tracer production from
Well B during the test
period. This implied
that there was limited
communication between the
injector and Well B. This
fact is substantiated
further by a study of
wellhead temperatures of
the wells during the hot
water Injection period in
which the temperature of
Well B remained near
65°F. Figure 4.3 shows
the isotherms of average
sand temperature for the
pilot. This figure was
taken from Martin et al.

(1968).

Fig. 4.3: ISOTHERMS OF AVERAGE SAND TEMPERATURE
The tracer elution curves DURING HOT WATER INJECTION
for potassium iodide and (after Martin et al., 1968)
ammonium thiocyanate were T
similar for each well,
but not exactly the same. These are shown in Fig. 4.4. By integrating the
areas under these curves, Smith and Brigham (1965) concluded that 40 percent
of ammonium thiocyanate and 44 percent of potassium iodide were recovered from
the three producing wells. This observation suggested that either there was
little adsorption of the tracers in the formation or the adsorption of each
tracer was nearly identical. The former alternative 1is the more likely. Fur-—
thermore, there is an uncertainty in the iodide data due to presence of back-
ground iodide concentration in both the injected and the formation water.
Because of this uncertainty, only thiocyanate data is considered in this
study. Since the injection was down for about four days near the end of the
test, only early portions of the tracer breakthrough curves from Wells A and D
are analyzed in detail. For this period, Well C did not exhibit substantial
tracer production as is illustrated in Fig. 4.4b.
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4,2 ANALYSIS OF TRACER RESULTS

The theoretical model to analyze tracer breakthrough curves developed in this
study 1is based on developed patterns where a complete balance between the
amount of injection and production is established. In this pilot pattern,
however, the offset wells produced at unequal rates resulting in unequal dis-
tribution of injected fluids towards the producing wells. Furthermore, none
of the wells received 1/4 of the produced fluid from the central injector.
This indicated that the in-
jected material could have
taken low wvelocity routes

along streamlines extending 94 9B

beyond the bounds of the five- O-==-=swm==meeecew===0
]

spot., Figure 4.5 shows quali-
tatively the streamlines for
Well D of the pilot. The area
drained by the well does mnot
correspond to one quarter of
the five-spot pattern.

The theoretical model can be
used to analyze this wunbal-
anced pattern if assumptions
regarding the flow lines and
the amount of fluid injected
into each drainage area can be
made. Because the main por-
tion of tracer flow is through O
the shortest streamtubes,
tracer concentrations from the
extended streamtubes are small
due to dilution by the time
fluids reach a production
well. This dindicates that
approximation of the flow
lines of the unbounded five-
spot pattern by those of a
developed one is reasonable.

. . . Fig. 4.5: QUALITATIVE STREAMLINES FOR
Distribution of injected WELL D OF THE PTLOT
fluids among the four pro-—
ducers was calculated by the
following procedure. Since
Well C did not produce tracer, it was assumed that only 50 BWPD was moving
towards this well. This assumption can be justified from a heat balance on
Fig. 4.3 from Martin et al. (1968). The remaining 550 BWPD was divided among
the other three wells according to the production rates: Well A--225 BWFD,
Well C—-120 BWPD, and Well D—-205 BWPD. The injected tracer was distributed
among the drainage areas at a quantity proportional to the assumed rates flow—
ing towards the wells. For example, for Well A the amount of tracer was equal
to (225 BWPD) x (200 1bs)/(600 BWPD) = 75 pounds. The area drained by each
well however, was assumed to be one quarter of the pattern area (27,225 ft“).
Although this assumption introduces some error in the computation of absolute
values of the layer parameters, the relative values (toc each other) of layer
parameters will remain virtually unchanged as will be demonstrated later.

- 74 -



As a result of flow from outside the pattern, the tracer concentrations had
been diluted and the corresponding produced volumes had been increased.
Therefore, in the analysis of tracer data, the effect of flow from outside of
the pattern on the produced tracer concentration curves was considered. For
Well D, the observed concentrations were multiplied by 240/205, and the
volumes were divided by 240/205. For Well A, this factor was 260/225.

The optimization routine was used to analyze the tracer production curve from
Well D. Thirty four data points from the tracer curve were inputed into the
routine. Figure 4.6 shows the match when only five layers were used. The
input peak-volumes and the final peak-volumes computed by the routine are
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Fig, 4.6: ANALYSIS OF TRACER DATA FOR WELL D WITH FIVE LAYERS

shown on this figure. The shape of the computed curve shows that more layers
should improve the match. Figure 4.7 illustrates the new match using seven
layers. For this analysis, the peak volumes were chosen at the computed
locations in Fig. 4.6 and the additional two peaks were selected at 3050 bbls
and 2200 bbls. The match with seven layers shows an improvement over the
match with five layers. The analysis was continued with nine and ten layers,
each time utilizing the computed peak-locations from the previous match and
adding additional peaks in the positions where the greatest divergence was
observed between the field data and the match. Figures 4.8 and 4.9 are the
matches with nine and ten layers, respectively. The later portion of the
field data could not be matched very well as shown in these figures. This 1s
believed to be due to inaccuracy of the field data close to the shut-down
time. Table 4.1 shows the results of the analysis with differing numbers of
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Table 4.1
COMPUTED LAYER PARAMETERS FOR FIELD TEST, WELL D, USING THE
OPTIMIZATION ROUTINE WITH DIFFERENT NUMBER OF LAYERS
FIVE LAYERS SEVEN LAVERS NINE LAYERS TEN LAYERS
LAYER
kh kh kh_ kh
¢h Tkn b Tkh oh Tkh ¢h Tin
1 0.035312 0.033734 0.015658 0.016360 0.,011562 0.012167 0.011410 0.012009
2 0.106529  0.092838 0.047419  0.043769 0.015575 0.015031 0.013782  0.013344
3 0.106198 0.082195 0.084410 0.072963 0.041926 0.038131 0.034880 0.031938
4 0.094516  0.066012 0.052945 0.041998 0.078987  0.068042 0.070605 0.061395
5 0.088629  0.055505 0.058256  0.043471 0.052492 0.041585 0.026728  0.022284
6 0.087285  0.060604 0.057068  0.042590 0.047820 0.037617
7 0.087122  0.054503 0.084869  0.058990 0.053306 0.039756
8 0.075888 0.047784 0.084649  0.058840
9 0.021086 0.012465 0.075661 0.047642
10 0.021079  0.012466
SUM 0.431180 0.330280 0.433100 0.333670 0.439450 0.337060 0.439920 0.337290




Table 4.2

COMPUTED PERMEABILITIES AND THICKNESSES OF LAYERS FQB FIELD
TEST, WELL D, WITH DIFFERENT NUMBER OF LAYERS

FIVE LAYERS SEVEN LAYERS NINE LAYERS TEN LAYERS
LAYER
h,ft k,md h, ft k,md h, ft k,md h,ft k,md
T 01358 4471 0.0602 4890  0.0445 4925  0.0439 4926
2 0.4097 4078 0.1824 4320 0.0599 4516 0.0530 4531
3 0.4085 3622 0.3248 4044 0.1613 4257 0.1342 4285
4 0.3635 3267 0.2036 3712 0.3038 4032 0.2716 4070
5 0.3409 2931 0.2036 3843 0.2019 3708 0.1028 3902
6 0.3357 3249 0.2195 3493 0.1839 3682
7 0.3351 2928 0.3264 3253 0.2050 3490
8 0.2919 2947 0.3256 3253
9 0.0811 2767 0.2910 2947
10 0.0810 2768
*The k and h values in this table have been computed for ¢ = .26 and

Zkh = 18000 md-ft.

layers. In all the cases, the sum of ¢h and the sum of kh/Zkh are almost the
same. This is due to conservation of mass by material balance. If layers are
assumed to have the same porosity and if an average value for kh of the system
is known, the individual permeability and thickness of each layer can also be
computed. Table 4.2 presents the computed permeability and thickness of the
layers for an average porosity of 0.26, and average permeability thickness
product of 18,000 md-ft.

In order to improve the match as much as possible, an attempt was made to
optimize the data by using more than ten layers. Each time thls was tried,
the routine failed to converge. This was found to be due to failure in a
built—in matrix manipulation in the VARPRO routine. It appears that the data
cannot be matched with more than ten layers. In any case, the match with ten
layers, being the final match for Well D, is a satisfactory one. It is worth
mentioning that it took only a small number of iteratioms in the optimization
routine to arrive at these matches with different number of layers. Usually,
the number of iterations decreased with an increase in the number of layers.
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For example, the match with ten layers was generated with only three itera-
tions. It was also found that the initial estimates required by the routine
(input peak volumes) sometimes were important in determining -convergences.
This was more important with a higher number of layers.

The tracer breakthrough curve for Well A was also matched with ten layers
using the optimization routine. For this example, forty-four data points were
chosen from the tracer breakthrough curve. Figures 4.10, 4.11 and 4.12 show
the matches with five, seven, and ten layers, respectively. Again, the
quality of the matches between 4,000 and 4,500 bbls is caused by the
inaccurate field data near or during the shut-down period. Table 4.3 shows
¢h and kh/Zkh for the layers, as determined by the program. For a uniform
porosity of 0.26 for the entire system and average kh of 18,000 md, the
calculated permeabilities and thicknesses of the layers are given in Table
4.4. Comparisons of Tables 4.1 and 4.3 or Tables 4.2 and 4.4 show that the
ten layers for each quadrant are somewhat different for each quadrant. The
differences in the formation characteristics calculated are due to independent
modeling of each quadrant of the patterm. In other words, the behavior of
Well D corresponds to behavior of a well in a ten-layer stratified formation
with the parameters given in Table 4.1, while for Well A, the behavior will be
predicted by another tem layer formation with parameters of Table 4.3.
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Fig. 4.10: ANALYSIS OF TRACER DATA FOR WELL A WITH FIVE LAYERS
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Fig. 4.11: ANALYSIS OF TRACER DATA FOR WELL A WITH SEVEN LAYERS
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Table 4.3

COMPUTED LAYER PARAMETERS FOR FIELD TEST, WELL A, USING THE
OPTIMIZATION ROUTINE WITH DIFFERENT NUMBER OF LAYERS

FIVE LAYERS SEVEN LAYERS TEN LAYERS
LAYER
¢h 2 ¢h =8 ¢h =
_l_ o ;.-[;5;2;0_ —OTUZSEZ—G- T 3.33;3;4_ —OTO;7;B; T 5.50;531— _070;3:0;
2 0.106992 0.079197 0.062602 0.049838 0.014466 0.012830
3 0.127590 0.086185 0.088567 0.064821 0.033026 0.027410
4 0.108782 0.067011 0.114285 0.077143 0.044846 0.035187
5 0.133239 0.073089 0.080341 0.050052 0.085634 0.062?62
6 0.066540 0.038455 0.104723 0.070947
7 0.,101029 0.054634 0.045561 0.029158
8 ‘ 0.055029 0.,033550
9 0.061547 0.035315
10 0.096968 0.052357
SIM 0.535732 0.354308  0.545748 0.36283  0.545301 0.362822
Table 4.4

COMPUTED PERMEABILITIES AND THICKNESSES OF LAYERS FOR FIELD TEST,
WELL A, WITH DIFFERENT NUMBER OF LAYERS

FIVE LAYERS SEVEN LAYERS TEN LAYERS
LAYER ——7——————— —_——
h,ft k,ud h, ft k,md h, ft k,od
1 0.2277 3860 0.1246 4030 0.0135 4553
2 0.4115 3464 0.2408 3726 0.0556 4151
3 0.4905 3163 0.3406 3425 0.1270 3884
5 0.4184 2883 0.4396 3159 0.1725 3672
5 0.5125 2567 0.3090 2916 0.3294 3425
6 0.2559 2704 0.4028 3171
7 0.3886 2530 0.1752 2995
8 0.2117 2853
9 0.2367 2685
10 \\9.3730 2527
-
\\
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To investigate the effect of drainage areas on the analysis, the tracer data
of Well A was recalcglated using an estimated drained area of 40,800 ft

rather than 27,225 ft® as used before. This value was computed by dividing
the pattern area into segments proportional to the amounts of fluids moving
towards the wells, as has been suggested by Deppe (1961). The match based on
this drainage area and ten layers was virtually identical to Fig. 4,12. Table
4,5 presents the parameters of the layers computed from this match. The
permeability values all are greater than those in Table 4.3 by a factor of
40,800/27,225 = 1.5 (ratio of the assumed drainage areas); however, the
relative values of permeabilities in Tables 4.2 and 4.5 are identical.

In summary, the tracer interpretation method developed in this study can
provide valuable detailed information on reservoir characterization. Although
the method is for developed patterns, its application to an unbounded,
unbalanced five-spot pattern was illustrated in this section. The approxi-
mations made in analyzing the field data produced errors on the computed
values of reservoir parameters. However, a method similar to the one
presented in this study can be developed to Incorporate the actual flow field
of the pilot pattern with the tracer mixing equations, and thereby generate
more precise results.

Table 4.5

COMPUTED PARAMETERS OF LAYERS FOR WELL A WITH TEN LAYERS
AND DRAINAGE AREA OF 40,800 FT?

LAYER ¢h kh/Zkh h,ft k,md
B 0.00233  0.003406 0.0050 682
2 0.009530 0.012830 0.0371 6220
3 0.022038 0.027410 0.0848 5821
4 0.029925 0.035187 0.1151 5503
5 0.057142 0.062662 0.2198 5132
6 0.069879 . 0.070947 0.2688 4752
7 0.030402 0.029158 0.1169 4488
8 0.036720 0.033550 0.1412 4276
9 0.041069 0.035315 0.1580 4024
10 0.064705 0.052357 0.2489 3788
s 0.%63869  o.sezs22
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5. CONCLUSIONS

Equations were derived which describe the concentration of a tracer slug
in a general streamtube for any flow system with mobility ratioc of one,
In the derivation of these equations, the mixing coefficient was assumed
to be proportional to fluid velocity which was a function of location in
the streamtube. The proportionality constant 1s the longitudinal
dispersion constant of the porous medium. Transverse dispersion and
molecular diffusion were assumed to be negligible.

By integrating individual streamtube~tracer concentration expressions over
several developed patterns, analytic expresslons were obtained which
define the tracer breakthrough curves for each of these homogeneous
developed patterns.

The study shows that the tracer breakthrough curves from a homogeneous
system depend upon the geometry, pattern size, and dispersion counstant of
the formation rock.

In the derivation of equations for effluent tracer concentrations from
patterns, 1t was also necessary to derive expressions for pattern break-
through curves from developed patterns. Exact analytical equations were
obtained in the form of elliptic integrals which describe several pattern
breakthrough curves for a mobility ratio of unity. Results for different
patterns were reduced into a single curve by defining a simple correlating
parameter, whlech we have called the dimensionless pore volume. Because
the breakthrough curves for varlous developed patterns comnsidered in this
study correlate as a single curve, it is concluded that the breakthrough
curve for any repeating pattern should also lie on this same correlation.

An attempt was made to define analytically pattern breakthrough curves for
mobility ratios other than one. It was assumed that the streamlines were
independent of mobility ratio. For a developed five-spot, the analysis
generated nearly identical values for breakthrough areal sweep effi-
clencies at any mobllity ratio. This result is in direct conflict with
experimental observations. Hence, the assumption of no streamline change
with mobility ratio is unrealistic.

Tracer breakthrough curves from several patterns were also correlated as a
single set of curves using the Peclet number, a/a, as a parameter. The
correlation was achieved by obtaining two sets of correction factors--one
for a/a to determine peak~locations, and another for peak concentration.
These correction factors convert all the patterns studied into equivalent
five~spot systems.

A computer program was developed which analyzes tracer breakthrough curves
from stratified reservoirs, and computes porosity thlcknesses and frac-
tional permeabllity thicknesses of the layers. The algorithm utilizes a
non~linear least~squares routine as an optimization technique to minimize
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the differences between observed tracer data and computed concentrations
and, hence, generates an optimum match for a given number of layers. Also
incorporated in the algorithm are the correction factors developed in
correlation of the tracer curves. As lnput, the program requires the
estimated number of layers, volume of the produced fluid corresponding to
each peak, and the type of pattern.

Tracer breakthrough curves from a field test on a five-spot pilot have
been matched closely using this optimization program with ten layers.
This example showed that tracer data furnish information about the high
permeability zones of the reservoir.

The method developed in this study can also be used in design of well-to-

well tracer tests. The amount of tracer required and tracer breakthrough
times may be computed from the method presented herein.
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6. RECOMMENDATIONS FOR FUTURE WORK

The method presented in this study considers only developed patterns. Because
streamlines of a system with any well arrangement for unit mobility ratio are
computable, the method can be extended to include analysis of tracer response
curves from Isolated and irregular patterns. Therefore, the tracer curves
from the field example can be analyzed using actual flow lines of the system.
Comparison of the results with those computed in this study would illustrate
the accuracy of approximating an open system by a developed pattern.

Further work 1is necessary to compute tracer flow in systems where a contrast
between the mobility of tracer solution and the mobilities of formation fluid
and chase fluid exists. Because the pattern breakthrough curves at mobility
ratlos other than one could not be generated accurately by the streamtube
procedure, it appears that numerical schemes should be adopted to compute
tracer breakthrough curwves. However, numerical dispersion associated with
these schemes will likely mask the effects of physical tracer dispersion.
One possible solution would be to Iincorporate the tracer mixing equations
illustrated in this study with numerically pre-determined fromt locations to
generate tracer concentration profiles. Viscous fingering associated with
unstable displacement would further complicate the analysis.

Finally, tracer adsorption, reaction, and partitioanlng effects should be
incorporated in the development of rigorous tracer interpretation techniques
to generate precise results. Before these variables can be incorporated into
mathematical models, more laboratory work is necessary to Increase the under-
standing of how each affects tracer flow.
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c, C(8)

max

al

D'

NOMENCLATURE

area, ft2
distance between like wells, L
initial tracer concentration, mass fraction

formation fluid concentration in the tracer dispersed zone,
mass fraction

chase fluid concentration in the trace dispersed zone, mass
fraction

tracer concentration in a streamtube, mass fraction

maximum tracer concentration in the tracer breakthrough curve
from a homogeneous pattern, mass fraction

effluent tracer concentration from a homogenenous or a
stratified pattern, mass fraction

dimensionless tracer concentration from a homogeneous pattern
dimensionless tracer concentration from layer j

dimenslionless tracer concentration from layer j at sample
point 1

dimenslonless maximum tracer concentration from a homogeneous
pattern

effluent tracer concentration from layer j, mass fraction

effluent tracer concentration from layer j at sample point i,
mass fractiom

effluent tracer concentration from a multi~-layered system,
computed at sample point i, mass fraction

effluent tracer concentration from a multi-layered system
observed at sample polnt 1, mass fraction

molecular diffusion coefficient, L2/T
apparent molecular diffusion coefficlent, L2/T

distance between unlike wells, L
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rj

F(v,x)

average grain size diameter, L

differential change in standard deviation term used in mixing
equation

areal sweep efficiency, fraction of pattern area
breakthrough areal sweep efficiency, fractlon of pattern area
dimensionless areal sweep efficlency, a correlating parameter

complementary error function = 1 - erf (x)

X 2
EZ.J- e 2 ag
Jm J0

formation resistivity factor, dimensionless
displacing fluid cut In the production stream, fraction

flowing volume of porous medium in the capacitance model,
fraction of total pore volume

stagnant or dead=-end-pore volume, fraction of total pore
volume

multiplier on peak concentration for tracer breakthrough curves
from homogeneous systems

multiplier on a/o to convert patterns into equivalent developed
five-spot

tracer slug size injected into a homogeneous pattern in terms
of fraction of pattern displaceable pore volume, dimensionless

tracer slug size injected into layer j in terms of fraction of
layer displaceable pore volume, dimensionless

incomplete elliptic integral of the first kind

¢

\Y}

~[' df -
0 Vi - «"sin"¢

where vy = sin v

dt

Va - 5 - <% h

thickness, ft
thickness of layer j
mixing line integral for streamline V¥

permeability, md
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k. = permeability of layer j, md

J
ky, = permeability of a homogeneous pattern, md
kp = permeability of the most permeable layer, md

= effective mixing coefficient, L2/T

K; = effective longitudinal mixing coefficient, 12/ T
K, = mass transfer coefficience in the capacitance model, L2/T
Kp = effective transverse mixing coefficlent, LZ/T
K(m), K'(m) = complementary and incomplementary complete elliptic integrals
of the first kind
m, m; = parameters of the Jacobian elliptic functions and elliptic
integrals, m + my = 1
mp = mass of tracer injected to a patterm, 1lbs
N = number of data points used in the optimization routine
n = number of layers in the multilayered model
P = pressure
PVpy = dimensionless pore volume, a correlating parameter
q = flow rate in the streamtube, L3/T
q; = total injection rate into a homogeneous pattern, L3/T
R = average grain diameter, L
r = radius, L
T = front location in radial flow, L
8y = water saturation, fraction of pore volume
¢ = distance along the streamline, L
Sps Sg = distances along a streamline up to points A and B on the
streamline, L
s, Eﬁ,'gz = front locations in the streamtubes, L
sn,:cn, da = elementary Jacobian elliptic functions
t = dinjection time, T
tpe = breakthrough time of a streamline, T
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tph

PP

o

< <

<

(VT,max)-

max

pbt
Voobe (V)

Vprt

injection time necessary to reach the peak in tracer break-
through curve from a homogeneous pattern, T

time to peak of the most permeable layer, T

microscopic (pore) velocity, darcy velocity divided by
porosity, L/T

microscopic velocity component in the x direction, L/T
microscoplc velocity component in the y direction, L/T
3

displaceable pore volume of a streamtube, L

displaceable pore volume of a streamtube up to tracer front
location in the tube, L3

volume corresponding to the jth peak in an observed (field)
tracer profile, bbls

volume of chase fluid injected into a homogeneous pattern
corresponding to the peak locatlon in tracer response, L

total voluge of chase fluid injected into a homogeneous
pattern, L ’

total volume of chase fluid injected_into a homogeneous pattern
at a breakthrough of a streamline, L

displaceable pore volume of displacing fluid injected at break-
through of a streamline, ¥, dimensionless

breakthrough pore volume or breakthrough areal sweep efficiency
of a pattern, dimensionless

displaceable pore volume injected into a homogeneous pattern,
dimensionless

displaceable pore volume injected into layer j, dimensionless

displaceable pore volumes Iinjected into layer j at sample
point 1, dimensionless

displaceable pore volume corresponding to the peak location in
tracer response from homogeneous system, dimensionless

total volume Injected into a pattern, bbls
total volume Injected into the pattern at sample point i, bbls

h

volume at the jt peak in the observed tracer profile, bbls

total volume of tracer slug injected into either homogeneous or
layered patternm, ft
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tr

tracer volume injected into a streamtube, ft3

width of a streamtube, L

distance in a linear flow, L

front location in a linear displacement, L

jth linear parameter in the optimization program

the integral in the equation of line integral

jth non-linear parameter in the optimization program
initial estimate of non-linear parameters
hydrodynamic dispersion comstant, L

longitudinal dispersion constant, L

transverse dispersion coefficient, L

characteristic constant of the laboratory core packs
undiluted width of tracer in a streamtube, L
porosity,. fraction

porosity of layer j, fraction
density of tracer solution, lb/ft3

viscoslity, cp

standard deviation, measure of the length of mixed zone, L
stream function or value of a streamline

potential function

modulus of an incomplete elliptic integral, where modulus is
equal to the square root of parameter

complex potential
argument of an incomplete elliptic integral

strength of a source or a sink
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APPENDICES

There are four appendices in this section, most consisting of several sub-
appendices. The first set, Appendix A, provides derivations of the analytic
equations for several pattern breakthrough curves at a mobility ratio of
unity. An extension of the analysis to a developed five-spot pattern at an
arbitrary mobility ratio is provided in Appendix B. The third set, Appendix
C, dllustrates evaluation of the line integral embodied in the equations of
tracer concentration profiles. The computer program developed to analyze
tracer breakthrough curves from stratified reservoirs is provided in Appendix
D. Also given in Appendix D are the programs to compute pattern breakthrough
curves of a developed, inverted seven—-spot at unit mobility ratio and a
developed five-spot at any mobility ratio.

Appendix A

DERIVATION OF EQUATIONS FOR PATTERN BREAKTHROUGH CURVES
FOR MOBILITY RATIO OF ONE

This appendix conslsts of five sub—-appendices. The first four present the
development of mathematical equations to define pattern breakthrough curves of
staggered line drive, five-spot, direct line drive and inverted seven-—spot.
All the patterns are bounded and the mobility ratlio of displacement is equal
to one. The 1last appendix of this section details derlvation of some
equations used in Appendices A.l and A.3.

When formulating the equations for fluid flow in any pattern, potential
equations or stream functions are required. A basic theory of potentials is
briefly presented in the following paragraphs. Application of the theory to
specific patterns is then Illustrated in the pertinent sub-appendices.

From the theory of incompressible and irrotational fluid flow in two dimen-
sions, it follows that:

Q(z) = o(x,y) + 1 ¥(x,y) (A-1)
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where,

(z) = complex potential
$(x,y) = velocity potential equation
Y(x,y) = stream function
z = x + iy

Both &¢(x,y) and ¥(x,y) are harmonic functions; therefore, they satisfy the
Laplace equation. From the Cauchy-Riemann principle and Darcy's law, the
velocity components of fluid at any point are related to the potential
equation and the stream function as follows:

k3% k 3y _
Vx(x,Y) = T 0% 3y (A-2)
and,
- k3 _k3y -
VY(X’Y) - u ay u 3}{ (A 3)

where, k Is the permeability and u is the fluld viscosity.

The complex potential for a line source (injection well) in an infinite medium
under steady state condition is:

Wz) = v inz (A=4)

where, vV is the strength of the source and z is the distance of a point from
the origin of a coordinate system positioned on the source. If the source is
located at a distance z, from the origin of a specified coordinate
system, (z) Is given by:

Qz) = v in (z - zo) (A-5)

The complex potential due to a sink (production well) Is subsequently given by
the negative of either Eq. A-4 or Eq. A-5.

Since the complex potential defined by Eq. A-1 satlisfies the Laplace equation,
the superposition principle can be used to obtain the complex potential for
any combination of 1injectors and producers. For a system of ny injectors
located at points a; (L =1, «us, nl) and n, producers positioned at bj
G =1, os, n2), the overall complex potential at any point, z, is:

n, n,
Q(z) = 2: v n (z -a,) - v, in (z - b)) (A-6)
iz1 ai i jgl bj i
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The terms Ua and v, . denote the strength of the injectors and producers,
respectively. Equatﬂon A-6 can be used to derive (z) for any well arrange-
ment. However, for some particular well patterns, the use of conformal
mapping greatly eases the determination of complex potentials. This is
illustrated in Appendices A.l and A.3.

Appendix A.1: STAGGERED LINE DRIVE

Consider a repeated staggered line drive pattern as shown In Fig. A-1:

Z-PLANE

PRODUGCTION O o) 0] o)

INJECTION ,O/ ',O’

Fig. A-1: A DEVELOPED STAGGERED LINE DRIVE IN Z-PLANE

Using the following conformal transformation (Spiegel, 1964):

v at
z = 0 <m«<1l (A~7)
0 (1 - 51 - m t?)
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the shaded segment in Fig. A-1 is transformed into the upper half-plane of the
w—-plane as shown in Fig. A-2. The production wells are mapped at w = 1 and
w = -1, the “corners"” of the pattern (B and F) are mapped at £ VY1/m , and the
injection well is mapped at infinity.

W-PLANE

Fig. A-2: W-PLANE SHOWING THE TRANSFORMATION

The integral in Eq. A~7 1is the inverse of the Jacobian elliptic function,
sn(z,m), as defined by Byrd and Friedman (1954). Therefore:

z = sn—l(w,m) (A-8)
Correspondingly:
w = sn(z,m) (A-9)
Introducing a seceond transformation:

w = 1w (A~10)
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the upper half of the w-plane
is mapgpd Inte the left half
of the w-plane as shown in Fig.
A_3 .

<{

W-PLANE

The production wells are now
at w=1 and w = -1 and the
injection well 1s again at
infinity. The second transfor-
mation will only change the
values of the streamlines. The
v axis in Fig. A-3 is a no flow .
boundary, hence it can be math- y !
ematically removed by super-
imposing an image of the left
half of the w-plane Into the
right half of ‘the w-plane. In
this way, the well system in
the w~plane becomes equivalent

\
to two producers in an infinite \\\\
medium. Since one quarter of a
production well in the z-plane
is mapped into one half of a
well in the w or w-plane, it is

N

concluded that the strength of
a well in the w-plane is equal
to one half of the strength of
a corresponding well in the 2z~
plane. For mathematical con—
venience, the strengths of the
wells I1n the z-plane are as-
sumed to be equal to one and
the complex potential 1In the
w-plane subsequently is ob-
tained from Eq. A-6 as follows:

2
Q(v_v)=——;—2n (a-i)wzlzn (w+1) = - 4n (\/5 +1) (a-11)

The wells at infinity do not contribute to the complex potential. From Eqs.
A-8 and A-9:

Fig. A.3: WELL LOCATIONS FOR A DEVELOPED
STAGGERED LINE DRIVE IN W-PLANE

w = -i sn(z,m) (A-12)

Substitute Eq. A-12 in, Eq. A-11 and note that from the properties of Jacobian
elliptic functions, sn“(z,m) = 1 - en"(z,m):

Q(z) = - fn [cn(z,m)] (A-13)
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Prats (1956) has reported the above expresslion (A-13) for the complex poten-
tial but with a positive sign because the injectors were assigned negative
potential in his formulation. From Byrd and Friedman (1954):

) = cn(x) cn{y) - i sn(x) dn(x) sn(y) dn(y)
1 - snz(y) dnz(x)

cu(z,m) = cn(x + iy,

(A-14)

where, sn(x) = sn(x,m), cn(x) = cn(x,m), dn(x) = dn(x,m), sn(y) = sn(y,m;) and
en(y) = en(y,m,) are various Jacobian elliptic. functions with parameters m and
m; where m + m) = 1. From complex variable theory:

1

tn (x + 1y) = 1 o (x% +y%) + 1 tan’} () (a-15)

Using Eqs. A-14 and A-15 in Eq. A-~13, it 1is concluded that:

a(z) = —-%

(&nz(x) en?(y) + sn(x) dn’(x) sn(y) dnz(y))
in

[1 - snz(y) dnz(x)]

) sn(x) dn(x) sn(y) dn(y)
+ i tan [ ] (A-16)
cn(x) cn(y)
Comparing Eq. A-16 with Eq. A-1, it follows that:
¥(x,y) = tan' [£Gx,m) £(y,m))] (a-17)
F(x,m) = sn{x,m) dn{(x,m) (A=18)

cn(x,m)

Prats et al. (1955) had derived Eqs. A-17 and A-18 for the streamlines by
applyiﬁg-faj A-6 to an infinite array of wells. Figure A-4 shows the coor-
dinate system and the values of streamlines computed from Egs. A-17 and A-18.
The terms K{(m) and K'(m) in this figure are complementary and incomplementary
complete elliptic integrals defined by Eq. A-7 with w = 1 and w = -1, respec—
tively. The relationship, K'(m)/2K(m) = d/a, relates the parameter m to the
geometry of the system. The quadrant shown In Fig. A-4 is used in derivation
of the equations for the pattern breakthrough curves.
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K(m),K' (m)

¥ =2

Fig. A~4: COORDINATE SYSTEM FOR A DEVELOPED STAGGERED LINE DRIVE

The breakthrough time, ty» of a particle on a streamline ¥ is determined by a
line integral along that streamline. This 1is:

R(m) dx
tir =j; < (A-19)

X

where v, is the x component of the microscopic velocity. From Eq. A-2:

3y

k
v, = ———F (A-20)
X u )
vy y = y(¥,x)
where ¢ is the porosity. From Eq. A-17 for the streamline Y:
f(x,m) £'(y,m;)
= (A~-21)

gle

1 + [f(x,m) f(y,ml)]2
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where,

f'(y,ml) = Bf(y,ml)/ay and,
(A~22)
f(x,m) f(y,ml) = tan (¥)
Therefore,
K f(x,m) f'(y,ml)
vx = 3 . 7 (A=-23)
H 1 + tan™y
Substitute Eq. A=-23 in Eq. A-19:
t 1 2 K dx A-24
bt “EA (DT AR ””L EG,m) £'(y,m)) )

The pore volume injected Into the system at the time of breakthrough of
streamline ¢ is:

t.. d.
v _ bt 7t (A=25)

PP 4h K(m) K'(m)

where q, 1is the injectlion rate and h is the thickness of the pattern. The
flow rate is given by:

kh

Qy =

where the integral is taken around any closed surface in the flow regime.
Because the flow in the wvicinity of a wellbore is essentially radial, Eq. A-
26, with the values of streamline shown in Fig. A-4, reduces to:

2mkh

= A-27
T r ( )

Using this expression for q, and Eq. A-24 for ty,, Eq. A-25 simplifies to:

K{(m)
v_ =T (1 + n) dx (A-28)
pD '
2K(m) K'(m) 0 f(x,m) £ (Y,ml)
where,
n = tan? U] (A-29)

and n Is a constant for the streamline V.
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Equations A-149 and A-150, derived later, relate the derivatives to the func-
tions. The detailed derivation of these two relationships is presented in
Appendix A.5.1. The equations for these derivatives are:

f'(x,m)

\/1 - 2£2x,m) + £%(x,m) (A-30)

and,

f'(y,ml) \[1 + 28f2(y,m1) + f4(y,m1) (A-31)

where 8 = m - mj. From Eqs. A-17 and A-29, the y terms can be expressed in
terms of x terms as follows:

fz(Y’ml) = _Z—_D—— (A-32)
£ (x,m)
Utilizing Eqs. A-3] and A-32, Eq. A-28 becomes:
K(m)

_.7m (1 +n) f(x,m) dx _
Vop = K(m) X' (@) - (A-33)

0 \ffl‘(x,m) + ZanZ(X,m) +n

Introducing a change of variable z = fz(x,m) and using Eq. A-30 to substitute
for £'(x,m), the following equation Is obtained:

7 (1 +n) dz

v
pD T %X(m) K'(m) f
\/ +28nz+n \[2—282+1

The integral term in Eq. A-34 1s of the form of an incomplete elliptic
integral of first order. The roots of the quadratic equations under the
square roots all are complex. A closed-form solution for this integral is
obtained from Byrd and Friedman (1954). The result is:

(A-34)

_r {1+ _ -
A T ORAC) [Fev, ) = 7w 0] (a-35)

where F(v_,k) and F(v_,x) are incomplete elliptic integrals of the first kind
with modu%us ¥ and arguments vy and v, given by:

-8B +a,¢g
e taplf— 171 -
v, = tan ( al+8g1 ) (A-36)
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v, = tan! (- --1-) (A-37)

1 g,
ai =1 - g (A-38)

) aaf - (a - B)?
g = > > (A-39)

(A + B) - Aal
A=1+n (A-40)
B =\/<1 -2 + 4np? (A=41)
-2 (A~42)

g A+ B
2 = _uéééﬁmi (A=43)
(A + B) |

For a unit mobllity ratio and a piston-like displacement, the displacing fluid
cut In the producing stream at the production well, fp, Is the ratio of the
angle at which the streamline ¢ enters the well to the entire angle available
for flow. From Fig. A-4, this is expressed by:

T
Z -V 4y
D Lt T

(A-44)

Equations A-35 and A-44 jointly describe the pattern breakthrough curve of a
developed staggered line drive system.

Breakthrough Areal Sweep Efflciency

The breakthrough streamline is ¢ = n/4 . Therefore, at breakthrough, fp = 0
and n = 1, and Eq. A-34 reduces to:

m dz

v =
pDbt 2 K(m) K'(m) /
0 \J(zz + 28z +1)(z2 =28z +1)

(A-45)
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Due to symmetry of the breakthrough streamline around the polnt {K(m)/2,
K'(m)/2}, Eq. A-45 can be written as:

1
e _ T dz _,
Vopbe T (@) K'(‘m)'/ (A-46)
o ¢

22 4 28z +1)(z2 =282 +1)

The upper limit of the integral is calculated from z = fz[ K(m)/2 , m] = 1.
The answer to this integral is obtained from the Byrd and Friedman handbook
(1954} :

. m 2 )
Vopbe T TRy TG KL T ] (A=47)

Appendix A.2: FIVE-SPOT PATTERN

The five-spot is a staggered limne drive pattern with d/a = 1/2. For this
special case:

m = ml = 0-5
B =m - ml = O
K(m) = K'(m) = 1.8540747

Equation A-34 then reduces to:

m (1 + )

Vv = dz
PP 4 (1.8540747)° 73 3
0 \J (z°+1n7) o \j (z° + 1)

(A-48)

From a2 handbook of elliptic integrals (for example, Byrd and Friedman, 1934,
or Abramowitz, 1972), the integral in this equation is equal to K(1 - n ),
hence:

Vop = 0.228473 (1 +n) K(1 - n?) (A~49)
where,
n = tan2 P (A-50)
vo=a (1l -£) (A-51)
A D
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Breakthrough Areal Sweep Efffciency

Breakthrough areal sweep efficiency is readily computed from Eq. A=-49 with
n =1 for which R(0) = 7n/2 :

Vprt = 0.71777

Appendix A.3: DIRECT LINE DRIVE

The complex potential for this pattern is obtained in a manner similar to that
discussed in Appendix A.l. Equation A-7 is applied to transform the segment
in Fig. A-5 ianto the upper half-plane of the w-plane. The production well is
mapped at infinity and the injection well is mapped at the origin as was shown

in Fig. A-2.

Z-PLANE

INJECTION /d ‘p’

PRODUCTION O O

e P

5 F o S e

Fig. A-5: A DEVELOPED DIRECT LINE DRIVE IN Z-PLANE
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The complex potential in the w-plane for this pattern is:
Uw) = n w (A-52)
Substitute for w from Eq. A-9:
Q(z) = &n [sn(z,m)] (A-53)

Equation A-1 can be used to obtain the stream functioms. Hauber (1964) and
Morel-Seytoux (1966) obtained the following equation for the streamlines:

v(x,y) = tan: [f(x,m) g(y,ml)] (A-54)
where,
_ en(x,m) dn(x,m) -
f(x,m) = on(%.1) (A-55)

sn(y,m;) en(y,m;)

Faly,m)) (4=56)

8(y,ml) =

Figure A-6 shows the values of streamlines and the element considered in
analyzing the direct linme drive pattern.

The breakthrough time of a particle on a general streamline ¥ is computed by
using the y component of the particle velocity as follows:

K'(m)
— dy
Ebe = f v (4=57)
0 y

From Eq. A-3, the y component of microscopic velocity is:

_ k3w -
vy =~ 9% (A-58)
x = x(,y)
From Eq. A-54 on the streamiine P
£f'(x,m) g(y,m,;)
- L (4-59)
1 + [f(x,m) g(y,ml)]
and,
f(x,m) gly,m;) = tan ¥ (A-60)
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o CR'(m) R(m) K" (m)g
N <
v E o
i " b 1
- > >
_1’ _f'( b X
% '). K(m) r
Q

Fig. A-6: COORDINATE SYSTEM FOR A DEVELOPED DIRECT LINE DRIVE

Substituting Eq. A-58 in Eq. A-57 and using Egs. A-59 and A-60:

K'(m)

dy (A=61)

tpe = - v (1 + tan w)‘jﬂ g(y’ml) f'(x,m)

0

Pore volume injected up to this breakthrough time is given by:

_ “be 9t
Vop = TT3E RK(m) X' () (4-62)

Flow rate qp 1Is equal to 21kh/y as was shown in Appendix A.l. Using this
value for q¢ and substituting for ty. from Eq. A-61, Eq. A~62 reduces to:

v =1+ ean’y) [ dy (A-63)
pD 2 X(m) K"(m) 0 g(y,ml) £'{x,m)
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Since the streamlines are symmetric about y = K'(m)/2, the travel time from
y =0 to y =K'(m)/2 1is equal to the travel time from vy = K'(m)/2 to
y = K'(m). Therefore:

K'(m)

p
__m(l +m) dy _
Vop = T R K (a) f ECERERCED) (4-64)
0 .

In this equation, M = tanzw which is constant for a specified streamline.

Equations A-158 and A-166 in Appendix A.5.2 relate the derivatives to the
functions as follows:

fr(x,m) = - f[ml - fz(x,m)]2 + 4 fz(x,m) (A-65)
g'(y,m) = \[[1 +m gz(y,ml)]2 -4 gz(y,ml) (A-66)

Using Eq. A~65 in conjunctlion with Eqs. A-29 and A-60 to eliminate f(x,m), Eq.
A-64 reduces to:

K'(m)
2

y o (Em) g(y,m,) dy (A=67)
pD K(m) K'(m)
Jim g% - 1%+ an gl
0 lg Y)ml ] g Y&ml

Introduce a change of varilable, z = gz(y,ml) and use Eq. A-66 to replace the
g'(y,m;) term, Eq. A-67 is simplified to:

b
_ 1 (1 +n) dt _
VPD ) 2 m2 K(m) K'(m) J/r \J(a - t)(b - t)(t - c)(t - d) (4=68)
1 0
where,
a =__.1___§ (A-69)
(1 - ¥m)
b =—~—J—-2- (A-70)
(1 + Ym)
e =—"" o =-bn (A-71)
(1 + ¥m)



d =.“_~:Jl~_§_ = —an (A-72)
(1 - Vm)

From Byrd and Friedman's (1954) table of elliptic integrals, an analytic

expression for the Integral in Eq. A-68 is obtained. This is:

= T . 1 +n F(v,k) (A-73)

Vop T 2
PPml k@) k'@ V(@ + b+ an)

where, F(v,k) is an incomplete elliptic integral of the first kind with
argument Vv and modulus k glven by the following two expressions:

. fa + bn
Vv o= Ar051n< m ) (A"74)

2 ab (1 + m)2

< T TETFING £ an

(A-75)

The values of F(v,<) can either be obtained from a mathematical handbook or
computed directly wusing Ascending Landen transformation successively
{Abramowitz, 1972).

The displacing fluid cut, as before, is calculated from the angle at which the
streamline enters the well. From Flg. A-6 it is:

=1 - 2¢ -
fD =1-= (A~76)

and thus, n is related to fD as follows:

n = tan® | -] (A-77)

Equations A-73 and A-77 jointly describe the breakthrough curve of a developed
direct line drive pattern.

Breakthrough Areal Sweep Efficiency

At breakthrough; fr = 0, hence n = =, Kz = 1 and Eqs. A-73 through A-75 reduce

to:
v o= Arcsin(\ﬁg) (A-78)

v - T F(v,1)
PPPE n? R(m) K'(m) Vb

(A-79)
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However,

F(v,1) = 2n (tan v + sec V) (A-80)

- .
sin v «.‘ag (A"Sl)

From Eq. A-78:

Therefore, Eq. A-79 becomes:

Vo = m on [!@Li;lﬁi_] (A-82)
P m; K(m) K'(m) Vab 'Va -b
Substitute for a and b from Eqs. A-69 and A-70 and simplify:
_ - 7 n(m)
Vprt 4 m, K)m) K'(m) (A-83)

Appendix A.4: INVERTED SEVEN-SPOT

The complex potential for this pattern is given by Morel-Seytoux (1966) as
follows:

Q(z) = tn £(z) (A-84)
where,

[1 - cnz(z,m)][a 4+ b cnz(z,m)]
f(z) = 5 5 (A-85)
[1 + en“(z,m)]{a - b en (z,m)]

a=2+7V3
b=2-V3
m= (2 - V3)/4
From Eq., A-14:
en(z,m) = en(x,m) en(y,m;) . sn(x,m) dn(x,m) sn(y,m;) da(y,m,)

1 - snz(y,ml) dnz(x,m) 1 - snz(y,ml) dnz(x,m)
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Let:

cn(x,m) cn(y,ml)
h = 5 5 (A-86)
1 - sn (y,ml) dn”(x,m)

sn(x,m) dn(x,m) sn(y,ml) dn(y,m,) ( )
A-87

g =
1- snz(y,ml) dnz(x,m)

Therefore: .
en{z,m) = h - ig (A-88)
Substitute Eq. A-88 in Eq. A—-85:
[1- (h® - g%) + i 2ng)la + b(h% - g?) - i 2bhg]

£f(z) = 5 5 5 5 (A-89)
[1+ (2%~ g% - 1 2hg][a - b(h" - g°) + i 2bhg]

Equation A-89 can be simplified to:

_ A+ iB _ AC - BD . . AD + BC

f(z) = =—3ip - 27 + i Z, 2 (A-90)

where,
A=a+ 4bu2 - (a - b)Vt - bt (A-91)
B = 2u(a - b + 2bVt) (A-92)
¢ =a+ 4bu + (a - b)Yt - bt (A-93)
D = 2u(a - b - 2bVt) (A-94)

and,

t = (b2 - )2 (4-95)
u = hg (A-96)

- 113 -



From Egs. A-15, A-84 and A-90 the complex potential is:

2 2
_1 (AC - BD)” + (AD + BC) . . =1 | AD + BC _
a(z) = > n [ (C2 N DZ)Z ]-+ i tan [Kamj—gﬁ} (A-97)

Comparing Eq. A-1 and A-97:

(A-98)

e | (AD + BC

Substitute for A, B, C, D from Eq. A-91 through A-94 in Eq. A-98 and
rearrange:

2 2.2

-1 4u[(1 - bz)(&u2 + t) + a2 - 1]
2,..2 2 2 (4=99)
8u (2b"u” « 5+ b7t) +a” + bt ~l4t

Streamlines given by this equation are shown in Fig. A-T7.

ELEMENT

Lg

Fig. A-7: COORDINATE SYSTEM FOR AN INVERTED DEVELOPED SEVEN-SPOT
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In the coordinate system of Fig. A-7, K'(m) = V3K(m). The element chosen for
the analysis is 1/12 of the pattern bounded between Y = 2n/3 and ¢ = w. Time
to breakthrough of streamline ¢ is:

2K ' (m)

3 dy
tbt = —\7_ (A"].OO)
0 Yy

and v, is given by Eq. A-58. Making the following substitutions for the terms
in ¢ equation (A-99):

o= (1 - b2)(4ul + t) + a2 - 1 (A-101)

w = 8u?(2b%u? — 5 + bPt) + a’ + bt - lht (A-102)
then:
w = taal(—azu ) (A"‘103)
Therefore, from Egqs. A-58 and A-103:
4[w(ru' + r'u) - ruw']
v R ——;(; L] 2 2 (A—IOA)
Y " % [l + tan w]
x = x(¥,y)
Substitute Eq. A-104 in Eq. A-100 and rearrange:
2K'(m)
3
.- _ub (1 + tan’y) w’dy (4-105)
btk 4 wiru' + r'u) - ruw'
0
Pore volumes injected:
t.. 4
bt *t
VpD ~ pattern pore volume ' (A-106)
Flow rate around the wellbores from Egq. A-26:
qp = Sap=an s (4-107)
and,
pattern pore volume = 2Y3 ¢ Kz(m) (A-108)
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Using Eqs. A-105, A-107 and A-108, in the Eq. A-106, one obtains:

2K (m)
2 3 2
- (]l + tan"y) w dy |
T 1 — 1
2V§'K2(m) w(ru' + r'u) - ruw

Vo= (A-109)

pD

0 x = x(¥,y)

From Eqs. A-95, A-96, A-101 and A-102, the derivatives of various terms in
Eq. A-109 are:

u' = h'g + hg' (A-110)

£t = (1 - b2)(8uu' + t') (A-111)

W' = 16uu'(4b%uZ — 5 + b2t) + 2b%(4u” + ) - l4t! (A-112)
' = 4(h% - g2)(hh' - gg') (a-113)

From Egqs. A-86, A-87 and A-141 through A-143 the following expressions for
h' = 3h/9x and g' = 3g/9x are obtained:

2 2
h' = - sn(x)dn(x)cen(y) [R + Zm cn gx)sn (Y)] (A=-114)
R
R[dnz(x) -m snz(x)] - 2m snz(y)dnz(x)snz(x)
g' = sn(y)dn(y)cn(x)3 5 E
R
{(A-115)
where:
2 2 '
R=1-sn"(y)dn (x) (A-116)
and,
sn(x) = sn(x,m)
sn(y) = sn(y,m,)

In computing V,p values from Eq. A-109, the x terms in the integral should be
expressed as f%nctions of y. Therefore, for a selected x value on a stream-—
line V¥, the corresponding y value has to be evaluated. This was accomplished
numerically by applying a root-finding routine to Eq. A-99 with a constant ¥
value. The computed coordinate points om streamline Y were then substituted
into Eq. A-109 and the integral term in this equation was evaluated numer-
ically. Equations A-110 through A-116 were used in evaluating the necessary
terms in Eq. A-109. The computer program developed to generate the break-
through curve of this pattern is given in Appendix D.2.
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Displacing fluid cut at breakthrough of streamline ¢y from Fig. A-7 is:

= _T-v _,_3¥ -
fD = T = 3 - (A-117)
3
where: 91
T <P <

Equations A-109 and A-117 describe the breakthrough curve of a repeated
inverted seven spot pattern.

Breakthrough Areal Sweep Efficiency

The breakthrough streamline is ¢ = . On this streamline, x = 0; therefore,
en(x,m) = 1, dn(x,m) = 1, and sn(x,m) = 0. All the parameters defined before
take simpler forms as follows:

1

h = — oy (A-118)
g=0 {A-119)
h' =0 (A-120)

sn(Y,ml) dn(y,ml)

gt = - (A-121)
en”(y,m,)
1
u=20 (A-122)
t = ‘“Z“L““““ (A-123)
cn (y,ml)
sn(y,m;} da(y,m,;)
u' = 3 (A=124)
cn (y,ml)
t' =0 (A"125)
(a2 - l)cna(y,ml) + (1 - bz)
r = (A-126)

cn4(y,m1)
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azcns(y,ml) - lécna(y,ml) + b2

w = (A_127)
8
cn (}’,ml)
' =0 ' (A-128)
w' =0 (A-129)

Substitute Eqs. A-118 through A-129 into Eq. A-109 and rearrange:

2K"' (m)
2 4 2
o 3 a cng(y,ml) - l4cn (y,ml) + b
Vo= dy
pDbt 2 2 2
3 - 1 -5
2V3 (a7 - DE@ | i(ym ydn(ymdenly, Nen (zom) + 5]
1 1 1 1 2
0 a~ -1
(A-130)
To calculate the integral, let p = cnz(y,ml), then:
dy = - ap
y 2 ea(y,m) snly,m ) da(y,m;)
en(y,m, ) sn(y,m,) dn(y,m )
_ 1 1 1
. 2 ) 2 dp
2 en“ (y,m ) sn (y,m, ) do" (y,m )
1 1 1
cen(y,m;) sa(y,m;) dn(y,m )
2 cn (y,ml)[l - cn (y,ml)][m + m cn (y,ml)]
At the limits:
2
p = cn (O,ml) =1
and,
|
p = cn2 {2K3(m) ’ml] = (2 - V3)2 = b2
Hence, Eq. A-130 becomes:
b
T azpa - Mp2 + b2
Voobe ~ 2 2 7 9P
- 1 -5
4¥3 (a DK (m) p(1 -~ p)(m,p + m)(p + )
1 2
1 a~ -1
(A-132)
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But:

m=(2-Y3)/4
= 1-m = (2+ V¥3)/4

2 -V3

T 2+V3

w|o

L -2 2-V3

al-1 2473

oo

Using Eqs. A-133 and A-134, Eq. A-132 further simplifies to:

b2 o
v ) ral (r+ D -2 i
PPt 5w (a? - DK () p(p? +2)
1
The integral can now be calculated. This is:
b2 .
(p+ D -2 _ 2 - -
2 gp= 120 tan”Hp) - tanHD)
2 . b b b
p(Pp” + )
1
For:
a=2+%vY3
b=2-7V3
m= (2 + V3)/4

K(m) = 1.59842
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The value of vabt computed from Eq A-135 with the integral given by Eq. A~136
is:

Vopbe = 0.743682

Appendix A.5: RELATING DERIVATIVES OF THE STREAM FUNCTIONS
TO THE STREAM FUNCTIONS

This appendix is divided into two parts. The first part covers the staggered
line drive pattern and the second part discusses the direct line drive
pattern.

Appendix A.5.1: STAGGERED LINE DRIVE

From Eq. A-18:
sn(y,ml) dn(y,ml)

f(y,ml) = IR (4-137)
From Abramowitz (1972) or Byrd and Friedman (1954):
9
Iy [sn(y,ml)] = cn(y,ml) dn(y,ml) (A-138)
%; [dn(y,ml)] = - sn(y,ml) cn(y,ml) (A~139)
%; [Cn(y,ml)] = - sn(y,m;) dn(y,m;) (A-140)
And:
2 2
sn (y,ml) =1 - cn (y,ml) (A-141)
2 2
dn (y,ml) =m cn (y,ml) + m (A-142)
2 2
dn (y,ml) =1 - m sn (y,ml) (A-143)
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Therefore:

2 2
dn (y,ml) - m snz(y,ml) cn (y,ml)

] —
f (Y,ml) = 3
cn (Y,ml)
(A~144)
m cna(y m, ) +m
_ M ™
2
cn (y,ml)
From Eq. A-137:
snz(y,m ) dnz(y,m )
2 _ 1 1
cn (y,ml)
4 2
-'m, cn (y,ml) + (m1 - m)en (y,ml) + m
- 2
cn (y,ml)
Or:
4 2 2 -
m, cn (y,m ) = [ (m1 -m) - f (Y,ml) ]cn (y,ml) -m=0 (A=145)
Let:
2
Y=m -m-f(ym) (A-146)

The solution for the quadratic equation in A-145 is:

Y + ,/Yz + 4m1m
(A-147)

2y

cnz(y,ml) =

The negative sign is impossible, because m and my both are positive numbers.
Substitute Eq. A-147 in Eq. A-144 and simplify:

f'(y,ml) = ,sz + 4m1m (A-148)

Substitute back for v from Eq. A-146:

A
f'(y,ml) = "[1 + 2(m - ml) fz(y,ml) + f (y,ml) (A-149)
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Similarly:

f'(x,m) = Jl + Z(ml -~ m) fz(x,m) + f4(x,m) (A-150)

Appendix A.5.2: DIRECT LINE DRIVE

From Eq. A-55:

_ en(x,m) dn{x,m) N
f(x,m) = oy g (A~151)

Using the derivative of the Jacobian elliptic functions from FEgs. A-138
through A-143:

dnz(x,m) 4+ m snz(x,m) cnz(x,m)

f'(x,m) = - 5
sn” (x,m)
(A-152)
- m&sn(x,m) -1
snz(x,m)
From Eq. A-151:
2 2
fz(x,m) _cn " (x,m) dn (x,m)
2
sn“(x,m)
4 2
_m sn(x,m) — (1 + m)sn (x,m) + 1
2
sn” (x,m)
Or:
4 2 2 "
o sn”(x,m) - [(1 +m) + £°(x,m)] sn“(x,m) + 1 =0 (A-153)
Let:
Yl =1 +m+ fz(x,m) (A-154)
The solution to Egq. A-153 is:
2 v, £ Y% - 4m
sn” (x,m) = (A-155)
2m
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Substitute Eq. A~155 in Eq. A-152 and simplify:

£'(x,m) = t Yf - 4m (A-156)

Because m*» 0 and -1 £ sn(x,m) < 1, from Eq. A-152 it is concluded that
f'(x,m) < 0. Therefore:

2

L 4m (A-157)

f'(x,m) = - 4¥

Substitute for y; from Eq. A-154 in Eq. A-157:

£'(x,m) = - {[(ml - £2(x,m) ]2 + 4£2(x,m) (4-158)
The above approach can also be used to relate g'(y,ml) to g(y,ml). From
Eq. A-56:

sn(y,m;) cn(y,m;)
(A-159)

g(Ysm ) = dn(y,ml)

The derivative of this function is:

dnz(y,ml)[cnz(y,ml) - snz(y,ml)] + m, snz(y,ml) cnz(y,ml)

g'(y,m,) =
1 dnz(y,ml)

(A-160)

Using Eqs. A-141 through A-143 to express sn(y,ml) and cn(y,ml) in terms
of dn(y,ml) , Eq. A-160 reduces to:

dna(y,ml) - m

g'(ym;) = > (A-161)
m dn (y,ml)

From Eq. A-159:

2 2
sn”(y,m) cn (y.ml)

)

gz(y,ml) 7
dn (y,ml)

- dna(y,ml) + (1 + m)dnz(y,ml) ~ m

2 4
m, dn (y,ml)
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Or:
2

dnA(y,ml) - [+ m - my gz(y,ml)]dnz(y,ml) +m=20
Let:
Yo =1+m- m% gz(y,ml)
The solution for dnz(y,ml) from Eq. A-162 is:
2
dnz( 0y - Yz * Yz - 4m
Yy, 1 7
Substitute Eq. A-164 in Eq. A-161 and simplify:
' =4+ 1 2 _
g'(y,m) =& m Yy, = 4m
From Abramowitz (1972):
dn(O,ml) =1
K'(m) Y
dn[ 5 ,ml] =m %
1
an[®* (@),2,)) = w 72
Therefore, From Eq. A~161 it is concluded that:
L
g'(y,m;) > 0 for 0< vy« K gm)
14
g'(Y,ml) <0 for K'(m) y € K'(m)
Substitute for Y, from Eq. A-163 in A-165 and rearrange:
2 ) 2 K'(m)
+ g 1+ mg ym) 17~ 42T (yom)) 0<yc«
1 1 1 2
g'(y’ml) =
2 2 K'
- 1/[ 1+mg (yom) ] - 4g mp) ém) <y < K'(m)
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Appendix B

DERIVATION OF EQUATIONS FOR PATTERN RECOVERY CURVES
AT VARIOUS MOBILITY RATIOS

The location of the displacement front plays a major role in the analysis of
pattern performance when the mobllity ratio is other than one. For such a
displacement: 1) the streamlines in the regions behind and ahead of front
deviate from those determined at mobility ratio of one; and 2) the total
resistance to flow continually changes as the location of the froat varies.
This is in contrast to a unit mobility ratio displacement in which the
resistance to flow is constant and independent of the interface position. In
the following analysis, it is assumed that streamlines are the same for any
mobility ratio while the overall resistance to flow varies during the
displacement. Consequently, for a constant pressure drop between an injection
well and a production well, the total flow rate in the pattern as well as the
flow rates 1n the individual streamtubes will change as the front advances
towards the production well. Furthermore, at any particular time, the flow
rates in the individual streamtubes will differ from each other. This is due
to establishment of different resistances in the streamtubes for the same
total pressure drop across them.

Consider a piston-like displacement of two fluids in a developed five-spot
pattern, as shown in Fig B-l.

Flow ratgh in a general streamtube Yl when the displacement front 1s at
location Swl in the tube is:
Bpa

- 9Py,
qwl(S) = )‘a A(S)?S——

;\b A(s) S5 {(B-1)

where:

= fluid mobility

=

A(s) = cross sectional area of streamtube at location s
a,b = subscripts for displacing and displaced fluids respectively
p = pressure
(s) = flow rate in the streamtube Y1 as a function of front location

s = front location, same as s

vl
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K'(m)

S = Path Along A
Streamline

Fig. B-1: FRONT LOCATION IN A DEVELOPED FIVE-SPOT PATTERN
AT AN ARBITRARY MOBILITY RATIO

Integrate Eq. B-1 to obtain the pressure drops in each zone:

- 5
(Ap) _ qwl(S)f V1 4.
a o1 Aa 0 A(s)

f

and,

(Apb) - Al—-

Y1

|
Fa
-
o
N
V)]
S’
0l )r.o
<
> Ll
~~j R
nln
S|

where:

= total length of the streamtube Yl

4]
i

Pl
Pyl

ni
1]

front location in the streamtube Pl
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The total pressure drop across the streamtube is the sum of pressure drops in
the lnvaded and the non-invaded zones. This total pressure drop is the same
for all the tubes and will be assumed to be constant in this analysis. Add

Eqs. B-2 and B-3 and solve for qwl(g):

q¢1(§) = (B-4)

Q
|

sw1
where Ap is the total pressure drop and M is the mobility ratio defined as:

2a _ S

Xb kb ua

The time required for the front in this streamtube to reach the production
well 1is:

(B-5)

M =

S ]

vl - vl , -
t = s . As) 43 (B-6)
Y 1bt 0 v(s) 0 q(s)

Substitute for qwl(g) from Eq. B~4:

-—

S
Y1 s sw1

_ b ds ds =y 4= _

twlbt = Aa xS [ O) + M ) NG ] A(s) ds (B-7)
- 0

s=0

At this time, the front location in the streamtube Y2 is at sz, which 1s
given by:

s -
' Y2 s s¢2
-t [ ds __4_5__] 3) ds -
t = + M A(s) ds {(B-8)
v2bt Aa Ap . A(s) _ A(s)
- s
s=0
Equate Egqs. B-7 and B-8:
sz s S¢2 Pl s Swl
ds ds -\ 1= _ ds ds - =
[ sy + M l XZ_S—)] A(s) ds = [ ACs) + M[ ACS) ] A(s) ds
0 0 s 0 0 s
(B-9)
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Equation B-9 provides the front location in the streamtube Y2 at the time when
the front in the streamtube Yl reaches the production well.

Areal sweep efficlency at the time of breakthrough in the streamtube Pl is the
sum of two areas: 1) the total area of the streamtubes that are completely
filied with the displacing fluid (broken~through streamtubes); and 2) the
total swept area 1n the unbroken streamtubes. Mathematically, the areal sweep
efficiency is given by:

n/4 5 V1 Ew
A(s) ds dy +f f A(s) ds dy
v1 Jo 0 Jo (3-10)

A (pattern pore area)/8

For the developed five spot system in Fig, B-1, the pattern pore area can be
calculated from the following equation: '

pattern pore area = 4¢K2(0.5) = 4(1.8540746)2¢ = 13.75036 ¢

Therefore, Eq. B-10 becomes:

m/4 A8 1,8
lersy virsy
EA = 0.5818 ¢ A(s) ds &y + A(s) ds dy (B=-11)
vl 0 0 %0
Pore volumes injected, VpD’ at the time of breakthrough in the streamtube ¢1
are calculated from:
Voo = Ep * (VPD)a (B-12)

where, (V,p), is the pore volumes of displacing fluid produced at that time.
The term (V D)a 1s equal to the sum of the cumulative volumes of the
displacing fluid produced from each broken—-through streamtube since the break-~
through time in each individual tube. Because oanly one fluid is flowing in
the broken-through streamtubes, the flow rates in such streamtubes are equal
and remain constant after breakthrough of the displacing fluid from the
pattern. Mathematically, the pore volumes of displacing fiuid produced may be
computed from:

/4
9a (twlbt - twbt) dy
_ P 1bt _
(VPD)a B (pattern pore volume)/8 (B-13)
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In this equation, three terms must be defined. First, q, represents the flow
rate in the streamtubes that produce displacing fluid. %his term 1ls the same
for all the streamtubes that have already broken-through. It is givea by:

9, = (B-14)

o

The integral in the denominator of Eq. B-14 can be computed on any streamtube
that is filled with the displacing fluid, a. The other two terms, t bt and
t bt represent the breakthrough time from the streamline Y1 and 1‘:’5 general
sgreamline, Y respectively. In analogy to Eq. B-7:

s -
¥ s SW
e _ds_ _ds Iy 45 -
twbt = Xa i . i ) + M . e A{s) ds (B-15)
s=

Substitute Egs. B-7, B-14 and B-15 into Eq. B-13 and simplify:

w/4
s s
1 — g v — S
0.5818 pl s v
ds ds — = ds ds _
w_ ) = ——— 5 S +MS ] A(s)ds - S l: +Mj ] A(s)ds dy
pD a jsnﬂ. [0 A(s) = A(s) J 5 A(s) = A(s)
ds 0 '
o A )

(B-16)

Displacing fluid cut, f,, 1is the ratio of producing displacing fluid rate
divided by the total production rate. This 1is given by:

w/ 4
q .]~ dy
a b1

fD = 7% 71 (B-17)
q f dy +f q, (V) dy
a v 0 b

where, q, 1s the flow rate in any streamtube that has not broken through. It
varies with time and is different for different streamtubes, as it is within

the integral sign.
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Substitute for a3 from Eq. B~4 and for 9, from Eq. B-14:

£, = (B-18)

STT/[+ a
0 A(s) dy

T s s
z Y J ¥ gs . M_[ Vods
Vo b A A(s)

Equations B-11, B-12, B-16 and B-18 are written in general forms. The rest of
this appendix focusses on simplifing these equations.

Because of the assumption of no streamline change with mobility ratio, the
area terms in the preceding equations can be calculated from the streamlines
determined at unit mobility ratio. That is:

q
ACs) = Ll (B-19)
¢ [V(s)]
M=1
where,
q = flow rate in the streamtube if the displacement was at M =1
M=1

[v(s)] microscopic velocity at location s 1if the displacement was at
M=1 M=1

From Egs. 3-42 and 3-50 with h = 1, it is concluded that:

M=1 s
The term A?z) which appears frequently in the preceeding equations becomes:
5 =2 gs [v(s)] (B-21)
A M=1

The following relationships facilitate evaluation of Eq. B-21:

ds = \j(dx)z +(dy)2 = dx 41 + (%%92 (B-22)

= ———— (B-23)



[v(s)] e ‘/(VX)Z—l + (vy)2=1 (B-24)

Therefore:

ds _ ¢ _
ACs) X (v ) dx (B-25)
% Jyeq
From Eq. A-23:
y f(x,m) f'(y,ml)
(VX) = -(1? 2 (3—26)
=1 1 4+ tan' V¥
and similarly:
y Er(x,m) f(y,ml)
(v ) = -3 5 (B=27)
y =1 1 + tan™y

where, f(x,m) and f(y,ml) are given‘by Eq. A-18. For a five-spot pattern,

m=m = 0.5, hence 8 = m - m = 0. Equations A-30 and A-31 reduce to:
4
f'(x,m) = 1/1 + £ (x,m) (B-28)
4
£'(y,m)) = 1+ £ (y,m)) (B-29)

Substitute Egs. B-26 through B-29 in B~25 and use Eq. A-32 to replace the
f(y,ml) terms by f(x,m) terms:

n + fa(x,m)

ds_ _ dx (B-30)
A(s) [2 A
f(x,m) n” 4+ f (x,m)
in which,
n = tan?y (B-31)

Introducing the same change of wvariable, z = fz(x,m), as proposed in Appendix
A.l:

ds (n + z°)
A(s)

dz (B-32)

2 241 + 2002 + 2%
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From Gredshteyn and Ryzhik (1980):
2 \J 2 2
" + 22) dz 1 zn\j; + 1 + 4Jz +n
——m—-— = == fn
A(S) ] 53 2. 2 2 (7,2
(1 +z°)(n" +z7) Nalz" + 1 + 4fz" + 1

(B-33)
Let:

zm\/zz2 + 1 + \/zz 4—n2

G(z,n) = &n (B-34)
nxjéz +1 + \Jzz + n2

At z = 0 and z = ©, the term G(z,n) approaches infinity. These points corre-
spond to singularities at the Injection and production wells. To avoid the
singularities in the calculations, a radius equal to d/10000 1is assigned to
the wells, where d is the distance between an injector and a producer.

Another term that can be simplified is the integral defined in Eq. B~8 and in
simllar equations. Designate:

v s sw

ds : ds - -

H, = [ as M A(s)] A(s) ds (8-3)
0

- s
s=0

The A(s)ds term in this equation can be reduced to the following by using Eqgs.
B-19, B-20, B-22, B-23 and B-24:

A dx

*(Vx)

M=1

A(s) ds = (B-36)

Using Eqs. B-33, B-34 and B-36 and noting that wellbores have deflnite radii,
the term in brackets in Eq. B~35 reduces to:

s s
¥
ds ds 1 =
A(s) + M } Km ='2— [M G(Zp,ﬂ) - G(zi’n) + (1 - M) G(z,n)]
0 s
(B-37)
where,
- §2 - _
z, = f [(x XWP),m] (B-38)
= £2 |
z, = £ (xwi’m) , (B=39)
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z = £2(%,m) (B-40)

and,

»
]

Wi T, sin ¥ (B-41)

X

wp rw cos V¥ (B-42)

X is the x component of front location, r_ is the wellbore radius and ¥ is the
value of a general streamline shown in Fig. B-l.
Define:

P(n) = M G(zp,n) - 6(z;,n) (B-43)

Using Eqs. B-36, B-37 and B-43, the H term defined In Eq. B-35 becomes:

Xw _ xq) _
H = P(“)[ S O M)[ 6(Z,n) (B-44)
> ), (%5) 2 J, ('5)

wi M=1 wi M=1

where,'§ is the x coordinate ot the front in the streamtube ¢. From Eqs. A~

19, A-ZST A-27 and A-34 with 8 = 0, it is concluded that:

dx dz
(_) 1 +n (B-45)
v 2
X _2 2. -2
(z +n17)(z + 1)

Nl

M=1

From Byrd and Friedman (1954):

z
j' dz = F(v,x) (B-46)
0 \[(zz +nd@ + 1)
where,
-1,z
v = tan (ﬁ-) (B-47)
2 =1 -n? (B-48)
with the property that,
F(Z,6) = K(x) (B-49)



Substitute Eq. B-45 and B-46 in Eq. B-44 and rearrange:
E - -
1 +n G(z,n) dz
H = P(n) F(v,k) + (1 - M) (B-50)

vooo4 3,
zg (z +n7)(z + 1)

When the front in the streamtube Y1 reaches the production well, z = Z

However, is calculated at the production well and, hence, z_ a proacges
infinity (%ee Eq. B-38). Therefore, the argument of F(v,k) bgcomes equal
to /2 and from Eq. B-49, F(w/2,x) = K(x). Thus, the front in any streamtube,
Y2 defined by Eq. B-9, is reduced to:

G(z,n) dz
(1 +n) | P(n) Fv,e) + (1 - M) =

2, 2
(z +n)(z + 1) b2

P G(z,n) dz
(1 +n) | PM) R(k) + (1 - M)

2, 2
(z +n9z + 1 i,

(B~51)

where, V¥l represents Yl at breakthrough. Note that in Eq. B-51, the left
hand side Is computed at Y2 and the right side at wlbt.

At the breakthrough of y1, substitution of Eq. B-36 in Eq. B-ll results in:

K(m) dx
= 0.5818 .,P -]” -— & (B-52)
VL, X)M—

Applying Eqs. B-45, B-46 and B-47 to Eq. B-52 and noting that z = = at the
production well:

n/4 wlbt
EA = (.2909 j' (1 +n) K(x) dv +f (1 +n) F(v,x) dy (B~53)
v

1bt 0

where, V and Kk are defined by Egqs. B-47 and B-48. Values of z are obtained
from the solutlion of Egq. B-51.
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The pore volumes of displaclag fluid produced at breakthrough of the stream-

Line wlbt are computed from Eqs. B-16, B-33, B-34, B-35 and B-50. The result
is:
/4 - - "
wlbt lpbt
(VPD) = 1.1636 dy (B-54)
bt P
where, Hw represents a sireamline at breakthrough and is given by:
bt
z — —
L+ P G(z,n) dz
H =~-—— | P(n) K(n) + (1 - M) (B=55)
Ve 4

2 9 2
zy (z +n7)(z + 1)

Displacing fluid cut is computed from Egqs. B-18, B-33, B-34, B-37, and B-43 as
follows:
™
£ - 7~ Yy
D~ vl (B=56)

bt
w dy
=-v1l .  + |6z ,1) - G6(z;,1) —
7 Ve + [0 0] P(M) + (1 = M) G(Z,n)

0

The computer program given in Appendix D.3 utilizes Eqs. B-12, B-~53, B-54 and
B-56 to evaluate areal sweep efficiency and displacing fluid cut for various
mobility ratios.
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Appendix C
EVALUATION OF THE LINE INTEGRAL IN MIXING EQUATIONS
In this appendix, evaluation of the line integral in the mixing equations is
illustrated for developed staggered line drive, five-spot, and direct line

drive patterns. The appendix consists of three sub—appendices, each corre-
sponding to one of the above patterns.

Appendix C.l: STAGGERED LINE DRIVE

Consider a staggered line drive pattern with the dimensions shown in Fig. C-1.

w2

e

v

e JENNUN

O

rop

K@ d
2X (m) a

,’f’

Fig., C-1: DIMENSIONS FOR A STAGGERED LINE DRIVE CONSIDERED
IN THE ANALYSIS OF MIXING LINE INTEGRAL

The stream functions for this system are given by analogy to Egs. A-17 and
A-18 as follows:

P(x,y) = ta;1 [f(w,m) f(z,ml)] (c-1)
£(w,m) = S“(W;:zw‘ﬁgw’m) (C-2)
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" (c-3)
]
z = ——-K (m) y (C-4)
d
K'(m) _d i
K(m) - a (€=3)
s d
Using Eqs. B-22, B-23 and B-24, the line integral, 7T = 23 is
reduced to: o 7V (s)
x
d
I= = (C-6)
v v 2 + v 2
0 X X y

If initial water saturation in the reservoir is Sus from Eqs. A-2 and A-3 the
components of mlcroscopic velocity are given by:

- K -
Yx T u¢Sw 3y (c-7)
y = y(¥,x)
- __k 3y _
'y T s, (e-8)
x = x(¥,y)

Differentiating Eq. C-1 with respect to y and x, the velocity equations
become:

f(w,m) f'(z,ml)

v = (C-9)
S T U YO, f(z,ml)]z
4
) K 2K (m) f'(w,m) f(z,ml)
Vg T 7 ¢S a 2 (¢-10)
y " 1+ [£(w,m) £(z,m))]
On a general streamline, ¢ 1is a constant and Eq. C-1 yields:
£(w,m) £(z,m)) =vYn (C-11)
where,
n = tanzw = constant (c-12)
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Utilizing Egs. C-3, C-5, C-9, C-10 and C-11, the following expression for the
line integral is obtained:

udS \2 2 w dw
1=(k“’) (1 +my> —2d 5 (Cc-13)
2R(mK'“(m) ), £(w,m) f'(z,ml)\/ﬁ;
where,
R1 = [f(w,m) f'(z,ml)]2 + {f'(w,m) f(z,ml)]2 (C-14)

Equations A=-149 and A-150 relate the derivatives to the functions. These are:

f'(z,ml) = \jl + fa(z,ml) + 28f2(z,m1) (Cc-15)
4 2
f'(w,m) = \JI + f (w,m) - 28f"(w,m) (C~16)
where,
B=m- m, {(c-17)

Substitute for the derivatives in Eq. C-13 and C-14 from Egs. C-15 and C-~16,
and eliminate f(z,m;) by Eq. C-11; then Eq. C-13 simplifies to:

3
e S \2 = 2
I=(kw) (1 +n)2-—~——-——ad2
2K(m)K" "(m)

w fz(w,m) dw
. J[f"(w,m) +n][£4Ge,m) + 2nfl(w,m) +n?]

Introducing a variable change of fz(w,m) =t , and using Eq. C~16 to replace
the f'(w,mn) terms, Eq. C-18 becomes:

udS \2 2
I =( - w) ad s— ¥ (C-19)
4K(m)X' “(m)

(c-18)

where,

3 fz(_v?,m) Vi
Y= (1+m)? t dt (C-20)
\j 2 2 2 2
(t° - 28t +1)(t” + 28nt +n7)(t” + )
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A plot of Y versus W/K(m) or 2x/a for different streamlines (various n) is
illustrated in Fig. C-2. This figure shows that Y asymptotically approaches
constant values at the production well. Consequently, for Ww close to the
production well, the exact location of W in the streamtube does not affect the
values of Y significantly. On the other hand, since the tracer slug is small,

10

¥ =720

¥ = /16

a/’z

Ki(m}
¥ =m/12

Y ==n/8

MIXING LINE INTEGRAL, Y(y)
(V3
]
]

0 0.2 0.4 0.6 0.8 1.0

X-COMPONENT OF TRACER FRONT LOCATION, w/K(m), 2x/a

Fig. C-2: VARTATION OF MIXING LINE INTEGRAL WITH TRACER FRONT LOCATION
FOR VARIOUS STREAMLINES OF A STAGGERED LINE DRIVE, d/a = 1
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the amount of tracer flow to the well is insignificant unless the tracer froat
is close to the production well. Therefore, for all practical purposes, the
upper limit of the integral %n Eq. C-20 can always be computed at the produc-
tion well, For this case, £ [K(m),m] = o gnd Y is:

3 =)
Y = (1 41)° Ve dt (C-21)

0 \f2£2 - 8t + 1)(t2 +28nt + nz)(t2 +n)

All the roots of the quadratic equations in Eq. C-21 are complex. Therefore,
there is no singularity in the range of integration. However, for d/a » 2,
m + 0, B > -1; hence, one of the roots approaches n. For this case, precau-
tions should be taken in the numerical integratiom around the point t = m.

Appendix C.2: FIVE SPOT

For a five-spot system:

o) a
1l
NI

K(m) = K'(m) = 1.854074

Equations C-19 and C-21 reduce to:

udS \2 3
I =( - W) a Y (C~22)
101.97678
where,
g * VT dt
Y = (1 +n) (Cc-23)

0 \j(tz + 1)(t2 + nz)(t2 +n)
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Appendix C.3: DIRECT LINE DRIVE

Figure C-3 shows the coordinate system with the dimensions for this pattern:

Y
a
O d (Z’d) (o)
o™ <
N r o
" i b
- > -

K'(m) 4
2K(m) a

Fig. C-3: DIMENSIONS OF A DEVELOPED DIRECT LINE DRIVE CONSIDERED
IN THE ANALYSIS OF MIXING LINE INTEGRAL

The stream functions for the above coordinate system are obtained by analogy

to Egqs. A-54, A-55 and A-56 as follows:

Y(x,y) = tant [£(w,m) g(z,m))] (C-24)
_ cnfw,m) dn(w,m) _
flw,m) = on(w,m) (C-25)
Sn(z,ml) cn(z,ml)
g(z’ml) = dn(z,ml) (C—26)
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- 2KR(m) (C-27)

a
T
2 = Km) o (C-28)
d
K'(m) d -
®(m) - a (C-29)
s d
The following equations facilitate evaluation of I = 25
0 Vv (s)
ds = \[tdx)z + @’ = gy (%% 24 (C-30)
v2 =y 2 + v 2 (C-31)
X y
v
%§ = X  (c-32)
y
Using these equations, the I integral becomes:
y dy
I = (C-33)
v v 2 + v 2
0 y X y

The velocity components are related to stream functions by Eqs. C-7 and C-8.
Performing the partial differention on Y¥(x,y), the expressions for the
velocities become:

f(w,m) g'(z,ml)

1
v, = uzs K ém) 5 (C-34)
w 1 + [£f(w,m) g(z,ml)]
Vg T T 798 2 5 (C~35)
w 1+ [f(w,m) g(z,ml)]
For a general streamline, y is constant and Eq. C-24 results in:
f(w,m) g(z,ml) =vVn (C-36)

where, n is given by Eq. C-12.
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Utilizing Eq. C-28 and Egs. C-33 through C-36, the following expression for
the line integral, I, is obtained:

HOS \2 2 z
I=- (__Efi) (1 +n)? m—~——3§5~—— dz (c-37)
k(K “(m) [, f'Gm) glzm) VR,
where,
R, = [£(w,m) g'(z,m )2 + [£1(w,m) g(z,m)))? (c-38)

Equations A-158 and A-166 relate the derivatives to the functions:

£'(w,m) = - \f[ml - £20e,m]? + 482 (w,m) (c-39)
and,
+ \/il + m, gz(z,ml)]2 - Agz(z,ml) 0 £ z < K'ém)
g'(zm) =
-y [ #n g2 @m)]® - sgz,m)) K';m) <z < K'(m)
(c-40)

Substitute for the derivatives from Egs. €-39 and C-40 in Egq. C-37 and
eliminate the f(w,m) term by using Eq. C-36:

3 2
ueS \2 = 2 g(z,m )
I =< . w) (1 +n)2 adz S S (C-41)
2R(m)K' " (m) 0 \,Rz

R, = [m2 g*(z,m) + (2 - m)g’(zm ) + 0 ][m 2 g¥(zom) + 0] (C-42)
2 1 1 1 1 1 1
Introducing a change of variable, t = gz(z,ml)
dz = dt - dt
]
2g(z,m)) g (z,ml) + 2g(z,m1) \[tl + mng(z’ml)IZ _ 4g2(z’m1)

(C-43)
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Substitute this new variable and Eq. C-43 into Eq. C-41 and utilize the ranges
glven in Eq. C-40, the result of Eq. C-41 is:

1= (uisW)Z adzz Y (C~44)
LR(m)K" “(m)
with:
3 gz(E,ml) VYt dt
Y = (1+n)2f ——— (C-45)
0 Vo

1

— ' —
1f 0 <z < LS ém) s ©Or equivalently, O < gz(z,ml) <

(1 + v
and,
s Va + V)2 gz(?}ml)
Y = (1 +n)2[: mm@_ - _E_it:_] (C-46)
Ny Ve
0 1/(1 ++ym)
if K‘ém) <z < K'(m) or equivalently, 1 5 » gz(E;ml) >0
(1 +vym)
where,
0= [m12t2 ~ 22 - m))t + 1][m12t2 +2n(2 - m) + nz][mlztz + 1] (C-47)

At the production well, z = K'(m), and gz[K'(m),ml] = 0; therefore, from Eq.

C-45:
3 1/(1 + v
_f Yt dt
0

Yy = 2(1 +n)2
Ny

The roots of the quadratic equations in the expression for © in Eq. C-46 are:

(C-48)

mlztz - 22 -m)t +1 = mlz(t - a)(t - b) (C=49)
m12t2 + 2n(2 - ml)t + nz = mlz(t -c){t - 4) (C-50)
mlztz +n = mlz(t +e) (c-51)

- 144 -



where:

(1 - vm)
b =——-1—§ (C~53)

(1 + vm)
c=[-n@-n)+ 2va] / n’ (C-54)
d=[-n2-n) - 2va) / o (C-55)
e =1 Eﬂ = complex (C-56)

1

Since n » 0, 0 <m, <1, and O € m < 1; then, a > b, ¢ €0 and 4 < 0. There—
fore, the integrand contalins a sipngularity at poiat t = b which corresponds to
the upper limit of the integral In Eq. C-48. To remove this singularity, let:

b-t =& (C-57)
Then:
3 Vb 5
Y=—‘i—~(1+n)2f b -t % (C-58)
m T.T.T
1 1723
0
where:
T, - mlza“ - 2(bm12 + 2n - nml)F,z + b2m12 + 2002 - m) + n2 (C-59)
T,=a-b+ g2 (C-60)
_ 2.4 2 2. .2 2 _
T3 =m £ 2b w) E“+ b m + n (C-61)
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Appendix D

COMPUTER PROGRAMS

This appendix consists of three sub—appendices, each containing a computer
program. The first appendix provides a program to analyze tracer breakthrough
curves from stratified reservoirs. The second appendix gives an algorithm to
compute the pattern breakthrough curve of a developed inverted seven-spot for
mobility ratio of one. A program to calculate the pattern breakthrough curve
of a developed five-spot at any mobility ratlo is the content of the last

appendix.

Appendix D.l: PROGRAM TO ANALYZE A TRACER ELUTION CURVE

The algorithm provided in this section decomposes a tracer breathrough profile
from a stratified formation iato several layer responses, From the con-
structed layer responses, the parameters of the layers are evaluated. The
decomposition process is carried out intermally through a non-linear least-
squares routine (subroutine VARPRO). Since an inverse problem 1s being
solved, the number of layers should be determined by trial-and-error, each
time observing the improvement of the generated match with an increase in
number of layers., However, thls program can be modified to perform this
iterative process internally and generate an optimum match in one rum.
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*
THIS PROGRAM ANALYZES A TRACER BREAKTHROUGTH CURVE FROM A %
STRATIFIED RESERVOIR FOR A GIVEN TYPE OF FLOODING PATTERN. *
THE PROGRAM GENERATES POROSITY THICKNESS PRODUCT, (PHI®H), *
AND FRACTIONAL PERMEABILITY THICKNESS PRCODUCT, (KH/SUM(KH),*
FOR EACH LAYER AS WELL AS A MATCH TO THE INPUT TRACER *
BREAKXKTHROUGH PROFILE FOR A SPECIFIED NUMBER OF LAYERS. *
THE PROGRAM CAN CURRENTLY HANDLE FIFTEEN LAYERS. *®

*

*

¥ oK koK ok M kK K

EAEEREE IR R KRR EANRE NN K A NRR R RARER AR RN NN AR NN RENRAR R ERRRE KNSR

PREPARED BY

MAGHSOOD ABBASZADEH-DEHGHANI
STARFORD UNIVERSITY

JULY 1982
NOMENCLATURE:
AALFAP = PECLET NUMBER FOR THE PATTERN
AALFAS = PECLET NUMBER FOR AN EQUIVALENT FIVE-SPOT
AREA = DRAINAGE AREA OF A WELL WHOSE TRACER RESPONSE CURVE

IS BEING ANALYZED, FT SGUARE
CPHIHJ = TRACER CONCENTRATION FROM LAYER J, C/CO
CSTAR = TRACER CONCENTRATIONS IN THE FIFELD TRACER ELUTION
CURVE, PPM. AN ARRAY CONTAINING NDATA POINTS
CONCEN = TRACER CONCENTRATION IN THE GENERATED MATCH, PPM
EABTP = BREAKTHROUGH AREAL SWEELP EFFICIENCY OF A DEVELOPED
FATTERN
EABT5 = BREAKTHROUGH AREAL SWEEP EFFICIENCY OF A DEVELOFPED
FIVE-SPOT
FACTOR = A CONVERSION FACTOR TO CONVERT TRACER CONCENTRATION
(FROM USUALLY FPM) TO WEIGHT FRACTICON
Fi4 = CORRECTION FACTOR ON TRACER PEAX CONCENTRATION
FP = CORRECTION FACTCR ON PECLET NUMEER
FRAC = RATIO OF THE RATE OF FLUID FLOWING FROM TYHE INJECTOR
OF THE PATTERN TOWARDS THE WELL, DIVIDED BY THE TOTAL
PRODUCTION RATE FROM THE WELL. FOR EXAMPLE, IN A
DEVELOPED FIVE~SPOT WHEN TRACER IS INJECTED INTO ONE
OF THE WELLS ONLY, FRAC = 0.25
K, KP = COMPLEMENTARY AKD INCOMPLEMENTARY COMPLETE ELLIPTIC
INTEGRALS OF THE FIRST KIND
KHJ = FRACTIONAL CONDUCTANCE OF LAYER J, (KH)J/SUMCKH)
RDATA = KUMBER OF DATA POINTS INPUTED FROM A FIELD TRACER
RESPONSE CURVE
NUMBER OF LAYERS IN THE STRATIFIED MODEL )
NUMBER OF POIRTS DESIRED TO BE CALCULATED ON THE
MATCH CURVE
PHIHJ = POROSITY THICKNESS PRODUCT OF LAYER J
PVDMX5 = CORRELATING DIMENSIONLESS PORE VOLUME FOR A DEVE-
LOPED FIVE-SPOT.
SW = INITIAL WATER SATURATION IN THE RESERVOIR
T = VOLUMES CORRESPONDING TO SELECTED "CSTAR™ VALUES
IN THE FIELD DATA, BBLS
TR = TOTAL VOLUME OF TRACER SOLUTION INJECTED INTO A

NLAYER
NOTPUT

o1l

DO O0OO0O00000000000000000a0O0000O0000CO0O00O0000000000G0CO000000000C000O0O00
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PATTERN, FT3.
VCAL = CALCULATED PEAK VOLUMES OF THE LAYERS, IF THE
SYSTEM WAS DEVELOPED AND THE WELL WAS RECEIVING
TRACER FROM ALL THE INJECTORS SURRONDING IT, BBLS
VMXCAL = CALCULATED PEAK VOLUMES OF THE LAYERS IN THE MATCH
CURVE TO THE FIELD DATA, BBLS
VOLUMES IN THE MATCH CURVE (X~AXIS), BBLS
X-COORDINATE OF THE PATTERN BREAKTHROUGH CURVE OF A
DEVELOPED FIVE-SPOT (DISPLACING FLUID CUT VS PORE
VOLUMES), DIMENSIONLESS
VPDMXP = PORE VCLUMES CORRESPONDING TO THE PEAK CONCENTRATICN
IN A TRACER BREAKTHROUGH CURVE FROM A HOMOGENEOUS
PATTERN, DIMENSIONLESS
VTMAX = UPPER VALUE OF THE RANGE AT WHICH A MATCH TO THE
FIELD TRACER ELUTION CURVE IS SOUGHT, BBLS
VTMIN = LOWER VALUE OF THE RANGE, BBLS
VTMAXP = VOLUMES CORRESPONDING TO0 THE PEAK CONCENTRATIONS IN
THE FIELD TRACER RESPONSE CURVE, BBLS. THESE WILL BE
USED AS INITIAL ESTIMATES IN THE OPTIMIZATION ROUTINE
YSIGH = "Y" VALUE IN THE MIXING LINE INTEGRAL, FUNCTION OF
STREAMLINE

VOBSRV
VPDBT

noat

Y(J) = J TH KONLINEAR PARAMETER IN THE OPTIMIZATION ROUTINE
= KJ/7(PHI®SUM(KH)?
XY(J) J TH LINEAR PARAMITER IN THE OPTIMIZATION ROUTINE

" il

KJ/(PHIXSUMCKH) Y ¥KHJ/SUMOKH)

OO0 O OO0 0000000000000 0O0

IMPLICIT REAL%3 (A-H,0-23

REAL%*3 K,KP,M,M1,KHJ,KETA

DIMENSION WPDBTC110),YSIGH(110),7¢50,1),CSTAR(S0)

DIMENSION W(50),AA(50,32),YC15),XYC(15),CPHIHCIS),VIMAXP(15)
EXTERHAL ADA

COMMON /PAR/YSIGH,VPDBT

COMMON /PARK/K,KP,VIMAXP,VPDMXP,EABTS,EABTP, FM, FP

COMMON /FORMZAREA, SW, AALFAS, TR, N, NM,H1,H2

c
c INPUT PARAMETERS:
C
READ, FRAC, FACTOR,NDATA, NLAYER
READ, SW, AREA, AALFAP, TR
READ, EABTP,FM, FP
READ,VTMIN, VTMAX,NOTPUT
DO 10 J=1,NLAYER
READ, VIMAXP(J)
10 VTIMAXP (JI)=VTMAXP(J)*¥FRAC
DO 20 I=1,NDATA
READ,T(I,1),CSTARC(I)D
TCI,12=T(I, 1)#FRAC
20 CSTAR(I)=CSTAR(I)/FRAC¥FACTOR
c
C IN THE ABOVE, VALUES OF VTMAXP, T, AND CSTAR WERE CONVERETED TO
c THOSE CORRESPONDING TO A DEVELOPED PATTERN
c
c
EABT5=.7177783
c
c AN EQUIVALENT FIVE-SPOT IS DETERMINED
c

AALFAS=AALFAP/FP
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OO0

OO0

OO0 OO 000

30
48

OO O 0Wm

OO0 00

DIMENSIONLESS CORRELATING PORE VOLUME IS COMPUTED FROM THE
EQUATION OF THE FIVE-SPOT LINE IN FIG. 3.2¢

PUDMX5=2.5032%AALFAS¥%(-0.464)

PORE VOLUME CORRESPONDING TO A PEAK FROM A HOMOGENEOUS
PATTERN IS COMPUTED

VPDMXP=EABTP+(1.-EABTP)*PVDMX5
PI=4.¥DATANC1.D0)
K=1.8540766773D0

KP=K

M=0.5D0

Mi=M

PATTERN BREAKTHROUGH CURVE, "VPBD"™, AND MIXING LINE INTEGRAL,
"Y(SIGH)"™ FOR A TEVELOPED FIVE-SPOT ARE COMPUTED. 1IN THE
FOLLOWING, THE STREAMLINES BETWEEN ZERQ AND 10 DEGREES ARE
DIVIDED INTO "N=50" STREAMTUBES AND THOSE BETWEEN 10 DEGRRES
AND 45 DEGREES ARE ALSO DIVIDED INTO “N=50" TUBES. THIS IS
DONE TO OBTAIN HIGHER ACCURACY FOR THE EXTREME STREAMTUBES

UPPER=1.D+4

TET1=0.D0
TETL=PI%*10.0/180.
R=50

NN=N+1

NNN=2¥NN-1

NM=2 %N
2=(PI/4.-TETL)/N
H1=TETL/N

D8 50 I=2,NNN

IF (I.LE.NRJ)GO TO 30
TET=TETL+H2¥(I-N-12
GO TO 40

TET=H1*(I-1)
ETA=DTANCTET)*¥%2
C=PI/&.*¥(1+ETA)/K/KP

2Z=1 . ~ETA¥%Z

CALL KVALUE(ZZ,KETA?

VPDBT(I-1)=C*KETA
CALL GAUSS(UPPER,ETA,SIGMAD

YSIGHC(I-1)=SIGMA

"IPRINT™ CONTROLS THE TYPE OF THE OUTPUT FRCM THE OPTIMIZATION
ROUTINE. SEE SUBROUTINE "VARPRC"™ FOR INFORMATION

IPRINT =

THE WEGHTING FACTORS FOR THE FUNCTION NEEDED IN “VARPRO™ ARE
EVALUATED

DO 60 LMK=1,NDATA

WOLMEK) =1,

LENGTH=2*NLAYER+2

CALL VARPROCNLAYER,NLAYER,NDATA,NDATA,LENGTH,1,T,CSTAR, N,
ADA, AA, IPRINT,Y,XY,IERR)
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WRITE(6.,70)
FORMATC"1*,2X, *LAYER NO.',7X,'POROSITY.THICKNESS', 12X,
% *KH/SUMCIKHY ', /)

CALCULATE THE PARAMETRES OF THE LAYERS FROM THE COMPUTED LINEAR
AND NON-LINEAR PARAMETERS

DO 90 IOPT=1,NLAYER

KHJ  =XY(IOPT)/YCIOPT)

FHIHJ=XY(IGPTO/Y(IOPTI/YLIOPT)

WRITE(6,80 JIOPT,PHIHJ,KRHJ

IF (PHIHJ.LT.0.3GO 1D 204

FORMAT(6X,I12,14X,F10.6,16X,F10.6)

CONTINUE

WRITE(6,100)

FORMATC*1', tX, 'VOLUME PRODUCED, BBLS', %X, "CONCENTRATION, PPM®

A MATCH TO THE FIELD DATA WITHIN THE SPECIFIED RANGE OF VOLUMES
AND DESIRED NUMBER OF POINTS IS GENERATED

DELTAP=(VTMAX-VTMIN)/NOTPUT
NOTPT=ROTPUT+1

DO 180 IK=1,NOTPT
VOBSRV=(IK-1)¥DELTAP+VTMIN
VPATT=VOBSRV*FRAC

CALL FUNCCY,VPATT ,CPHIH,NLAYER)
SUMC=0.

DO 110 ML=1,NLAYER
SUMC=SUMCH+XY (ML XCPHIH(ML)
CONCEN=FRAC/FACTOR®SUNC
WRITE(6,120)Y0BSRY, CONCEN
FORMAT(BX,F9.2,20X,F10.6)
CONTINUE

“RLAYER"™ VOLUMES CORRESPONDING TO THE PEAXK VOLUMES FROM THE
CONSTITUTING LAYERS ARE COMPUTED. THE DIFFERENCE BETWEEN THE
INPUTED PEAK VOLUMES AND THE COMPUTED PEAK VOLUMES IS THE
AMOUNT OF SHIFT GENERATED UPON ADDING THE LAYER RESPONSES TO
FRCDUCE AN OVERAL TRACER BREAKTHROUGH CURVE

WRITE(6,200)

FORMATC(//, 1X, "SELECTED PEAK VOLUME',5X, 'COMPUTED PEAK VOLUME'
DO 20t IJI=1,NLAYER

VTMAXP(IJI)=VTMAXP(IJI)/FRAC

VCAL=AREA*SHXVPDMXP /5,615/Y(IJID

VMXCAL=VCAL/FRAC

WRITE (6,202)VTMAXP(IJI),VMXCAL

FORMAT(IX,F7.1,18X,F7.1)

GO TO 300

WRITE(6,205)

el

17}

FORMAT(//,2X,'A LAYER PARAMETER IS NEGATIVE,',/,2X,'PROBABLY THE

& SELECTED PEAK VOLUMES ARE NOT GODOD',s/)
sSTOP
END

SUBROUTINE FUNC(VARBLE,VT,GAMA,NLAYER)

THIS SUBROUTINE COMPUTES THE GAMA(J,I) FCR A GIVEN TOTAL VOLUME
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INJECTED. WHERE, GAMMA CORRESPOND 7O THE PHIC(J,I) FUNCTION IN
SUBROUTINE "VARPRO"™. THE ROUTINE USES THE EQUATIONS OF TACER
BREAKTHROUGH CURVE FROM A DEVELOPED FIVE-SPOT IN CONJUCTION
WITH THE CORRECTION FACTORS TO EVALUATE THE TRACER BREAKTHROUGH
FROM A PATTERN,

INPUT: VARBLE = KJ/(PHI)J*SUM(KH), THE NON-LINEAR PARAMETERS

VT = TOTAL PORE VOLUMES INJECTED INTO THE PATTERN
AT WHICH GAMA WILL BE CALCULATED
NLAYER NUMBER OF LAYERS

QUTPUT: GAMA VALUE OF GAMA AT V7. IF THIS VALUE IS MULTI-
PLIED BY THE J TH NON-LINEAR PARAMETER, TRACER
CONCENTRATION FOR LAYER J AT TOTAL VOLUME OF

VT, IS OBTAINED.

IMPLICIT REAL*8 (A-H,0-2)

REAL*8 K,KP

DIMENSICN YSIGHC110),VPDBT(110),VARBLE(NLAYER),GAMA(C15)
DIMERSION FSC101),VIMAXP(15)

COMMON /FAR/YSIGH,VFDBT

COMMON /PARK/K,KP,VIMAXP,VPDMXP,EABT5,EABTP,FM, FP
COMMON /FORM/ZAREA,SW,ALLFAL, TR, N, NM, HT,H2
PI=4.¥DATAN(1.D0)

DO 85 IJ=1,NHLAYER

VPDPAT=5,.6 15¥VT*VARBLE(IJ)/ (AREA¥SW)

PORE VOLUMES INJECTED INTO AN EQUIVALENT FIVE-SPOT ARE CALCULATED
FROM THE PORE VOLUMES INJECTED INTO A PATTERNH

VPDS=(VFDPAT-EABTP )/ C1-EABTPOR(1-EARTD)I+EABTS

DIMENSIONLESS TRACER CONCENTRATIONS, CD, FROM A DEVELOFED
HOMOGENEOUS FIVE-SPOT ARE COMPUTED

FSC1)=0.

D8 80 J=1,N
FVDIFF=(VPDBT(J)-VFD5)*%x2
EX=-KH#KP¥KP®AALFAS®PVDIFF/(PI¥PI¥YSIGH(J))
IFCEX.LT.-170.D03)G0 TO 40
FS(J+1)=DEXP(EX)/DSQRT(YSIGH(J))
GO 7O &%

FS(J+1)=0.D0

CONTINUE

CALL INTGRL(N,HY,FS,VOL1)

DO 90 J=N,NM
PVDIFF=(VPDBT(J)-VPD5) %2
EX=-K¥KPXKP¥AALFASXPVDIFF/(PI¥PI¥YSIGH(J))
IF(EX.LT.-170.D03G0 TO 50
FSCJ+1-NI=DEXPC(EX)/DSQRT(YSIGH(J))
GO TO 990

FS(J+1-NY=0.D0

CONTINUE

CALL INTGRL(N,H2,FS,vOL2)
VoL=voLt+vQL2

IF(VOL.GT.1.D-703G0 TO 115
GAMACIJI=0.DO

GO TO 55
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c VALUES OF "GAMA™ FOR A FIVE-SPOT ARE EVALUATED

115 FRTDSGRT(CAALFAS)¥TR/ (AREAXSI)
GAMA(IJ) =4  ¥KP*DSQRT(K/PI)¥VOL/(PI*PI)¥*FR
c
¢ THE COMPUTED "GAMA"™ VALUES FOR THE FIVE-SPOT ARE CONVERTED
c TO THOSE CORRESPONDING TO A PATTERN BY USIHNG THE CORRECTION
c FACTORS, FM AND FP.
c
GAMACIJY=GAMAC(IJ)*FM*DSQRT(FP)
55 CONTINUE
RETURN
END
c
c
¢
SUBROUTINE DFUNC(VARBLE,VT,DGAMA,NLAYER)
c
c THIS SUBROUTINE COMFUTES DERIVATIVE OF THE GAMA FUNCTION WITH
C RESPECT TO NON-LINEAR PARAMETERS FOR EACH LAYER.
C
C INPUT: VARBLE = KJ/(PHIXYJ®SUM(KH), THE NON-LINEAR PARAMETERS
C VT = TOTAL PORE VOLUMES INJECTED INTO THE PATTERN
c AT WHICH GAMA WILL BE CALCULATED
C NLAYER = NUMBER OF LAYERS
c OUTPUT : DGAMA = DERIVATIVE OF THE GAMA FUNCTION WITH RESPECT
¢ TO THE NON-LINER PARAMETER COMPUTED AT TOTAL
¢ VOLUME INJECTED, VT.
c
c
C
IMPLICIT REAL*®S (A-H,0-2)
REAL®E K,KP
DIMENSION YSIGH{!110),VPDBTC(110),VARBLE(NLAYERDY,DGAMAL1B)
DIMENSION FSCI01),VTMAXP(13)
COMIION /FAR/YSIGH,VPDBT
COMMON /7PARK/K,KP,VTMAXP, VFDMXP, EABTS, EABTP, FM, FP
COMMON /FORM/AREA,SW,AALFAS, TR, N, NM, HT,H2
PIZ4.#DATANCY.DOD
DO 55 IJ=1,NLAYER
VPDPAT=5.6 15XVT¥VARBLEC(IJ Y/ (AREAXSI)
c
C PORE VOLUMES INJECTED INTOD A PATTERN ARE CONVERTED INTO THOSE
C FROM AN EQUIVALENT DEVELOPED FIVE-SPOT
c
VPD5=(VPDPAT-EABTP)/(1-EABTP)¥(1-EABTS5)+EABTS
c
c DEIVATIVES OF DIMENSIOMLESS TRACER BREAXTHROUGH CURVE FROM A
c HOMOGENEGUS FIVE-SFOT ARE COMPUTED
c
FS(1)=0.
D0 80 J=1,N
PUDIFF=(VPDBT(J)-VPD5)*%2
EX=-K¥KP*KPXAALFASXPYDIFF/(PIXPI¥YSIGH(J))
IF(EX.LT.-150.D0)G0 TO 40
FS(J+1)=DEXP(EX)/DSQRT(YSIGH(JII®(VPDBT(J)-VPD5)/YSIGK(J)
GO0 70 8¢
40 FS(J+12=0.DD
80 CONTIKUE

CALL INTGRLON,H1,FS,vOL1)
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DO 90 J=N,RNM

PVDIFF=(VPDBT(J)I~VPD5) *¥2
EX=~K*KP*¥KP*AALFASRPVDIFF/(PI¥PINYSIGH(J))
IF(EX.LT.-150.D0>G0 70 50
FSCJ+1-NI=DEXP(EX)/DSQRT(YSIGH(JD )X (YPDBT(JI-VPD5I/YSIGH(I)
G3 TO 90

FS(J+1-N)=0.D0

CONTINUE

CALL INTGRL(N,H2,FS,Vv0L2)

voL=voL1+voLz2

IF(DABS(VOL).GT.1.D~78)G0 TO 115
DGAMA(IJI=0.DO

GO TO 55

DERIVATIVES OF GAMA FUNCTION FOR A DEVELOPED FIVE-S$POT ARE
CALCULATED

FR=DSGRT(AALFAS)¥TR/ (AREAXSW)
DGAMA(IJ)=6. ¥KP¥DSQRT(K/PII*VOL/(PI*¥PI}*FR
DGAMACIJ) =DCAMA(T I X2 ¥KKKP X2 ¥AALFAS¥5 6 15¥VT/PI/PI/AREA/SY

DERIVATIVES OF GAMA FUNCTION ARE COMVERTED TO THOSE CORRESPONDING

T0 THE PATTERN

DGAMACIJ ) =DGAMACIJI*(1-EABT5)/ (1 -EABTP)¥FMEDSQRT(FP)
CONTINUE

RETURN

END

SUBROUTINE ADACLP,NLAYER,NMAXA,NDATA,LENGTH,IP1,A,INC,T,ALF
»ISEL)

THIS SUBRCUTINE SUPPLIES THE REQUIRED PARAMETRES FOR SUBROUTINE

"VARPRO"

IMPLICIT REAL*3 (A-H,0-2)
REAL*¥8 K,KP
DIMENSIOW YSIGH(110),VPDBTC(110),INCC15,16),T(NDATA, 1)

DIMENSION A{NDATA,LENGTH),VTMAXP(15),C(15),DC{15),ALF(NLAYER)

COMMON /FAR/YSIGH,VPDBT
COMMON /PARK/ K,KP,VIMAXP,VPDMXP,EABT5,EABTP, FM,FP
COMMON /FORM/AREA,SW, AALFAS, TR, N, KM, H1,H2

IFCISEL.EQ.1)GO TO 10
IF(ISEL.EQ.2)G0 TO 20

DO 30 I=1,NDATA

VT=T(I, 1)

CALL DFUNCCALF,VT,DC,NLAYER)
DO 30 J=1,NLAYER
ACI,NLAYER+1+J)=DC(J}

GO TO 100

DO 6 TI=1,NLAYER

INCCI, I)=1

DO 7 I=1,NLAYER
ALF(I)=AREA*SWXVPDMXP/5,615/VTMAXP(I)
DO 9 I=1,NDATA

VT=T(I, 1
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CALL FUNCC(ALF,VT,C,NLAYER)D
CALL DFUNCCALF,VT,DC,NLAYER)
DO 9 J=1,NLAYER
ACI,JI)=CCI)
ACI,NLAYER+1+J)=DC(J)

GO TO 100

DO 12 I=1,NDATA

VT=T(I,1)

CALL FUNCCALF,VT,C,NLAYER)
DO 12 J=1,NLAYER
ACI,J)=C(J)

RETURHN

END

SUBROUTINE INTGRL(N.H,F.,VOL)

THIS SUBROUTINE COMPUTES VALUE OF AN INTEGRAL USING SIMPSON'S
RULE OF INTEGRATION.
INPUT: N = NUMBER OF INTERVALS, AN EVEN INTEGER NUMBER

H INTERVAL SIZE

F = VALUES OF FUNCTIONS CCOMPUTED AT INTERVALS, AN ARRAY
OUTPUT: VOL = VALUE OF THE INTEGRAL

IMPLICIT REAL*3 (A-H,G-Z3
DIMENSION F(81)

SUM1=0

sSumz=9

NI=Hs2-1

DG 50 I=1,Nt
SUMI=SUMI+F(2%I)
SUM2=SUM2 +F(2¥I+1)
SUMI=SUMI+F(N)
VOLZH/3H(F(ID+F(N+1)+4 ¥SUMI+2  ¥3UM2)
RETURN

END

SUBROUTINE GAUSSCUPPER,E,SIGMA)

THIS SUBROUTINE COMPUTES THE "Y" TERM IN THE MIXING LINE
INTEGRAL. THE ROUTINE UTILIZES &-PGINT GAUSSIAN QUDRATURE METHOD
APPLIED SUCCESSIVELY TO A SERIES OF BROKEN INTERVALS.

INPUT: UPFPER
E
gUTPUT: SIGMA

UPPER LIMIT DF THE INTEGRAL

PARAMETERS OF THE INTEGRAL = TAN(SIGH)¥¥2
VALUE OF THE INTEGRAL WHICH CORRESPOHDS TO
Y(SIGH)

1l

IMPLICIT REAL¥3 (A-H,0-2)

DIMENSION W(15),X(15)
FOYIZDSQRTLY/ZCCYRY+ 1 IX(YXYHEZI ¥(YHYHE)))D
E2=E*E

N=8

X(13=.1834364642495650D0
X(2)=.525532409916329D0
X(33)=.,796666774136272D0C
X(4)=.9602398564%7536D0
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X(5)=-X(13

X(6)=-X{(2)
X{7)==-X(33
X(83=-X(4)

WO12=.362683783378362D0
W(2)=.313706645877837D0
W(33=.222381034453374D0
W(43=,101228536290376D0
W(BI=W(1)
WisI=W(2)
WCZ)=W(3)
W(BI=W(4)
AINT=0.D0O

FOR VERY SMALL VALUES OF “E" (THE EXTREME STRRAMTUBES)Y,
T=0 APPROACHES A SINGULARITY. THEREFORE, SMALL INTERVAL
SIZES ARE CHOSEN AROUND THE LOWER LIMIT OF THE INTEGRAL.

A=0.DO
B=.01%E

IF(UPPER.LE.B) B=UPPER

SUM=0.D0

DO 10 I=1,N

YZ.5DO¥({B+A)I+(B-A)¥X(T))

SUM=SUM+W(I)*F(Y)

VALUE=.5D0%(B-A}*SUN

AINT=ZAINT+VALUE

IF(UPPER.EQ.BIGD TO 30

A=B "

IF(B.GT.1.0) GO T0 50

B=2.0D0*B

50 To 20

B=5.D0%3 Iy

G0 TG 20 : S
SIGMA=(1.DO+E)*¥1 . 5%AINT ~

RETURN L
END T

SUBROUTINE KVALUE(M,KM)

THIS SUBROUTINE COMPUTES THE VALUES OF K(M)
K{M)=COMPLEMENTARY COMPLETE ELLIPTIC INTEGRAL OF FIRST KIND
M=INPUT » KM=0UTPUT

IMPLICIT REAL%8 (A~H,0-2)

REAL#8 M,M1,KM

Mi=1.D0-M

AD=1.38629436112D0

A1=.096663644255D0

A2=.03590092383D0

A3=.037642563713D0

A4=.01451196212D0

BD=.5D0

B1=.12498593597D0

B2=.06880248576D0

B3=.03328355346D90

B4=.00441787012D¢
KZADHAIRMIFAZXMIRAZ L AT XM I H I+ AR %24
Y=BO+BIXMI+B2XMIX¥2+BIXMIRRI LRGP % X4
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KM=X+Y¥DLOG(Y./7M1)

RETURN

END
C
c

SUBROQUTINE ELLEP(Y,Z,A)

¢
c THIS SUBROUTINE COMPUTES INCOMPLETE ELLIPTIC INTEGRALN F(PHI,k)
c PHI IS THE ARGUMENT AND k IS THE MODULUS. THE MODULUS IS EQUAL
C T0 THE SQUARE ROCT OF THE PARAMETER.
¢ INPUT: Y = ARGUMENT OF THE ELLIPTIC FUNCTION
c Z = PARAMETER OF THE ELLIPTIC INTEGRAL
¢ A = VALUE OF THE ELLIPTIC INTEGRAL
c THE ROUTINE USES LANDENS DECENDING TRANSFORMATION. FOR REFERENCE
C SEE ABRAMOWITZ, FAGE
¢
C

IMPLICIT REAL¥*¥8 (A-H,0~2)

REAL*¥8 K,K1,KP

TOL=1.D-4

PI=4.%¥DATAN(1.D0)

W=1.D0

xX=Y

K=DSQRT(Z)
i5 Ki=2.%¥DEQRT(K)/ (1+K)

Xz B¥(XADARSIN(K®DSINIXY))

QE=DARSIN(K1)

QE=QE®180./P1

WzZ2Z , */7(1+K)

IFC(90.-QE}.LE.TOL)GO TO 370

K=X1

GO 70 15
30 A=W¥DLOG(DTAN(PI/G+X/ 222

RETURN

END
C

SUBROUTINE VARPRO (L, NL, N, NMAX, LPP2, IV, T, Y, W, ADA, A,
X IPRINT. ALF, BETA, IERR) '

GIVEN A SET OF N OBSERVATIONS, CONSISTING OF VALUES Y(1),
Y(2), ..., Y(N) OF A DEFENDENT VARIABLE Y, WHERE Y(IJ
CORRESPONDS TO THE IV INDEPENDENT VARIABLE(S) T(I,1), T(I,2),

> T(I,IV), VARPRO ATTEMPTS TO COMPUTE A WEIGHTED LEAST
SQUARES FIT T0 A FUNCTIOCN ETA (THE 'MODEL') WHICH IS A LINEAR
COMBINATION

L
ETACALF, BETA; T3 = SUM BETA # PHI (ALF; T) + PHI (ALF; T)
J=1 J J L+?

OF NONLINEAR FUNCTIONS FHICJ) (E.G., A SUM OF EXPONENTIALS AND/
OR GAUSSIANS). THAT IS, DETERMINE THE LINEAR PARAMETERS
BETA{J> AND THE VECTOR OF NONLINEAR PARAMETERS ALF BY MINIMIZ-
ING

- N 2
NORM(RESIDUALY = SUM W % (Y - ETA(ALF, BETA: T )3
I=1 I I I

THE (L+1)-5T TERM IS OPTIONAL, AND IS USED WHEN IT IS DESIRED
TO FIX ONE OR MORE OF THE BETA'S (RATHER THAN LET THEM BE

DO OO0 0H OO0 000
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DETERMINED). VARPRO REQUIRES FIRST DERIVATIVES OF THE PHI'S.

NOTES:

A) THE ABOVE PROBLEM IS5 ALSO REFERRED 70 AS 'MULTIPLE
NONLINEAR REGRESSION'. FOR USE IH STATISTICAL ESTIMATION,
VARPRD RETURNS THE RESIDUALS, THE COVARIANCE MATRIX OF THE
LINEAR AND NONLINEAR FPARAMETERS, AND THE ESTIMATED VARIANCE OF
THE OBSERVATIONS.

BY AN ETA OF THE ABOVE FORM IS CALLED 'SEPARABLE'. THE
CASE OF A NONSEPARABLE ETA CAN BE HANDLED BY SETTING L = 0
AND USING PHI(L+1).

€)Y VARPRO MAY ALSO BE USED TO SOLVE LINEAR LEAST SQUARES
PROBLEMS (IN THAT CASE NO ITERATIONS ARE PERFORMED). SET
NL = 0.

D) THE MAIN ADVANTAGE OF VARFRO OVER OTHER LEAST SQUARES
PROGRAMS IS THAT MO INITIAL GUESSES ARE NEEDED FOR THE LINEAR
PARAMETERS. NOT ONLY DOES THIS MAKE IT EASIER TO USE, BUT IT
OFTEN LEADS TO FASTER CONVERGENCE,

DESCRIPTICN OF PARAMETERS

L NUMBER OF LINEAR PARAMETERS BETA (MUST BE .GE. 0.
NL RUMBER OF NONLINEAR PARAMETERS ALF (MUST BE .GE. 0).
N NUMBER OF ODBSERVATICONS. N MUST BE GREATER THAN L + NL

(I.E., THE NUMBER OF DOBSERVATICHS MUST ENXCEED THE
NUMBER OF PARAMETERS).

1y NUMBER OF INDEPENDENT VARIABLES T.

T REAL N BY IV MATRIX OF INDEPENDENT VARIABLES., T(I, J)
CCRTAINS THE VALUE OF THE I~TH OBSERVATICN OF THE J-TH
INDEFENDENT VARIABLE.

Y H-VECTOR DF OBSERVATIONS, ONE FCR EACH ROW OF T.
W N-VECTOR OF NOKNEGATIVE WEIGHTS. SHCULD BE SET TO 1'S

IF WEIGHTS ARE NOT DESIRED. IF VARIANCES OF THE
INDIVIDUAL OBSCRVATIONS ARE XNOWH, W(IY SHCULD BE SET
TO 1./VARIANCE(ID.

INC NL X (L+1) INTEGER INCIDENCE MATRIX. INC(K, J) = 1 IF
NON-LINEAR PARAMETER ALF(K) APPEARS IN THE J-TH
FUNCTION PHICJ}. (THE PROGRAM SETS ALL OTHER INC(K, J)
TO0 ZERD.) IF PHICL+1) IS INCLUDED IN THE MODEL,

THE APFROPRIATE ELEMENTS OF THE (L+1)-ST COLUMN SHOULD

BE SET TO 1'S. INC IS NOT NEEDED WHEN L = 0 OR NL = 0.

CAUTIORN: THE DECLARED ROW DIMENSIOM OF INC (IN ADA}

MUST CURRENTLY BE SET TO 12, SEE 'RESTRICTIONS' BELOW.
NMAX THE DECLARED ROW DIMENSION OF THE MATRICES A AND T.

IT MUST BE AT LEAST MAX(N, 2¥%NL+3),.

LPP2 L+P+2, WHERE P IS THE NUMBER OF ONES IN THE MATRIX INC.
THE DECLARED COLUMN DIMENSION OF A MUST BE AT LEAST
LFP2. (IF L = 0, SET LPP2 = NL+#2, IF NL = 0, SET LPP2
L+2.)

A REAL MATRIX OF SIZE MAX(N, 2%NL+3) BY L+P+2. ON INPUT
IT CONTAIKS THE PHI(J)'S AND THEIR DERIVATIVES (SEE
BELOW). ON QUTPUT, THE FIRST L+NL ROWS AND COLUMNS OF
A WILL CONTAIN AN APFROXIMATION TG THE (WEIGHTED)
COVARIARNCE MATRIX AT THE SOLUTICGN ¢(THE FIRST L ROWS
CORRESPOND TO THE LINEAR PARAMETERS, THE LAST NL TO THE
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NONLINEAR ONES), COLUMN L+NL+71 WILL CONTAIN THE
WEIGHTED RESIDUALS (Y =~ ETA), AC1, L+NL+2) WILL CONTAIN
THE (EUCLIDEAN) NORM OF THE WEIGHTED RESIDUAL, AND

AC2, L+NL+2) WILL CONTAIN AN ESTIMATE OF THE (WEIGHTED)
VARIANCE OF THE OBSERVATIONS, NORM(RESIDUAL)¥%2/

(K - L - NLJ.

IPRINT INPUT INTEGER CONTROLLING PRINTED OUTPUT. IF IPRINT IS
FOSITIVE, THE NONLINEAR PARAMETERS, THE NORM OF THE
RESIDUAL, AND THE MARQUARDT PARAMETER WILL BE OUTPUT
EVERY IPRINT~TH ITERATION (AND INITIALLY, AND AT THE
FINAL ITERATION}. THE LINEAR PARAMETERS WILL BE
PRINTED AT THE FINAL ITERATION. ANY ERROR MESSAGES
WILL ALSO BE FRINTED. (IPRINT = ) IS RECOMMENDED AT
FIRST.) IF IPRINT = 0, ONLY THE FINAL QUANTITIES WILL
BE PRINTED, AS WELL AS ANY ERROR MESSAGES. IF IPRINT =
-1, NO PRINTING WILL BE DONE. THE USER IS THEN
RESPONSIBLE FOR CHECKING THE PARAMETER IERR FOR ERRORS.

ALF NL-VECTOR OF ESTIMATES OF NONLINEAR PARAMETERS
(IKPUT). OCN OUTPUT IT WILL CONTAIN OPTIMAL VALUES QF

‘ THE NCHLINEAR FARAMETERS.

BETA L-VECTOR OF LINEAR FARAMETERS (OUTPUT ONLY).

IERR INTEGER ERROR FLAG (OUTPUT):

.GT. 0 - SUCCESSFUL CONVERGENCE, IERR IS THE NUMBER OF
ITERATICHS TAKEN,

-1 TERMINATED FOR T0O MANY ITERATIONS.

-2 TERMINATED FOR ILL-CONDITIONING (MARQUARDT
PARAMETER TO0O0 LARGE.) ALSO SEE JERR = -8 BELOW.

-4 IWFUT ERROR IN PARAMETER M, L, WL, LPF2, OR HMAX,

=5 IRC MATRIX IMPROPERLY SPECIFIED, OR P DISAGREES
WITH LPF2,

-6 A WEIGHT WAS NEGATIVE.

-7 TCOHSTANT' COLUMN WAS CCMPUTED MCRE THAN OMCE.

-8 CATASTRCPHIC FAILURE - A COLUMN OF THE A MATRIX HAS
BEZCOME ZERD. SEE 'CONVERGERCE FAILURES' BELON.

(IF TERR .LE. -4, THE LIMNEAR PARAMETERS, COVARIANCE
MATRIX, ETC. ARE NOT RETURNED.)

SUBROUTINES REQUIRED

NINE SUBROUTINES, DFA, ORFAC!, ORFAC2, BACSUB, PUOSTFR, COV,
XNORM, INIT, AND VARERR ARE PROVIDED. 1IN ADDITION, THE USER
MUSY PROVIDE A SUBRCUTINE (CORRESPONDING TO THE ARGUMENT ADA)
WHICH, GIVEN ALF, WILL EVALUATE THE FUNCTIONS PHI(J) AND THEIR
PARTIAL DERIVATIVES D PHI(J)/D ALF(K), AT THE SAMPLE POINTS
TCIJ. THIS ROUTINE MUST BE DECLARED '"EXTERNAL' IN THE CALLING
PROGRAM. I75 CALLING SEQUENCE IS

SUBROUTINE ADA (L+1, NL, KN, NMAX, LPP2, IV, A, INC, T, ALF,
ISELD

THE USER SHOULD MODIFY THE EXAMPLE SUBROUTINE 'ADA' (GIVEN
ELSEWHERE) FOR HIS OWN FUNCTIONS.

THE VECTOR SAMPLED FUNCTIONS PHI(J) SHOULD BE STORED IN THE
FIRST N ROWS AND FIRST L+1 COLUMNS OF THE MATRIX A, I.E.,
A(T, JJ) SHOULD CONTAIN PHICJ, ALF; T(I,1), T(I,2), ...,
TCI,IVIY, I =1, ..., N3 J =1, ..., L (OR L+1). THE (L+1)-57
COLUMN OF A CONTAINS PHICL+1) IF PHI(L+1) IS IN THE MODEL,
OTHERWISE IT IS RESERVED FOR WORKSPACE. THE 'CONSTANT' FUNC-
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TIONS (THESE ARE FUNCTIONS PHICJ) WHICH DO NOT DEPEND UPON ANY
NONLINEAR PARAMETERS ALF, E.G., TC(IX¥#J) (IF ANY) MUST APPEAR
FIRST, STARTING IN COLUMN 1. THE COLUNN N-VECTORS OF NONZERO
PARTIAL DERIVATIVES D PHICJ) 7 D ALF(K) SHOULD BE STORED
SEQUENTIALLY IN THE MATRIX A IN COLUNNS L+2 THROUGH L+P+1.

THE ORDER IS

D PHIC1) D PHI(2) D PHI(L}Y D PHI(L+1> D PHI(!1}
""""" y TTTTEEET, , TTTITETTT, TTETETTEIT, TEoTTmme,

D ALF(1Y D ALF(1) D ALFC1) D ALF(C1) D ALF(2)

D PHI(23} D PHI(L+1) D PHIC1) D PHICL+1)
———————— ’ y TTTTTTETTS, . p TTETEmEEETS y TmmEmmEmsEmERT,
D ALF(2) D ALF(2) D ALF(NL) D ALF(KL)

CMITTING COLUMNS OF DERIVATIVES WHICH ARE ZERO, AND OMITTING
PHICL+1) COLUMNS IF PHICL+1) IS NOT IN THE MODEL. NOTE THAT
THE LINEAR PARAMETERS BETA ARE NOT USED IN THE MATRIX A.
COLUMN L+P+2 IS RESERVED FOR WORKSPACE.

THE CODING OF ADA SHOULD BE ARRANGED SO THAT:

ISEL

"
—

(WHICH OCCURS THE FIRST TIME ADA IS CALLED) MEANS:

A. FILL IN THE INCIDENCE MATRIX IKC

B. STCRE ANY CONSTANT PHI'S IN A.

C. COMPUTE NONCOHSTAKRT PHI'S AND PARTIAL DERIVA-
TIVES,

= 2 DMEANS COMPUTE ONLY THE NONCONSTANT FUNCTIONS PHI

= 3 MEANS COMPUTE ONLY THE DERIVATIVES

(WHEN THE FROBLEM IS LINEAR (NL = 0> COHNLY ISEL = 1t IS USED, AND
DERIVATIVES AKRE HOT NEEDED.)

RESTRICTIONS

THE SUBRQUTINES DPA, INIT (AND ADA) CONTAIN THE LOCALLY
DIMENSIONED MATRIX INC, WHOSE DIMENSIONS ARE CURRENTLY SET FOR
MAXIMA OF L+1 =16, NL = 15. THEY MUST BE CHANGED FOR LARGER
PROBLEMS. DATA PLACED IN ARRAY A IS OVERWRITTEN ('DESTROYED').
DATA PLACED IN ARRAYS T, Y AND INC IS LEFT INTACT. THE PROGRAM
RUNS IK WATFIV, EXCEPT WHEN L = 0 OR KL = 0.

IT IS ASSUMED THAT THE MATRIX PRI(J, ALF; T(I))> HAS FULL
COLUMN RANK. THIS MEANS THAT THE FIRST L COLUMNS OF THE MATRIX
A MUST BE LINEARLY INDEPENDENT.

OPTIONAL NOTE: AS WILL BE HOTED FROM THE SAMPLE SUBPROGRAM
ADA, THE DERIVATIVES D PHI(J)/D ALF(K) (ISEL = 3) MUST BE
COMPUTED INDEPENDENTLY OF THE FUNCTIONS PHI(J) (ISEL = 23,
SINCE THE FUNCTION VALUES ARE OVERWRITTEN AFTER ADA IS CALLED
WITH ISEL = 2. THIS IS DONE 70 MINIMIZE STORAGE, AT THE POS-
SIBLE EXPENSE OF SOME RECOMPUTATION (SINCE THE FUNCTIONS AND
DERIVATIVES FREQUENTLY HAVE SOME COMMON SUBEXPRESSIONS)Y. 7O
REDUCE THE AMOUNT OF COMPUTATION AT THE EXPENSE OF SOME
STORAGE, CREATE A MATRIX B OF DIMENSION NMAX BY L+1 IN ADA, AND
AFTER THE COMPUTATIOH OF THE PHI'S (ISEL = 2), COPY THE VALUES
INTO B. THESE VALUES CAN THEN BE USED T0 CALCULATE THE DERIV-
ATIVES (ISEL = 3). (THIS MAKES USE OF THE FACT THAT WHEN A
CALL TO ADA WITH ISEL = 3 FOLLOWS A CALL WITH ISEL = 2, THE
ALFS ARE THE SAME.)
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TO CONVERT 70O OTHER MACHINES, CHANGE THE OQUTPUT UNIT IN THE
DATA STATEMENTS IN VARPRO, DPA, POSTFR, AND VARERR. THE
PROGRAM HAS BEEN CHECKED FOR PORTABILITY BY THE BELL LA3S PFORT
VERIFIER. FOR MACHINES WITHOUT DOUBLE PRECISION HARDWARE, IT
MAY BE DESIRABLE TO CONVERT TJ SINGLE FRECISION. THIS CAN BE
DONE BY CHANGING (A) THE DECLARATIONS 'DOUBLE PRECISION' TO
'REAL', (B) THE PATTERH '.D' TO *.E' IN THE 'DATA' STATEMEKRT IN
VARPRO, (C) DSIGH, DSQRT AND DARS TO SIGN, S5QRT AND ABS,
RESPECTIVELY, AND (D) DEXP T0 EXP IN THE SAMPLE PROGRAMS ONLY.

NOTE ON INTERFRETATION OF COVARIANCE MATRIX

FOR USE IN STATISTICAL ESTIMATION (MULTIPLE NONLINEAR
REGRESSION) VARPRO RETURMS THE COVARIARCE MATRIX OF THE LIMEAR
AND NONLINEAR PARAMETERS. THIS MATRIX WILL BE USEFUL ONLY IF
THE USUAL STATISTICAL ASSUMPTIONS HOLD: AFTER WEIGHTING, THE
ERRORS IN THE OBSERVATICNS ARE INDEPENDENT AND NORMALLY DISTRI-
BUTED, WITH MEAN ZERO AND THE SAME VARIANCE. IF THE ERRORS DO
NGT HAVE MEAN ZERO (OR ARE UNKNOWN), THE PROGRAM WILL ISSUE A
WARNING MESSAGE (UNLESS IPRINT .LT. 0> AND THE COVARIANCE
MATRIX WILL NOT BE VALID. 1IN THAT CASE, THE MODEL SHOULD BE
ALTERED 70 INCLUDE A CONSTANT TERM (SET PHIC(CI) = 1.2,

NOTE ALSO THAT, IN CRDER FOR THE USUAL ASSUMPTIONS TO HOLD.
THE OBSERVATIONS MUST AlL BE OF APPROXIMATELY THE SAME
MAGNITUDE (IN THE ABSENCE OF INFORMATION AEOUT THE ERROR OF
EACH OBSERVATION), OTHERMWISE THE VARIANCES WILL NOT BE THE
SAME. IF THE OBSERVATIONS ARE NOT THE SAME S5IZE, THIS CAN BE
CURED BY WEIGHTING.

IF THE USUAL ASSUMFTIONS HOLD, THE SQUARE ROOTS OF THE
PIAGONALS OF THE COVARIANCE MATRIX A GIVE THE STANDARD ERROR
S(I} OF EACH PARAMETER. DIVIDING A(I,J) BY S(IXX®S5(J) YIELDS
THE CORRELATION MATRIX OF THE FARANETERS. PRINCIPAL AXES AND
CONFIDENCE ELLIPSOIDS CAN BE OBTAINED BY PERFORMING AN EIGEN-
VALUE/EIGENVECTOR ANALYSIS ON A. ONWE SHOULD CALL THE EISPACK
PROGRAM TREDZ, FOLLOWED BY TQL2 (OR USE THE EISPAC CONTROL
PROGRAMY .

CONVERGENCE FAILURES

IF CONVERGENCE FAILURES CGCCUR, FIRST CHECK FOR INCCRRECT
CODING OF THE SUBROUTINE ADA. CHECK ESPECIALLY THE ACTION OF
ISEL, AND THE COMPUTATION OF THE PARTIAL DERIVATIVES. IF THESE
ARE CCRRECT, TRY SEVERAL STARTING GUESSES FOR ALF. IF ADA
IS CCDED CORRECTLY, AND IF ERROR RETURNS IERR = -2 OR -8
PERSISTENTLY OCCUR, THIS IS A SIGN OF ILL-CONDITIONING, WHICH
MAY BE CAUSED BY SEVERAL THINGS. ONE IS POOR SCALING OF THE
PARAMETERS; AMNOTHER IS AN UNFORTUNATE INITIAL GUESS FOR THE
PARAMETERS, STILL ANOGTHER IS A POOR CHOICE OF THE MODEL.

ALGORITHM

THE RESIDUAL R IS MODIFIED TO INCORPORATE, FOR ANY FIXED
ALF, THE OPTIMAL LINEAR PARAMETERS FOR THAT AtLF. IT IS THEN
POSSIBLE T0O MINIMIZE ONLY ON THE NONLINEAR PARAMETERS. AFTER
THE OPTIMAL VALUES OF THE NONLINEAR PARAMETERS HAVE BEEN DETER-
MINED, THE LINEAR PARANETERS CAN BE RECOVERED BY LINEAR LEAST
SQUARES TECHNIQUES (SEE REF. 1J.

- 160 -



OO0 OO0 0000000000000 00000000000000000N

(g}

THE MINIMIZATION IS BY A MODIFICATION OF OSBORNE'S (REF. 3)
MODIFICATION OF THE LEVENBERG-MARQUARDT ALGORITHM. INSTEAD OF
SOLVING THE NORMAL EQUATIONS WITH MATRIX

T 2
(J J + NU =D, WHERE J = D(ETAY/DCALF),

STABLE ORTHOGONAL (HOUSEHOLDER) REFLECTIONS ARE USED ON A
MODRIFICATION OF THE MATRIX

( NUXD )

WHERE D IS A DIAGONAL MATRIX CONSISTING OF THE LENGTHS OF THE
COLUMNS 0OF J. THIS MARQUARDT STABILIZATION ALLOWS THE ROUTINE
TO RECDBVER FROM SOME RANK DEFICIENCIES IN THE JACOBIAN.
OSBORNE'S EMPIRICAL STRATEGY FOR CHOOSING THE MARQUARDT PARAM-
ETER HAS PROVEN REASONABLY SUCCESSFUL IN PRACTICE. (GAUSS-
NEWTON WITH STEP CONTROL CAN BE ODTAINED BY MAKING THE CHAMNGE
INDICATED BEFORE THE INSTRUCTION LABELED 5)., A DESCRIPTION CAN
BE FOUND IH REF. (3), AND A FLOW CHART IN (23, P. 22.

FOR REFERENCE, SEE

. GENE H. GOLUB AND V. PEREYRA, 'THE DIFFERENTIATION OF
PSEUDO-INVERSES AND NONLINEAR LEAST SQUARES PROBLEMS WHOSE
VARIADLES SEFARATE.,' SIAM J. NUMER. ANAL. 10, 413-432
(1973).

2. mmemees » SAME TITLE, STANFORD C.S. REPORT 72-261, FEB. 1972.

3. OSBORNE, MICHAEL R., 'S0ME ASFECTS OF NON-LINEAR LEAST
SQUARES CALCULATIONS,' IN LOOTSMA, ED., 'NUMERICAL METHODS
FOR NON-LINEAR OPTIMIZATION,' ACADEMIC PRESS, LONDGN, 1972,

4. KROCGH, FRED, '*EFFICIENT INMPLEMENTATION OF A VARIABLE FRO-
JECTION ALGORITUM FOR NOWLINEAR LEAST SQUARES PRCGLLEMS,!
COMM. ACM 17, PP. 167-1569% (MARCH, 1974).

5. KAUFMAN, LINDA, 'A VARIABLE PRCJECTION METHOD FOR SOLVING
SEFARABLE NONLINEAR LEAST SQUARES PROBLEMS', B.I.T. 15,
49-57 (1975).

6. DRAPER, N., AND SMITH, H., APPLIED REGRESSION ANALYSIS,
WILEY, N.Y., 1966 (FOR STATISTICAL INFORMATION ONLY).

7. C. LAWSON AND R, HANSON, SOLVING LEAST SQUARES PROBLEMS,
PRENTICE-HALL, ENGLEWOOD CLIFFS, N. J., 1974.

JOHN BOLSTAD

COMPUTER SCIENCE DEPT., SERRA HOUSE
STANFORD UNIVERSITY

JANUARY, 1677

..................................................................

DOUBLE PRECISION A(NMAX, LPP2), BETA(CLY, ALF(NL), TC(NMAX, IV,
2 WON), Y(N), ACUM, EPS1, GNSTEP, NU, PRJRES, R, RNEW, XNORM
INTEGER B!, OUTPUT

LOGICAL SKIP

EXTERNAL ADA

DATA EFS1 /1.D~6/, ITMAX r/28/, QUTPUT /67

THE FOLLOWING TWO PARAMETERS ARE USED IN THE CONVERGENCE
TEST: EPS! IS AN ABSOLUTE AND RELATIVE TOLERANCE FOR THE
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¢ NORM OF THE PROJECTION OF THE RESIDUAL ONTO THE RANGE OF THE
¢ JACOBIAN OF THE VARIABLE FROJECYION FUNCTIDNAL.

c ITMAX IS THE MAXIMUM NUMBER OF FUNCTION AND DERIVATIVE

¢ EVALUATIONS ALLOWED. CAUTION: EPS1 MUST NOT BE

C SET SMALLER THAN 10 TIMES THE UNIT ROUND-OFF OF THE MACHINE,
C

CALL LIB MONITOR FROM VARPRO, MAINTENANCE NUMBER 509, DATE 77178
C**<PLEASE DON'T REMOVE OR CHANGE THE ABOVE CALL. IT IS YOUR ONLY
C¥¥XPROTECTION AGAINST YOUR USING AN DUT-OF-DATE OR INCORRECT
C***VERSICN OF THE ROUTINE. THE LIBRARY MONITCR REMOVES THIS CALL,
C*%¥50 IT ONLY OCCURS ONCE, ON THE FIRST ENTRY TO THIS ROUTINE.

IERR = 1

ITER = ¢

LP1 = L + |

Bt = L + 2

LNL2 = L +# NL + 2
NLPY = NL + 1
SKIP = .FALSE.

MODIT = IPRINT
IF (IPRINT .LE. 03> MODIT = ITMAX + 2

N = 0.
C IF GAUSS~NEWTON IS DESIRED REMOVE THE NEXT STATEMENT.
NU = 1.
¢
C BEGIN QUTER ITERATICN LOOP TO UPDATE ALF.
C CALCULATE THE NORM OF THE RESIDUAL AMND THE DERIVATIVE OF
c THE MODIFIED RESIDUAL THE FIRST TIME, BUT ONLY THE
c DERIVATIVE IN SUBSEGUENT ITERATIONS.
¢
5 CALL DPA (L, NL, N, NMAX, LPP2, IV, T, Y, W, ALF, ADA, IERR,
X IPRINT, A, BETA, ACt1, LP1), R)
GNSTEP = 1.0
ITERIN = 0
IF (ITER .GT. 02 GO 7O 10
IF (NL .EQ. 0) GD TO %0
IF (IERR .NE. 1) GO TC 9%
¢

IF (IPRINT .LE. 0) GO TO 10
WRITE (CQUTPUT, 207) ITERIN, R
WRITE (CQUTPUT, 200) KU
c BEGIN TWO-STAGE ORTHOGONAL FACTORIZATION
10 CALL ORFACI(NLP!, NMAX, N, L, IPRINT, AC1, B1), PRJRES, IERR)

IF (IERR .LT. 0) GO TO 99

IERR = 2

IF (KU .EQ@. 0.) GO TO 390

BEGIN INNER ITERATION LOOP FOR GENERATING NEW ALF AND
TESTING IT FOR ACCEPTANCE.

OO0

25 CALL ORFACZ2(NLP1, NMAX, NU, ACt, B1))

SOLVE A NL X NL UPPER TRIANGULAR SYSTEM FOR DELTA-ALF.
THE TRANSFORMED RESIDUAL (IM COL. LNL2 OF A) IS OVER-
WRITTEN BY THE RESULT DELTA-ALF.

OO0 00

39 CALL BACSUB (NMAX, KL, AC1, B1), AC], LNL2))
DO 35 K = 1, NL
35 ACK, B1) = ALF(K) + A(K, LNL2)

~ 162 -



OO 000

(e 2R ]

o

OO OO0

40

NEW ALF(K) = ALF(K) + DELTA ALF(K)

STEP TO THE NEW POINT NEW ALF, AND COMPUTE THE NEW
NORM OF RESIDUAL. NEW ALF IS STORED IN COLUMN B1 OF A.

CALL DPA (L, NL, N, NMAX, LPPZ2, IV, T, Y, W, ACY, B1), ADA,
IERR, IPRINT, A, BETA, A(!, LP1), RNEW)
IF (IERR .NE. 2) GO T0 99
ITER = ITER + 1
ITERIN = ITERIN + 1
SKIP = MOD(ITER, MODIT) .NE. O
IF (SKIP) GO 7O 45
WRITE (QUTPUT, 2033 ITER
WRITE (QUTPUT, 216) (A(K, Bt), K = 1, NL)
WRITE (OUTPUT, 207) ITERIN, RNEW

45 IF (ITER .LT. ITMAX) GO T0 50
IERR = -1
CALL VARERR (IPRINT, IERR, 1)
G0 70 95
50 IF (RNEW - R .LT. EPSt%¥(R + 1.D02) GO T0 75
RETRACT THE STEP JUST TAKEN
IF (WU .NE. 0.3 GO 70 6¢C
GAUSS-NEWTON OPTION ONLY
GNSTEP = 0.5%CGNSTEP
IF (GNSTEP .LT. EPS1) GO 7O 95
DO 55 K = 1, NL
55 ACK, B1) = ALF(K) + GNSTEP¥*A(K, LKLZ2)
GO 10 4¢
ENMLARGE THE MARQUARDT PARAMETER
60 NU = 1.5XNU
IF (.HOT. SKIP) WRITE (CUTPUT, 2052 NU
IF (KU .LE. 100.) GO TO 6%
IERR = -2
CALL VARERR (IFRINT, IERR, 1)
GO0 TO S5
RETRIEVE UPPER TRIANGULAR FORM
ALD RESIDUAL OF FIRST STAGE.
65 DO 70 K = 1, NL
KSUB = LPY + K
DO 70 J = K, NLP1
JSUB = LP1 + J
ISUB = NLPt + J
70 ACK, JSUB) = A(ISUB, KSUB)
60 TO 25
END OF INNER ITERATICON LOOP
ACCEPT THE STEP JUST TAKEN
75 R = RNEMW
DO 80 K = 1, RL
80 ALF(K) = A(K, B1)

CALC. NORM(DELTA ALF)/NORMCALF)

ACUM = GNSTEP*XNORM(NL, AC1, LNLZ2))/XNORM(NL, ALF)

IF ITERIN IS GREATER THAN 1, A 5TEP WAS RETRACTED DURING
THIS OUTER ITERATION.

IF (ITERIN .EQ. 1) NU = 0.B%NU
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85

90
95

9%

200
203
206
207
208
2156

IF (SKIP) GO T0 85

WRITE (OQUTPUT, 200) NU
WRITE (OUTPUT, 208) ACUM
IERR = 3
IF (PRJRES .GT. EPS1¥(R + 1.D0)) GO TQ 5
END OF QUTER ITERATION LOOP
CALCULATE FINAL QUANTITIES -- LINEAR PARAMETERS, RESIDUALS,
COVARIANCE MATRIX, ETC.
IERR = ITER
IF (NL .GT. 0) CALL DPACL, NL, N, NMAX, LPP2, IV, T, Y, W, ALF,
. X ADA, 4, IPRINT, A, BETA, A(!, LP1), R)
CALL POSTPR(L, NL, N, NMAX, LNL2, EPS!, R, IPRINY, ALF, W, A,
X ACY1, LP1), BETA, IERRD
RETURN
FORMAT (9H NU =, E15.7)
FORMAT (12H0 ITERATICN, I4, 26H NONLINEAR PARAMETERS)
FORMAT (25H STEP RETRACTED, KU =, E15.7}
FORMAT (1HO, I5, 20H NORM OF RESIDUAL =, E15.7)
FORMAT (34H NORM(DELTA-ALF) ~/ NORMCALF) =, E12.3)
FORMAT (1HO, 7E15.7)
END
SUBRCUTINE CRFACT(NLP1!, NMAX, N, L, IPRINT, B, PRJRES, IERR)
STAGE {: HOUSEHOLDER REDUCTION OF
) ¢ DR'. R3 ) NL
(¢ DR R2 ) 710 (----. -= 3,
) ¢ ¢ R4 3 HN-L-NL
NL 1 NL 1
WHERE DR = -D(Q2)%Y IS THE DERIVATIVE OF THE MCDIFIED RESIDUAL

FRODUCED BY LPA, R2
DR* IS IN UPPER TRI
DR IS STORED IN ROW
THE MATRIX A (I.E.,

STORED IN COLUMN L + NL + 2 OF THE MATRIX A

IS THE TRANSFORMED RESIDUAL FROM DPA,
ARGULAR FORM (AS IN REF. (2), P. 18).
5 L+1 TO N AND COLUIMNS L+2 TO L + NL + 1

COLUMNS 1 TO NL OF THE MATRIX B). R2Z IS
(COLUMN NL + t OF

AND

OF

B. FOR K =1, 2, .» NL, FIKD REFLECTION I - U * U' ~/ BETA
WHICH ZEROCES B(I, K>, I = L+K+1, ..., N.
DOUBLE PRECISICN ACUM, ALPHA, B(NMAX, NLP!1), BETA, DSIGN, FRJRES,
X U, XNORM
NL = KLP1 - 1
NL23 = 2%NL + 3
LP1 = L + 1
DO 30 K = 1, NL
LPK = L + K
ALPHA = DSIGNC(XNORM(N+1-LPK, B(LPK, K)), BC(LPK, K}
U = BCLPK, K} + ALPHA
B(LPK, K) = U
BETA = ALPHA * U
IF CALPHA _NE. 0.0) GO 70 13
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COLUMN WAS ZERD

IERR = -8

CALL VARERR (IPFRINT, IERR, LP1 + K)

GO TO 99
APFLY REFLECTIONS 70 REMAINING COLUMNS
OF B AND TO RESIDUAL VECTOR.

KP1 = K + 1

DO 25 J = KP1, NLPI

ACUM = 0.0

DO 20 I = LPK, N
ACUM = ACUM + B(I, K) % B(I, J)
ACUM = ACUM ~» BETA
DD 25 I = LPK, N
B(I, J) = B(I, J) - B(I, K} % ACUM
BCLPK, K) = -ALPHA

PRJRES = XNORM(NL, B{(LP1, NLP1))

SAVE UPPER TRIANGULAR FORM AND TRANSFORMED RESIDUAL, FOR USE
IN CASZ A STEP 1S RETRACTED. ALSO COMPFUTE COLUMN LENGTHS.

IF (IERR .EQ. 4) GO TO 99

DO 50 K = 1, NL
LPK = L + K
DO 40 J = K, NLP!
JSUB = KLPY + J

B(K, J) = B(LFK, J>
B(JSUB, K) = B(LPK, J2
B{NLZ23, K} = XNHORM(K, B(LP!, X))

!

RETURN
END

SUBROUTINE ORFACZ2(NLP!, NMAX, NU, B)

STAGE 2: SPECIAL HOUSEHOLDER REDUCTION OF

NL ¢ DR' . R3 ) (DR** . R5 )
(---=- L= (--—-- .=
N-L-NL ¢ 0 .R&D TO ¢ 0 . RG)
(----- Comm ) (-—--- D)
NL (RUXD . 0 ) ¢ 0 . R6)

NL ! NL 1

WHERE DR', R3, AND R4 ARE AS IN ORFAC!1, NU IS THE MARQUARDT
PARAMETER, D IS A DIAGONAL MATRIX CONSISTING OF THE LEMGTHS OF
THE COLUMNS OF DR', AND DR'*' IS IN UPPER TRIANGULAR FORM.
DETAILS IN (1), PP. 623-42%. HOTE THAT THE (N-L-HL) BAND OF
ZERGES, AMD R4, ARE OMITTED IMN STORAGE,

..................................................................

DOUBLE PRECISION ACUM, ALPHA, B(NMAX, NLP1), BETA, DSIGN, NU, U,

X XNORM

NL = NLP1 - 1
NL2 = 2XNL

HL23 = NL2 + 3
DO 30 K = 1, ML
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KP1 = K + 1

NLPK = NL + K

NLPKMt = NLPK - 1

B(NLPK, K) = NU # B(NLZ23,

B(NL, K} = B(K, K}

ALPHA = DSIGN(XNORM(K+T1,

U = B(K, K) + ALPHA

BETA = ALPHA * U

B(K, K) = -ALPHA
THE K-TH REFLECTION
NL+1, NL+2, ..., NL+K,

KP1, NLP!

J) = 0.

U #* B(K,JD

BP0 20 I NLP1, NLFKM1

ACUM ACUM + B{I,K) ¥ B(I,J)

ACUM = ACUM -~ BETA

B(K,J) = B(K,J) = U % ACUM

DO 30 I = NLPT, NLPK

B(I,J) = B(I,J) - B(I.,K) ¥ ACUM

K

B(NL, KJ), B(

DO 30 J =
B(NLPK,
ACUM =

RETURN
END

SUBROUTINE DPA (L, NL, N, NMAX, LPPZ2, IV,
X IPRINT, A, U, R, RNORM

COMPUTE THE NORM OF THE RESIDUAL (IF ISEL = 1

(N-L) X NL DERIVATIVE OF THE MODIFIED

Q2%Y (IF ISEL = 1 OR 3). HERE @ * PHI

L C Q1 ) (¢ . 3 (

{(==--=3 ( PHI Y . D(PHI) ) = (

N-L € Q2 ) ¢ ) (
N L 1 P

WHERE Q@ IS KR X N DORTHOGONAL, AND S IS
THE NORM OF THE RESIDUAL = KORM(R2),
ACCORDING TO REF. (53, IS

D(Q2 * Y) = -Q2 % D(PHI)*¥

.........................................

DOUBLE PRECISION A(NMAX, LPP2), ALF(NL),
X ACUM, ALPHA, BETA, RNORM, DSIGN, DSQRT,

INTEGER FIRSTC, FIRSTR, IKNC(C15,16)
LOGICAL NOWATE, PHILP1
EXTERNAL ADA
IF ¢(ISEL .NE. 1) GO TO 3

LPt =L + 1

LNLZ2 = L + 2 + HL

LP2 = L + 2

LPPY = LPP2 - 1

FIRSTC = 1

LASTC = LPPt

FIRSTR = LPt

CALL INITC(L, NL, N, NMAX, LFP2, IV, T,
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MODIFIES ONLY ROWS K.,

AND COLUMNS K TO NL+1.

T, Y, W, ALF, ADA, ISEL,

OR 2), OR THE
RESIDUAL (N-L)> VECTCR
=5, I.E.,

S . R1

60 . R2

Fto)

-—-- )

F2 )

L 1 P

L X L UPPER TRIANGULAR.

AND THE DESIRED DERIVATIVE

-1
S ¥ Qi* Y.

-------------------------

TOHMAX, IV), W(NY, Y(N),
SAVE, R(N), UCL), XNORM

W, ALF, ADA, ISEL,
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IPRINT, A, INC, NCON, NCONP1, PHILP!, HOWATE)

IF
GO

(ISEL .NE. 1) GO TO 99
T0 30

3 CALL ADA (LP1, NL, N, NMAX, LPP2, IV, A, INC, T, ALF, MINDCISEL,
X 3N
IF (ISEL .EQ. 2) GO TO 6

55

58

66

ISEL = 3 OR 4
FIRSTC = LP2
LASTC = LPP1
FIRSTR = (4 - ISELI*L + 1
GO T0 50

ISEL = 2
FIRSTC = NCONP1
LASTC = LP1I

IF (NCON .EQ. 0) GO TO 30

IF (ACt, NCON) .EQ. SAVE) GO TO 30
ISEL = =7

CALL VARERR (IPRINT, ISEL, NCON)

IF

IF
Do

IF
DG

GO

T0 99
ISEL = 1 OR 2

(PHILP1) GO TO 40

DO

GO
Lo

351 = 1, N
RCIY = Y(I2
70 kO

45 I = 1, N

R(I) = Y(I) - R(I)
WEIGHT APPROFPRIATE COLUMNS

(NCWATE) GO TO 538

55 1 = 1, K
ACUM = W((I)
DO B5 J = FIRSTC, LASTC

(L
70

KP1

ACI, J> = A(I, J) % ACUM

COMPUTE ORTIIOGONAL FACTORIZATIONS BY BOUSEHOLDER
REFLECTIONS. IF ISEL = 1 OR 2, REDUCE PHI (STCRED IN THE
FIRST L CCOLUMNS OF THE MATRIX A T0 UPPER TRIANGULAR FORM,
(Q%¥PHI = S), AND TRANSFORM Y (STORED IN COLUMH L+1), GETTING
@¥Y = R. IF ISEL = t, ALSO TRANSFORM J = D PHI (STORED IN
COLUMNS L+2 THROUGH L+P+1 OF THE MATRIX A), GETTING @%J = F.
IF ISEL = 3 OR 4, PHI HAS ALREADY BEEN REDUCED, TRANSFORM
ONLY J. S, R, AND F OVERWRITE PHI, Y. AND J, RESPECTIVELY,
AND A FACTORED FORM OF Q IS SAVED IN U AND THE LOMER
TRIANGLE OF PHI.

L.EQ. 0) GO TO 75
K =1, 1
=K+ 1

IF (ISEL .GE. 3 .DOR. (ISEL .EQ. 2 .AND. K .LT.NCONP1)) GO TO 66
ALPHA = DSIGN(XNORM(N+1-K, A(K, K)), A(K, K))

U(K) = ACK, K) + ALPHA

ACK, K) = -ALPHA

FIRSTC = KP!

IF (ALPHA .NE. 0.0) GO 10 66

ISEL = -8

CALL VARERR (IPRINT, ISEL, K)

GO

TO 99
APPLY REFLECTIONS TO COLUMNS
FIRSTC TO LASTC.

BETA = -A(K, K) % U(K)
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68

OO0

OO0 OO0 0O 000O0

a0

70

75

85

88

$0
95

99

Do 70 J FIRSTC, LASTC
ACUM UCKI*AC(K, JD
DO 68 I = KP1, N

[

IF(DABSCACI,K)). LT.1.D-30.0R.DABSCACI,J)).LT.1.D-30)G0 TO 68

ACUM = ACUM + A(I, KI®A(I, )
CONTINUE
ACUM = ACUM / BETA
ACK,J) = ACK,J) - UCK)¥ACUM
BO 70 I = KP1, N
ACI, J) = ACI, J) = A(I, K)¥ACUM

IF (ISEL .GE. 3) GO 70 85
RNORM = XNORM(N-L, R(LP1))
IF (ISEL .EQ. 2) GO TO 99
IF (NCON .GT. 0) SAVE = A(1, NCON)

F2 IS NOW CONTAINED IN ROWS L+1 TO N AND COLUMNS L+2 TO
L+P+1 OF THE MATRIX A. NOW SOLVE THE L X L UPPER TRIANGULAR

SYSTEM S¥BETA = RY1 FOR THE LINEAR PARAMETERS BETA.
OVERWRITES Rt.

IF (L .GT. 0) CALL BACSUB {(NMAX, L, A, R)

MAJOR PART OF. KAUFMAN'S SIMPLIFICATION OCCURS HERE.
THE DERIVATIVE CF ETA WITH RESPECT TO THE NOKLINEAR

PARAMETERS
D ETA T L D PHICJ) D PHI(L+1)
¥ —mmoo - = Q ¥ (SUM BETA(J) -------- +ommmmm e ) =
D ALF(K) J=1 D ALF(K) D ALF(K)

BETA

COMPUTE

F2¥BETA

AND STORE THE RESULT IN CCLUMNS L+2 TO L+NL+1., IF ISEL NOT
T 4, THE FIRST L ROWS ARE OMITTED. THIS IS -D(Q2)X*Y. IF
ISEL NOT = 4 THL RESIDUAL R2 = Q2%Y (IN COL. L+1) IS COPIED
TO COLUMN L+KL+2. OTHERWISE ALL OF COLUMN L+t IS COPIED.

DO 95 I = FIRSTR, N
IF (L .EQ. NCON) GO TO 95

M= LP1
b0 90 K = 1, NL
ACUM = 0.

DO 88 J = NCONPI1, L
IF (INC(K, J) .EQ. 0) GO 70 88
M=M+1
ACUM = ACUM + A(I, M) % R(J)
CONTINUE

KSUB = LP1 + K

IF (INCC(K, LP1) .EQ. 0) GO TO 90

M=M+ 1

ACUM = ACuUM + A(I, M)

ACI, KSUB) = ACUM

ACI, LNL2) = R(DD

RETURN
END

SUBROUTINE INIT(L, NL, N, NMAX, LFP2, IV, T, W, ALF, ADA,

X IPRINT, A, INC, NCON, NCONPt, PHILP!, NOWATE)

ISEL,

CHECK VALIDITY OF INPUT PARAMETERS, AND DETERMINE NUMBER OF
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OO0

CONSTANT FUNCTIONS.

DOUBLE PRECISION A(NMAX, LPP2), ALF(NL)Y, T(NMAX, IV), W(N),
X DSQRT

INTEGER OUTPUT, P, IRNC(15,16)

LOGICAL NOWATE, PHILPt

DATA OUTPUT rs6/

LPt = L + |
LNL2 = L + 2 + NL
CHECK FOR VALID INPUT
IF (L .GE. 0 .AND. NL .GE. 0 .AND. L+NL .LT. N .AND. LNLZ .LE.
X LPP2 .AND. 2*¥NL + 3 .LE. NMAX .AND. N .LE. KMAX .AND.
X IV .GT. 0 .AND. .NOT. (NL .EQ. 0 .AND. L .EQ. 0)) GO TO 1

ISEL = -4
CALL VARERR (IPRINT, ISEL, 1)
GO TO 99

1 IF (L .EQ. 0 .DOR. NL .EQ. 0) GO TO 3
DO 2 J = 1, LP1
DO 2 X = 1, NL
2 INCC(K, J) = 0

3 CALL ADA (LP1, NL, N, NMAX, LPP2, IV, A, INC, T, ALF, ISEL)

NOWATE . TRUE.

bé 9 1 1, N
NOWATE = HOWATE .AND. (W(I) .EQ. 1.0)
IF (W(I) .GE. 0.) GO TC 9

ERRIOR IN WEIGHTS

ISEL = -6
CALL VARERR (IPRINT, ISEL, I)
GO TO 99

9 WCI) = DSQRTCW(I)

NCOR = L
NCONP 1 = LP1
PHILP! = L .EQ. O
IF (PHILPt .OR. NL .EQ. 0) GO TO 99
CHECK INC MATRIX FOR VALID INPUT AND
DETERMINE NUMBER OF CONSTANT FCNS.
P=29

bo 11 J = 1, LPI
IF (P .EQ. 08) NCONP1 = J
DO 11 K = 1, NL
INCKJ = INC(K, J)
IF (INCKJ .NE. 0 .AND. INCKJ .NE. 1) GO 10 15
IF (INCKJ .EQ., 1) P = P + 1|
1 CONTINUE

NCON = NCONP1 - 1
IF (IPRINT .GE. 0) WRITE (DUTPUT, 210) NCON
IF (L+P+2 .EQ. LPP2) GO T0 20
INPUT ERROR IN INC MATRIX

15 ISEL = -5
CALL VARERR (IPRINT, ISEL, 1)
GO TO 9%

DETERMINE IF PHI(L+1) IS IN THE MODEL.
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OO0 00

OO0

99
21¢

10
20

30

20

Do 25 K = 1, HL
IF C(INC(K, LP1) .EQ. 1) PHILP1 = ,TRUE,
RETURN
FORMAT (33H0 NUMBER OF CONSTANT FUNCTIONS =, I4 /)

END
SUBROUTINE BACSUB (NMAX, N, A, X2

BACKSOLVE THE N X N UPPER TRIANGULAR SYSTEM A%¥X = B,
THE SOLUTION X OVERWRITES THE RIGHT SIDE B.

DOUBLE PRECISION A(NMAX, N), X(N), ACUM

XIN)Y = X(NY 7 A(N, N)
IF (N .EQ. 1) GO TO 38
NP1 = N + 1
DG 20 IBACK = 2, N

I = NP1 - IBACK

I = N—1p N_Z; [N 2: 1
IPt = I + 1
ACUM = X(I}

po 190 4 = 1IP!, N
ACUM = ACUM - ACI,J)*¥X(J)
X(I) = AacuM 7 A(I,ID

RETURN

END

SUBROUTINE POSTPR(L, NL, N, NMAX, LNL2, EPS, RNORM, IPRINT, ALF,
X W, A, Ry, U, IERR)

CALCULATE RESIDUALS, SAMPLE VARIANCE, AND COVARIANCE MATRIX.
ON IMPUT, U CONTAIHS INFORMATION ABOUT HOUSEHQLDER REFLECTIONS
FROM DPA. ON QUTFUT, IT CONTAIHNS THE LINEAR PARAMETERS.

DOUBLE FRECISION A(NMAX, LKL2), ALFCNL), RCN), UCL), WIN), ACUN,
X EPS, PRJRES, RNORM, SAVE, DABS

INTEGER QUTPUT

DATA OUTPUT s67/

LP1 = L + |

LPNL = LKNL2 - 2

LNL1 = LPNL + 1

Do 10 I = 1, N
WCT) = W(I)*%2

UNWIND HOUSEHOLDER TRANSFORMATIONS TO GET RESIDUALS,
AND MOVE THE LINEAR PARAMETERS FROM R TO U.

IF (L .EQ. 0) GO 70 30
DO 25 KBACK = 1, L
K = LPt - KBACK
KPt = K + 1
ACUM = 0.
DO 20 1 KP1, N
ACUM ACUM + A(I, K) ¥ R(ID
SAVE = R(K)
RCK)D ACUM 7 A(K, K)
ACUM -ACUM 7 (UCK) * A(K, K)D
UKD SAVE
DO 25 I = KPt, N
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OO0

OO0 00O00

[

25

30

35

40

45

99

2re
210
211
214

215

R(I) = RCI) - A(I, K)®ACUM
COMPUTE MEAN ERROR

ACUM = 0.
DC 35 T = 1, N
ACUM = ACUM + R(ID

SAVE = ACUM 7 N

THE FIRST L COLUMNS OF THE MATRIX HAVE BEEN REDUCED TO
UPPER TRIANGULAR FORM IN DPA. FINISH BY REDUCING ROWS
L+1 7O N AND COLUMNS L+2 THROUGH L4NL+t TO TRIANGULAR
FORM. THEN SHIFT COLUMNS OF DERIVATIVE MATRIX OVER ONE
TO THE LEFT TO BE ADJACENT TO THE FIRST L COLUMNS.

IF (NL .EQ. 0) GO TO 45
CALL ORFACI(NL+1, NMAX, N, L, IPRINT, A(1, L+2), PRJRES, %)
PO 40 I =1, N

ACI, LNL2) = R(I)

DO 40 X = LPt, LNL!

ACI, K) = A(I, K+I)
COMPUTE COVARIANCE MATRIX

AC1, LNL2) = RNORM
ACUM = RNORM¥RNORM/(N - L - NL)
AC2, LNL2) = ACUM
CALL COV(KMAX, LFNL, acuMm, aA>

IF (IPRINT .LT. 0) GO TO 99

WRITE (OUTPUT, 209)

IF (L .GT. 0) WRITE (DUTPUT, 210} (U(J), J =1, L)

IF CNL .GT. 02 WRITE (OUTPUT, 211) (ALF(K), K = 1, NL)
WRITE (OUTPUT, 2142 RMORM, SAVE, ACUM

IF (DABS(SAVE) .GT. EFS) WRITE (QUTPUT, 21%5)

WRITE (QUTPUT, 209)

RETURN

FORMAT (1HO, B5Q0C1H'))

FORMAT (20HO LINEAR PARAMETERS ~/ (7E15.7))

FORMAT (23H0 HNONLINEAR PARAMETERS /7 (7E15.7))

FORMAT (21HO NORM OF RESIDUAL =, E15.7, 334 EXPECTED ERROR OF 0OBS
XERVATIONS =, Et5.7, / 3%H ESTIMATED VARIANCE OF DBSERVATIONS =,
X E15.7 2 )

FORMAT (95H WARNING -- EXPECTED ERROR OF OBSERVATIONS IS NOT ZERO
X. COVARIANCE MATRIX MAY BE MEANINGLESS. /)

END

SUBROUTINE COV(NMAX, N, SIGMAZ2, A)

COMPUTE THE SCALED COVARIANCE MATRIX OF THE L + NL
PARAMETERS. THIS INVOLVES COMPUTING

2 -1 -T
SIGMA % T * 7T

WHERE THE (L+#NL) X (L+NL)> UPPER TRIANGULAR MATRIX T IS
DESCRIBED IN SUBROUTINE POSTPR. THE RESULT OVERWRITES THE

FIRST L+NL ROWS AND COLUMNS OF THE MATRIX A. THE RESULTING
MATRIX IS SYMMETRIC. SEE REF. 7, PP. 67-70, 281.

..................................................................

DOUBLE PRECISION A(NMAX, N), SUM, SIGMAZ2
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o0

10

50
60

70

&0

50

99
101
102
104
105

DO 10
ACJ

IF (N
NM1 =
DO 60
IP1
DO

PO 90
jala)

RETURN
END
SUBROU

PRI

INTEGE
DATA O

IF (IP
ERRNO
GO TO

WRITE
GO TO
WRITE
GO TO
WRITE
GO TO
WRITE
GO 70
WRITE
GO TO
WRITE
GO 70
WRITE

RETURN
FORMAT
FORMAT
FORMAT
FORMAT
XES WIT

J =1, N
» J) = 1LZAGY, DD

INVERT T UPON ITSELF

LEQ. 1) GO TO 70

N -1

I =1, NMI
=1+

60 J = IP1, N

JMY o2 0 -1

SUM = ¢.

DO 50 M = I, JMIi

SUM = SUM + A(I, M) ¥ A(M, J)
A(I: J) = 'SUM * A(Jp J)

NOW FORM THE MATRIX PRODUCT

I=1,N
%0 J = I, N
SUM = 0.
bo 80 M = J, N
SUM = SUM + A(I, M) ¥ ACJ, M)
SUM = SUM % SIGMAZ

ACI, J) = suUM
ACJ, I) = sUM
TINE VARERR (IPRINT, IERR, K)

NT ERROR MESSAGES

R ERRKO, QUTPUT
UTPUT 767/

RINT .LT. 0) GO TO 99
= IABS(IERR)
(1, 2, 99, 4, 5, 6, 7, 8), ERRND

COuUTPUT, 101D

99

(QUTPUT, 1t02)
%9

(OUTPUT, 10%)
99

(OUTPUT, 105)
99

(QUTPUT, 106) K
99

(OUTPUT, 1072 K
99

(QUTPUT, 108) K

(46H0 PROBLEM TERMINATED FOR EXCESSIVE ITERATIONS //)

(4SH0 PROBLEM TERMINATED BECAUSE OF ILL-CONDITIONING 7/)

(/ 50H INPUT ERROR IN PARAMETER L, NL, N, LPPZ2, OR NMAX. /)

(68HO0 ERROR -- INC MATRIX IMPROPERLY SPECIFIED, OR DISAGRE
H LPP2. /) :
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106 FORMAT (15HO
107 FORMAT (28H0
XONLY WHEN ISEL
108 FORMAT (33HG
XE DOCUMENTATION.
END
DOUBLE PRECISION FUNCTION XKORM(N,

ERROR =-- WEIGHTC(,
= 1. )

/)

AVOID UNNECESSARY UNDERFLOWS.
DVERFLOWS.

QOO0

DOUBLE PRECISION X(N), RMAX, SUM,

o

-

RMAX
PO

a.

10 I =1, N

IF (DABS(X(I))
CONTINVUE

.GT. RMAX) RMAX

SUM 0.

IF (RMAX .EQ.
PO 20 I = 1, N
TERM = 0.

IF (RMAX + DABS(X(ID)
SUM SUM + TERM¥TERM

0.> GO TO 30

20

30
99

XNORM
RETURN
END

RMAXXDSQRTC(SUM)

$DATA

.8541676,1.D-6,34,7
.55,27225.,6600.,1.093753
J7177783,1.,1.
2000.,4000.,15

2200,
2390.
2610.
2930.
3050.
3270.
3640,
2040.,1.
2070.,.
2200.,4.5
2280.,4.75
2340.,8.
2400, ,10,
2500.,20.
2540.,21.
2600.,31.
2660.,27.
2700.,29.
2800.,25.
2870.,28.
3000.,28.
3040.,30.
3070.,28.
3120.,28.
3160.,26.

[+

25

14,
ERROR =~ CONSTANT COLUMN .,

CATASTROPHIC FAILURE =-- COLUMN ,

COMPUTE THE L2 (EUCLIDEAN) NORM OF A VECTOR,

.NE. RMAX)> TERM

14H) IS NEGATIVE. /)
I3, 37H MUST BE COMPUTED
14,

28H IS5 ZERD, SE

xX)

MAKING SURE TO
NO ATTEMPT IS MADE TO SUPPRESS

TERM, DABS. DSQRT

FIND LARGEST (IN ABSOLUTE VALUE) ELEMENT

-

DABS(X(I))

X(I)/RMAX
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3200.
3260.
3360.
3400.
3460.
3520.
3580.
3620.
3700.
3720.
3800.
3860.
3500.
3925.,19.2
3960.
4000.

V.

»32.
»32.
»25.
»25.
»25.
»25.
»28.
»28.
» 2%,
123,
»20.
21,
221.7

»19.
12,
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OUTPUT FROM PROGRAM

NUMBER OF CONSTANT FUNCTIONS = 0

0 NORM OF RESIDUAL = 0.1442714D-04
NU = 0.1000000D 01
ITERATION 1 NONLINEAR PARAMETERS
0.1042649D 0! 0.9485506D 00 0.8722263D 00 ©0.7837387D 00 0.7441501D 00 0.695689"
1t NORM OF RESIDUAL = 0.1336315D-04
NU = 0.5000000D 00
NORM(DELTA-ALF) / NORM(ALF) = 0.500D-02
ITERATICN 2 NONLINEAR PARAMETERS
0.1046405D 01 ©0.9%417772D 00 0.8712702D 00 0.7916243D 00 0.7472037D 00 0.69453%%¢
1 NORM OF RESIDUAL = 0.1252686D-04%
NU = 0.2500000D 00
NORM(DELTA~-ALF) 7 NORM(ALF) = 0.528D-02
ITERATION 3 NONLINEAR PARAMETERS
0.1046952D 01 0.9342167D 00 0.8697866D 00 0.79545864D 00 0.7468173D 00 0.6944111
1 NORM OF RESIDUAL = 0.1207254D-04
NU = 0.1250000D 00
NORM(DELTA-ALF) 7 NORM(ALF) = 0.394D-02
ITERATION 4 NONLINEAR PARAMETERS
0.1046302D 0% 0.%$272034D 60 0.8671941D 00 0.7954597D 00 06.76468120D 00 ©0.694409C

1 HNORM OF RESIDUAL = 0.1174424D-04
NU = 0.6250000D-01
NORM(DELTA-ALF) ~ NORM(ALF) = 0.344D-02

ITERATION 5 NONLINEAR PARAMETERS

0.1065457D 01 0.9239122D 00 0.86G8639D 00 0.7940712D 00 0.76466616D 00 0.6943551
1 NORM OF RESIDUAL = 0.1162343D-04
NU = 0.3125000D-01
NORM(DELTA-ALF) 7 NORM(ALF) = 0.200D-02

ITERATION 6 NONLINEAR PARAMETERS

0.1044500D 01 ©0.9230081D 00 0.8640470D 00 0.7932118D 00 0.7462077D 00 0.6943202
1 NORM OF RESIDUAL = 0.1160925D-04
NU = 0.1562500D-01
NORM(DELTA-ALF) / NORMC(ALF) = 0.82tD-03

trRYEREREERNEEREOREYNEREYEOENREEEREYEEEYEYEREIOELEEYEREELEEYROEOEEYYEYE

LINEAR PARAMETERS

0.1705885D-01 0.4042803D-01 0.6303247D-01 ©0.3332297D-01 0.3242721D-01 0.420784°9°7"
NONLINEAR PARAMETERS

0.1044500D 01 0.9230081D 00 0.8640470D 00 0.7932118D 00 ©0.7462077D 00 0.6%43202D
NORM OF RESIDUAL = 0.1160925D-04 EXPECTED ERROR OF OBSERVATIONS = 0.1398237D-06
ESTIMATED VARIANCE OF OBSERVATIONS = 0.6738738D-11

tIEtr RN REY RN YRR R RN YR Y YRYNEREYE RN BNLEYRY N LY YRS YRR ORI OO
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LAYER NO.

>SN -

?

VOLUME PRODUCED.,

2000
2133.
2266
2400.
2533
2666
2800.
2933.
3066
3200,
3333,
3466.
3600,
3733,
3866.
4000,

SELECTED PEAX VOLUME

2200
2390
2610
2930
3050
3270
3640

.00

33

.67

00

.33
.67

0o
33

.67

03
33
67
00
33
67
00

.0
.0
.0
.0
.0
.0
.0

POROSITY.THIC

.015636
.047454
.086629
.052962
.058236
.087285
.087129

[ o 2O = S~ R e L =g

BBLS

STATEMENTS EXECUTED= 2576626

CORE USAGE
DIAGKROSTICS
COMPILE TIM

CS$STOP

E=

OBJECT CODE=
NUMBER OF ER

KNESS

CONCENTRATION,

0.
.600928

4

4.
.695150
.593647
29.
711356
27.
28.
30,
29,
23.
28.
2%.
18.
15.

1
21

25

2181.
26a68.
2636 .
2872.
3053,
3281.
3641.

037696

167477

679569

380659
569303
307478
647661
823876
622558
487164
975435
983867

COMFUTED PEAK VOLUME

PO = NN

KH/SUM(KH)

.016332
. 043800
.072950
.042010
. 0643456
.060604
.054508

o0 000 0o

PPM

42368 BYTES,ARRAY AREA=

RORS=

8,

0.37 SEC,EXECUTION TIME=

- 176 -

NUMBER OF WARNINGS=

27.20 SEC,

16.00.30

0, NUMBER OF
MONDAY

19416 BYTES,TOTAL AREA AVAIL

E



Appendix D.2: PROGRAM TO COMPUTE PATTERN BREAKTHROUGH CURVE OF A
DEVELOPED INVESTED SEVEN-SPOT FOR UNIT MOBILITY RATIO

This program calculates the curve of displacing fluid cut versus displaceable
pore volume injected for a developed inverted seven-spot at unit mobility
ratio. As was mentioned in the text, for every selected y coordinate of a
point on a general streamline, a corresponding value for the x coordinate of
the point must be evaluated. Subroutine "ROOT" performs this evaluation. The
routine uses the "bisection method.” However, a more efficient root-finding

method can reduce the computation time.,
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s/ JOB (JE.MAD,104,2), 'MAGSUD’
77 EXEC WATFIV
/7/GD.SYSIN DD ¥

O OOOO00O00 0000000000

OO 00

OO

OO -

AN NN RN R RN Y NN YUY R AN N ERNRERNAFNH AR E AN NN N RN EAENNRERRRAX

LOPED INVERTED SEVEN-SIOT AT BOBILITY RATIO OF ONE.

* XK K Ok K

'3

OUTPUTS FROM THE PROGRAM ARE:

S eSS EE S F T ETTESSEELEE LI EE LR PESTOEE ST LSS EEEEEEELERL LIS S

THIS FROGRAM COMPUTES PATTERN BRRAKTHROUGH CURVE (DISPLACING
FLUID CUT VS DISPLACEABLE FORE VOLUMES INJECTED) FOR A

DEVEL-

Fi = DISPLACING FLUID CUT AT THE PRODUCIND STREAM
PY(I) = DISPLACEADLE PORE VOLUMES INJECTED CORRESPONDING TO0 FW
by = DIMENSIGNLESS FORE VOLUME USED IN THE CORRELATION

IMFLICIT REAL¥B (A-H,0-2)
DIMENSION F(200),PV(30)>
REAL®S M,M1,K
CONMON AALRB,M,MIT,P
PI=6¢ XDATANCT.DO)
AAZDENRT(3.D0)
BR=1.7AA
M=(2.-AA) /6. D0
Mi=y.-M

k=50

NH=N+HI

FL=,5D-1

DO 35 L=1,9
SIGH=PI®(1.~-FK/3)
P=DTAR(SICGH)

CALL KN(AA,Z.KD
Y2=2.¥KXEB

H=y2/H

FC1)=0.000

DO 10 I=2,RKN
Y=(I~-1)%H

FOR A Y-COORDINATE OF A POINT ON A GEHERAL STREAMLINE,

COORESPONDING VALUE FOR THE X-COCRDINATE IS COMPUTED.
CALL RODTCY,X)

THE INTEGRAND IN EQ. A-109 IS EVALUATED

CALL VALUE(X,Y,U,UP,R,RP,W,NP)

FOI) =W/ (¥ (R¥UP4RP 2U) -RXUSHP)

CONTINUE

PORE VOLUMES INJECTED ARE COMPUTED

CALL INTGRL(N,H,F,SUM

C=-PIX(1+PXP)/ (2, ¥AARKNK)

PV(L)=CXSUM

DPV=(PV(L)-.7643682)/(1.-.743682)
WRITE(6,200) FW,PV(L),DPV
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OO0

OO0 000

oo

OO O0O0OaO00 00

FORMAT(1X,3(F1{5.5))
FUSFW+, 10

STCP

END

SUBROUTINE VALUEC(X,Y,U,UP,R.RP,N,WP)

THIS SUBRRQUTINE COMFUTES THE FOLLOWING FUNCTIONS THAT ARE

NEEDED FOR THE PROGRAM.
H, 6, U, U, T, T', R, R’

THE FUNCTIONS ARE:
» Wy WY

THESE FUNCTIONS HAVE BEEN ASSIGNED THE SAME NOTATIONS AS IN

APFENDIX A-4.

IRFUT: X,Y = CODRDINATES OF A POINT ON A STREAMLINE

QUTPUT: FUNCTIONS U, U',

IMPLICIT REAL®8 (A-H,0-2)
REALES M,M1

COMITON AA,BB,M,M1,P
A2=(2,+AA)XX2
B2=(2.-AA)I¥%2

CALL JACOD(X,M,AA, SHX, CHX

R, R, W, W

» DN

CALL JACOBC(Y,I1,B88,5HY,CNY,DRY)

DORUM=1 . -SHYXSHY EDENYDHX
H=CHXXCNY/DENUM
G=SHXEDHXXSNYXDRY/DERNUM

HP = (DERUIF 2 ¥ XS HY ESHY XCHX Y CHY ) S NNEDRX Y CHY Z (DENUMSDENUM)
GP =SHYXDHYHCHX ¥ (DX Y 2~ PSRN YR 2 ) ¥ DENUM- 2 1 (SUNYDRX ¥ Y ¥ ¥ ) /

$ CDENUIEDENUM)
UZHEG
T=(H¥H-G¥(0) 52
UP=HPXG+GI ¥ H

TP=4  ¥(HXHP-GEGPI ¥ (HEH-GXG)

pu=uxy
RECI=B2IX(4XUU+TI+AZ -1,
WoSHUUR(2¥D2%UY-5 . +D2%T )+
RP=CI-B2)X(S¥URYF+TP)

A2+B2¥TXT~14%T

WP=16XUXUP X (G, ¥B2¥UU-5. +B2XT )42 ¥R2RTP*(G¥UU+T) = 14 XTP

RETURHN
END

SUBRQUTINE ROOT(Y,Z)

THIS SURRQUTINE CALCULATES THE ROOT OF F(X,Y)
THE FUNCTION F(X,Y) IS SUFFLIED LBY EQ. A-103 IN APPENDIX A-4.

THE SUBROUTINE USES THE

"BISECTION' METHOD.

= 0 FOR A GIVEN Y.

INFUT: Y = Y-COORDINATE OF & POINT ON STRUAMLINE, SIGH

OUTPUT: Z = X-COORDINATE

IMPLICIT REAL¥8 (A-H,0-2)
REAL%8 M,M!

CONMON AA,BB,M,MI1,P
TOL=5.D-4

D=F/4.D0

CORRESTONDIRG TO Y
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10

40

OO0

DT OOO OO0 O 000

OO0

a0

X1=1.D-5

X2=.5D-3

CALL YALUE(X'1,Y,U,UP,R,RP.W,WP)
F1=R¥Us/N-D

CALL VALUE(X2,Y,U,UP,R,RP,W,IF)
F2=R*¥UsW~-D

IF(FI%F2.LT.0.2G0 TO 20

X2=1.,5%¥N2
GO 70 18
I=1

ZE{X1+X2¥yrs2.D00

CALL VALUEC(Z,Y,U,UP,R,RP,W,WPF)
FZ=R¥U/W~D

IF(Ft¥FZ.LT7.0.) GO TO 40
X1=2Z
IF(DABS(X2-2Z).LT.TOL)IRETURN
I=I+1

GO 70 30

Xz2=a

IF(DARS(X1-Z) LT.TOLYRETURN
I=I+1

G0 TO 30

END

SUBROUTINE JACOBC(U,M,KPCK, SN, CN,DN)

THIS SUBROUTINE EVALUATES THE ELLIPTIC FUNCTIOKS OF

SNOX,M), CHUXLT), DNOX,MDY, SHCY,MIY, CNCY,M1), DHOY,MD)

THE ROUTINE USES THE FOURIER EXPANSION OF THE ELLIPTIC FUCTIION
SN(U)Y, COMBINED WITH RELATIONSHITS BETWEEN THE FUNCTIONS.

KPQX IN THIS SUDROUTINT IS K'OMD/KN) WHEN THE TARAMETER IS N,
AND IS EQUAL 7O K(HI/K (M) = K'(MOD/K(M1) BHEN THE PARAMETER
Is M

INFLICIT REAL¥8 (A-H,0-2)
REALX3 K,M,KPCK
F1=6.¥DATANCI.DO)

CALL KM(KPOK,Q,K)
VEPIXU/ (2. %K)

SUMiI=0.
Lo 10 I=1,38
A=(I-13+.5

R=2.%(I-1)+1.
SUMI=SUMTHQ¥XA/ (), -Q¥XB)¥DSIN(B*V)
SN=2 . ¥F1¥SUMI/ (K¥DSQRT(MY)
CNTDSQRRT(DABS(1.-SN¥¥2))
DN=DSQRT(DABS (1. -MHSH*¥*Z))

RETURN

ERD

SUBROUTINE KM(KFOK,Q,X)

THIS SUBROUTINE COMPUTES COMPLEMENTARY OR INCOMPLEMERTARY COMPLETE

ELLIPTIC IHTCEGRAL FUKRCION K(M) OR K(M1X=K'(M). THE ROUTHINE
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OO0

OO0 OO0

50

SDATA

UTILIZES THE EXPANSION PRESENTED IN ADRAMOWITZ (1972)

IMPLICIT REALX3 (A-H,0-2)
REAL*8 K,!M,KFCK

PI=a¢ . ¥DATANCI.DO?
Q=DEXF(-FIXKPOK?

sSuM=0.

Lo 30 I=t,10
SUM=SUM+GX¥TI /() +Q¥X(2, %))
K=PI/Z2. ¥(1.+4, X¥5UM)

RETURN

END

SUBROUTINE INTGRLU(N,H,F,VOL)

THIS SUBROUTIME COMFUTES VALUE OF AN INTEGRAL USING SIMPSOR'S

RULE OF INTEGRATION.
INPUT: N = NUMBCZR CF INTERVALS, AN EVER INTEGER NUMBER
H INTERVAL SIZE
F = VALUES OF FUNCTIONS COMPUTED AT INTERVALS,
OQUTFUT: VvOL = VALUE OF THE INTEGRAL

MPLICIT REAL®8 (A-H.0-2)
DIMENSION F(S1)

SUMI=0

sSuM2=0

H1=Ns2-1

080 50 I=1,K1
SUMT=SUMI+F(2¥I)
SI2=SUM2 +F(2%I+1)
SUMI=SUMI+FIND
VOL=HAZIXR(FOIIHF (NI ¥OUMIT2 . X5UM2
RETURN

END
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Appendix D.3: PROGRAM TO COMPUTE PATTERN BREAKTHROUGH CURVE OF A
DEVELOPED FIVE-SPOT AT AN ARBITRARY MOBILITY RATIO

This program computes both the displacing fluid cut and areal sweep efficiency
curves of a developed five—spot pattern for any mobility ratio. The assump-
tion made in the derivation of the equations 1is that the streamlines are
independent of mobility ratio; hence, they can be calculated from single-phase
fluid flow (mobility ratio equal to one).
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/7 JOB (JE.MAD,104), *MAGHSOCD®
7/ EXEC MATFIV
//7G0.SYSIN DD *

OO OOO00GOO000000O0

SO OO0

OO0 OO0

OGO

bR SRS ES L EE eI RS E SRR R ESSCESEEEESES T EREESEEEEEEEEETES

P S S -

THIS FROGRAM COMPUTES FATTERN BREAKTHROUGH CURVES (DISPLACING ¥
FLUID CUT V5 DISFLACEADBLE FORE VOLUMEY AND AREAL SHEEP EFFICI- ¥
ENCY CURVES (FRACTIONAL AREA SHEPT VS DISPLACEABLE PORE VOLUME *
INJECTED)Y FOR A DEVELOTED FIVE-SPOT PATTERN AT VARIOUS MOBILITY*®
RATIOS. THE PROCRAT! ASSUNMES THAT THE STREAMLINES DO NOT CHANGE *
WITH TOBILITY RATIO. *

R N RN R AR N K AR AN N H R RE AR RN IR EREEREREHEHEHRNENRN AR UERFEXRARK NS

THE LCCATICH OF THE FRONT IN THE SYSTEM IS CONTINUOUSLY
COMFUTED AS THE STREAMLINES BREAKTHROUGH.

THE INFUT AND OUTPUT FROM THE PROGRAM ARE AS FOLLOWS:
INPUT: MOBLTY = MOBILITY RATIO

QUTPUT: PV = DISPLACEADBLE PCRE VOLUMES INJECTED

SWEEP = AREAL SWCEP EFFICIEMCY, FRACTION
FA, DISPLACING FLUID CUT IN THE FRODUCING STREAM, FRACTION

INPLICIT REAL ¥3(A-H,0-2)

REAL¥3 MOBLTY,LEFT,.FFC(G1),GG(91),FSWEP(91)

GI(ZD=DSANT(ZXZ+ 1)

G2(Z,ETAY=DSCRT(ZXIHETASETA)
GCOZ,ETA)=DLOCGCCZYETAX(OI(ZY4G2(Z.ETAIID/ZLETAYGILZIIGR(Z,ETAY )
READ,POSLTY :

PIza XDATANCT.DO)

AR=1.,854C07467730137200

RU=AVHEDEQRTI2.D0) /100060,

OHE EIGHTH OF A FIVE-STOT IS DIVIDED INTO "HP"™ STREAMTUBES.
THESE NP STREAMTURBELS BREAKTHROUGH ONE RY ONE.

NP=1C

H=
oo

PI/ G /NP
1 J=1,NP

IN THE FOLLOWIRG, TETBY = STREAMLINE THAT IS CONSIDERFD 10

BR

EAKTHROUGH. RIGHT HAND SIDE OF EQ. B-51 1S CONMUTED FOR THIS

STREAMLIKE AND IS STORED IN "RIGHT™.

TETBT=HE(NP+1-J)

EV1=DTAN(TETDOT ) %%2
XUIBT=RW=DSIN(TETBT)
XHPBT=AK-RW*DCOS(TETRT)

CALL FUNCTCY,F2FBT,XNKPBT)

CALL FUNCTC1,F2IBT,XWIBT)

CALL GAUSS(1,F2IRT,F2FBT,E1,VAL)
PIET1=MOBLTYXG(F2PBT,E1)-G(F2IBT,E!)
EP=1-E1%E1

PP=PIs2.

CALL ELLEF(PP,EP,AKE)
RIGHT=(1+EI1I¥(FIET®AKET+ (1, -MOBLTY)IXVAL)

STREAMLINES BETWEEN ZERO AND BROKENTHROUGH (TETBT) ARE DIVIDED
TNTO “H" STREAMTUBES AND THE FRONT LOCATION IN EACH OF THEM
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OO0

20

15

OO0

o]

O OO0

OO0 0C0

IS CALCULATED BY EQ. B-51. FIRST A LOUWER AND AR UPFPER VALUL FOR
2 BAR IN THIS EQUATION ARE COMMUTED IN SUCH A WAY THAT THE EXACT
Z BAR VALUE LIES BETHWEEN THEM. THEN, A RCOT FINDING RCUTTNE IS

UTILIZED TO DETERMINE THE EXACT VALUE OF THE Z BAR,

N=90

NN=N-1

STEF=TETBT/N

DO 10 I=1,NN

TET=STEPSI
XHI=RWXDSINC(TET)
XMP=RUEDCOSCTET)
E=DTAN(TET) ¥x%2

ZZ=1.-EXE

X1=AK=-XWP

CALL FURCTC(T,F2FP,X1)

CALL FUNTT(1,F2I,XWID
PIE=MOBLTYXG(F2P.E)~-G(F2I,E)
A=F21

B=5.%F21

AINT=0.0

CALL GAUSS(2,A,B,E,VALUE)}
AINT=AINT+VALUE
FHI=DATAN(D/ED

CALL ELLEPC(PHI,ZZ,.T1)
LEFT=01. +EDX(PIETTIH(I . -MOBLTY I ¥AINT)
ITF(LEFT.GT.RIGHTIGO 10 15

-VALUE

CALL ROOTCA,B.SAVE!,SAVEZ2,POLD,RIGHT . MORLTY,E.2ZZ,P1E,T,X)

AFTER DETERMINING THE FRONT LOCATIONS FROM THE SURROUTINE ROODT,
CALCULATION DISPLACING FLUID CUT STARTS:

GGII+1)=2./(P1E+(I-MOBLTYIRGIX,E1))
IF(I.EQ.IDFF(1)=T7

FECI+1)=C1.+EY%T

CORTINUE

GG(1)=6G(2)

FFON+1)=CI+ET)XAKED
GGIH+1)=2./(G(F2PRT,E1)-G(F2IBT,E1 )}

QA = PRODUCING FLOW RATE OF DISPLACING FLUID
QB3 = PRODUCING FLOW RATE OF DISPLACED FLUID
FA = DISPLACING FLUID CUT IN THE PRODUCTION STREAM

CALL INTGRL(N,STEP,GG,QB)
QAZGGIN+ 1) X(FPI/4=-TETBT)
FAQA-/(QA+QB)

CALCULATION OF AREAL SWEEP EFFICIENCY AND INJECTED DISPLACEABLE
PORE VOLUMES START. FIRST, THE PCRE VOLUMES OF WATER FRODUCED
ARE COMPUTED. THIS IS STORED IN nwvypr,

HTETBT=RIGHT /4.
HBT=(PI/4.~TETBT)/N
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Ni=N+1

DO 11 L=1,Nt

TET=TETBT+HBT*(L-1)

ET=DTAN(TET)**2

PP=FIs2.

Z=1-ET¥ET

CALL ELLEP(FPP,Z,EK)

FSWHEPL(LI=(I+ETI¥EK

XMI=RUEDSINCTET)

XWP=AK-RUNXDCOSC(TET)

CALL FURCT{1,ZP,XHP)

CALL FUNCTCT,ZI,XWID

PE=MOBLTY¥G(ZP,ET)-G(ZI,ET)

CALL GAUSS(1,ZI,ZP,ET,VAL)

HTETA=(1+ET)/GR(PEXCK+(1-MOBLTYIXVAL)

GG(LI=(HTETBT-HTETA)/(G(ZIP,ET)-C(ZI,ET))
i CONTIHUE

O

CALL INTGRL(N,HDT,GG.VP)

IN THE FOLLCWING CALCULATIONS OF AREAL SWEEP EFFICIENCY AKD

PORE VOLUMES INJECTED, THE TWO SYMBOLS S1 AND S2 ARE USED T0O

DESIGHATE:

St = AREA ENCOMPASED RETHWEER THE BROKEH-THROUGH STRCAMULINE (TETBTO
AND THE STEEANLINE PIsG

S2 = SWEPT AREA ENCCHMFASED BETWELN STREAMULINE, TETBT, AND
STREAMLINE ZERO.

OO0 000

CALL INTCRL(N.STEP,TF,51)

CALL INTCRLC(H,HBT,FOMER,S2)

SUCEP={ST1+82)/7AK/AK

PUSSWOOPHG . XV /7 ARZAK

WRITE(6.1002PV, SUEER, FA
100 FTORMATCIX, 'PORE VOLUDNL=',F8.5,6X, "EABT=",FE.5.3X,"CUT=",T06.4)
1 CORTINUE

SToP

ERD

oo

SUBROUTINE SH(X,SNXD

THIS SURROUTINE CALCULATES THE JACOBIAN ELLIPTIC FUNCTION SH(X,0.5)
THE ROUTINE USES FOURIER SERIES EXPANSIOH OF SH(X,0.5).

INPUT: X, ARGUMENT 0F THE JACOBIAN ELLIPTIC FUNCTION

QUTPUT: SHX, VALUE QF THE JACORIAN ELLIPTIC FUNCTION

OO0 000

IMPLICIT REAL*8 (A-H,0-Z2)
AK=1.854074677301372D0
Ali=.5
PI=6¢ . X¥DATANCI1.DOD)
Q=DEXP(~-PI)
SUM=0.D0C
V=PIXN/s2.70K
DO 10 I=1,9
II=I-1
C1=II+.5
C2-2 . X111
10 SUM=SUM+QXXCIXDSIN(CZ¥V)/ (1, -Q¥%C2)
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OO0 000000

30

SHX=2 . ¥FI*SUMsAK/DSQRTC(AM)
RETURHN
END

SURRGUTINE FUNCTCINDIC,F2,X)

THIS SUBROUTINE COMPUTES F2 FOR A GIVEN X OR COMPUTES X FOR A
GIVEN F2.

F2=F%F AND F IS THE EQUATIOHN FOR THE DEFINITION OF STREAMLINE
WHICH IS GIVEH BY EQ. A-18 MITH m = 0.5.

INDIC=1, COMPUTE F2 FOR GIVEN X
INDIC=2, COMFUTE X FOR GIVEN F2

IMPLICIT REAL¥8 (A-H,0-2)
IFC(INDIC.EQ.1)G0 T0 10
SHX=DSQRT(1.+F2-DSQRT(1.+F2%F2))
ANGLE=DARSIN(SHX)

2=.5
CALL ELLEPCANGLE,Z,X)
GO T0 20

CALL SHOX,SNX)

SHIX=SHNXTSNX
F2=SNIZX®(t.-.535h2X)/ (1. -SN2X)
RETURN

END

SUDROQUTINE ELLEFC(Y,Z,A)

THIS SUDROUTINEG COMPUTES INCOMPLETE ELLIPTIC INTEGRALN F(PHI,kK)
PHI IS TUHEC ARCGUNMENT AMD k IS THE MODULUS. THE MOIDULUS IS EQUAL
TO THE SQUARE ROOT OF THE PARAMETLR.
INFUT: Y = ARGUMEHT OF THE ELLIPTIC TFUNCTIOH

Z = PARANCTER OF THE ELLIPTIC THTEGRAL

A = VALUE OF THE ELLIPTIC INTLEGRAL

THE ROUTINE USES LANDENS DECENDING TRAKSFORMATION. FOR REFERENCE

SEE ABRAMOWITZ, PAGE

IMFLICIT REAL¥8 (A-H,0-2Z)
REAL¥3 K,K1,KP

TOL=1.D-%

PI=6 X¥DATANCY.DO)

W=1.D0

X=Y

K=DSQRT(Z)
K1=2.¥DSQRT(KI/Z(1+K)

X= 5% (X+DARSINCK¥DSINIX)D))
QE=DARSINIK1)
QE=QEX180./P1

W=2 . ¥/ 01+K)
IF(C90.-QE).LE.TOLYGO 70O 30
K=K1

GO TO 15
=WXDLOG(DTAN(PI/4+X/2))
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RETURN
END

SUBROQUTINE GAUSS(L,ALCHER,UPPER.E,VALUE)

THIS SUBROUTINE -COMPFUTES VALUE OF AN INTEGRAL USING EIGHT POINT
GAUSSIAN QUDRATURE METHOD.
INPUT:  ALCMER = LOWZR LIMIT OF THE INTEGRAL
UPTER = UPPER LIMIT OF THE INTLGRAL
IF L = %, PROGRAM CONMPUTES THE INTEGRAL BY DIVIDING THE
INTERVAL INTO SEVERAL SECGMENTS OH A LOGARITHMIC SCALE
(BASE 100
IF L ® 1, THE PROGRAM USES ONLY ONE INTERVAL
E = ETA TERM DEFINED BY EQ. B-31t
QUTPUT: VALUE = VALUE OF THE INTEGRAL

IMFLICIT REAL*8 (A-H,0-2)

DIMENSION WC10),XC10)

FICY)=DPSQRT (1. +Y¥Y)

F2LY)=DSQRT(E*E+YHY)
FOY)=DLOGCEXRYS(FI(Y)+F2(Y) )/ CEXFI(YI+F2CY)))/(FIC(YI%F2(Y))
H=3

4

XC1)Y=.1834364642495650D0
X(2)=.52E55832640%91¢323D0
X{3)=.7956664774136272DC
X(4)=.960259350497536D0
X(5)==-X{1)
X(6)=-X(2)

X(73==-X(3)

X(8)=-X(4>
W(1)=.3626837332378362D00
H(2)=.3137060645877837N0
HW(3)=.202381034453374DD
W4z 101228535628837600
HE5)=U(1)

ME6)=l(2)

WO =13

H(3)=H(48)

A=ALONER

IF(L.EQ.1)GO TO 15
B=UPPER

SUM=0.D0

PO 10 I=1,N
Y=_5DORC(BHAY+(B-AIEX(IN
SUM=SUMHNCIYRF (YD
VALUE=,E5DO¥(B-A)¥SUM

GO 10 100

VALUE=D.

B=10. %A
IF(B.GE.UPFERIB=UPPER
SUM=0.D0

Lo 12 I=1,H

Y= 5DO¥C(B+AYH(B-AI¥X(I))
SUNM=SUMHRCIIXF(Y)

VAL= . ODOX{B-A)%¥SUNM
IF(VAL.EQ.0)GOTO 100
VALUE=VALUE+VAL

A=B
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GO 10 17
RETURN
END

SUBROUTINE ROOT(X!1,X2,F{,F2,P1,RIGHT,AM,E,Z,P1E,T,X)

THIS SURROUTINE COMPUTES THE ROOTS OF EQ. B-51

THE INFUT 70 THE ROUTINE ARE:

X1 = VALUE OF 2 BAR AT WHICH THE LEFT SIDE IN EQ. B-51 IS
SMALLER THAN THE RIGHT SIDE

X2 = VALUL OF Z BAR AT WHICH THE RIGHT SIDE OF EQ. B-51 18§
LARGER THAN THE RIGHT SIDE

F1 = VALUE OF THE LEFT SIDE CCMPUTED AT Xi

F2 = VALUE OF THE LEFT SIDE CONCUTED AT X2

P1 = VALUE OF THE INTEGRAL IN THE LEFT SIDE OF EQ. B~51 CCMPUTED
AT X1

AM = MORILITY RATIO

E = VALUE OF ETA DEFINED BY EQ, B-31

z ARGUMENT OF ELLIPTIC INTEGRAL F(n,k)

P1E = THE P TERM IN LEFT SIDE OF EQ. B-F1{

RIGHT = VALUE OF THE RIGHT HARD SIDE OF EQ. B-51 COMPUTED AT

A BROKENTHROUGH STREATILINE, TETRY

THE OUTTUT FRONT THE ROUTINE ARD:
X = EXACT VALUE OF Z BAR (SOLUTIOH TO EQ. B-51)
T = VALUE OF THE INTEGRAL IN THE LEFT SIDE OF EQ. B-5% COMPUTED

AT X1

INPLICIT REAL¥S (A-H,0-2)
T0L=1.D-4%

F1=F1-RICGHT

F2=F2-RIGHT

X=(X14X2)r2.

CALL GAUSS(2,X1,X,E, V)

AINT=VIPY

FHI=DATANCX/ED

CALL ELLEF(PHI,Z,T)

ALEFT=C1 +E)¥(PIE¥T+ (1. -AMIXAINT)
FX=ALEFT-RIGHT
IF(F{*FX.LT.0.D0G0 TO 10

X1=X

F1=FX

PI=AINT
TF(DABS(X2-X) . LT.DABS(TOL*X)>G0 TO 20
GO TQ 5

X2=X
IF(DABS(X1-X).LT.DARSCTOL*X3)GO 10 20
G0 10 5

RETURN

END

SUBROUTINE INTGRL(N.H,F,V0L)

THIS SUBROUTINE COMPUTES VALUE OF AN INTEGRAL USING SIMPSON'S
RULE OF INTEGRATION.
INPUT: N = HUNMBER OF INTERVALS, AN CVEN INTEGER NUMBER

H = INTERVAL SIZE

F = VALUES OF FUNCTIONS COMPUTED AT INTERVALS, AN ARRAY
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c QUTPUT: vOL = VALUE OF THE INTEGRAL

IMPLICIT REAL¥8 (A-H,0-2)
DIMENSION F(91)

SUMt=0

sumz=o

Nl=hrs2-1

DO 50 I=t1,N1
SUMI=SUMI+F{2%])

50 SUM2=SUM2 +F(2¥I+1)
SUMTT=SUMEI+F(N)
VOL=H/Z3R(F(1)+F(N+ 140  XSUMI+2 ¥5UM2)
RETURN
ERD

$DATA

0.5D0
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