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This report contains seven sections. Some individual sections contain their own list of
references as well as appendices and conclusions when appropriate. The first section includes the
introduction and a summary of the first-year project efforts. The next five sections describe the
results of the project tasks: (1) Analysis of plane-harmonic waves in poroelastic and anisotropic
layered media; (2) Analysis of an acoustic logging system in a fluid-filled borehole surrounded by an
anisotropic poroelastic formation; (3) Semi-analytic approach to multiphase flow calculations; (4)
Data collection and review, analysis and interpretation of existing data, and selection of study area;
and (5) technology transfer. The last section includes general conclusions and accomplishments.
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L. INTRODUCTION AND SUMMARY OF PROJECT

A. Background

In low porosity, low permeability zones, natural fractures are the primary source of
permeability which affect both production and injection of fluids. The open fractures do not
contribute much to porosity, but they provide an increased drainage network to any porosity. They
also may connect the borehole to remote zones of better reservoir characteristics. An important
approach to characterizing the fracture orientation and fracture permeability of reservoir formations
is one based on the effects of such conditions on the propagation of acoustic and seismic waves in
the rock.

The project is a study directed toward the evaluation of acoustic logging and 3D-
seismic measurement techniques as well as fluid flow and transport methods for mapping permeability
anisotropy and other petrophysical parameters for the understanding of the reservoir fracture systems
and associated fluid dynamics. The principal application of these measurement techniques and
methods is to identify and investigate the propagation characteristics of acoustic and seismic waves
in the Twin Creek hydrocarbon reservoir owned by Union Pacific Resources (UPR) and to
characterize the fracture permeability distribution using production data. This site is located in the
overthrust area of Utah and Wyoming. UPR drilled six horizontal wells, and presently UPR has two
rigs running with many established drill hole locations. In addition, there are numerous vertical wells
that exist in the area as well as 3D seismic surveys. Each horizontal well contains full FMS logs and
MWD logs, gamma logs, etc.

This 3-year research program combines advanced theoretical and numerical model
studies with a balanced petrophysical and engineering program. Its aim is the development of
advanced concepts of borehole seismic, surface seismic, and fluid flow dynamic methods that relate
permeability anisotropy to acoustic and seismic signatures. Then one could understand the reservoir
fracture system and to predict the permeability distribution throughout heterogeneous reservoirs using
multiphase production data.

The topics of research for the first year of this project involve petrophysical analysis,
and basic theoretical analysis in geophysics and petroleum engineering. Geophysical techniques
include the analysis of plane-harmonic seismic waves in poroelastic and anisotropic layered media,
as well as the theoretical development of an acoustic logging system in a fluid-filled borehole
surrounded by an isotropic poroelastic formation and an anisotropic viscoelastic formation.
Petroleum engineering techniques include the development of a semi-analytic approach to multiphase
flow calculations and applications. The petrophysical analysis consists of evaluating the Twin Creek
fractured reservoir in the overthrust area of Utah and Wyoming to characterize fractures and rock
physical properties that will be used for the validation of theoretical advanced concepts developed
in this project.



B. Summary of Project Efforts

The first topic is devoted to the development of an analytical solution for plane-
harmonic seismic waves propagating in a poroelastic anisotropic media, including the Biot and squirt
flow mechanisms. The solution was extended to simulate responses of a horizontally layered
poroelastic medium including the second-rank tensor permeability and the second-rank tensor of the
squirt-flow mechanism to simulate azimuthal anisotropy. After the theoretical work was completed,
we developed software to calculate fluid pressure, the vector wavefield, and the displacement of the
fluid relative to the solid. This software was used to conduct a parametric study of the angle of
incidence, permeability anisotropy, and frequency content, allowing us to relate the permeability
anisotropy to the dispersion and attenuation of seismic signatures. The second topic includes the
development of an acoustic logging system in a fluid-filled borehole surrounded by an isotropic
poroelastic medium. In addition, we developed the theoretical analysis of a multipole-acoustic source
in a fluid-filled borehole surrounded by an anisotropic medium having axis of symmetry in the
horizontal direction. In this case we implemented the boundary integral equation method of solution
to calculate the acoustic logging response for a borehole surrounded by formations having azimuthal
anisotropy.

The following topic is devoted to the development and testing of a three dimensional
streamline simulator for modeling multiphase flow and transport in heterogeneous permeable media.
The emphasis was on speed and accuracy so that the multiphase model can be embedded in an
inversion scheme to derive fracture characteristics using production data. The streamline model was
generalized to account for infill drilling, non-uniform initial conditions and mixed boundary conditions
so that the model could be applied under a wide variety of field conditions. High resolution total
variation diminishing schemes were used to solve the multiphase flow equations along streamlines to
prevent numerical artifacts such as artificial dispersion. Novel mapping algorithms were used to
account for changing well configurations during streamline simulation. The results from the
streamline model were validated against commercial numerical simulators. The results indicate
increased accuracy and significant savings in computation time.

The next topic discusses the integration of petrophysical data and 2D seismic data
based on the data catalog of the Twin Creek reservoir owned by Union Pacific Resources in the
Utah-Wyoming Overthrust belt. Several geological cross-sections were constructed and integrated
with the migrated seismic data, the velocity inversion, and FMS data recorded in horizontal wells. The
data integration with synthetics derived from well log information delineated the major geological
units of interest in the Twin Creek reservoir. In addition the fractured density determined from an
horizontal well correlates with a velocity anomaly observed in the migrated seismic data. In addition,
the result of the integration has provided a twelve-layer model, including the fracture zones of interest
containing the petrophysical information for each geological unit in the reservoir. This model was
used to calculate synthetic seismic signatures for planning cross-well seismic surveys between wells
spaced 2400 ft apart at the Lodgepole field in the Twin Creek formation.

The last topic describes the initial efforts for transferring the concepts and results of

the project to the oil and gas industry. Several contacts were made with interested companies engaged
in oil and gas production to determine their specific interest and needs with respect to fractured
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reservoirs. Letters describing the technical objectives, the goals, and activities of this research project
were distributed to each company. In fact, the project announcement letter and reply forms were sent
to more than 100 petroleum geologists, geophysicists, and engineers in 26 oil companies. This
announcement was well received by the industry as indicated by 60 percent positive return of replies
expressing interest in receiving future project information and identifying their professional and
technical expertise.



II. ANALYSIS OF PLANE-HARMONIC WAVES IN POROELASTIC
AND ANISOTROPIC LAYERED MEDIA

A. The Transversely Isotropic Poroelastic Wave Equation Using
Biot and Squirt Mechanisms

The transversely isotropic poroelastic wave equation can be formulated to include the
Biot and the squirt-flow mechanisms to yield a new analytical solution in terms of the elements of the
squirt-flow tensor. The new model gives estimates of the vertical and the horizontal permeabilities
as well as other measurable rock and fluid properties. In particular, the model estimates phase velocity
and attenuation of waves traveling at different angles of incidence with respect to the principal axis
of anisotropy. The attenuation and dispersion of the fast quasi-P wave and the quasi-SV wave are
related to the vertical and the horizontal permeabilities. Modeling suggests that the attenuation of
both the quasi-P wave and quasi-SV wave depend on the direction of permeability. For frequencies
from 500 to 4500 Hz, the quasi-P wave attenuation will be maximum in the direction of maximum
permeability. To test the theory, interwell seismic waveforms, well logs, and hydraulic conductivity
measurements (recorded in the fluvial Gypsy sandstone reservoir in Oklahoma) provide the material
and fluid property parameters. For example, the analysis of petrophysical data suggests that the
vertical permeability (1 md) is affected by the presence of mudstone and siltstone bodies, which are
barriers to vertical fluid movement, and the horizontal permeability (1640 md) is controlled by cross-
bedded and planar-laminated sandstones. The theoretical dispersion curves (based on measurable
rock and fluid properties) and the phase velocity curve (obtained from seismic signatures) give the
ingredients to evaluate the model. Theoretical predictions show the influence of the permeability
anisotropy on the dispersion of seismic waves. These dispersion values derived from interwell seismic
signatures are consistent with the theoretical model and with the direction of propagation of the
seismic waves that travel parallel to the maximum permeability. This analysis with the new analytical
solution is the first step toward a quantitative evaluation of the preferential directions of fluid flow
in reservoir formation containing hydrocarbons. The results of the present work may lead to the
development of algorithms to extract the permeability anisotropy from attenuation and dispersion data
(derived from sonic logs and crosswell seismics) to map the fluid flow distribution in a reservoir.

The estimates of attenuation and dispersion of seismic waves are important for
predicting the presence of fluids in a reservoir. Two important characteristics of reservoir rocks are
porosity and permeability. Porosity can be determined from cores and well logs. Permeability can be
measured on cores but is not measured directly from well logs. Permeability may differ from zone to
zone, and it may vary directionally within a reservoir .

Although the in-situ permeability is considered a material property parameter difficult
to predict, several researchers have developed methods for indirectly predicting permeability using
full waveform sonic logs. Tang and Chelini (1993) developed high-resolution processing techniques
using a simplified model to perform inversion of borehole Stonely waveform data to map the
isotropic formation permeability. Schmitt (1989) addressed the attenuation and dispersion of the
quasi P-waves and the quasi SV-wave in terms of a directional permeability, using the Biot and
homogenization theories.



It is well known that the Biot theory does not adequately describe the wave
attenuation and dispersion in some reservoir rock in the range of frequency used on surface and
crosswell seismic surveys. A different theory developed by O'Connell and Budiansky (1977) assumes
that the passing wave in reservoir rock may cause pore fluid flow at a pore scale that they called
"local flow" or squirt flow . This theory can adequately explain the large velocity dispersion in some
rocks where the Biot theory fails. In fact, Dvorkin and Nur (1993) have shown that the squirt-flow
mechanism results in much higher and realistic attenuation in saturated rocks than that predicted by
the Biot mechanism.

A consistent theory dealing simultaneously with Biot and squirt-flow mechanisms has
been presented by Dvorkin and Nur (1993). The theory includes those mechanisms by considering
the fluid motion parallel (the Biot mechanism) and transverse (the squirt-flow mechanism) to the
direction of a planar P-wave. The fluid is free to move not only parallel but also perpendicular to the
direction of wave propagation. The Biot-squirt flow model relates the dynamic poroelastic behavior
of a saturated rock to the poroelastic parameters, porosity, permeability, fluid compressibility and
viscosity, and the characteristic squirt-flow length.

In this paper, the general theory of propagation of elastic waves in fluid-saturated
porous media, based on the concept of a two-phase medium given by Biot(1962a), Schmitt( 1989),
and Parra and Xu (1994), provides a framework to analyze and interpret the fluid flow mechanisms.
The constitutive equations for anisotropic porous media originally given by Biot (1955) and Biot
(1962a) have been formulated by Kazi-Azoual, et al., (1988) in accordance with the homogenization
theory (Auriault, er al., 1985). The result of Auriault’s work has lead to a macroscopic dynamics
similar to that of Biot theory. In particular, the complex frequency-dependent permeability, namely,
the generalized Darcy coefficient, is introduced by the homogenization theory. The formulation of
the transversely isotropic wave equation including the Biot and squirt mechanisms is based on the
constitutive equations given by Biot’s theory and the homogenization theory. The latter theory
provides the second-rank complex tensor permeability; the squirt-flow tensor is introduced in the
constitutive stress equation associated with the pore fluid to yield a new partial differential equation
that relates the fluid pressure to the dilatation of the rock matrix. Following this analysis, we
formulated and derived the poroelastic wave equation including the Biot and the squirt mechanisms
to obtain a dispersion equation of third degree. Its solution gives wavenumbers from which the phase
velocity and attenuation of the quasi-P waves and the quasi-SV wave are determined. Numerical
models are given to relate the directional attenuation and dispersion with anisotropy permeability.

To test the model, a field example provides the phase velocity for waves traveling
between wells in the Gypsy sandstone reservoir in Oklahoma. This example illustrates the
applicability of the solution derived in this paper as a potential modeling approach for solving
practical reservoir characterization problems.

The Poroelastic Wave Equation Including the Biot and the Squirt Mechanisms

The formulation of the transversely isotropic poroelastic wave equation including the
Biot and the squirt-flow mechanisms is based on the constitutive relations (i.e., the total stress tensor



of the anisotropic porous medium, and the stress tensor in the pore fluid), the momentum balance
equation for total stress, and the generalized Darcy’s law, in the framework of Biot’s theory. These
equations in the frequency domain (assuming exp(-jwt) variation) are:

g = T-¢e - ap, (H
of = -dps, - %[q e+ V- (U-w)]d,, (2)
80[.1.
a_xj = Vg = - mz[ps(l ~Pu + 4)pr], (3)

w=0¢WU - u = - Kw) (wzpju - Vp)/jw- 4)

In these equations, € is the strain tensor of the porous medium; p is the fluid pressure; ¢ is the
porosity; w and U are the particle displacement of the solid and the fluid, respectively, and p, and p;
are the solid and fluid densities. In addition, € is the solid-frame stiffness tensor containing five
independent drained elastic coefficients (i.e., C,;, €3, €13, C4, and Cy3). The poroelastic coefficients of
the effective stress of the second-rank tensor ¢ (which are obtained at zero pore pressure) are given
a = 1-(c; +¢p, +c3)/3K, (52)

and o, = 1-(2, + ;) /3K, (5b)

where K is the bulk modulus of the grains. On the other hand, 3 is the compressibility coefficient
determined under undrained conditions, given by

B = &/ + (1-d)/K -[2(c, + ¢ + 26,5) + iyl /9K2, ©6)

where K is the fluid bulk modulus. In the last equation (4), w is the displacement of the fluid relative
to solid, and K (w) is the second-rank complex tensor frequency-dependent permeability described
by two permeability constants. After Biot (1956), Biot (1962a) and Schmitt (1989), the complex per-
meability elements for a low-frequency range are given by

'pa/pf *o o ]_] %

Kg((x)) = J(b
WP,

¢ (%)

where o ﬂ—— ,0 = 1 and 3, and p, is the additional density caused by the fluid (Biot, 1956).
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The parameter ) is the viscosity of the saturating fluid, and Eo is the intrinsic permeability along the
principal direction (.

The squirt-flow mechanism is incorporated in the constitutive equation (2) by
assuming a poroelastic medium axially symmetric about the z-axis and stating that the permeability
tensor and the porous matrix have the same plane propagation direction. In this case we define the
squirt-flow tensor as

$;{w) O 0
S(w) =] 0 s 0 [, (8)
0 0 s

To derive the elements of the squirt-flow tensor, we apply the method given in Dvorkin and Nur
(1993) by assuming a cylindrical volume of rock geometries in the x, y, and z directions. For
example, a sideways flow in the xy plane can be represented by a cylinder with its axis parallel to the
wave motion in the z-direction. The radius of this cylinder is equal to the average squirt-flow length
R, which is associated with the horizontal permeability fcx in the xy plane. In a similar manner, a
vertical flow in the yz plane can be represented by a cylinder having its axis parallel to the wave
motion in the x-direction. In this case, the radius of the cylinder is equal to average squirt-flow length
R, associated with the vertical permeability fcz. Thus, the elements of the squirt-flow tensor are given

c o1 - 2JI(YQRQ) ©)
D YoRaJo(YnRo),
where ) (%92)
'Y2 _ Pf‘Jo2 I:pa/pf + ¢ . on]
owwipl 4 ®
and (9b)
_°_’_0______~n¢ ;for 0 =1 and 3.
w k, pyw

The total pressure for a 3-D wave motion including the Biot and the squirt-flow mechanisms in a
transversely isotropic medium can be written as

LN (“s_‘@_a_‘}i] I i <°=r¢>ﬁgy_] N GG

PR T T wl By T e wl Bra T e )

(10)
P

where ¢/ = 1/ {1/K, + [(2a; + «,)/3 - ¢]/K }. This equation was determined using
equations (5a), (5b), and (6). The first term in brackets of equation (10) represents the contribution
to the total pressure of the squirt-flow mechanism associated with particle motion in the z-direction.
The last two terms represent the contribution to the fluid pressure of the squirt-flow mechanism
associated with wave motion in x- and y-directions. To give a more general physical interpretation
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to the fluid pressure and for further theoretical analysis, we express equation (10) in terms of the
displacement of the fluid relative to the solid given by w = ¢ (U - u) to yield

1 ow, | 1 au,
p = —-b- 8,V-w + (8 -8;)— | - — 53“1V'U+(31“3‘33°‘1)az . (10

oz B

This equation is the modified constitutive equation (2); it describes the Biot and the squirt-flow
mechanisms for transversely isotropic conditions. The first term in brackets represents the pressure
associated with the fluid-flow relative to the solid and is mainly controlled by the Biot and the squirt-
flow mechanisms. The second term represents the pressure associated with the displacement of the
porous matrix; the response is controlled by the squirt-flow mechanism coupled to the stiffness
constants of the rock matrix. The special case of waves traveling in a poroelastic isotropic medium
characterized by the Biot and the squirt-flow mechanisms can be derived by making «, = &3 = & and
8, = 8, = § in equations (10) and (11). These equations are reduced to

p = _%15( VU + .E“T‘b)v-u), (12a)

and (12b)

p = —és(V-w + aV-u),

where the ratio ¢/ becomes ¢p/p = 1/[ VK + (e -¢)/ $K ]. This factor multiplied by s yields
the coefficient F, given in Dvorkin and Nur (1993). Equation (12a) corresponds to the constitutive
equation (2) for isotropic conditions, which has been modified by introducing the squirt-flow
mechanism. In equations (12), & is the poroelastic coefficient of effective stress: « =1 - K/K, where
K is the bulk modulus of the drained porous matrix.

A new partial differential equation for the fluid pressure and the displacement vector
of the solid is constructed using the generalized Darcy's equation (4) and equation (11). Thus, after
some algebraic development, this new coupled wave equation in terms of the Biot and the squirt-flow
mechanisms is

Bu
==0. (13)

2
5,0, V2p - Bp + (0,5, —8361):72-—33&1V'u—(81&3—33&1) -

This equation for isotropic conditions and no squirt-flow mechanism, ie.
0,=6,=0,s =s,=1 and &,=8,=8& is reduced to

OVPp-Bp-&vV-u=0, (14)



where 6 = -K (w) / jw and & = o + p,w’0. Equation (13) is the same equation given in Parra
(1991) and Parra and Xu (1994).

The poroelastic system of differential equations including the Biot and the squirt
mechanisms associated with the displacement components u, = u,, u, = u,, U, = U5, and the pressure
p, is obtained by eliminating the displacement vector of the liquid U and the total stress tensor of the
porous medium o, between the constitutive equations (1), (3), and (4) and equation (13). This system
of equations is reduced to one set of three coupled partial differential equations associated with two
quasi compressional waves qP,,, and qP,,, and a quasi-vertical polarized shear wave qSV, and a
separate differential equation associated with waves polarized in the horizontal plane (SH-waves).
The poroelastic system of equations is defined by the displacement components u, and u, and the
pressure p:

8% & &
11 ﬁ * CM«SZ_Z + mzﬁx] u, * (013 + C44) % oz uz x%p}% =0
& u, P .
( 13 + C44) 3x az + [044 axz + 033-6_5 + (‘02 ﬁz}uz - &z% = 0 (15)
du, du 9 &
5,8 - 5,8, azz * [S3ex D) M ey B] p =0,
where:
8, = o, + @’ p;0,, (15a)
B, = p + W p? 0, ., (15b)
p = p,(1-¢) + dp, . (15c)
- K )
and 9, = ——”-(—w) for { =x and z. (15d)
Jw

The uncoupled partial differential equation is defined in terms of the displacement component uy:

2
il +c44—(?—+m2(3x u = 0. (16)

C
ox? oz Y

66

Plane Wave Solution of the Wave Equation Containing the
Biot and the Squirt Mechanisms

To solve the coupled system of equations (15) and the uncoupled partial differential
equation (16), a plane harmonic wave propagating in the (x, z) plane is assumed to be represented
by

(u,u,u,p) = (b, by, b,, P)explj (kx + z§)]. (17)



This expression for a plane wave propagating in an anisotropic medium is substituted in the system
of equations (15) to yield

nk? e, B - p o’ (C13 * C44)Ek &, jk
D (£, k) = Crn * C)EK [oask® + 8 - ,007) &, jE (18)
5,8,k 5,8, 5,0,k +5,0,8 + B

C

The wavenumber £, given by the determinant, D(k, £) = 0, are solutions of the dispersion equation
of third degree in £%, which is written as

g +pPE+PE P = 0, (19)
where
&Z 2 2 2 2
P, = + = + v+ x + q°, (192)
0,c5
2
&)
P B &Z l(262_c—'3x 0,¢5 + p* + f? (V2 s qz) ,  (19b)
44
S
and P = S—3 {i’czkz(k2 - wzﬁZ/cM)/ 0,c,, +£7p* , (19¢)
1
in which: v* = k? - w’f,/¢;;, (19d)
x* = k*- P, /c,, (19¢)
s.| O
e |52, B (199)
s} 9, 0,s,
2 = / Sl are, 6t - a1+ 2 /
€ =  C/Cy T Cyp 5 | % Cag @y = G L 5 (013 + C44) €, Cyy » (198)
1 1
q* = ki"[c:,ﬁ(c]1 - 2044) - 013(013 + 2044)]/(:33 Cyy > (19h)
and pr= o /eyl - B @t/ o )P - Bow?iey) (190)

The solution of equation (19) gives three independent complex wavenumbers (ie., &, i =1, 3)
associated with the quasi P-waves (fast and slow compressional waves) and the quasi SV-wave.
These waves are called quasi waves because they approach the fast P-wave, slow P-wave, and the
SV-wave as the degree of anisotropy of the permeability tensor, the squirt-flow tensor, and the
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porous matrix stiffness tensor vanish. The phase velocities and attenuation of the quasi compressional
(fast and slow) and the quasi SV-waves can be obtained directly from the complex wavenumber roots
(E,1=1,3)as

c(w) = o/real [( + k?)1?] (20a)

and Q"' = 2imag[(& + k?)"?]/real[(§] + k*)'?], (20b)

where k = wsin(§)/v, in which v is the phase velocity of the plane wave traveling in the (x,z) plane
making an angle & with the z axis. On the other hand, for a horizontal polarized shear wave motion
the propagation characteristics are obtained directly from the wavenumber given by

0o 12
ey = [—ﬁkz + w_ﬁ"] , 1)

Caq Caa

where B, = p,(1-&) +p, b + w? p? 6, . That is, the attenuation and the phase velocity of the
SH-wave depend on only the horizontal permeability.

As a check on the derivation of equation (19), phase velocities associated with wave
propagation through an isotropic poroelastic medium can be obtained directly from equation (19).
This can be done by replacing in the equations for the coefficients P,, P,, and P,,

¢y =Cp=A+20;0,=0,=06; & = & =&;

Ci3 = AjCy = Cgg = W5 Cy -
B, = B, =p; k, = k, =k;ands, =5, =s. (22)

In this case, A = (1 - ) &, and p = (1 - ) 1, in whichA andp are the Lamé constants of the rock
matrix. The substitution given in (22) yields the following third degree equation in &

@ +k2-kHE +k2-2) @ +k>-A) =0, (23)

where A, and A, are the wavenumbers associated with fast and slow compressional waves traveling
in a fluid-filled isotropic porous medium characterized by the Biot and the squirt mechanisms, and
k. is the wavenumber associated with the vertical polarized shear wave. These wave parameters are
summarized as follows

A= [0+ A)21'2,
A, = [(b - A)Y2]'2, (24)

k, = [w?p/p]'?,
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where

b = k) - & /(A + 21)0 - P/s6,
A = [b? + 4k ’B/sB]'2, (24a)
and kK = WP/ + 2) .

P

The squirt-flow parameter s is given by equation (9) for s, = s, = s, and the parameters& and B are
those recalled to describe equations (10) and (12). In this case, the phase velocities and attenuations
of the compressional waves (fast and slow) and the shear wave are given by

Vi = w/real (A,),
Qe = 2 imag (A,)/real (A,),
Vslow = (‘O/real (A-z),
Quow = 2 imag (A)/real (A,), (25)
\7 = w/real (k,),
and Q. = 2 imag (k.)/real (k,).

The solution of the cubic dispersion equation (19) gives the wavenumbers, from which
the phase velocity and attenuation of the quasi P-waves and the quasi SV-wave are determined to
analyze a transversely isotropic medium characterized by its permeability tensor, its squirt-flow tensor
and its porous matrix tensor. The elements of the squirt-flow tensor are coupled through the
coefficients of the cubic equation, namely, P, P,, and P,. This suggests that the phase velocity and
attenuation of the three quasi waves will be influenced by the elements of the squirt-flow tensor. On
the other hand, the wavenumbers associated with the poroelastic isotropic wave equation (23) show
that the quasi-P waves depend of the squirt-flow element s and the SV-wave is independent of s. In
this case, the SV-wave depends on permeability only through the Biot mechanism.

Extensions of the Present Solution and Potential Applications

The wavenumbers determined from the solution of the cubic dispersion equation (19)
can be used to construct expressions for the vector displacement components and the fluid pressure.
This can be done by expressing these wavefields in terms of unknown wave coefficients multiplied
by plane waves containing the quasi-wavenumbers. Such expressions will lead to the stress-
displacement matrix in which elements have the same characteristics as in a Green tensor. Once this
is developed, seismic waveforms can be calculated to predict fluid-pressure seismic signatures as well
as particle velocity (or particle displacement) signatures. In addition, this type of wave-field
representation can be applied, for example, to develop the boundary value problems of a plane wave
reflecting at a layer boundary (which separates two half-spaces of different anisotropy permeability),
and a plane wave propagating in a multilayered medium.

An application could be to examine a poroelastic anisotropic formation in which fluid
saturation and fluid contact boundaries (e.g., 0il and water) are considered. The analysis can be aimed
at evaluating how acoustic waves and their reflection coefficients at the boundaries are affected by
the degree of anisotropy of both porous matrix and the complex tensor permeability (as a function
of different angles of incidence between the direction of propagation and the principal axis of
anisotropy) when the Biot and the squirt-flow mechanisms are considered. In this case, it 18
reasonable to expect that there can be fluid exchange motions across the oil and water interface when

12



seismic wave motions are present. The interaction may affect the compressional waves and shear
wave velocity and the amplitude of the waves. This basic theoretical treatment represents the first step
toward a quantitative evaluation of similar effects 1n layered reservoir formations containing
hydrocarbons.

In addition, the present theoretical analysis can be extended to treat the boundary
value problem of a fluid-filled borehole surrounded by a poroelastic anisotropic formation which may
be represented by fractures oriented perpendicular or parallel to the borehole. This solution can be
used to produce full waveforms of wide-band multipole source excitations for acoustic signal
frequencies capable of providing high resolution fracture reservoir structure. Stonely waves and
flexure waves can be calculated when the squirt-flow mechanism is included in the solution to study
the influence of the permeability anisotropy on the phase velocity and attenuation of acoustic logging
signatures. This analysis may lead to the development of new algorithms to extract anisotropy
permeability from dispersion and attenuation data derived from sonic logs (dipole and monopoles).

Numerical Examples

The main purpose of the present analytical study is to relate the tensor permeability
to attenuation and dispersion of seismic waves for future developments of a Green’s tensor to
simulate seismic waves propagating in heterogeneous poroelastic media. The first step in the
numerical calculations is to check the solution for the attenuation and dispersion equations given by
equation (20), when the Biot and the squirt-flow mechanisms are included. In this case, we select
the same material property and fluid property parameters used in Dvorkin and Nur (1993). These
parameters together with P-wave and S-wave velocities of the porous rock matrix are given in
Table 1. At the same time as we check the solution, we analyze the effect of frequency on the
attenuation and phase velocity curves using the horizontal permeabilities k =1.25,2.5,375and 5
md, and the vertical permeability of k =1.25md. Figure 1 shows that as the horizontal permeability
decreases, the attenuation peak is shlfted to the lower frequency. In addition, when k = k =1.25
md, the attenuation and dispersion curves correspond to that of an isotropic poroelastlc medlum
which is the same example given in Dvorkin and Nur (1993) for k = 1.25 md. In general, both results
are practically identical with the exception that Figure 1 shows the phase velocity and attenuation
curves intercepting their corresponding vertical axis slightly higher than those intercepted in the
Dvorkin and Nur example. Fortunately, the phase velocity at lower frequency can be checked directly
using an equation given by Dvorkin and Nur (1993);

= [M/((1-d)p, + dpp) 12, (26)

where M is the uniaxial modulus, Thus, substituting the corresponding physical property parameters
given in Table 1 into equation (26) the resulting velocity V,, = 3.84 km/s is the value given in
Figure 1 for M = 35.48 GPa and p, = 2,650 kg/m’.

In the next example, we analyze the effect of attenuation of the quasi P-wave and the

quasi SV-wave on the directional permeability as a function of the angle of propagation with respect
to the vertical, which varies from 0° to 90°. The horizontal permeability is 1000 md and vertical the
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permeability is 100 md. In Figure 2, the different curves correspond to values of the frequency that
vary from 500 Hz to 4500 Hz by steps of 1000 Hz. In Figure 2a, the curves show that the quasi-P
wave attenuation (fast wave) is maximum at all frequencies for the direction of propagation
perpendicular to the vertical permeability k = 100 md. This suggests that the attenuation depends
on the direction of the propagation; the quasi P-wave attenuation will be maximum in the direction
of maximum permeability. Alternatively, the quast SV-wave attenuation is maximum at all
frequencies when the wave propagation is perpendicular to the direction of maximum permeability
(see Figure 2b). In this case, the quasi-SV wave attenuation is controlled by the maximum
permeability. These examples suggest that variations of attenuation of both the quasi P-wave and the
quasi SV-wave depend on the direction of the permeability of the formation.

In the final numerical example, we analyze the effect of attenuation of the quasi-P
waves on the vanation of the vertical and horizontal permeability, and the angles of propagation for
a frequency of 10 kHz and a squirt-flow length of 2 mm. The attenuation curves in Figures 3a-c,
were produced for angles of propagation of 30°, 45°, and 60°. Each set of curves was produced by
varying the horizontal permeability from 1 md to 100 md with steps of 1 md, and for vertical
permeability k, = 1, 10 and 20 md.

In this example, the curves show an increase of the attenuation to a maximum of 2 md
and a decrease of the attenuation as the horizontal permeability increases. In addition, the peaks of
these attenuation curves are sensitive to the vertical permeability and the angle of propagation. In
general, for the range of angles of propagation that we are considering, when the vertical permeability
increases, the peaks of the attenuation curves become smaller. In the case of angles of propagation
approaching the direction of the horizontal permeability, the attenuation is increased for values of k
greater than 10 md. For example, for this horizontal permeability value of 10 md and k =1 md, the
attenuations are 0.026 and 0.028 for the angles of 30° and 60°, respectively, and for values of k
near or equal to 2 md, the relation between the angle of propagation and attenuation is more d]fﬁcult
to predict. However, for practical situations in which the horizontal permeability is much greater than
the vertical permeability, the attenuation will be maximum for angles of propagation perpendicular
to the direction of vertical permeability. The example below describes a practical situation in which
the seismic waves propagate parallel to the direction of maximum permeability between wells.

Dispersion of Seismic Waves in a Fluvial Sandstone Formation in Oklahoma

To demonstrate the applicability of the present poroelastic solution, interwell seismic
waveforms recorded at the Gypsy test site, Oklahoma, were analyzed (Parra et al., 1994a). The
geology and the petrophysics of the Gypsy sandstone formation have been reported by Doyle and
Sweet (1995) and Parra, ef al., (1994b). Most of the petrophysical analysis given in Doyle and
Sweet (1995) was based on the Gypsy outcrop site which is located west of Tulsa. A brief
description about the Gypsy sandstone reservoir properties that may affect the seismic wave
propagation in the Gypsy sandstone is given below (Collier, 1994).

The Gypsy sandstone interval shown in Figure 4 is the strata between the regional un-

conformity on the Tallant marine sandstone and the flooding surface at the top of the Gypsy interval
(about a depth of 910 ft (280 m) in well 7-7). The Gypsy sandstone zone is composed of stacked
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channel-fill point bar sandstones, mudstone, and siltstone bodies. The Gypsy sandstone exhibits
significant variation in channel-fill sandstone thickness ranging from 10 m (32 ft) to 20 m (64 ft)
within a well separation of 150 m (Doyle and Sweet, 1995), and the mudstone and siltstone bodies
constitute the architectural elements on a scale comparable to those defining the channel sandstone
bodies. The well logs and core alone are not sufficient for demonstrating the degree of continuity of
those zones defining the channel sandstone bodies, and thereby the extent to which they are barriers
to vertical movement of fluids. However, pulse well-test data have demonstrated a good pressure
communication between sand bodies and no communication across the mudstone zones. An average
horizontal permeability of about 1640 md was determined from a Gypsy pilot-site hydraulic
conductivity study.

The results of the work of Doyle and Sweet (1995) have showed that the internal
arrangement of porosity and permeability within channel sand bodies is controlled by lithofacies
architectures, and differences in permeability among these lithofacies are related in part to
depositional fabric. Specifically, cross-bedded and planar-laminated sandstones have the highest
average permeability, whereas the average permeability of the mudclast and ripple-laminated
sandstone is much lower. For example, in the Gypsy sandstone outcrop, the average permeability of
the sandstone is three order of magnitude greater than the average permeability for the mudstone and
siltstones, which are approximately 0.33 md. Since mudstones have very low permeabilities, they
potentially exert a significant effect on the vertical permeability. The average vertical permeability ( EV )
is much smaller than the horizontal permeability ( Eh )yin the Gypsy sandstone.

To relate the permeability to seismic wave propagation characteristics, interwell
seismic signatures recorded for source-independent seismic attenuation and dispersion studies were
analyzed (Parra, et al., 1994a). Two seismic traces were selected for this analysis; the first trace in
Figure 5a was recorded in the receiver well 7-11 at 75 m from the source well 7-1, and the second
trace in Figure S5b was recorded in the receiver well 7-7 at 150 m from the source well 7-1. The
source and the two receiver wells are located in the same vertical plane. The receiver well 7-11 is
between the source well 7-1 and the second receiver well 7-7. Both seismic receivers were placed
at a depth of 296 m (970 ft) for a source placed at a depth of 300 m (984 ft). The spectra of the
seismic signatures are given in Figure 6. Energy loss can be observed in the spectra and in the phase
velocity dispersion curve which was calculated using the spectral ratio method given by Ganley and
Kanasewich (1980).

An example of a dispersion curve represented by a solid line is shown in Figure 7.
This curve is plotted together with synthetic phase velocity curves that were produced using the
modeling solution developed in this work. The material property and saturant parameters of the
Gypsy sandstone are given in Table 1. These parameters were obtained from well logs, interwell
seismic data, and core information (Collier, 1994; Parra, et al., 1994a; Doyle, 1992; and Brown,
1995). In general, the Gypsy interval is thick compared to the wavelength used in the crosswell
seismic experiments. At the Gypsy sandstone interval, the wavefronts seem to have an average value
which is characteristic of a thick interval. For this sand, there is not a big difference between the sonic
log data and the crosswell data. The Gypsy interval has an average velocity ( determined from cross
well data) close to the average velocity obtained by integrating the sonic log through the sandstone
interval. The velocity variations of these logs may be caused by the presence of heterogeneities or
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scatters having dimensions less than or equal to the wavelength used in the cross-well seismic survey.

In Figure 7, the theoretical curves were produced for vertical permeability values of
Ev = 1 md, and 5 md, respectively, and a fch = 1640 md. The analysis of the petrophysic data
suggests that the vertical permeability (1 md) is caused by the presence of mudstone and siltstone
bodies, which are barriers to vertical fluid movement, and the horizontal permeability (1640 md) is
controlled by cross-bedded and planar-laminated sandstone. The dispersion response calculated for
5 md is used as a reference curve to show how sensitive the dispersion is to vertical permeability. The
theoretical predictions show the influence of permeability anisotropy on the dispersion of seismic
waves. Since the seismic waves propagate parallel to the directions of maximum permeability
between wells, the dispersion values derived from seismic signatures are consistent with the
theoretical model. The differences between the dispersion data and the model data may be due to the
presence of heterogeneities captured by the phase velocity data derived from the seismic signatures.
Also, these differences may be caused by events (that are interfering with the direct P-wave event)
such as reflection and transmission effects produced by the presence of boundaries. The present
solution can be described as a first-order method in determining the phase velocity distribution
associated with permeability anisotropy in the Gypsy sandstone formation.

CONCLUSIONS

The analysis of elastic wave propagation in transversely poroelastic isotropic media
including the Biot and the squirt-flow mechanisms has provided a new partial differential equation
that relates the fluid pressure to the dilatation of the rock matrix and the elements of the squirt-flow
tensor. The solution of the new coupled poroelastic wave equation was used to demonstrate how
the attenuation and dispersion of the quasi-P and quasi-SV waves can be related to the permeability
anisotropy . Model results show the sensitivity of the directional permeability on the attenuation and
dispersion, in particular the decrease in attenuation when the wave travels perpendicular to the
direction of maximum permeability. A field example of wave propagation in the fluvial Gypsy
sandstone reservoir shows the behavior of the vertical permeability on the dispersion curves which
explains the fluid flow characteristics between the wells at the site. The analytical solution predicted
the dispersion of the seismic waves traveling in the sandstone reservoir and predicted how dispersion
relates to permeability anisotropy. The solution can be easily extended to determine the pressure and
the vector wave field by simulating synthetic seismograms and to develop the boundary value problem
of a plane wave propagating in a multilayer medium. These extensions are presently under
development and will be reported in the near future.
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Table 1. Formation and Saturant Parameters

Example Ks P VO o Ve Vo o n b
GPA  (kg/m®)  (m/s) (my/s) (m/s)  (kg/m®  poise %

Dvorkin and
Nur Model (1993) 38.0 2650 3969 2547 1500 1000 0.01 15

Gypsy Model 37.9 2750 3149 1683 1500 1000 001 23

*The parameters Vp, V, and V, are the compressional and shear wave velocity of the rock matrix,
and the compressional wave velocity of the fluid, respectively.

CAPTIONS

Figure 1. The effect of frequency. a) Phase velocity; b) attenuation (Q') for horizontal
permeability, 1.25, 2.5, 3.75, and 5 md; and vertical permeability, 1.25 md. Squirt-flow length,
R; =R, =1 mm.

Figure 2. The effect of angle of propagation. a) Quasi-P wave attenuation, and b) quasi-SV wave
attenuation for frequencies between 500 Hz - 4500 Hz. The horizontal permeability Eh = 1000 md,
and the vertical permeability k= 100 md. Squirt-flow length, R, =R, =1 mm..

Figure 3. The effect of the tensor permeability. Attenuation versus horizontal permeability for
vertical permeability Ev = 1,10 and 20md and angle of propagation of a) 30°; b) 45°; and c¢) 60°.
Squirt-flow length, R, =R, =2 mm..

Figure 4. Well log display for well 7-7, Gypsy site, Oklahoma: core permeability (PERM), gamma
ray (GR CORR), p-wave velocity (SONIC VE), density-neutron crossplot porosity correlated for
shale volume (DNPHISHC) and core porosity (CORE PHI).

Figure 5. Common-source waveforms between wells (a) 7-1 and 7-11; (b) 7-1 and 7-7. Source at
a depth of 300 m and detectors at 296 m,

Figure 6. Spectra of the common source waveforms given in Figure 5.

Figure 7. Comparison between observed and calculated phase velocity curves. Observed dispersion
curve determined from the spectra given in Figure 6. Squirt-flow length, R, = R, = 5 mm..
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B. Analysis of a Lavered Transversely Isotropic Poroelastic Medium (LTIPM)
to Incident Plane Waves

The theory of propagation of elastic waves in fluid-filled saturated anisotropic porous
media has been modified in accordance with the homogenized theory by Kazi-Azoual®®, et al. 1988,
which introduces a second rank complex tensor permeability. The constitutive relations and balance
equations of the modified Biot theory in the frequency-domain are:

1. Classical Biot Equations

Constitutive Stress-Displacement Laws

(1) Total stress in the porous medium

t=Ce - ap (1)

(ii) Stress in the pore fluid

T < _¢P6ij = %[%+¢V~(U—u)]6ij )

Momentum Balance Equation for total stress

ot..

.87‘; = V1 = -o’[pl-P)u+dpU] 3)

Generalized Darcy Law

w = Cb(U;u) = ——Kli)—w)[w"’pf u-vp] (4)

where

= strain tensor of porous medium

= stress tensor of porous medium

= solid frame stiffness tensor

= second-rank elastic tensor

= fluid pressure

= compressibility coefficient

= displacement vector in the solid frame
= displacement vector in the pore fluid
= pOrosity

= solid density

o-CEm™Oa @A

B
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Pr = fluid density
K(w) = second-rank complex tensor of permeability

2. Basic Equations for TIPM with z Being Axis of Symmetry

In this case, C 1s given by

C, Gy G 0 0 0
ClZ Cll Cl’% 0 O O
C. G, Gy o o0 0
(9
0 0 0 C44 0 0
0 0 0 0 C44 0
0O 0 0 0 O C66
where we have defined
1
Ces = E(Cu'clz) 6)

In the rest of the text, we use alternative notations {x, y, z} for {x,, x,, x;}, and
{u, u, u} for {u; u, u;}.

The coupled system of equations for u,, u, and p is

&0 & &  —ap_
(Cirgz Cuga il B+ CurCmgre, e =0
azux 62 82 _ —3
—ou ..du 82 82
-0, —-c.,——+[0 3] - =0
! ox } Jz laXZ 38Z2 [3] P

where
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& - 4o, O
p, = prw’p; 6,
p = Ps(l“(b)’“(bpf (8)
K.(w
o - K@
iw

1=13

The uncoupled equation for u, is

F o F =
periie et d U T ©

[C66
3. Plane Wave Solution for TIPM with z Being Axis of Symmetry
Assume that
{u, U, U, P T ={u, u u pl"expli [x sind + z cosd - ct]}  (10)

Yy z

where ¢ = w/£1is the phase velocity and k=£ sing is the wavenumber in x-direction. Factor exp(-iawr)
will be omitted in the rest of the text.

The above expression satisfies the equation of motion in x;-x, plane if

¢t + ctf(w,d) + clw'f (w,d) + 0 (w.d) = 0 (11)

where fy(w,$), f,(w,$) and f,(w,P) are given in Appendix I. The three roots of ¢? defined by the
above equation are denoted by ¢,’, ¢.%, and c,*.

For wave motion in x, direction, the phase velocity is given by

coc - Cﬁﬁsinzq)iCMcoszcb a2
Px
where
P, = p(1-0) + pr & + wlpg B (13)

The propagation wavenumbers associated with the quasi-P waves (fast and
slow compressional waves), quasi-SV wave, and quasi-SH wave are then obtained as
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€ = 1(2—(192/c€2
Y = kz—ooz/c.{2
v = Jk2-o¥c]

In the isotropic case, Eq. (11) is reduced to

AZKZCS - AT AT AR + ot (ATHAsek D) -

which can be further reduced to

kZc2-w?) (Alc?-w?) (Ac?-w?)

where
2 .2 2
AT+AS = k-
S TV R
2
kB
M = g
k2 = _“_’i’_
s u—
2w
kp =
A+2U
and
A =C,
H=Cy = Cg
A+2u = Cy = Gy
0 =0, =6,
i-5
P=p =P

Equations (1-18) can be found in Ref. [1].

(14)

(15)

(16)

17)

(18)



4, Basic Equations for TIPM with x Being Axis of Symmetry

For wave motion in transversely isotropic, poroelastic media with x-axis being
the axis of symmetry, the basic equations may be obtained similarly. In the following, label 3 in the
elastic and poroelastic constants remains associated with the symmetry axis of transverse isotropy of
the material. However, this axis of symmetry coincides with the x-axis of the coordinate system. In
this case, C is rewritten as

c.. C,C. 0 0 0]
Cl”» C]I C12 O O O
c., C, C 0 0 0
13 Y12 (19)
0 0 0 C, 0 0
0 0 0 0 C, O
0 0 0 0 0 C,
The coupled system of equations for u,, 1, and p is now given by
3 J? — & _—Bp_
[Csa‘é‘;‘*CMa—Z{”‘) psl U, + (C13+C44)%“z 0‘3‘5;“
“u & P =0
(C,.+C,)—= + [C,,—+C,,—+u’p,] u -a Py 20
K L [448)(2 3, Py '3, (20)
—du, —du o? P
-0, ——0,—+[6 +0 - =0
e 132[38)(2 1azz Bl p
which leads to
Cyk 2 "LC44C2 _wzp_3 (Cp5+Cy kL ik&; u, 0
(C,+C K (Ck2+C, (*-w’p)) iCor, u =10 (21)
ke, iCe, 6,k2+8,¢2+p| | P 0
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And the uncoupled equation for u, is

[C iz_+C _‘.?3'_+(l)2_p—] u =0 (22

5. Plane Wave Solution for TIPM with x Being Axis of Symmetry

Again, we assume a plane wave solution:

fu, U, U, PIT={u u u p 1T explif [x sing + z cosd - ct]}

x y z

The above expression satisfies the equation of motion in the x-z plane if,
similar to Eq. (11),

¢t + ctwlg(w,) + ¢l (w.d) + wg(w,d) = 0 (23)

where gy(w,d), g,(w,d) and g,(w,P) are the same as f(w,P), f(w,$) and f(w,P) given in the
Appendix A, except that C,; is switched with C;; in the elastic constants, and subscript 1 with 3 in
the poroelastic constants, and vise versa. The three roots of ¢* defined by the above equation are
again denoted by ¢,?, ¢.* and ¢ ”.

Denote
1
6 = (k2_ (1)2)?
c 2
3
9 1
e = (k22 (24)
c
€
!
y = (1<2__‘*’_2)5
C

Then Eq. (23) can be rewritten such that these roots are expressed in terms of wavenumber k
instead of ¢:

P ()(° + P,()C* + P,(k)C*+ Py(k) = 0 (25)
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where {* represents the three pairs of roots, -8%, -€%, or -y, and

Pﬁ(k) = 91
N
P, (k) = == + S? + 8,(c®+x*+q?)
¢
— —
o w
Pyk) = ——(k*n? - pg) + 0,p2+s¥(a’+x*+q?)
S 44
4 2—
o w
P(k) = —(k2- Py, $7p?
C” 44
—
o = k220
Cll
05 (26)
X2 - kz_(‘) Ps
Cis
s? = 03k2+[3
112 = —(331 + El.l_ E?.)z _ 2_013_C13+C44
Cas Cua 06_1 0‘—1 C,
q2 — k2[C33(C33w2C44)WC13(C13+2C44)
L C11C44_
, Gy KP-wp, 2_w2p3
p* = =)k ——)
Ciy Cy C,,

In the elastic case, all the poroelastic constants vanish and 0, becomes a
common factor of all four coefficients of the cubic equation. As a result, the cubic equation is reduced
to a quadratic equation (P,=0).

For wave motion in the y direction, the phase velocity and wavenumber are

given by
. C,,sin*$+C, cos’Pp
P @7)
2 —
v = (k2-2)2
C 2

v
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6. Propagation of Plane Waves within the x-z Plane in LTIPM with x Being
the Axis of Symmetry and Interfaces Parallel to the x-y Plane

The plane wave assumption defined by Eq. (10) allows the following form of
solution for the four primary response components in a layer of the LTIPM.

fAle_az\
Aze—EZ
(w ) [t 1 101 1 1 oM™
o (000 010 0 0afjae]
< > = 1 r e (28)
u, R, R, R, 0 Ry Rg R; O Asea’Z
b)) 12 Q000 Q o,
AeT*
[ As™ ]

In Eq. (29), A, is the unknown coefficient associated with the j-th wavenumber
in the z- direction, R; = u,/u,, and Q, = p/u,, where the subscripts, j=1,2,3...8, are corresponding to
the three pairs of roots for {? and one pair of roots for v2. In each pair, the negative sign represents
down-going wave and the positive sign represents the up-going wave.

These two ratios, R; and Q,, can be obtained from Eq. (21), namely,

R—A Q—AQ 29
= T (29)

R
j] A )

where

A = a,a,;-a,0,,

Ap = 22,722,

AQ = a5, a3y,

4 = C44k2+C11C2_°’Zp_1

8y = ia—lc G0
a3 = i&—lc

a3 = 631(2"*61C2+l3

2, = (C,+Ck¢

2y = ika,
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The stress and volumetric flux components are defined by Eqgs. (1) and (4) as
functions of the above primary response components, {u,, u,, u,, p}; hence they can be expressed in
terms of the unknown coefficients A;, j=1,2,...8. In obtaining these expressions, the following rules
have been applied:

d . .
w— = ik — =1 = %0, 7€, FY, FV
™ ¢ Y (31)

These expressions are given below.

r 3

t. ] [P, P, P, O P, P, P, O] (e )
w| (000 0 s 00 0 S]],
| LT 0 TITT, 0
| |0 00U 0 0 0 Uy peo
$t, =1V, V, V., 0 Vo VoV, 04 Ao ¢ ks (32)
| [0 0 0w, 0 0 0 w7
w| % x % 0 x %, % o
wl {000y, 00 0 v]||*"
w, ) |22, 2 0 Z 2,2, of (AT

where
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Pl :C33ik _C|36R1 —0‘_3Q1 P2:C33ik_C13ERz “&:Qz p3 :C33ik_C13Y R3 "E;Qa

P.=C ik +CdR-a,Q, P =C,,ik+C .€R, "E.;Qs P,=C,,ik+C YR, —_OQQ7
leclsik_cllaRl_a_lQl T2=C13ik*C”eR2—a_lQ2 T3=C13ik_C117R3”°‘_1Q3

T,=Cpik+C8R,-aQ;  T=C ,ik+C eR-eQ;  T,=C,;ik+C, YR, -e,Q,

V =C, (-8 +kR ) V,=C,(~€+KkR,) V,=C,,(~y +ikR,)
V,=C,, (5 +ikR) V,=C, (e +ikR,) VG yeikR)
X, =a,+b,ikQ, X,=2,+b,ikQ, Xy=a,+b,ikQ,
X ;=a, +b,ikQ; X =2, b,k Q; X, =2, 7b,1kQ,
Z,=aR,-b,8Q, Z,=aR,-b,eQ, Z,=aR;-byQ,
Zy=a,R+b,0Qq Zg=a,R;+b,eQ; Z;=aR;+b,yQ,
S, = 0 S,= 0 U, = -Cyv U, = C v
W, = C, ik W, = C, ik Y, = g Y, = a,

The definition for a, and b,, I=1,3, can be found in Appendix L.

Alternately, we can also let u, instead of u, be the denominator of the ratios.
In this case, the first and third rows of the matrix in Eq. (28) are exchanged. In addition, Eq. (30)
should be revised accordingly. It should be pointed out that this is a better alternative when the
amplitude of u, is small or vanishing, which will occur when k or ¢ is small.

7. Propagation of Plane Waves Within an Arbitrary Plane in TIPM with
x being the Axis of Symmetry

This is a three dimensional problem involving u,, u,, u, and p. The equation
of motion is given by
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ax Jy Oz ax ot?
gt. dt,. Ot, _d%
LA )’)’+ YZ ~a]@ — : 2}'
ax dy 0z ay at (34)
dt, ot, ot, —gp —o,
+ + -,— =
ox dy oJz ‘oz P ot?
—ou_ _au —Jdu a2 2
o,—-0,—-0, + [0, +0, + -B] p =0
ax ay oz ax? ay2 Z
which can be rewritten as
) 2 & o%u, azu —ap
C,.—+C (————+—+(o ]u + (C,,+C —) - @, =2=0
: Toxt  May? g2 s B 4)(6 oz ax8y *ox
dtu du, 2 2 2 _ —
(Cp+Ci)—— + (C(+C}) + [Cyy 0 +Cy) J +Ces 0 +w’p,] u, - 0‘16_[):O
axdy “ dyoz ax? dy? gz2 oy 35
d*u, Fu, o i P P .
(C13+C44)@ M (C12+C66)§),_8_ " [C44a 2+C668y2+cllaz roplu, - ===
—ou, _au —ou 2 2 2
S Siepiit Syt RN W AY W AT N | [
ox ay oz ox y Z
Consider plane waves of the form
(u, U, U, PJT=1{u, u u, plexpli §x+Ey+{z-ct)] (36)

Now that the incident wave is no longer in the x-z plane, the roots of Eq. (25) are associated with
wavenumber in the direction along the intersecting line formed by the plane of the incident ray and
x-axis with the y-z plane. However, owing to the isotropic nature of the y-z plane, it can be shown
that ¢? in this section may be obtained from (? solved from Eg. (25) by adding a term (-£,).
Similarly, Eq. (23) must be generalized to the following form

c® + clwh(w.$,0) + c?w'h(w.0,8) + why(w,$,0) = 0 (362)

where 0 is the azimuth angle. Coefficients of Eq. (36a) are given in Appendix II.

Substituting Eq. (36) into Eq. (35) yields
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CL 24, B r-0%,  (CyeCliE, (Cp+Cel i€, @,
(C,5+C ), Cfr+C, B +Coe 2 -w7p, (C,p+Codrl i€ty
(Ca+CuE L (Cp+Ceel C o +Ceef3+Cy -, ite,

i€,y iE0, i, 8,€;+0,E;+()+p,

x{ux u, u, p}T={0 00 0}7

(37)
Accordingly, u,, u,, u, and p may be expressed in terms of eight wave coefficients:

Ale -6z
Aze —€Z
(v ] [t t 1 0 1 1 1 o][Ae”
K,R I xR. xR 1 -vz

‘uy T KGR, KR, Rs KRy KGR, 4A4€ o iEEy  (3g
u, R, R, R R, Ry R R; Ry Aseéz
| P | _Ql Q Q@ 0 Q& Q ©Q O_ A
Ag
Asevz

In Eq. (40) «;,j=1,2,3,5,6,7 are the ratio u, / u, for fast and slow quasi-P waves and quasi-SV
wave. R, Ry are the ratio u,/u, for the SH wave, respectively. Because of the symmetry of the elastic
and permeable properties in the y-z plane, we have

K, = a-l.E_2 = —1§ K, = HIE
) € Y
£ & N
K = 1§2 K, = 1—;:2- K, = 172 (39)
R =-Y R =Y
4 152 ] lgz
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Coefficients {R,, Q,}, i=1,2,3,5,6,7 in Eq. (38) represent {u,/u,,p/u.}. They can be obtained
from (37), dividing the two sides of each equation by u, and substituting { by i, ie, iy, -i, -ie, and
-1y, respectively.

R - Ar Q. = 2o i=1,2,3,5,6,7 (40)
! A ! A
where

A= a0,
Ap = -aya,,+a,a,,
AQ = Tay85078y, 8y,
430 = A3 FKdy,
a40 = 3.43+1(ja42
ay = (C+CpE €
43 = (Clzzccé)ng . (41)
A3 = C44£2+C66E2+C11C2_m2p1
Ay = iC0‘_1
4 = 161-0‘_3
4y = iﬁza—;
A3 = iCa_l

gy = 93E?+61(€§+C2) +f

and j=1,2,3,5,6,7.

8. Propagation of Plane Waves Within an Arbitrary Plane in LTIPM with
x being the Axis of Symmetry and Interfaces Parallel to the x-y Plane

Denote the incident angle by ¢, azimuth angle by 0, the angle between the
incident wave and the symmetry axis of the transverse isotropy (x) by ¢,, and the angle between the
plane of the incident ray and symmetry axis with z-axis by ¢. Clearly

£, =k, sinp cosd

£, = k, sind sind (42)

It can also be shown that the relationships among these four angles are given

cos¢, = sing cosd (43)
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and

singr = sin¢ sin® (44)

It should be noted that angle ¢, can be used to replace ¢ in Eq. (11) to obtain the phase velocities
which are identical to the result given by Eq. (23a).

The general expressions of all stress and volumetric flux components in a
three-dimensional case are given by

ou_ W
Txx ’ Csa Cp C13. ox &;
Jdu —
<Tyy = C13 C“ C12<_§.yl ?upial >
) [Cs Cn Cyy, ou hE;J
. aZ .
( auy du, ‘
—
rtyzl Ce O 0] oz dy
Je tolo ¢, o 2%, 9% (45)
dz ox
[ Tyy 0 O C44. ou. auy
—
| dy oX
b, 22
rWX 1 ra3uX ax
LAEREAH >+<b12—§ 4
Wz aluz
{ . bl_6£
oz |

Substituting Eq. (38) into Eq. (45) provides the following:
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where

Txx P, P, P P, P
T,y G, G, G, G, G,
o | AT, T, T, T, T,
o, | v, U, U U, U
1T (= Vs Vo Vi V, Vs
o | Wow,owow, W,
W X, X, X, 0 X
w | Y, Y, Y, Y, Y,
| W, _Zl Z, Z, 7, Z

P,=C,,if +C ,(i,x, -8)R,-,Q,

P,=C,,if, +C (i, -Y)R, -, Q,

P,=C..if, +C ,(iE Kk, +€)R, -, Q,
G,=C i€, +(C, i, x,-C,,0)R -, Q,
G,=C i€, +(C i€k, -C, YR, _ETQB
G, =C i, +(C, JE,k +C,,€)R~t, Q,
T,=C,i, +(C,,i,x,-C,,8)R, ~¢,Q,
T, =C i, +(C,iE1,~C) YR, _El_Q3
T,=C i, +(C,,i,k +C, €)R ~t, Q,

P, P, Ps- rAle oz |

G6 G7 GS A2€ -€7

T, T, Tq At

Uy U, U Aee |
V, V. V.| e SRIAERY
W, W, W [] 7

X, X, 0|]|*"

Yf, Y7 Y8 A73Y7_

Z, Z, Z,| | A7)

P,=C,,i£ +C (i€ k,-€)R,e,Q,
P.=C,,if +C (i€, x,+0)R, -, Q;
P =C_,if +C (i€ x,+y)R -2,Q,

G,=C it +(C,,it,x,-C ,e)R, -0, Q,
G,=C i +(C, ¥,k +C,0)R;-a Q.
G,=C ,iE, +(C,, ik, +C , V)R, - e, Q,
T,=C i, +(C ,iE,x,-C, ©)R,-¢,Q,
Ty=C i, +(C i,k +C, 8)Rs~0t, Qg

T,=C 518, +(CLiE K, +C YR, _E-I-Q7
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U, =2C, &R, U,=2C, iE R, U,=2C,E R,
U,=2C, iE R, U, =2C, i R, U,=2C R,
V,=C,(-8+ER,)  V,=C(-e+iER,)  V,=Ch(-y+ERy)
V.=C,(5+ER)  V,=C,(e+iER)  V,=C,(y+ER)
W, =C i€,k R)) W,=Ci€,+E,R) W, =C,,i(€,+€,,R)
W=C (£, +E ksRy) W=C i€ +E K R,) Wo=C, (g, +E 1R,

X, =2, +b;1,Q, X,=2, by, Q, X472, +byi€, Q 4
X =a,+b,ig, Qs X =2, +b,iE, Qg X,=a,+b,i€,Q,
Y, =a kR +biE,Q, Y =a kR +bii6,Q,  Yi=akR,+big,Q,
Yo=a,kRo+bii6,Qs Y =2k Ro+biE,Qq  Y;=a;kR,+bjig,Q;
Z,=a,R;-b,5Q, Z,=aR,-beQ, Zy=aR,-b ¥ Q,
Zs=a,R+b,dQ; Z,=a R +beQ, Z,=a R, +b yQ,
and
P, = Cj3(if,-VR) Py = C5(i6,+VRy)
G, = Ci&,-CpVR, Gy = Ci€,+C,,vRy
T, = C,ig,-Cy VR, Tg= Cp,i€,+C VRs
U, = Ceo(-v+iE,R)) Ug = C(v+E,Ry)
V, = C &R, Vg = Ci€ Ry “
W, = C, i, W, = C %,
Y, = 4 Y, = 3
Z, = aR, Z, = 3R,

It is noted that the boundary conditions for waves in LTIPM require the use

of {uy, Wy, Uy, P Trp Taes T Wa ke
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9. Response of the LTIPM to Incident Plane Waves

The above analysis provides the formulation for the wave motion in a layer of
the LTIPM in terms of its eight coefficients. The response of the entire layered medium to incident
plane waves poses a boundary value problem in which the following equation is satisfied:

+ + * + + + + T
{u(" DoE D L@ e @D e e () }

X y Z p XZ yz 7z z
B (n) (n) (n) () () (n) (n} @ T
{ u” uw” ou” p® T o) T w, (50)

={0 00000 O0O0}"

where n=1,2,...N are labels of the layers. The matrix corresponding to these components is denoted
by [m]. ‘

Finally, this boundary value problem can be reduced to a linear system of
equations (see Ref. [2])

[M] {A} = F (51)

where {A} contains unknown coefficients A, j=1,2...8, from all layers and/or half spaces. Matrix [M]
is assembled from [m] of all layers and/or half spaces. The right hand side vector, {F}, is given and
is dependent upon the frequency, property of the source medium, type of indecent wave, and incident
and azimuth angles.

10. Scaling the Incident Plane Wave

In the right hand side vector {F} of Eq. (51), the discontinuity, if any, of the
displacement and stress components at the top interface due to the incident wave must be provided,
using the expression in Eq. (17) for a given non-zero A, (fast P wave), A, (quasi-SV wave) or A,
(quasi-SH wave) and vanishing A,, A;, Ag, A; and Ag. Clearly, the result of Eq. (51) is proportional
to these constants. It is then necessary to scale the incident wave, i.e., define the displacement-stress
field in a unbounded medium caused by the incident wave with a unit amplitude. To this end, each
column of the matrices in Egs. (38) and (46) can be multiplied by a specific factor such that when the
medium is reduced to the isotropic case, the result should be identical to that for an isotropic case
subjected to incident fast P, quasi-SV, or quasi-SH wave with a unit amplitude potential. The
simplest way to accomplish this is to use factors i&,, i€, i€,q,/qss, and 1 for columns 1, 2, 3, and 4
respectively, where

C,,+C
43 = _______.mp 44(”“Y2+E§)
N O ) ©2)
w - ——E|-—(-y*+&)
p P

J33
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The same steps are also applied to columns 5, 6, 7 and 8. It is noted that under the isotropic condition
and for 0=0, q,+/q.=-C,¥E,>. As a result, it can be shown that the matrices in Egs. (38) and (46) will
be consistent with the standard form in the isotropic case when 6=0.
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APPENDIX 1
Coefficients of Eq. (11)

61 . 0,
fo(w) = [Fsmzd)hb;cnszd)]uw) (A-1)

0
L sint -2 Jeos*
kl] k44v B k44h k33
Lovng o oq O3 b 1 o p
—l— +~2—]sm deos d)———[—2+—2—]sm deos ¢
p Koo Kaz kit Kigy
0 20, ¢

. A L[ ]2 —%] L3 sin’dpeosid
LS¥ p LY N €8,

0 2. O
1 [ sinb 12 +coszd)] LG
klzlﬁ Ky  Kis Ci®,

—
1 83rsm2¢ cos cb] ty

f(w) = L{w) - —

(A-2)

Aol
’ k2B k) ok, Cab oS
44n 73
f) - 1 p2g? ‘3>k B
2 - 1184y ™ 44v
Bk“l<44V 1 e1(:11 el
(A-3)
o9 k2, ‘3> (—2 B yjcosep
33\8gq4n " 44h 6
ﬁ 13 44h 333 3

sm2 cos’d. sin’p _ cos? 1 1 2 .
Liw) = (328, oS0y s 008y L. L2 jeossin’d (44
Ky kg, Ke k'n k 21( Keakar Keanks

49



2 p,w 2 p,w 2 p,w
kjy = (11 ki = (]: k, = T _C. ch
“11 44 i3 44
— 2 — 2 — 2 (A-5)
2 PW 2 Py 2 Py
ki C Kiw = b~
1 Cis Cp,+2C,,
o 2.2 - _ 2.2
py = propid,  py = propd,
-&‘1” = o, +w’pf, 0‘_3 = o, +w’p B,
0, = K (w/iw) 6, = -K,(0)(iw) (A-6)
8, = wpB, a, = wpf,
b, = -6, b, = -6,
where K (w), {=1,3 is defined in Ref. 1.
R(q) = (Cy+C,)(0,K%-0,47+B) a1,
(-C,k2+Cpq 2070, )(B k2 -6, 2+ )+, ’q an

ok 2-0,q %k *R(Q)

S(@) =
61k2—83q2+B
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APPENDIX 11
Coefficients of Eq. (36a)

hy(0,$,8) = Asin®dcos’® + A, (sin’dsin®0 +cos’d)sin*dpeos*d

+ Asin*peos?B(sin’dsin®0 +cos’d)’ + Ay(sin*Psin®® +cos’p)® (B-1)
where
8@ 1
A(, = —l—3— 2
4h _
E— 1 6,
A, = — + —W(w)
B xiks, B
9_3 18
A =2 + —LW(w) (B-2)
B ikl B
) 5 1
K2
B 4v
Wiw) = 212_ 212+ 222
k33kl 1 ka kh k44hkb
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hy(w) = Csin®Ppcos?® + C (sin*dpsin’0 +cos’d) (B-5)

where
8 o
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C. Responses of Seismic Wave Propagation in Poroelastic Media
Having Azimuthal Anisotropy

The qualitative evaluation of the preferential directions of fluid flow in formations
containing hydrocarbons is of great importance in the characterization of fractured reservoirs. Such
preferential directions are related to the permeability anisotropy of the reservoir. Reservoirs are
considered to be anisotropic when they possess significant variation in physical properties (porosity,
permeability, wettability, etc.) in three dimensions. The permeability field at a given point in the rock
can be treated as a second-order tensor in directions coincident with the principal permeability planes.
In particular, the presence of vertical parallel cracks and fractures in an isotropic rock matrix leads
to azimuthal anisotropy, which can be described by a transversely isotropic model with a horizontal
axis of symmetry (Crampin, 1985). Azimuthal and incidence variations in P-wave attenuation and
phase velocity from reverse VSP, cross-well seismic, and acoustic logging data have the potential
to infer parameters associated with the fracture conditions of a reservoir. Recently, analytical studies
to relate the tensor permeability to attenuation and dispersion of seismic waves has been conducted
by Parra (1996). The results of Parra’s work has lead to the development of an analytic solution that
estimates the elements of the tensor permeability by modifiying the constitutive relation of the stress
tensor in the pore fluid (Biot, 1955 and Biot, 1962). This constitutive equation was modified to
describe the Biot and squirt-flow mechanisms for transversely isotropic poroelastic media. In
addition, a field example was presented to test the model and to relate permeability with seismic
waves propagating between wells at the Gypsy test site, Oklahoma (Collier, 1994; and Parra, et al.,
1994). In this field example the horizontal permeability was controlled by cross-bedded and planar-
laminated sandstones having an average permeability about three orders of magnitude greater than
the average vertical permeability, which was associated with mudstones and siltstone bodies
(permeability barriers). In this case the permeability anisotropy was described by a transversely
isotropic model with vertical axis of symmetry.

In this paper, we present the theoretical solution of acoustic wave propagation in
poroelastic media (including the Biot and squirt flow mechanisms based on the work of Dvorkin and
Nur, 1993) to relate the directional dispersion and attenuation of P and S-waves with azimuthal
permeability anisotropy. In addition, numerical models are used to evaluate the sensitivity of
attenuation and phase velocity to permeability anisotropy for several azimuthal variations and angles
of incidence in the frequency range of cross-well seismic measurements and high-resolution reverse
VSP (Owen and Parra, 1993, and Parra, 1995).

Theory

The formulation of the transversely isotropic poroelastic wave equation including the
Biot and the squirt-flow mechanisms is based on the constitutive relations (i.e., the total stress tensor
of the anisotropic porous medium and the stress tensor in the pore fluid), the momentum balance
equation for total stress, and the generalized Darcy’s law, in the framework of Biot’s theory. These
equations in the frequency-domain (assuming exp(-jwt) variation) are (Kazi-Azoual, ez al., 1988;
Parra and Xu, 1994):
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In these equations, ¢ is the total stress tensor of the saturated porous medium; € is the strain tensor
of the porous medium; p is the fluid pressure; ¢ is the porosity; u and U are the particle displacement
of the solid and the fluid, respectively, p, and p; are the solid and fluid densities. In addition, ¢ is the
solid-frame stiffness tensor containing five independent drained elastic coefficients (i.e., Cy;, Cjp, Cy3,
Cu» and c,;). The poroelastic coefficients of the effective stress of the second-rank tensor ¢ (which
are obtained at zero pore pressure) are given by

(52)

o 1-(cy, +012+013)/3KS,

1 =

and o, = 1-(2,, + ¢3) /3K, (Sb)

where K_ is the bulk modulus of the grains. On the other hand, p is the compressibility coefficient
determined under undrained conditions, given by

B = /K, + (1-d)/K ~[2(cy *Cpp + 205) + €3]/ K7, (6)

where K, is the fluid bulk modulus. In the last equation (4), w is the displacement of the fluid relative
to solid, and K (w) is the frequency-dependent generalized Darcy’s tensor described by two per-
meability constants. After Biot (1956), Biot (1962) and Schmitt (1989), the Darcy’s elements, K (),
in terms of the complex permeability elements, (), for a low-frequency range are given by

_ K (w) b [pa/pf + ¢ . jo, !

-1, (7
n wp; ¢ ® :

whcreﬂﬂ = ___'ﬂ_(L . for! = 1 and 3, and p, is the additional density due to fluid (Biot, 1956).
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The parameter 7 is the viscosity of the saturating fluid, and Ep 1s the intrinsic permeability along the
principal direction (.

The total pressure for a 3D wave motion including the Biot and the squirt-flow
mechanisms in a transversely isotropic medium in terms of the displacement of the fluid relative to
the solid, w=d(U-u), is given by (Parra, 1996)

1 W, i 1 ou,
p = —E $,V-w + (s;-5,) = ~-§ s, ¢, V-u + (s3ocl~sloc3)—a-; . (8)

where the elements of the squirt-flow tensor are given by
2).(y,R)
” YRI(YR)

in which
Y2 = pfwz[pa/pf N ¢ + &
@B b ®

*

®
©_ _nd cfor0=1,3,
W

kgpf(o

and R, is the squirt-flow length for ¢ = 1, 3.

For a transversely isotropic medium having the axis of anisotropy in the x-axis, the elements of the
squirt tensor, s, and s, are oriented in the x and z directions, respectively.

Plane Wave Solution of the Poroelastic Wave Equation

The poroelastic system of differential equations associated with the vector wave
displacement and the fluid pressure is obtained by eliminating the vector wave displacement of the
fluid and the total stress tensor of the porous medium, using the constitutive equations (1), (3), and
(4) and equation (8). This system of equations is reduced to one set of four coupled partial
differential equations by assuming a poroelastic medium axially symmetric about the x-axis:
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In order to solve the coupled system of equations (9), a plane harmonic wave in an arbitrary (x,y,z)
plane is assumed to be represented by

(u, v, u, p) = (U, U, U, P)exp[j(gx + &y + (z-ct)].

This expression for a plane wave propagating in an anisotropic medium is substituted in equation (9)
to yield

e B B0, (cpre B, (Ci3+CeEl €a |
(c15+CuE L, Coili+e, Bareg L -w'p; (€12 +Ce)erC i€, Ey i
R e Cntel BB o’ ia U )
i€, i€, iCer; 8,1 +0,(E3+L%)+B]
(10)

The determinate of this system of equations (10) can be expressed by the product of two polynomials:

(CuEs + ¢ B2 — wp,) [P E + P(D)E + P,(B)E + P(Z)] =0 (1)

where
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The first equation from (11) is given by
Culi *+ C(Ey + ) - w?p, = 0. (13)
from which the propagation parameter associated with qSH is obtained,
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If we normalize the second dispersion equation by P4(22), a third degree equation in Ef can be written
as follows?

E? * P4ET M Pzgf + P, =0 (15)
where

o
P, = 24 v eyt 4 q? (16a)

053

(02
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In order to determine the phase velocity and attenuation in terms of the angle of propagation ® and
the azimuthal angle 6, the equations (12a) and (12b) are substituted in Equation (15), and Equation
(12a) is substituted in the coefficients P,, P, and P, given by Equations (16). The resulting dispersion
equation is given by the third degree in ¢

b+ cto'h(w, ®@,0) + clw'h(w, @, 0) + wh (0, ,0)=0 (17)

where the coefficients h, (®, w, 0), h, (®, w, 0) and h, (P, w, ) are given in Appendix A.

Simple formulas can be deduced for a propagation angle of @ =90° and azimuth angle 6 = 0°, that
is, when the motion is in the direction of the minimum permeability (Ex) and the azimuthal axis is in
the direction of the x-axis of anisotropy (0 = 0°). In this case the dispersion equation (17) is reduced
to a biquadratic equation, which has a structure analogous to that of the isotropic case (Parra, 1991).
The phase velocity of both qP waves (fast and slow) are solution of the bi-quadratic equation

C6k12k22k424h - w'c 4{k424h(k12 + kzz) +k12 k22} + 02(04(1(12 + k?.z + k424h) + @ =0 (18)

which can be reduced to
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The solution of this equation is given by
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In this case the qP-wave velocity is controlled by the bulk modulus ¢,;, and the attenuation is
controlled by the squirt flow associated with the maximum permeability in the yz plane. In a similar
manner, closed form expressions can be derived for a propagation angle of ®=0° and azimuth angle
of 6=90°. In this case the wave motion is in the direction normal to the axis of anisotropy, and the
azimuthal axis is parallel to the direction of maximum permeability (Ez). The dispersion equation
(17) is also reduced to a bi-quadratic equation similar to that given by Equation (18). This equation
can be written as

(kZ,c?-w?) (k) c? - w?) (kyc? -w?) =0, (22)
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which has a solution of the same form as that of Equation (20). In this case, however, the
wavenumbers are given by

2
k, :(ozp]/c11
2
kj = "al/elcn
2
kp - _[3/6133
2
Kyzy = '(‘)293/C11 (23)
p=p + p w6

_ 2
a; =0 + pw 0,

p=>0-dp, + bps

and s, =1-2J, (Yst)/Y3R3Jo(Y3R3)'

The phase velocity for waves traveling parallel to the directional maximum permeability is controlled
by the bulk modulus c,,, and the attenuation is controlled by the squirt-flow associated with the
minimum permeability (horizontal permeability in the x direction).

Numerical Results

Attenuation and dispersion curves were produced for the model parameters given in
Table I. The curves as a function of the azimuth angle 6 (measured from the horizontal x-axis as
shown in Figure 1) and angle of propagation or incident angle (measured from the z-axis) were
calculated (as illustrated in Figures 2-5) for a range of frequencies 500 -2500 Hz, in steps of 1000 Hz.
For angles of propagation @ near vertical, as the azimuth angle varies between 0 to 90°, the
attenuation and phase velocity change very little at each frequency. For example, for an angle of
propagation of 15° the phase velocity at 2500 Hz varies from 3117 m/s at 6 = 0° to 3149 m/s at 6
= 90°, i.e., about one percent. On the other hand, for an angle of propagation of 90°, the phase
velocity at 2500 Hz varies from 2769 m/s at 6 = 0° to 3149 m/s at 6 = 90°, i.e., about 14 percent and
the attenuation increases more than 50 times at 6 = 90°. That is, the attenuation is minimum for
angles of propagation in the direction parallel to the horizontal (minimum) permeability in the
frequency range of 500-2500 Hz. At any other angle of propagation the attenuation and phase
velocity increases as the azimuth angle varies from 0 to 90°.

In the next example we analyze the effect of angle of propagation and azimuth on the
attenuation and phase velocity for the selected frequency of 1500 Hz when the horizontal
permeability is varied (see Figures 6-8). These figures show that as the incident angle ® becomes
perpendicular to the direction maximum permeability (90°), the attenuation is minimum [see the
derivation of the special solution given by the bi-quadratic equation (18)]. In this case, the motion
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is controlled by the squirt-flow element, s,. associated with the vertical permeability, k = 1000 md
as described by of Equations (20) and (21). For the vertical permeability of 1000 md, the attenuation
peak corresponds to a frequency of about 100 kHz and for the horizontal permeability, k =2.5 md,

the attenuation peak is at a frequency of about 1 kHz. Since the models that we are analyzmg are in
the range of 500-2500 Hz, the attenuation associated with the vertical permeability of 1000 md is
negligible in this frequency range. This analysis suggests that it will require high frequency
information to measure attenuation that is sensitive to the vertical permeability at the angle of
propagation @ = 90°.

Even if the vertical permeability value can not be evaluated directly from the
attenuation in the frequency range of either cross-well seismic measurements or acoustic logging, we
can infer preferential directions of the fluid flow by analyzing dispersion and attenuations curves for
different azimuth and incidence angles. For example, Figures 9a and 9b show such curves produced
in the frequency range of 50 to 10,000 Hz for the azimuth angles 0, 30, 60, and 90 degrees and for
incident angles of 45° and 90°. The curves show that as the angle of incidence goes to 90°, there
is a decrease on the attenuation for azimuthal angles less that 90°. In particular for & = 90° and 6,
= (° the attenuation is practically zero. Also the figures show that for 6 = 90° the attenuation does
not change when the angle of propagation varies from 45° to 90°. In this case, the propagation is in
the direction of maximum permeability (k Jcoincident with the yz-plane

Alternatively, to predict the horizontal permeability, f(x, we need to understand the
propagation characteristics at the angle of incidence, ® = 90°, i.e., when the azimuthal axis becomes
in the plane parallel to the direction of maximum permeability or perpendicular to the axis of
symmetry. This corresponds to maximum attenuation. In this case the attenuation is controlled by
the horizontal squirt-flow element, s,, which is associated with the horizontal permeability, k This
suggests that processing techniques may be developed to extract the horizontal permeabﬂlty from
attenuation measurements at the azimuth of 90° measured from the horizontal axis of symmetry.

Also, the horizontal permeability can be predicted for any azimuth when the angle of
incidence approaches zero. In this case the effect of the azimuthal angle 8 on the attenuation is
negligible. Specifically, for ® = 0° (normal incident) the attenuation and phase velocity is the same
at all azimuthal angles. This can be proved analytical by making the angle ® = 0° in the equations A-
1, A-3, and A-5 in Appendix A. This condition reduces the functions hy, h;, and h, to the amplitude
coefficients A,, By, and C,, respectively. These coefficients are given by equations A-2, A-4 ,and A-6
in the Appendix, and when they are replaced in equation (17) produce the same bi-quadratic equation
given by equation (22). The form of this equation demonstrates that its solution [given by equation
(20) with wavenumbers given by equation (23)] is independent of the azimuthal angle 0.

The phase velocity curves shown in Figures 5a, 5a, and 5a follow the same pattern as
those of the attenuation. That is, as the azimuthal axis becomes parallel to the direction of maximum
permeability, the phase velocity approaches the velocity of propagation parallel to the fracture plane,
which corresponds to the maximum qP-wave velocity associated with the parameter c¢,, [according
to equation (22)]. On the other hand, as the azimuthal axis becomes parallel to the direction of
horizontal permeability, the phase velocity approaches the velocity controlled by the stiffness constant
C4, [according to the equation (21)].
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The curves shown in Figures 5-8 also show the effect of the horizontal permeability.
The curves were calculated for horizontal permeability f(h values of 2.5, 7.5, 12.5, and 17.5 md. The
attenuation decreases for horizontal permeabilities greater than 2.5 md. For example when the
horizontal permeability increases from 2.5 to 7.5 md, the attenuation decreases about 30 percent for
an angle of incidence of 15° and azimuth O = 0° and decreases about 90 percent for an angle of
incidence of 90°. In this case the attenuation peak is shifted toward high frequencies; for a frequency
of about 1500 Hz, the attenuation values are in the low range of the attenuation curve.

TABLE1
Transversely isotropic poroelastic formation parameters.

Parameter Unit Formation Values
K, (GPa) 37.9
0s (gr/cm?) 2.75
Ve (m/s) L5
Pe (gr/cm®) 1
1 (poise) 0.01
Cy (GPa) 21
C13 (GPa) 8.1
Cyy (GPa) 18
Cus (GPa) 5

. Ces (GPa) 6
% 23
k, Darcy 0.0025
k, Darcy |
Sgh . (mm) 4
Sqv (mm) 6
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Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

LIST OF CAPTIONS

Three dimensional view of the anisotropic medium with its axis of symmetry
perpendicular to the vertical z-axis, illustrating the orientation of the azimuthal angle
6 and the angle of propagation ® relative to Cartesian system of coordinates (x, y, z).

The effect of azimuth angle and frequency for an angle of propagation of ® = 15° in
the range of frequencies 500-2500 Hz. The horizontal permeability k, = 2.5 md, and
the vertical permeability k, = 1000 md. (a) phase velocity, and (b) attenuation.

The effect of azimuth angle and frequency for an angle of propagation of @ = 30° in
the range of frequencies 500-2500 Hz. The horizontal permeability k, = 2.5 md, and
the vertical permeability k, = 1000 md. (a) phase velocity, and (b) attenuation.

The effect of azimuth angle and frequency for an angle of propagation of @ = 45° in
the range of frequencies 500-2500 Hz. The horizontal permeability k, = 2.5 md, and
the vertical permeability k, = 1000 md. (a) phase velocity, and (b) attenuation.

The effect of azimuth angle and frequency for an angle of propagation of @ = 90° in
the range of frequencies 500-2500 Hz. The horizontal permeability k, = 2.5 md, and
the vertical permeability k, = 1000 md. (a) phase velocity, and (b) attenuation.

The effect of azimuth angle and horizontal permeability for angle of propagation @ =
15° and a frequency of 1500 Hz. (a) phase velocity, and (b) attenuation.

The effect of azimuth angle and horizontal permeability for angle of propagation @ =
45° and a frequency of 1500 Hz. (a) phase velocity, and (b) attenuation.

The effect of azimuth angle and horizontal permeability for angle of propagation ® =
90° and a frequency of 1500 Hz. (a) phase velocity, and (b) attenuation.

The effect of frequency and azimuth angles on the attenuation for incidence angles of
(a) 45°, and (b) 90°. '
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III.  ANALYSIS OF AN ACOUSTIC LOGGING SYSTEM IN A FLUID-FILLED
BOREHOLE SOURROUNDED BY AN ANISOTROPIC POROELASTIC FORMATION

A, The Response of an Acoustic Multipole in a Fluid-Filled Borehole
Surrounded by a Poroelastic Formation

This report presents a formulation for the acoustic wave due to a multipole in fluid-
filled borehole surrounded by poroelastic formations. This approach obtains, in contrast to the
approach of potentials "), a direct relationship between the displacement-stress-flux components of
the formation and the coefficients of four types of waves, namely, fast quasi-P wave, slow quasi-P
wave, SV wave, and SH wave, in terms of vertical wavenumber. As a result, the boundary conditions
can be applied in a straightforward manner.

Acoustic waves in the borehole
Denote the radial, tangential, vertical displacements and pressure in the borehole fluid

in cylindrical coordinates (v, &, z) by u,5 u,, urand p,, respectively. Using the Fourier transform with
respect to time, ¢, we have

1 . -iw
{urf Ugs Upr pf}Tz‘z_n"f{Urf Uy U, P 1T e ™o (1)

Further, it can be shown by using integral transform with respect to z that™®

r.i 3
U (1,0,2)] or
14
'LIM(r’ﬁ’Z) = 0 R
) . f<r o (@, (r,0,2.k) +® (1,0,2.k)]1dk (2)
Uﬁ(r?ﬁ’z) oo a
P(r.0.2) | a
w?p,

where the frequency dependence has been suppressed. Superscript O represents the wave due to the
source in an unbounded medium, R represents the wave that is reflected from the borehole interface,
and

D7(r,0,2.k) = —Zli-]-‘(%rﬂ)“ean(&f r)cos[n(d-y)Je (3)
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®f(r,d.2.4) = —4—;—,(5’2—rﬂ>"2:(k)J,,<&,r)cos[n(ﬁ—y)]esz @

where n is the order of the multipole, ry and y its radius and azimuth angle, and €,=1/2; ¢,= 1, n
> (). The vertical and radial wavenumbers, denoted by k and £, are related through

2
£ = yki-k? Kk, >k
2
= I kz—kf kf <k (5)
@
k. = —
Y

V;is the velocity of the acoustic wave in the fluid, and w the circular frequency. A, in equation (4) is
k-dependent and is determined from boundary conditions.

Poroelastic waves in the formation

Similarly to the acoustic waves in borehole fluid, denote the radial, tangential, vertical
displacements and pressure in the formation and their Fourier transformed counterparts by {u,, u,,
u, p}*and {U,, U,, U,, P}, respectively. The fast quasi-P wave, slow quasi-P wave, SV-wave and
SH-wave in the formation can then be represented by their wave functions in the wavenumber
domain':

@, (r,0,2k) = E(k)H;Eg)%(%)ﬂcos[n(ﬁ—y)]e“‘z
n.

®,(r,0,zk) = C—n(k)I—In(’g’zr)-1—(-%-3)-)“603[11(1‘?—y)]eilcz
n! 2 )

I(,0,2k) = D_n(k)Hn(Eg,r)i'( Ef;o)“cosm(ﬁ -y)Je =
n!

T(r.0.2k) = B (0H,En—( Ef;“)“sin[n(ﬁ—y)]eikz
n:

where £, j=1,2,3,4 are radial wavenumbers corresponding to fast quasi-P wave, slow quasi-P wave,
SV wave, and SH wave, respectively. These wavenumbers are given by
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2
g = \/)Lj -k? A; 2k
i \/kuf A, <k

-
AT+AD = g« B
- P om+2u) 6
2.2 2P
ATA; = _kPE %
A=Ay =k
2 o
kp - A+2
K2 - )
o

where p is the mass density, and ¢ £ and @ are constants associated with the porosity and
permeability. The overbar symbol indicates a parameter modified by the porosity and permeability.
Since these components are linearly related to the wave functions in (6)™, we can write

U (r,0,2)) (K)cos[n(®-y)]|
0.z = J&cos[n(-y)1|
o8l [IMzo)] e ek ®)
U (r.0,2)] 7 o(K)cos[n(d-y)]
[P(1,0,2) | E (K)sin[n(®-y)] |

In (8), elements of the matrix, M, i,j=1,2,3,4 are to be obtained from the relationships among U,, U,,
U, and P, which are governed by the equations of motion. Coefficients B,, C,, D, and E,, together

with A, in equation (4), must be determined by the boundary conditions.

The equations of motion for poroelastic medium in cylindrical coordinates are given by

1,20Uy U dA - —3Jp
VU -—(= —L A+l)— + U - g=— = 0

i rr(ré36+r)]+(+”)ar P or

1, 20U, Ug 1 6A — « oP
VU, -—(-=—L+ =2 A+p)—— U, - —— =0

ul er(r86+r)]+(+u)r86+wpe r 00 (9)

uVZUZ+(k+p)a—A- +w25UZ—E£ =0

dz oz

~¢A + OVP - PP = 0

where
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<]
)
!

U, U, 18U, aU, 1o
+ +

Next, we introduce {U,, U,, U,, P,}" through the following expression

| HE SHED 0 0| ,
rUr(r7ﬁ7Z7k) J gjr ! Uln(ﬁazak)
an(I‘,ﬁ,z,k)} = ELHH(EJJ”) _'Hn/(gjf) 0 0 U3n(ﬁ,z’k)> (11)
Undzb| |7 U, (0.2.6)
P(r0.2k) 0 R T 2T
0 0 0 H(En
Upon applying the following differentiation,
2. ik
0z
2
A,
36?2
9 - -n j=123 (12)
a0
= n j=4
2 2
a—-&»li = .n_-—Ejz

art ror  r

Equation (9) can be rewritten as

dA
“Vtz*lxl(iUln+U3n) + (Aﬂl)( ar"

LAY + WPpU,+U,) - Uz P, = 0
r or r

. OA — —oP
uveil, + (A+p)—= + w’pl,, - a—= = 0 (13)
az__ 0z
—aA, + OVP_ - BP =0

where
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v .18 nt &
n ar? r ar 72 972
U U . U (14
An = et = ) :
or r r 0z
[t can be seen that equation (13) yields
mlu,, U,, P} =100 0/ (15)
where
my, = A 20E -pk>+@’p  my, = —i(A+HKE my; = o,
my, = ~i(AHUKE, my, = A+2WK>+pE -0’ my, = ika (16)
my, = af, my, = ike my, = Ok*+OF +B
for j=1,2,3 and
[u(k2+E) -6"plU,, = 0 a7

Equations (15-17) can be used to obtain the radial wavenumbers given in (7). Equations (15-
16) also govern the relationship among {U,, U,, P,}*. Denote U, /P, and U, /P, by R;, and Q, for
j=1.2, and U,,/U,, and P/U,, by R;, and Q,, for j=3, respectively. Then we have

Ty T Ty,

R(K) =
My My, =My,
M, M.~ M
117103 =M 3,
Qj(k) = -
1111y, =115y,
M — 1, T
R0 = - 121133 =M 33,
OTUC TS EYULT
M My, =My L
UL IR UL
Q3(k) = -

My Mgy =My Mg

Equations (14) and (16) imply that

80

j=12
(18)



U, @0 [rR R, R, 0] [B.kcosin®-y)]]
U, (0.2.k) 0 0 0 1f|Clhcosin(B-v)]]
1 > = < o the (19)
U, @z @ @ 1 0D (kcos[n(d-v)]

P(dzk)| |1 1 Oy Of|E (Ksin[n(d-v)]

and, with the aid of equations (8) and (11),

_H"/(glr)Rl _H"/(Ezr)Rz _Hn/(ggr)R_} —E_—n;Hn(E4r)
4

Ml =

n n n
?H"(E‘r)R‘ E—ZI’H"(EJ)RZ aﬂ,,(wg -H, (&) 20)
HENQ,  HENQ,  HED 0

H () H (1) H (£,10, 0

Finally, the stress and volumetric flux components that appear in the boundary conditions
include z,, z,, 7,, and w,. Their Fourier transformed counterparts, 7., 7,5 T, and W,, are related to
U,, U U, and P through™

oU -
2u—=+AA-cP

i or
U
: Tn‘) = | l%+_aua _L
roéd or r @1)
r (BUZ 8Ur)
= +
e or 0z

=
I

JoP
O(w?p U -—
r ( pfl‘]r ar)

Denote 7,,/U,, T,,/U,, T, /U, and W, /U, by T., U, W, and X;, j=1,2,3.4. Then equations (11,

20, 21) together provide the following relationships for these four ratios:
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TR = QeZ—= ¢ SM,; = =My, + MM, - @M
oM
Urgy = =28m, - By, v p—2
I T or
. (22)
W(rk) = p—= + kM,
J r ]
X(rk) = 8w? e___aM“f'
j(r:v ) - 0] pMU - ar
where
My . g kEH"(Er) =1,2,3
ar - j()/‘Hn(jr ]_:v:v
= —H,En) + ZHE) j=4
" r
aM2' n n / .
arj = —f;—ERﬂn(Ejr) + -;-Rj(k)H,,(EjJ‘) J=123
7
= -LH]ED j=4
oM, ; ) (23)
a5 = Ean(gjr)Qj J=12
= EH,(Ey) =3
= O J:4
6M4J' - E,H,f(ﬁ-") j=1,2
or /
= £,H,(E,NQ, j=3
= 0 J=4
Solution for the open-pore boundary conditions
The open-pore boundary conditions are defined as'™®
[-U(r0,2) + U(r0,2) + W(r0,]_, =0
[(l_d))Pf(r’a’z) + Trr(r,e,Z)]r:a =0
[—Pf(r,ﬁ,z) + P(r0,2],_, =0 (24)
[T4r0,2],_, =0
[T ,(r6.9],_,=0
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where a is the radius of the borehole and ¢ the porosity of the formation.

Using notations M, T, U, W. and X, ij=1,2,3,4, Egs. (2-4, 8, 20, 24) lead to

R

Uy M X, M+X, Mi+X, M +X0 (A (6)] r U,?, ’
R
(I1-$)P; T, T, T, T, B, (k) -(1 -—d))PfO
—PfR M, M,, M, M,, G = Pf0 ( (25)
D (k
0 U, U, U, U, k) 0
E (k
0 W, W, W, W, | EL] | o )
where
o __i (o ey
Uy = ~—(Le,EH, €
UR = —.L __.(.)_ ne /(
(26)

0

. g )
Py = —-4%(—’;-3) €, w’pH,(Ea)

. E .
P’ = —4#’1!(—"—2@) €, 0o, (Ea)

Upon solving equation (25) for A,, B,, C,, D, and E,, the responses in the borehole and
formation can be obtained from equations (1) and (8).
Solution for the closed-pore boundary conditions

The closed-pore boundary conditions are defined as*

[-Ur0.0) + U(rb3)],_, =0

(Ufr.8.2) + U,(r8,2) - $P(r.0,2],, = 0
[W(r.0.2],, =0 (27)

[T4r0.2],,=0

[T (r8.9],_, = 0
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Similar to the open-pore case, equations (2-4, 8, 20, 27) lead to

-US M, M, M,, M, (4,00 [ue)]

PF T -0M, T,-¢M, T,-oM, T,-dM,| [B.0 -p?

0 X, X, X, X, GRe =101 @8
0 U, U, U, U, D, (k) 0

0 W, W, W, w, | E®] 10 ).,

This concludes the formulation of the response to an acoustic multipole in fluid-filled borehole
surrounded by poroelastic formations.
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B. Acoustic Waves in a Fluid-Filled Borehole Surrounded by a Transversely
Isotropic Formation with a Horizontal Axis of Symmetry

1. Introduction

The above-titled study concerns the simulation and interpretation of sonic
logging data acquired in a vertical, cylindrical, fluid-filled borehole, r=a, 0 < 8 < 360°, - < z < e,
which is surrounded by a formation with layers and fractures parallel to z-axis. The main interest lies
in the detection and characterization of these layers and fractures. Assuming that the number of layers
or fractures is large and the thicknesses of the layer or fractures are small compared to the radius of
the borehole, then the surrounding medium may be represented by a transversely isotropic, visco-
elastic unbounded medium with a horizontal axis of symmetry.

This report presents a novel approach, the integral transformed boundary
integral equation (ITBIE) method, to solve this boundary value problem. In a traditional BIE
approach, the displacements and pressure on the entire borehole surface constitute the basic
unknowns and are coupled in three-dimensional boundary integral equations. In order to solve the
BIEs numerically, the infinite cylindrical surface is discretized by boundary nodes, resulting in a linear
system of equations whose coefficient matrix is determined from the Green's functions and associated
stresses for every pair of sources (nodes) and receivers (Gaussian points) on this surface. These pairs
will be called SR pairs in this report. The total number of nodes can be written as N xN,, where N,
and N, are the number of nodes in & and z directions, respectively. The number of SR pairs equals to
NxN,xN,?, where N, is the number of Gaussian points divided by the number of nodes in an element.
In the ITBIE approach, the above BIEs are integral-transformed, with the z-dependence being
changed to vertical wavenumber dependence. As a result, the solution of the original problem is
given in the form of a wavenumber integral which requires a solution of the transformed BIEs for
each vertical wavenumber being sampled in the integration. The surface integrals of the original BIEs
are then degenerated to line integrals. The dimension of the transformed linear system is reduced
from the original one (N xN,) to N, while all the coefficients are obtained from the Green's functions
and associated stresses through integration with respect to z from negative to positive infinity.

Compared to the traditional BIE method, the ITBIE method reduces the
number of nodes by a factor of N, and the number of SR pairs by a factor of N xN,. In addition, the
number of unknowns per node is reduced from six to four. But the ITBIE method requires an infinite
z-integral to obtain the matrix for each vertical wavenumber and an infinite vertical wavenumber
integral to yield a solution in the frequency domain. Overall, the benefits of the greatly reduced
degree of freedom (DOF) undoubtedly surpasses the drawback of the two-folded integrals.

The major challenge in the computational aspects of this approach is the
evaluation of integrals. The above mentioned integrations in the z and k, domain are both infinite and
oscillatory. The kernel of the latter possess spikes and other irregularities. The ITBIEs themselves
consist of irregularly oscillatory integrals in the 6 domain. In addition, for anisotropic formations,
the fundamental solutions are in general in the form of radial wavenumber (k) integrals where the
radial direction is perpendicular to the axis of symmetry of the anisotropy. We shall show that the
evaluation of k -integrals, as well as the z-integrals and k,-integrals can be carried out accurately and
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efficiently by an advanced quadrature technique, the Modified Clenshaw-Curtis (MCC) method ¥,
The B-integrals of the ITBIE are handled by a standard Gaussian quadrature.

In what follows, the analytical developments and numerical considerations for
the above outlined approach are provided in details.

2. Definition of the Model

The borehole is bounded by the surface r=a in the cylindrical coordinate system
(r, 0, z). The borehole is full of fluid. An acoustic source (monopole or dipole) is located at the
origin of the system. The exterior domain (formation) is a unbounded, uniform, viscoelastic, medium.
For the ITBIE approach, a Cartesian coordinate system (x, y, z), with x-axis coinciding with the r-axis
at 0=0 is also needed:

r cosO
r sin®

>
Il

(D

~
i

Clearly, when the exterior medium i$ isotropic, the boundary value problem
has a symmetry about the z-axis. When layers or fractures are present and parallel to the yz plane,
the problem can be seen to have symmetries about the xz and yz planes.

The boundary conditions are written as follows:

(A) continuity of radial displacement;

u’(a,0,2) = u [a.0,2) (2)

where superscripts & has been used to denote displacement of the fluid in the borehole. Displacement
components of the formation do not carry a superscript.

(B) continuity of radial normal stress;

-p(a.9,2) = 1,(a,0,2) 3)

where p and ¢ represent the pressure of fluid in the borehole and that in the pores of the saturated
solid, respectively.

(C) vertical shear stress free;

1.(a8,2) = 0 4)

and,

(D) tangential shear stress free.
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t,(a8.2) = 0 (5)‘

In the above, the angle 0 ranges from 0 to 27 radians.

Since the formation has an axis of symmetry in a horizontal direction, it is
necessary to introduce another cylindrical system, (p, {, {), with origin at 2 boundary point and { the
symmetry axis of the exterior medium. For the model concerned, the {-axis is parallel to x-axis, p-
axis parallel to y-axis at ¢=0.

3. The Boundary Integral Equation (BIE) for Acousto-Elastic Interaction

A general acousto-elastic interaction problem 1s governed by the following
boundary integral equations 1.

(1) For the elastic domain:

Cuy(x) = fS[Gik<5,x)r,j<E>—u,.(&)T,}‘(e,xnn,dS(z) 6)

where i, j, k=1, 2, 3 and repeated indices imply summation.

(2) For the acoustic domain:

d
¢ p®) = [ 10ExIou®) - LEDplas® + p'w) )

In both Egs. (6) and (7) the integration surface S is the interface between the
two domains, »n; the direction cosine of its norm, and ¢g; the mass density of borehole fluid. In
Equation (6), u,(£) and 7(£) are the unknown displacement and stress components at a boundary field
point, & respectively. G,(&x) is the Green's function in an unbounded elastic medium with the
properties of the host domain, which is defined as the displacement in the i-direction at £ due to a
force in k-direction at the point x. T,-,-"( £x) is the corresponding stress tensor. In Equation (7), p(£)
is the unknown pressure of fluid at £ Notation Q(£x) represents the pressure at £ due to a unit
acoustic source at x in the fluid medium in the absence of the host medium. And p°(x) is used to
denote the pressure at x due to the given acoustic source in an unbounded medium with the
properties of the fluid domain.

Finally, coefficients C and C, are constants depending on the location of the
field point x. It is noted that Eqs. (6) and (7) contain a singularity when x and £ coincides. The
singularity associated with T;* (£x) is of the 1/ £x| type and can be interpreted by the Cauchy
principal value. As a result, C(x) and C{x) equal one when x is off the boundary and 1/2 when it is
on a smooth part of the boundary. The singularity associated with G,(£x) is of the logarithmic type
and 1s integrable.
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The unknown (&) and 7(£) on § must always be obtained first by solving the
BIEs, with C and C,being 1/2 for the current model. Then u,(x) and p(x) at any given field point x
outside the boundary can be obtained through direct evaluation of the integrals in Egs. (6-7), with
Cand C,being 1 and u(8), t{&), p(£), op(£)/on given on S.

4. The Green's functions and Associated Stresses

Q(&x) and 0Q(£x)/on for the fluid in the borehole required by Egs. (6-7) can
be found in standard text [4]:

O(Ex) = e

*) = 4R )
30EX) . e
o - TR, xj)nj41rR3

where k=w/V, w is the circular frequency, V; is the acoustic wave speed in water, and R =
(2,20,

G,(£x) and T,-j" (&x) for an isotropic formation can also be found in a standard text [4]:

,kSR 2 ikpR_ lk_rR
Gy&x) = 1 k2= i o e ]
40w R X ax, R )
T;(Ex) = 28,G,, (Ex) + G, (Ex) + G, (Ex)]

where A, p are Lamés elastic constants, ¢ is the mass density, k,=w/V,, k=w/V,, and V, and V, are the
P- and S-wave velocities in the formation.

The above expressions are used as a special case to test the transversely
isotropic (TT) formulation.

The response of a TI medium to a force is well established and documented®!.
G,(£x) and T/(£x) are in general expressed in terms of the following wavenumber integral:

© 2
IO = [ ZOF,,l(f’cp,C)‘I’,,,(tlr)J,,,(kpp)dkp (10)
0™

where k&, is the wavenumber in p direction, and J,, (k,0) is the Bessel function of the m-th order.
¥.(¥) denotes sinyfr or cOSY.

Specifically, the displacements and stresses in (p, U1, {) are given by
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p
e f 0 0 -J(k psing/(k p) 0 Jik p)sind
w) Lo Jkp) 0 1,k p)cosd 0

u Jkp) 0 J/(k picosd 0 ~J,(k p)cosd/(k p)
(11)

20,0 Zk,0) X, (k0 Xk, O) Yk, O)k dk,

and
C
C11'—+ = Clz‘l_i C13 J
dp p p o aC
C
Oy Clz_'_a_+J Cnli CIBi
dp p p o a¢
Op¢ c
u
o C13i+—13— CB.I_i C%i P
IR dp p p od a¢ , (12)
g
&g 0 d
0 C,,— C——llu
o 44ac 44 30 4
014
a d
\optb, CMB—C 0 C44a_p
1 ¢ J 1
C —— C (—--) 0
“pap T op p

where Z, and Z, are the horizontal and vertical displacement kernels due to a unit vertical force in the
P-SV part of the three-dimensional motion, X, and X, are the horizontal and vertical displacement
kernels due to a unit horizontal force in the P-SV part, and Y is the anti-plane displacement kernel due
to a unit anti-plane force in the SH part. The expressions of Z;, Z,, X;, X, and Y are given in
Appendix A.

After some algebra, we obtain the following expressions:
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1
u (P $.0) '—g-(l1 +12)+3(17 ~Ig-1~1,))cosd

u(b(p’(va) T;:( —17_[8 +Il6‘117)8i~n¢

ulp:$.0) = I4+—g-(112+113)cos¢

I
ool bs0) = Clzll+5(cl1"clz)(11"12)
+Cl H-C il +(C = C) (1o + 1l p)+ Cof1 +(C - C ) pleosd

1 (13)
C +E(C12_Cll)(11 1)

I

Ty (0-0:0)

+Cpal+[-C Iy +(C oy~ Ci )L+ p)+ C ool +(C,~C DI/ p]cosd
T (0.9.0) = Cpl + Gyl +(=Caly+Ciyl )08

C .
Tot(P-$.0) = “"‘2‘&“( oty Tyl g1 psing

C
TpC(P,d),C) = C44(13’l5)+"';—4(110_111+112”113_118*[19)COS¢
T,5(0.0.0) = Colfp+21,,/p-1,)sind

where 1,,(p,{), m=1,2....19 are k -integrals. Their definitions are given in Appendix B.

Finally, in order to obtain the Green's functions and associated stresses in
Cartesian coordinates (x, y, z), we need the transformation defined below:

Uy cos¢ -sing Of |4
u, ¢ =|sindg cosd 0]y%, (14)
u, 0 0 1 1

rrmW (cos?p  si*p 0 O 0 -sin2d)] T,
- 2 2 .
T, sin“g cos’dp O O G sin2¢ Tot
0 1 0 0 0
<ta 4 O . < tcc >
< [} 0 0 0 cos¢ sinp O ). (15)
I o 0 0 -sind cosp 0 ||
el 1 et
—sin2¢p -—sin2¢p 0 O 0 cos2
2 ¢ > ¢ d>_ %,

90



5. The Integral Transformed Boundary Integral Equation Approach

First, the BIEs on the cylindrical surface, r=a, 0°<0<360°, -w<z<w, are
converted to the BIEs on a circle, r=a, 0° < 8 <360° in the k, domain through an integral transform
of the unknowns with respect to z. Its inverse transform is given by

,(7,0,2)] U, (r.0,k)]
uz(r,e,Z) ” Uz(raech)
< > = f‘

MB(I‘,B,Z) o U3(r=69kz)
J)(r’ﬂ,z) ] ‘P(r,B,kZ) )

ek, (16)

where k, is the vertical wavenumber. The BIEs (6-7) have been integral transformed and rewritten
as

2n
CULB) = - [ [5,8.0)P(O) + 1,(0.0)U0)1d0 (17)
0
and
2R
C,P@®©,) = f [4(0,8,)U(6)n,(0)-4'(0,0,)P(6)]1d0 + P°(6,) (18)
0

where i, k =1, 2, 3. Note that U, or U, and P are the unknown functions to be solved and g,, t;, ¢ and
g' denote z-integrals of given fundamental solutions G(0,8,,z-2,), T;%(0,84.2-2,), 0(0,04,z-2,) and
A0(0,0,,z-2,)/Jr (see Section 4 for details):

£,0.0,) = fe""Z(Z‘z&a,.k(e,eo,z—zo)n,d(z-zo)

—o0

1,(6,8,) = feikz(z_Z&Tlf(e,ﬁg,z—zo)njd(z—zo)

-0

(19)

(6,0, = fe""z@‘%zofg(e,eo,z—zo)d(z-zo)

-

q'(8,0,) = f eikz(z“z‘))g—g(e,@o,z—zo)d(z—zo)
n

-
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As a result, the number of SR pairs becomes N XN, after integral transform, which is N xN_ smaller
than the original.

6. The MCC Intesration Method

The MCC integration technique, co-developed by one of the authors™, is
aimed at integrals of the type

b
I= f ‘f(x)e Prdx 20
and the type
b
I = f ST (px)dx 21

where p is a constant and J, denotes the Bessel function of the ath order. In this method, the kernel
f(x), a<x<b, is fitted by the Chebyschev polynomials T,(7), -1<w< 1, k=1,2...N, through a change of
variable, x=(b-a)t/2+(a+b)/2. After some algebra, the following quadrature rule is obtained for the
integral in (20).

N N

=YY" E// a,,]f f(b_acosmn +a+b) 22)
k=0 m=0 2 N 2

where

N
at = b2 cosmlsnlk(p,a,b)

" AN
(b—a a+b) (23)

T+

1 .
p
I(p.ab) = f T(t)e * *dt
-1

and a double prime implies that the first and last term of the sum are to be halved. It should be
pointed out that 7, in (23) can be evaluated analytically. A quadrature rule for the integral in (21) can
be derived in a similar manner'™!,

The above integration technique has several important features. First, only the kernel f(x) is
fitted while the regularly oscillatory part exp(ipx) is present solely in 7, of (23). This undoubtedly
results in much fewer sampling points. Second, for any values of the constant, p, the sampling points
of f(x) remain the same and the variation of p affects 7, only. This is especially beneficial when the
calculation of f(x) is demanding and when a large number of integrals (20) with the same f(x) and
different p are needed. Third, the unique properties of the Chebyschev polynomials allow the
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implementation of an adaptive procedure such that the distribution of sampling points is properly
adjusted according to the irregularity of the kernel and that none of the sampling points generated in
any step is wasted™). Finally, the quadrature rule of (22) has been extended to the case that a or b
becomes infinity”. Unlike most integration methods in which the integral is truncated at a finite value
of x, the MCC technique perform the integration of the infinite part completely and analytically.
Clearly, the above features make the MCC technique an ideal quadrature tool for wavenumber
integrals.

7. Advantages of Using MCC Integration Method in the I'TBIE Solution

The above sections have indicated that the ITBIE approach consists of the
evaluation of three-field integrals (16), (19), (10). It can be seen that the quadrature of all three
integrals can be improved with the MCC technique. In particular, although the integral in (16)

‘requires a series values of k,, each of which needs an evaluation of the integral in (19), the sampling
of the kernel of (19) remains the same. Therefore, the effort to obtain the integral in (19) for a large
number of &, is nearly the same as a single evaluation of the integral. Similarly, the effort to evaluate
the integral in (16) for a number of detectors with different values of z and the integral in (10) for a
number of ¢’is nearly the same as a single evaluation of the integrals. In view of all these facts, the
three-fold integration can be made a feasible task by the use of the MCC technique.

8. z-Integration of the Transformed BIE

Consider the z-integrals in Equation (19). The kernel as a function of z has
a peak at z=0 and decays monotonically as |z| approaches infinity. The curve fitting of this kernel
is quite easy, especially with the MCC adaptive scheme. The regularly oscillating factor has been
taken care
of analytically by the MCC formula. The infinite tail iS truncated at a large value of z in the current
version of the computer program. The following far-field expression of the Green's
functions in isotropic media indicate the behavior of the kernel at large z(=x,) , which is believed to
be similar in the anisotropic case.
1 etk‘ﬁ(ﬁ '_xz‘xj)_'_elkPthxj

- f

Y 4moR v? TU R? v R?

(24)

9, From I'TBIE to Linear Equation System

In order to solve the Boundary Integral Equations (BIE's) numerically, they
are usually converted into a system of linear equations as follows.

First, BIEs of the form of Egs. (6-7) hav been rewritten as
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2n

CUBY) = - [ L8.8.8)P®) + 1,(6.0,U,(0)1d0 (25)
0

and

2n

C,P®) = [ [4(0.0)U0)n,(8)-q"®.8)P®)]dO + P°(D,) (26)
0

where i, k =1, 2, 3, r, = a is removed from the parameters in parentheses, and
y ik (z-20)
gk(eaeo) = fe Gl‘k(eseoyz _Zo)nid(Z_ZO)

—ec

£,(6,8,) = feik“(z_z")T,-f(G,ﬂo,z—zo)njd(z-zo)
- 27)

(6,0, = fe""Z(z‘%zo,Q(e,eo,z—zo)d(z—zo)

-o0

q'(0,8,) = f e&Z(Z_Z@-(Z—g(ﬁ,ﬁo,z—zo)d(z—zo)

-00

Note in the above that g,, ;. g and ¢’ are given functions, and U; or U, and P are unknown functions.
Also note that index i corresponds to 6 and & corresponds to 0, .

It can be shown that an integral of a product of two functions may be
approximated by the sum of the products of (i) the value of the second function at N sampling points
and (ii) a weight coefficient depending on the first function over the integration interval such that

4 N
ffl Xf,Ddx = Y a.f,(x,)
n=1

o, = aolf,(x).nab]

n

(28)

The boundary is now discretized by N sampling pomnts. It should be noted that
for each sampling point, four unknowns are involved, namely, U, i =1, 2, 3 and P. As a result, there
are totally 4N unknowns. We shall then replace U(0,), k=1,2,3, m=1,2, . .Nby U,, =1,2,3....3N;
U(6), i=1,2,3, =1,2,..N by Uy, f=1,2.3...3N; P(6) by P, I=1,2,3....N; P(6,) by P,, P,(6,) by P,
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m=1,23.._N. In view of quadrature rule (28) and the above notation conventions, Egs. (25-26) can
be represented by

N N
v, = "E gl - Eta[}U[}
W "y (29)
CP, = Bz_;quUp"zp - IZ_;CI’MIP i
or
W N
(GO +t JU+) g.P =0
g B “ap’ TP IZ:; £ (30)

l
B ]
£

W N
'Z 9nttpUp +Z (Cpd,*a )P, =
i1 T

where g, 1,5 4. and g',, are weight coefficients corresponding to given functions g, #,, g and g,
respectively. It should be pointed out in Equation (30) that quantities with two indices represent
matrices and are denoted by the same letters of boldface. Similarly, quantities with one index
represent vectors and are denoted by the same letters of boldface. Thus Equation (30) can be written

in the matrix form below.
cl +t g 0
= 31
-q C[,Iz +q / 0

where matrices I, ¢ have a dimension of 3Nx3N, I,, ¢' of NxN, q of 3NxN, and g of Nx3N. The
dimension of vector P and P° is N and that of U is 3N.

10. The GIntegrals

The @Integrals are those in Eqs. (25-26). Equation (28) gives a general rule
of the quadrature. For instance, a standard Gaussian quadrature can used.

1. Solution of ITBIE

In the numerical solution of the ITBIEs, Egs. (25-26), the circular boundary
is discretized by nodes. Each node has four unknowns: U,, U, U, and P. These nodal unknowns
form a vector { U} with dimension 4Nx1 where N is the total number of nodes. The free term on the
right hand side of Equation (26) at the nodes forms a given vector {U,}. The application of a
quadrature rule to the BIEs then leads to a linear system of equations :
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Mo = Wy (32)

where matrix [M] is obtained from the integral transformations of fundamental solutions, G,(£,x),

TH(Ex). Q(€x) and AQ(Ex)/Er.

12. The & -Inteerals

The above steps have lead to the solution of [U, U, U, P]" for a given
vertical, k.. In order to obtain the full frequency response, [, u ,u ,, p]’, wavenumber integral
Equation (8) must be evaluated over an adequate number of sampling points of &,. This again uses
the adaptive MCC integration technique.

13. Summary of Solution Procedure

The proposed solution procedure of the ITBIE approach can be summarized
as follows.

(i) Discretize the boundary, r=a, by uniformly distributed nodes whose number must increase
with frequency;

(ii) Obtain G,(&x), T,-j"(f,x), QO(éx) and A(&x)/r of equation (13) for all SR pairs, leaving
z=£5-x; as a variable;

(iii} Evaluate the z-integrals defined in equation (14) over all integral transformed SR pairs
and store the fitting information;

(iv) Use result from step (i) and equation (28) to obtain a submatrix similar to equation (31)
for each node;

(v) Assemble matrix [M] from all submatrices to obtain the global matrix [M] defined in
equation (32);

(vi) Solve equation (32) for { U} on the boundary;

(vii) Use equation (18) and the result of (vi) to evaluate the reflected part of the pressure in
the &, domain, P-P°, at specified detectors;

(viii) Carry out adaptive integration in the k, domain, equation (16), using the fitting

information stored in step (iii) and obtain the reflected part of the pressure at detectors in the
frequency domain, p-p°;
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(ix) Add the source term, p°, given by the first equation of (8) to the reflected part of the
pressure to obtain the total pressure, p.

14. Computational Aspects

There are two major issues in the numerical aspects of the ITBIE approach.
The first issue is the computer time. It should be mentioned that because of the integral transform,
the DOF of the final linear system of equations in this approach is quite small (<100). Therefore the
most time-consuming part in the computation is the evaluation of the coefficients of the matrix in
equation (31) which involve double infinite integrals defined by Eqgs. (10) and (19). In view of this,
a number of steps have been taken to minimize the computer time while maintaining sufficient
accuracy.

(i) The k,-integrals in equation (10), which arise in the Green's functions and associated
stresses, are evaluated using the MCC adaptive integration method. It is noted that one half of the
node pairs shares the same ¢ separation with the other half. Therefore, only one half of the node pairs
need the curve fitting of the kemel. Since curve fitting takes 80-90% of the total time of MCC
integration, this additional saving is significant.

(ii) The z-integrals in equation (19) whose kernel is the Green's functions and associated
stresses, are also evaluated by the MCC adaptive integration method. For different values of vertical
wavenumber, k,, the results of these z-integrals are different. Fortunately, &, appears in the factor
exp(ik,z) only and is absent in the kernel. Therefore, the curve fitting remains unchanged for any £,.
There are in general hundreds of k, used in a k-integration. This saving can be seen to be much
greater than that in the & -integration. However, the fitting information of the z-integrals for all SR
pairs of the mesh must be documented before the solution of ITBIE, which requires a significant
amount of RAM spaces (about 30 megabytes for a six-element mesh).

(iii) The setup of the coefficient matrix [M] of equation (32) can take advantage of the
symmetry of the geometry and the loading. It can be shown that the unknown field variables on the
boundary have symmetry about both x-z and y-z planes. Then the original NxN matrix can be
decomposed into two (N/2)x(N/2) matrices, one corresponding to symmetric loading and the other
antisymmetric. In each case, only unknowns at one quarter of the nodes are independent. As a
result, the total computational effort is reduced to its 50%. The relationship between the original
matrix and decomposed matrices is given in Appendix C.

(iv) For the @-integration in equations (25-26), a 4-point Gaussian quadrature is employed.
In an effort to enhance sampling ability without increasing the number of unknowns, we use the
quadratic fitting instead of linear fitting, thus yielding N, = 8/2 = 4.

(v) The k-integration in equation (16) is again performed by using the MCC adaptive

integration method. As mentioned earlier, all the calculations for the & -integrals and z-integrals have
been carried out in step (ii). As a result, this step involves mainly bookkeeping.
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(vi) The final target of the calculation is the pressure at specified detectors. After solving
ITBIE equations (25-26) for unknown displacements and pressure on boundary, and using equations
(25-26) again for the field points, the total pressure at these points in the k, domain can be obtained.
In the actual calculation, it is more convenient to obtain the reflected part of the pressure by
subtracting the incident part, P°, in the k, domain. The total pressure can be obtained by adding the
incident part back in the frequency domain. Note that the latter is given in closed form (Equation 8).
Thus numerical difficulties in the calculation of the source term in the k, domain associated with the
singularity at the center of the borehole are avoided.

The second issue is the RAM space. As discussed above, the fitting
information of the z-integration must be stored for the efficient evaluation of k_-integrals. If the
available RAM space is insufficient, hard disk storage can be a substitute. This however will increase
the computer time by a factor of 10 to 20. An effort is being made to reduce the amount of
information to be stored.

18. Tests

Various tests have been done in many stages of the computer program. These
include:

(1) Tests of the k -integration were conducted using integrals with known results given in
Appendix D;

(2) Tests of the Green's functions for the TI medium were conducted using the Green's
functions for the isotropic medium given in Section 4;

(3) Tests of the z-integration were done using integrals with known results given in
Appendix D;

(4) Tests of the Eintegration were done using integrals with known results given in
Appendix D;

(5) Tests of the k,-integration were done using integrals with known results given in
Appendix D;

(6) Tests of the kp—domain result were done using the "exact” solution for isotropic case which
is obtained through a standard method .

19. Future Improvements of Efficiency through Approximations

(1) Far-field Approximation of the Green's functions

The z-integration uses the Green's functions and associated stress functions
for z ranging from O to infinity. It is therefore desired their far-field expressions be obtained to reduce
computational efforts, especially when the medium is TI for which these functions are in the form of
k-integrals. Since the z-axis coincides with the direction of p when § = 90°, we need far-field
approximations for large k®p and k®p, where k. and k are the quasi-P and quasi-S

98



wavenumbers in p direction. A literature survey is being conducted in order to find work done in this
area.

(2) Asymptotic expression for the integration of infinite tail of the z-integrals
based on the far field expressions of the Green's functions when they are available.
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APPENDIX A EXPRESSIONS OF THE P-SV AND SH PARTS OF GREEN'S
FUNCTIONS FOR TI MEDIA

Z, = C (Cy+ C) kp[“e s

2 2 2 2
Z =CC. X B e Vit - X B e~xm}
2 o 744 ’
v X
2 2 2 2
X, = CCpof2—e it - 2 T ol
1 o 33 v X
y = L sl
4nv,C,,

where v, ¥, s are wavenumbers in {-direction for quasi p, SV and SH waves. Their definition
can be found in Reference C7.
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APPENDIX B DEFINITION OF THE k, INTEGRALS

I = f Z(k,, Ok Jo(k p)dk
0

L = [Z,(k, O k(K p)dk,
0

o

dz,
_ fa—C(kp, O,k o)k
0

]
]

4

I, = f Z,(k,, Ok p)dk,
0

on

= [ 20k, Ok J G p)dk,
0

" 3z,
- f-é-C—(kp, DTy, p)dK,

|
(=2

o

L = f Xk, 0ok p)dk,
0

I = le(kp, O,k p)dk
0

I, = f Xk, Ok I (k p)dk,
0
0%,

I, - f _a_C—(kp’ Ok p)dk
0
" aX,

I, = f --a?(kp, O,k p)dk,
0

I, = sz(kp, Ok Jo(k p)dk,
0

I, = sz(kp, Ok J,(k p)dk,
0
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" aX,

= [S2 ks Ok,
0

= [Y(k, Ok (k p)dK,
[0}

= Y0, D1tk p)k,)
0

= [0k, OJylk,p)ik
0

- f%(kp, Ok p)dk

0

_ f%%(kp, O3,k p)dk
0
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APPENDIX C SYMMETRIC AND ANTISYMMETRIC DECOMPOSITION OF THE
COEFFICIENT MATRIX

Consider an 8-node mesh. Assuming each node has only one unknown: U,, U,, - - -U,.
Because of the symmetrics with respect to x-axis and y axis, the only independent unknowns are U,
U,, U,. In fact,

U, = U,
U, = U,
Us = £U, (C-1)
U, = zU,
Ug = xU,
original equation:
M) U} p0
= (C-2)
8x8 8x1  8xl

New equations:

IMP {u®} _ {p*D}

3x3 3x1 = 3xl

1 (C-3)
M®] {(u®} _ {p°®}

3x3 3x1  3xl

where
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Ml(;x] = my tfim

Ml(;) = Moy g g

Ml(i?) = mytfgmy,

Mz(;!) = My gy

Mz(;) = My, oy i oo (C-4)
M2(3a) = Myt oMy

M3y = myy + fmas

Mg = my + fomay, + fiamsg + fimsg

M3, = my + fismy,
A=50rA

S denotes symmetric loading and A antisymmetric loading. f;==1,i=1, 2, ... 15. The sign
depends on the particular loading.

f==+1,i=1,2,... 15. The sign depends on the particular loading.
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APPENDIX D TEST INTEGRALS

1. kp - integrals
» Kk e-vz o*R
[o pu Jy (kyp) dkp = 3y
where
R = p*+z% v = fl]-k2 K>k
_ s ip2 12
= iyk*-k, k,<k
w -k R-Z
];)(’. PZJI (kpp)dkp = FPT
©, - zZ
fo ke T, (k p)dk, = =
[ “ke % (k p)dk, = }‘33-
w, k2 _2R-2) _ Z
fo ko, (k p)dk, = pEra
5. 0 - integrals

)

[ iz osto = o J(Z)
0
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. 6
2 12 COS—Z- 3] _ .
fo e cos —dO = 2mi J,(2) (2)

f(f” H, 2Z sin |2]) 8 = 21 J, (2) H, @) 3)
 H, (2Z sin|]) cos8 dO = 2m J, (D) H, (D) )
0

02“ HyQZ sin |2]) sin 2 d8 = n [J, ) H, (2) + ], (2) Hy (2)] )

Z - integrals and k, - integrals

. eikz 3 T —ka
[y W
ikz
w  Ze = i ka
[ ;
foc JZ JaZ g7 - 2 sin o (a+b) 3
- 2 6
) id y/b*+a®
foo ewt HO (b dZ_ZZ )dz = —2l e—— (4)
. b*+a’
oo Qip az+z2eikz
f —— dz = in H; (ap) )
oo Zzea2
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V. SEMIANALYTICAL APPROACH TO MULTIPHASE FLOW CALCULATIONS

A, Multiphase Streamline Modeling in Three-Dimensions

Recently three dimensional streamline modeling of multiphase flow has gained
increasing popularity’™. It has also become a very important tool as a fast and reliable flow
simulator for solving inverse problems in reservoir characterization’. Such streamline simulation
decouples multidimensional problems into a series of one-dimensional problems which can then be
solved analytically® or numerically.”"" Significant speed over traditional finite difference models
has been shown®. However, such comparisons have been largely limited to simple single pattern
configurations, e.g. 5-spots or line drives'>. Field scale application of three dimensional
streamline modeling has been very limited>. The primary limitations with regard to field
applications have been changing well configurations due to infill drilling, zone isolations,
recompletions, etc. A critical issue here is the remapping of streamlines and hence fluid
saturations as the dynamics of field conditions dictate.

Past efforts to handle infill drilling during streamline simulation have been to
avera,ge13 streamlines over an underlying grid and then to proceed with numerical computations
along streamlines. However, it is well known that such averaging of streamlines leads to
numerical dispersion. Thus, such an approach undermines one of the major strengths of
streamline modeling, which in addition to the fast solution, is to preserve the self-sharpening
nature of the saturation fronts during waterflooding. Averaging of streamlines in conjunction with
lower order numerical solution of multiphase flow equations along streamlines leads to a
significant loss in accuracy.

We present two major improvements to the existing streamline modeling. First,
instead of averaging streamlines during changing well conditions, we have used a 3-D mapping
algorithm'*" for streamlines. The algorithm uses a trivariate function to remap streamlines and
saturations during infill driling using a modified quadratic shepard method. The 3-D mapping
algorithm is robust and does not lead to smearing of saturation fronts. Second, along streamlines
we have used a third-order total variation diminishing (TVD)”” scheme to solve the multiphase
flow problem to prevent numerical truncation error.'®'' Comparison with the existing method
shows significant improvement in accuracy without any loss in computational efficiency. We
illustrate our approach using synthetic as well as field applications and comparing the results of
streamline simulation with numerical simulation. We compare different numerical schemes for
saturation solution along streamlines with the analytical solution using a synthetic example of a
2D, homogeneous quarter Sspot pattern under uniform initial saturation conditions. The
extension to non-uniform initial conditions is validated using a numerical simulator for a synthetic
example involving a 5-spot to 9spot pattern conversion. The approach is then applied to an
example with multiwell configuration. Finally, a field application is presented. The field case
involves waterflood predictions in a highly heterogeneous fractured carbonate reservoir -- North
Robertson field in West Texas. Production performance from multiple patterns (simulation grid
of 50x25x12) consisting of 27 producers and 15 injectors have been simulated using the
streamline model to demonstrate the power and versatility of the approach.
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The streamline approach for modeling multiphase flow in reservous relies on a
unique transit time algorithm presented by Datta-Gupta and King' and Peddibhotla et al>. The
application of streamline approach in three dimensions is discussed briefly in this section.

Streamline Generation: For incompressible flow in a non-deformable permeable media, the
velocity will be driven by a pressure field and the total mobility is a function of position.

V.(A, Vp)=¢q 6 M

The pressure field is generated using a finite difference scheme that yields a symmetric and
positive-definite system of equations which lend themselves to efficient solvers such as Cholesky
decomposition or preconditioned conjugate gradient techniques. Once the pressure field is
generated, the face velocities for grid blocks are obtained using Darcy’s law. The velocity field
within grid blocks is derived using the simplification that in the finite element representation of the
standard lowest order finite difference scheme, each velocity varies linearly through a grid block
and each velocity depends only on its own coordinate. Thus, the velocities at each of the six
gridblock faces (x1 or west, X2 or east, yl or south, y2 or north, z1 or top, z2 or bottom) are
calculated as follows:

vx = ax (x _xl )+ vx]
vy :ay (}")’1)""’)1 ) (2)
v, =a,(z-z)+v,

For example, as shown in Fig.2, v, and vy, are the x-velocities on the west and east faces of a
gridblock. In this example gridblock, the streamline shown is entering through the west face and
exiting through the north face. In the above equation, the slope of velocity, a, in each direction
within a gridblock is

Ax =(Vx2 ;vxl)/Ax
y :(vyZ _Vyl)/Ay 3)
a; =y -va)lAz

a

The particle travel time, T, within the gridblock can now be computed by direct integration
as follows:

dt dx dy dz

¢ v, Vy Vg

The transit time of a tracer particle from an arbitrary location (X,,y.,z,) Within the gridblock to a
face can thus be calculated using the slope of velocity in the direction of that face. For example in
the x-direction:
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v

Vz0
where i=1,2 are the gridblock faces in each direction. Since the particle must exit through one of
the faces, the actual transit time of the tracer particle will be given by the minimum At over
allowed edges.

At = MIN(Ar“,Atxz,Atyl,Atﬂ,AtZ],AtZz) 6

Once the particle travel time across the grid block is computed, its exit coordinates from the
gridblock can then be calculated. Exit coordinates are specified by the x, y and z location.

x=x+(1/a)[v, € -v,]

y=y +(1/ay)[vyo e —vﬂ]

2=z +1/a)|v, e“¥ -v,| @

The particle travel time, T, to a producer or any location in the flow domain can be obtained by
starting the trajectory at the point of interest and following the streamline backwards in time until
an injector is-reached. The underlying assumption is that the streamlines do not shift significantly
with time. Particularly for waterflood applications this is expected to be a good approximation
since the total mobility is almost always stable.

One-dimensional Solution Along Streamlines: The Buckley-Leverett® equation describing
immiscible two-phase displacement can be written in terms of the travel time coordinates as
follows:

W

2S . dF (S,) _
ot o7

0 (8)

where S, is the water saturation, t is actual time or simulation time, and F(S,) or f, is the
fractional flow of water given by
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In the above equation, A, and A, are phase mobilities which are functions of relative
permeabilities, k., and viscosities, [L.
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2«0 — ro
H,
Kk, (10)
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From Eq.8 along a streamline the solution for water saturation distribution, Su(x,y,z,t), will be
given by:

: ds. (12)
Note that in the above equation, the right hand side corresponds to the slope of the fractional flow
curve and thus, is a single-valued function of water saturation. Finally, the oil rate of a producer,

Qo, will be given by:

Nsl

> [1- (fo(x.y.2.0),]

_ =1
9, =4, N, (13)

where q, is the total specified production rate of the well, and Ny is the number of streamlines
converging to that producer. The individual well production history can be obtained by
integrating over all the streamlines arriving at a given producer.

The analytical solution given by Eq. 12 holds good only under uniform initial conditions.
However, typical waterflood involves drilling of infill injectors and producers over the life of the
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project. Clearly, the uniform initial conditions assumptions no longer holds good under such
conditions and the 1D solution along each streamline is then obtained numerically. Eq.8 is
discretized as follows:

w W

N AT

r+l n
S -S 4 Fi+1/2 - Fi—vz

=0 (14)

As usual, F..1 is at the boundary between gridblock i and i+1, and n is the timestep counter.
Fig.3 is an illustration of descretization of streamline in space. A high resolution technique called
Total Variation Diminishing (TVD)7'9 is used for the numerical solution to minimize artifacts such
as numerical dispersion.

The total variation is defined as follows:

N1D-1
by n+l n+
TV(F™)= 3 |F,"" - F,
i=]
where N1D is the number of gridblocks overlain on each streamline. To ensure monotonicity and
to avoid spurious oscillations, we must satisfy the total variation diminishing criteria as suggested
by Harten®:

TV(E™)<TV(E") as)

As discussed by Sweby", the flux term at the block interface is approximated as a first order flux
term and an anti-diffusive corrective term:

(.fw z+1 (fw )

Fon =(f,)" +Xr 5 (16)
where @(r), the flux limiter, governs the order of discretization as follows:
o(ry=r , 2 pt.upstreamweighting
=1 , midpt.weighting
2 1 .
=3 + —3—r , weighted average
a7n
The measure of smoothness of the data, r, is determined as
— (fw) (f )z ] [ i+l Tt J (18)
(fw)i+1 _(fw)i T, T
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Using a upstream weighted numerical formulation results in a stable but dispersed solution. Mid-
point weighting results in a more accurate solution, but causes instability. The optimum choice
lies somewhere in between, i.e. a weighted average as recommended by Leonard'® and . Fig. 4 is
an comparison of the different mathematical formulations.

The limiting function, @(r), is chosen such that the limited anti-diffusive term is maximized in
amplitude subject to the constraint that the resulting mathematical formulation is a Total Variation
Diminishing (TVD) formulation. Sweby'' derived the algebraic conditions on the limiting
function that guarantee this property.

0<2  hi<2 (19)

r

Eq.25 results in the following TVD limiters for the higher order mathematical formulations
described above in Eq.23,

o(r) = Max(0, Min(r 2)) 2 pt.upstreamweighting
o(r) = Max(0, Min(r.2)), Midpt .weighting 20)
o(r) = Max(0, Min(2,2r,¢"%)) Third order Leonard

Finally, the water saturation is then determined as
Ja%s
ntl n
S, =8, _E*(sz ”E—w) 2D

where At is the timestep for numerical solution.

Mapping Streamlines to Streamlines at Infill: At infill time, the intersection of streamlines with
gridblock faces, and the water saturation and travel time at these locations are known. With the
change in well configuration, the streamlines are redefined in space to account for the new wells.
As a result, the intersection points of streamlines with gridblock faces also change. The water
saturation at these new intersection points are obtained using 3D interpolation from the original
intersection-point water saturations. Renka'*"’ presented the 3D interpolation algorithm,
QSHEP3D. It is based on defining a smooth (once continuously differentiable) trivariate function,
I(x,y,z), which interpolates data values F scattered at scattered nodes. The interpolation scheme
is a Modified Quadratic Shepard Method. The interpolant, I, is defined as

NN
S W(m)* I(m)
I = m=1 (22)

NN
> W(m)

m=]

where m is the node index and NN is the number of nodes and their associated data values, a
minimum of 10 such nodes should be used. The nodal function, I(m), at node m is given by
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Itm)(x,y,z)=
AL,m)*DX*+ AQ2,m)* DX * DY
+ A3,m)*DY* + A(4,m)* DX * DZ
+ A(5,m)*DY *DZ + A(6,m)* DZ*
+ A(7,m)* DX + A(8,m)* DY
+ A(9.m)*DZ
+ C{m)

(23)

where

DX =x~x(m)
DY =y—y(m) (24)
DZ =z z(m)

Thus I(m) is a quadratic function which interpolates the data values at node m. The coefficients
(A(1,m), A(2,m)..., A(9,m)) are obtained by a weighted least squares fit to the closest NI data
points with weights similar to W(m), and using Gaussian Elimination to solve the resulting system
of simultaneous equations. The recommended range of NI is between 16 and Min(40,NN-1).
The radius of influence, R(m), for the least squares fit is fixed for each node m but varies with m,
and is chosen such that NW node are within the radius. The recommended value of NW is
between 32 and Min(40,NN-1). The weights are taken to be

(R(m)=D(m) + |’
= 25
W(m)x,y,z) [ R(m)* D(m) } (25)
where
(R(m)—D(rﬁ))+:0 if R(m)< D(m) (26)

D(m) is the euclidean distance between node (x(m),y(m),z(m)) and cartesian location (x,y,z). At
a node (x(m),y(m),z(m)), weight W(m) is not defined, however, I(m) has limit C(m). The use of
such streamline to streamline mapping over streamline to gridblock mapping used before prevents
unnecessary smoothing of saturation distribution and numerical dispersion.

Application

Synthetic Example 1. The TVD modification was validated using a synthetic example of a 2D,
rectangular, homogeneous, quarter 5spot pattern. A simulation grid of 21x21x1 was used. The
well configuration consisted of 1 injector and 1 producer. The simulation time is 500 days The
producers are pressure constrained while the injector is rate constrained. The objective of
presenting this example is to show the marked improvement in using TVD over other
mathematical formulations like single point upstream weighting for the numerical solution along
streamlines. To validate the TVD modification, the results of analytical solution and numerical
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simulation are also presented. Parameters used for comparison include oil rate versus time, water
cut versus time, and saturation distribution at a reference time.

Synthetic Example 2. The modification for non-uniform initial conditions was validated using a
synthetic example of pattern conversion from Sspot to 9spot. The synthetic example consisted of
a 2D, rectangular, heterogeneous pattern with a simulation grid of 21x21x1. The initial well
configuration consists of 4 corner producers and | central injector. The simulation time is 1000
days while infill wells are introduced at 500 days. The infill wells are the 4 side producers. Fig.5
shows the well configuration for this example before and after infill. The producers are pressure
constrained while the injector is rate constrained. Results of streamline simulation were compared
with that of a commercial numerical simulator. The objective of presenting this example is to
show the application of 3D interpolation and numerical solution along streamlines to model non-
uniform initial conditions (infill drilling). Results of streamline simulation were compared with that
of a commercial numerical simulator. Parameters used for comparison include oil rate versus time,
and saturation distribution at a reference time (both at infill time and at the end of simulation)

Synthetic Example 3. This is a large scale, 2D, homogeneous, example with multiwell
configuration. A simulation grid of 100x50x1 was used to model muitiple patterns containing 20
original producers, 15 injectors and 7 infill producers. This well configuration belongs to the
North Robertson Field in West Texas. The producers are pressure constrained while the injectors
are rate constrained. The reservoir was assumed closed at all the external boundaries. The total
simulation time was 1000 days, with infill drilling at 700 days. The objective for presenting this
case is to exhibit the response of streamline simulation to a multiwell configuration. Results of
streamline simulation were compared with that of a commercial numerical simulator. Parameters
used for comparison include oil rate versus time, water cut versus time, and saturation distribution
at a reference time.

The approach is currently being applied to a large scale field example - the North
Robertson Field in West Texas. A simulation grid of 100x100x12 is being used to model multiple
patterns totaling 20 original producers, 15 injectors and 7 infill producers. The producers are
pressure constrained while the injectors are rate constrained. The reservoir is assumed closed at
all the external boundaries. The total simulation time is 1000 days, with infill drilling at 700 days.
The results of streamline simulation are being compared with available production history.

Results and Discussion

Synthetic Example 1. Fig.6 is a plot of oil rate vs. time for the streamline simulator and the
numerical simulator. A very good match is seen between the streamline TVD solution, streamline
analytical solution and the numerical simulation. The streamline 1 point upstream solution predicts
a very early breakthrough in contrast. Fig.7 is a plot of water cut vs. time for all 4 approaches.
Fig.8 shows the water saturation maps from the streamline TVD solution along streamlines,
streamline 1 point upstream solution streamlies, streamline analytical solution streamlines, and
from numerical simulation. There is excellent agreement between the streamline simulator and the
numerical simulator, except for the 1 point upstream solution in streamline simulation.
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Synthetic Example 2. Fig.9 is a plot of oil rate vs time for the streamline simulator and the
numerical simulator. The results of well 1 (original producer) and well 5 (infill producer) have
been plotted. A very good match between both the simulators for both wells. The breakthrough
time is about 200 days in both simulators for well 1. Fig.10 is a plot of total oil rate vs time for
the streamline simulator and the numerical simulator. Total oil rate is the sum of all the 4
producers before infill and sum of all the 8 producers after infill. Fig.11 shows the permeability
map, and water saturation maps at infill time (300 Days, 0.425 PV Injected) and at the end of
simulation (500 Days, 0.708 PV Injected) from both the streamline simulator and the numerical
simulator. The streamline simulator water saturation profile honors the permeability distribution
very well. In addition, there is agreement between the streamline simulator and the numerical
simulator. However, the numerical simulator does show the effects of dispersion as evident from
the smoothing of contours.

Synthetic Example 3. Fig.12 is a plot of oil rate vs time for the streamline simulator and the
numerical simulator. The results of well 1 (original producer) and well 21 (infill producer) have
been plotted. A very good match between both the simulators for both wells. The breakthrough
time is about 500 days in both simulators for well 1. Fig.13 is a plot of total oil rate vs time for
the streamline simulator and the numerical simulator. Total o1l rate is the sum of all the 20
producers before infill and sum of all the 27 producers after infill. Fig.14 shows water saturation
maps at infill time (700 days, 0.157 PV Injected) and at the end of simulation (1000 Days, 0.224
PV Injected) from both the streamline simulator and the numerical simulator. There is a good
agreement between the streamline simulator and the numerical simulator.

Summary and Conclusions

1. A fully three-dimensional streamline simulator has been developed for modeling multiphase
flow in heterogeneous permeable media. The model is very general and orders of magnitude
faster compared to traditional numerical simulators without any loss in accuracy.

2. The Total Variation Diminishing technique for the water saturation solution along streamlines
is very effective in minimizing numerical dispersion, as evident from the results of synthetic
example 1. It agrees very well with the analytical solution. In comparison, the solution from 1
point upstream solution along streamlines predicts early breakthrough due to numerical
dispersion.

3. The modification for non-uniform initial conditions has been validated against numerical
solution as shown in the results from synthetic example 2. The streamline simulator produces
similar results to the numerical simulation for the infill wells using a fraction of the computation
time.

4. The streamline approach is applicable to multiwell configuration, as evident from the results of

synthetic example 3. The streamline simulation results agree with the numerical simulation for
both individual wells and total reservoir rate.
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Nomenclature

a  =slope of velocity components, T, 1/sec
B, = oil formation volume factor,dimensionless, rcf/scf
B, = water formation volume factor,dimensionless, rcf/scf

C(m) = limit on interpolating function, dimensionles

D(m) = Euclidiean distance, L, ft

DX = x-direction distance of arbitrary point from a node,L.ft
DY = y-direction distance of arbitrary point from a node,L. ft
DZ = z-direction distance of arbitrary point from a node,L,ft

dx = distance traveled in x direction, L, ft
dy =distance traveled in y direction, L, ft
dz = distance traveled in z direction, L, ft

Ax = gridblock size in x-direction, L, ft
Ay = gridblock size in y-direction, L, ft
Az = gridblock size in z-direction, L, ft

At =small dmestep in numerical 1D solution, T, days
F = third order term, dimensionless

f.  =fractional flow of water, dimensionless, fraction
i = gridblock index

I(m) = Interpolant, dimensionless

k, =oil relative permeablity, dimensionless, fraction

k. =water relative permeablity, dimensionless, fraction
ki =endpt. oil relative permeablity, dimensionless, fraction
ken =endpt. water rel. permeablity, dimensionless, fraction
kx = absolute permeability in x-direction, L% md

ky = absolute permeability in y-direction, L%, md

kz = absolute permeability in z-direction, L*, md

1 = counter for streamlines

m = node counter

M.s = End point mobility ratio, dimensionless

n = timestep counter

N1D = number of gridblocks overlaid on each streamline
ngr = net-to-gross ratio, dimensionless, fraction

NI  =number of nodes

NI = Number of nodes used for determining coefficients
NW = Number of nodes within radius of influence

n, = oil relative permeability exponent, dimensionless
n, = water relative permeability exponent,dimensionless
Np =cumulative oil production, L’, stb

Ny = number of streamlines to a producer, dimensionless

p pressure, M/L?, psi

PV = pore volume, L’, rcf

q = specific flow rate, T 1/d
Q =flow rate, 1°, stb/d

Q. =total flow rate, L’ stb/d

Il
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Q,
Qi

T

= production rate, L, stb/d
= injection rate, L, stb/d
= wellbore radius, L, ft

R(m) = Radius of influence, L, ft

Sw

¢

= water saturation, dimensionless, fraction

= connate water saturation, dimensionless, fraction
= residual oil saturation, dimensionless, fraction
=time, T, days

= velocity, L/T, ft/sec

= oil viscosity, M/LT, cp

= water viscosity, M/LT, cp

= o1l mobility, L*T/M, md/cp

= water mobility, L*T/M, md/cp

= total mobility, L*T/M, md/cp

= porosity, dimensionless, fraction

¢ (r) = limiting function, dimensionless

T = travel time, T, days

&;  =kronecker delta

operators

V. =divergence

vV = gradient
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B. Application of the Theory to La Cira Field in Colombia

A geostatistical approach is commonly used to reproduce reservoir heterogeneities.
The objective is to generate a few “typical” descriptions incorporating heterogeneity elements that
are difficult to include by conventional methods. Conditional simulation is used for creating property
(permeability, porosity, etc.) distribution with a prescribed spatial correlation structure that honors
measured data at well locations. Stochastic reservoir modeling provides multiple equiprobable,
reservoir models, all data intensive, rather than a single, smooth usually data poor deterministic
model. Experience has shown that these data intensive, stochastic reservoir models yield a better
history match of production data, yet provide a measure of uncertainty in prediction of future
performarnce.

Fine-scale realizations are the most detailed representation of the heterogeneities that
exist in the petroleum reservoir. The ideal flow simulation process would be to input this fine-scale
data in its entirety. However conventional numerical simulators do not allow this readily. Reservoir
models built for conventional simulators using the fine-scale data are huge and unmanageable. The
flow simulation process thus becomes very tedious, slow and expensive. This is in addition to any
hardware limitations that may exist. Typically an upscaling algorithm is applied to obtain a coarse-
scale heterogeneity model. This coarse-scale model is then input into the conventional simulators.
However, most of the upscaling algorithms are based on single phase pressure solution and are thus
questionable at best for multiphase flow applications. Pseudo-relative permeabilities have often been
used as a tool for multiphase flow upscaling. But such approaches are highly process dependent and
have limited applicability. There is a definite need for a fast and powerful simulator that allows the
easy use of fine-scale realizations as such without the need for any upscaling.

In this work, we describe application of the new, fully three-dimensional, multiphase,
streamline simulator for modeling waterflood performance. The streamline simulator is orders of
magnitude faster than traditional numerical simulators, and its performance is not affected by
problems of numerical dispersion or instability. Unlike streamtube models, the proposed approach
relies on the observation that in a velocity field derived by finite difference, streamlines can be
approximated as piecewise hyperbolas within gridblocks. Thus the method can be easily applied in
three-dimensions, and incorporated into conventional finite difference simulators. Once streamlines
are generated in three dimensions, a variety of one dimensional problems can be solved analytically
along the streamlines.

This is the first truly three dimensional streamline simulator applied to field level
simulation. Till now, streamline simulation has been applied to three-dimensions by modeling the
reservoir as a composite of two-dimensional layers or through hybrid approaches. The speed of the
streamline simulator allows the dynamic flow simulation of multiple fine-scale realizations of reservoir
properties and virtually eliminates the need for upscaling. The simulator can be used to assess the
uncertainty associated with stochastic reservoir descriptions. The approach provides a lot of scope
for future works, like combining dynamic field history data with static data for better reservoir
description.
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The power and utility of the streamline simulator is demonstrated through application
to a field example. The field example consists of a detailed characterization and watertlood
performance prediction for the La Cira field, Colombia. Using core and log data, a fine-scale
geostatistical description consisting of 100 layers was generated for a typical waterflood pattern.
Waterflood performance prediction was carried out for 23 years of secondary production. The
parameters used for comparison between the streamline simulator and commercial simulator are water
cut vs. time, oil rate vs. time, and water saturation distribution. The streamline simulator is found to
be orders of magnitude faster than the commercial simulator without any significant loss in accuracy.

The La Cira field is located in the Magdalena middle basin, Colombia. South America
as illustrated in Fig.1. The field was discovered in 1926, and produced under the solution-gas drive
mechanism until 1956 when a waterflooding project was started. The geological model was already
available which describes the morphology of the sand bodies. The reservoir rock type is fluvial
sandstone of the Eocene-Oligocene age. The sand bodies can be characterized as channel deposits
of the jigsaw-puzzle reservoir type. The field structure is an anticline, nine kilometers by six
kilometers, with the major axis N-S trending. The reservoir is classified as a low to medium
permeability reservoir. The La Cira field produces from three zones - A, B and C. The C zone is the
main producing zone yielding about 80% of the cumulative oil production. The field has been divided
into eight areas for operations management. The OOIP was 1500 MMSTB, the primary recovery
was about 11% and the current average recovery about 16%. This analysis here will focus on a
typical pattern (LC - 1210) in producing area 07.

In this section, we describe the distribution of permeability within the sand bodies.
A conditional, geostatistical technique called Sequential Gaussian Simulation (SGS) was used to
generate fine-scales realizations of permeability. The study was performed on a typical waterflood
pattern (LC 1210) of production area 07, with an area of 43 acres, with 5 injectors and 1 central
producer as illustrated in Fig.2. Conditional 3D permeability descriptions were generated for the
same volume as in the dynamic simulation model. The origin, orientation, and external dimensions
of the grid were tailored to the future fluid flow model grid constraints. In the study unit, the
reservoir is composed of 6 layers, hydraulically separated but producing commingled; consequently
all six layers have to be included in the fluid flow model. However, from the geostatistical point of
view, the 6 pools (divided by impermeable shale) were simulated as 100 layers using a foot-by-foot
description available from well logs and limited core data. The stochastic simulations were carried
out for 100 layers, in a very detailed, orthogonal grid to obtain a fine-scale heterogeneity description.
The grid dimensions for all layers in the fine scale simulation are 89 ft. x 94 ft. x 1 ft. Conditional
simulation of permeability was carried out using an anisotropic semi-variogram model. Two nested
structures and an isotropic nugget effect of 0.06 characterize the variogram model. The first
structure is an exponential model, with a range in the direction of principal continuity (horizontal) of
6000 ft., with a contribution of 0.62 and an anisotropy factor of 0.0026. The second structure is a
Gaussian model, with a range in the direction of principal continuity (horizontal) of 4700 ft., with a
contribution of 0.32 and an anisotropy factor of 0.0023. The logarithm of permeability (conditioning
data) is input foot-by-foot in all 6 well locations.

This fine-scale description can be used directly in the streamline simulator.
Unfortunately, use of this reservoir model of 50400 gridblocks (21x24x100) in a commercial
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numerical simulator turned out to be quite cumbersome because of the large storage and CPU time
required. An upscaling procedure was therefore necessary to capture the effect of heterogeneities
and to transfer it into a coarse grid for the commercial numerical simulation model. The upscaled
permeability field is shown in Fig.3. The upscaling was necessary to be able to compare the
streamline simulator with the numerical simulator. For permeability upscaling, the power averaging
technique was used. This approach models the non-linear averaging of absolute permeabilities. The
assumption is that the elementary permeability values average linearly after a non-linear power
transformation. Multiple fine-scale stochastic realizations were generated by changing only the
random seed number in the SGS.

La Cira field coarse-scale model. Further comparison between the streamline and
commercial simulators was performed for a field case, the La Cira field in Colombia, South America.
The course-scale permeability model obtained from upscaling was used here. The case consisted of
five injectors and one central producer in a 3-D, rectangular, heterogeneous model (21x24x6) of a
typical waterflood pattern LC 1210, Area 07, La Cira field, Colombia. The upscaled permeability
field consisting of 6 layers shown in Fig.4, was used with kx=Ky in each gridblock. Performance
predictions for 23 years of secondary production was carried out using both the streamline simulator
and the commercial simulator. The parameters used for comparing the streamline simulator with the
commercial simulator are oil rate vs. time and spatial water saturation distribution at a particular time
of reference.

La Cira field coarse-scale model. Fig.4 is a plot of oil rate vs. time for the streamline
simulator, commercial simulator and actual production history. The match between the streamline
simulator and the actual production history using the upscaled permeability description is not very
satisfactory. The match between the commercial simulator and the actual production history is not
good either. Both the simulators tend to under predict the oil rate at all times. There is an initial
hump in oil rate predicted by the commercial simulator. This can be attributed to the fill-up volume
associated with the free gas saturation in the reservoir. The streamline model is not able to model
such fill-up period due to the incompressibility assumptions. After 8000 days of water injection (0.59
PV injected), both simulators gave a water cut of 0.98. A comparison of CPU times between the
streamline simulator and the commercial simulator shows that the streamline simulator is about 200
times faster than the commercial simulator.

l. We have presented a fully three dimensional streamline simulator for
predicting field-scale waterflood performance.
2. The streamline simulator has been shown to be orders of magnitude faster

compared to the commercial simulator. This allows for use of fine-scale
description, virtually eliminating the need for any upscaling.

3. Comparisons with a commercial simulator have shown that the streamline
simulator yields satisfactory results for typical waterflood conditions. Also,
unlike the commercial simulator the streamline approach does not suffer from
numerical dispersion or instabilities.

4, The power and utility of the streamline simulator has been demonstrated
through application to waterflood performance for the La Cira field,
Colombia.
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V. SEISMIC SIGNATURES OF THE FRACTURED TWIN CREEK RESERVOIR,
LODGEPOLE FIELD, UTAH-WYOMING OVERTHRUST BELT

A. Introduction

In low porosity, low permeability formations, natural fractures are the primary source
of permeability, controlling both production and injection of fluids. The open fractures do not
contribute significantly to total porosity, but they provide an increased drainage network for the
matrix porosity. An important approach to characterizing the fracture orientation and fracture
permeability of reservoirs is one based upon the effects of such conditions on the propagation of
acoustic and seismic waves in the rock.

We present the feasibility of using seismic measurement techniques to map the fracture
zones between wells spaced 2,400 feet apart at a depth of approximately 11,000 feet. To accomplish
this, we used computer models of the Twin Creek reservoir to predict seismic signatures recorded
at the crosswell and 3D seismic scales. Well logs and thin sections of cuttings were integrated with
2D seismic sections to produce petrophysical and geological cross sections, quantify fracture
distribution, and determine the petrophysical parameters and reservoir geometries needed for the
computer models.

The 2D seismic sections delineated the major boundary surfaces between members
of the Twin Creek formation. These boundaries are the tops of the Twin Creek (Giraffe Creek
Member), Leeds Creek, Watton Canyon, Boundary Ridge, and Rich. Integration of the surface
seismic and well logs demonstrated that the fracture zones cannot be resolved by surface seismic
measurements alone. Instead, it is more appropriate to use high-resolution cross-well seismic data.
Therefore, we conducted model studies for planning high-resolution interwell seismic experiments
to map the fracture zones in the Twin Creek at Lodgepole field.

The modeling results show that seismic waves transmitted between two wells will
propagate in fractured carbonate reservoirs at a distance of up to 2,400 feet. Using wall-lock velocity
detectors spaced 1.5 m apart and existing broadband seismic sources, the signal can be received above
the noise level. In addition, the large velocity contrast between the main fracture zone and the
underlying Boundary Ridge Member suggests that it may be possible to map variations in the
geometry of the fracture zone with borehole reflection imaging and traveltime tomography. Finally,
the trapped energy and normal modes that are excited in the waveguides will be useful to determine
the degree of continuity of permeability barriers, layer thickness variations, inhomogeneities, and
boundary surfaces.

B. Geology

Lodgepole field is the southernmost in a series of oilfields in the Overthrust Belt of
southwestern Wyoming and neighboring Utah producing from the Jurassic Twin Creek Formation.
Union Pacific Resources (UPRC) has three fields in the play in Summit County, Utah: Lodgepole,
Elkhorn, and Pineview. These fields are shown in Figure 1.
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Lodgepole has produced 1,132 MBO. It is a depletion drive reservoir, but most of
the wells have significant water production. Six horizontal and twelve vertical boreholes have been
drilled in the field (see Figure 2). In particular, note the horizontal well path for the Judd 34-1H and
seismic line CREA-25k. Both are used in the integration analysis.

Lodgepole was selected as the type field for this study because of continued horizontal
drilling activity in the field and an extensive database:

a. Over 20 2D seismic lines are available. The lines are both parallel and perpendicular
to the fracture orientation.

b. UPRC conducted an outcrop study of the fracture orientation in the Twin Creek
formation.

C. Resistivity, density, neutron, sonic, caliper, and gamma ray logs are available for

almost all the vertical wells. As an example Figure 3 shows a suite of logs from
vertical well 34-2.

d. MWD gamma ray logs are available for every horizontal well and three formation
microscanner (FMS) logs have been run (4-2H, 34-1H, and 35-2H).
e. Cuttings are available for the horizontal wells.

C. Stratigraphy

The Twin Creek Formation is approximately 1,500 feet thick in Lodgepole Field and
is divided into seven members. The following brief description of each member of the Twin Creek
Formation is taken from Bruce (1988):

Gypsum Springs. Approximately 50 feet of sabkha evaporites, red beds, and minor
carbonates. It serves as a detachment surface between the Nugget and Twin Creek in the
thrusting process. It also created a barrier to hydrocarbon migration between the Nugget and
Twin Creek Formations in most places.

Sliderock. Approximately 90 feet of micritic limestone with thin beds of oolitic grainstone
and thin shaly zones. No primary porosity has been preserved, but calcite-filled fractures are
present.

Rich. Approximately 250 feet of argillaceous limestone that cleans upward. The upper 20
to 50 feet has some intergranular porosity and may be dolomitized. The Rich was the target
zone in the 34-1H Judd (30301-01) in Section 34.

Boundary Ridge. Approximately 50 feet of red siltstones and claystones with a sabkha
character. It serves as a good marker bed in the Twin Creek Formation.

Watton Canyon. Approximately 250 feet of limestone with thin, tightly cemented oolitic

zones. The limestones of the Watton Canyon are thinner bedded and more terrigenous than
the Rich Member. An interval approximately 20 feet thick near the base of the Watton
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Canyon is the primary target for most of UPRC's horizontal wells, including the 34-1H Judd
in Section 34.

Leeds Creek. Approximately 300 feet of interbedded argillaceous and relatively clean
limestones. A highly radioactive unit near the top of the member is a devitrified tuff.

Giraffe Creek. Approximately 450 feet of micritic and oolitic carbonates. It becomes sandy
toward the top.

The Basal Preuss Silt, a 30 to 100 foot interval of tightly cemented quartz siltstone,
overlies the Twin Creek Formation. The Preuss Salt overlies the siltstone. It varies from 20 to 300
feet in thickness.

The Twin Creek Formation overlies the Nugget Formation, which is eolian sandstones.
The Nugget is one of the primary hydrocarbon producing reservoirs in the Overthrust Belt.

D. Study Area

Lodgepole field extends over six sections (see Figure 2). Section 34 in the center of
the field was chosen as the initial study area for this project. The section contains three vertical and
two horizontal well.

Structural cross sections were constructed with the logs from the vertical wells in
Section 34. The cross sections center on the Watton Canyon and Boundary Ridge Members, which
contain the fractured intervals in the Twin Creek Formation. The cross sections include the acoustic
velocity, bulk density, gamma ray, caliper, and lithology curves. These cross-sections are given in
Figures 6, 7, and 8.

E. Geologic Controls on Fracture Distribution

In order to understand the nature of the fracturing in the Twin Creek, thin sections of
cutting samples were made in the Judd 34-1H from 10,400 to 13,470" and in the Judd 34-1H Redrill
from 11,200-11,460" and 12,780-13,180". These thin sections were impregnated with blue epoxy for
porosity and open fracture identification. Selected thin sections were stained with Alizarin Red S for
dolomite and calcite identification.

Only scattered traces of porosity were found in the thin sections, but fracturing was
common although selectively controlled by lithology and facies. The significant fracturing was mainly
confined to dolomitized mudstones where silt and sand were minor, see Figure 9. The favorable
facies for fracturing was a backbank low energy brackish environment (based on the absence of
pellets of fossils).

Appendix 1 and 2 summarize the sample descriptions. Appendices 3 and 4 are more
detailed descriptions of the data in tabular form. All depths in these appendices are sample depths.
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UPRC JUDD 34-1H

The Twin Creek Giraffe Member contains two distinct units, an upper siltstone dominated unit
and a lower pellet packstone dominated unit. Clastics are dominate in the Twin Creek Giraffe
member from 10,440 to 10,600, while mudstone and fracturing are rare. The clastics are composed
of argillaceous to calcareous pelletal siltstones with minor amounts of sandstones and mudstones.
Only traces of vuggy, moldic intercrystalline and microporosity are present from 10,460 to 10,610".
Only traces of fractures are found in the samples from this interval.

The lower part of this member consists of interbedded pelletal siltstones and silty pellet
packstones with significant silty mudstones. The base of this member is marked by increasing
amounts of interbedded mudstones. Fractures are very rare in the Giraffe Creek.

The Leeds Creek Member, picked at 10,921, can be divided into an upper oolitic to pellet
packstone dominated facies and a lower slightly silty to slightly dolomitic mudstone (top at 11,180°).
The mudstones at 11,180' are slightly silty and slightly dolomitic with increased fracturing. The
fracture interval occurs between 11,180 and into the top of the Watton Canyon Member. An
increase in fracturing to 5% occurs at 11,190 to 11,200" in slightly to very dolomitic mudstone.
Fracturing was very rare in the upper part of the Leeds member, increasing at the base of the Leeds
Creek where dolomitization and mudstone content increase.

The Watton Canyon Member (top at 11,260") differs little from the base of the Leeds member.
The upper part of the Watton Canyon is predominately dolomitic mudstone. Overall, the Watton
Canyon is dominated by dolomitic mudstones with scattered zones of pellet packstone. The dolomitic
mudstone rocks are the main host rock for the fracturing, Figure 9. The Watton Canyon mudstones
range from slightly to very silty and slightly to very dolomitic. Some scattered slightly calcareous
dolomite are interbedded with the very dolomitic mudstones. An increase in dolomitization and
decrease in siltyness corresponds to an increase in fracturing. Where interbedded silty pellet
packstones predominate, fracturing is rare to absent, Figure 10. Good fractured intervals in the
Watton Canyon occur at 11,180 - 11,360', 11,400 - 11,470", 11,730 - 11,900, 11,990 - 12,540,
12,960 - 13,050', and 13,260 - 13,470 ( sample depths ).

The fracturing in the Watton Canyon is recognized on the basis of healed fractures in the
mudstone (5 to 20 %) and a corresponding occurrence of free crystalline calcite (trace to 20 %).
Most healed fractures show very little open porosity. The open fracture porosity may be represented
by the free crystalline calcite. One Watton Canyon interval (11,510 to 11,610") contains 5 to 30 %
free crystalline calcite and only traces of healed fractures. The top of this interval is pellet packstone
dominated while the base of the interval is mudstone dominated. This interval is the only packstone
interval with fracturing.

Figure 1lshows a correlation between fracturing and the mudstone facies. In the figure
mudstones are present in the intervals where pellets and ooids are absent.
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The fractured intervals (using sample depths) in the Watton Canyon are as follows:

TABLE I
11,180 - 11,360 tr - 5% healed fract.

tr - 1% calcite

11,400 - 11,470 tr - 20% healed fract.

tr - 5% calcite

11,730 - 11,900 5 - 10% healed fract.

5 - 10% calcite

11,990 - 12,540 5 - 20% healed fract.

5-15% calcite

12,960 - 13,050 tr - 10% healed fract.

1 - 5% calcite

13,260 - 13,470 tr - 10% healed fract.

tr - 10% calcite

trace of porosity in calcite

trace of dolomite crystals

UPRC JUDD 34-1 H Redrill

Thin sections of cutting samples were made on the base of the Leeds Creek, Watton Canyon,
and Rich Members of the UPRC Judd 34-1H redrill from 11,200 to 11,460" and 12,780 to 13,180".
Because of lack of returns, no samples were collected from 11,460 to 12,780'.

Only three thin sections of Leeds Creek were available for examination. Thin section 11,200
to 11,220' contained 30% argillaceous pellet siltstone with calcareous silty pelletal sandstone to
siltstone while the two underlying thin sections contained silty to sandy mudstones. The Leeds Creek
contained traces of fracturing in the thin section 11,200 to 11,229 and increased to 10% at 11,220".
No porosity was present in these thin sections. Slightly silty to slightly sandy dolomitic mudstones
were dominant in the base of the Leeds Creek.

The Watton Canyon was encountered at 11,263" in fractured slightly sandy , very to slightly
dolomitic mudstones. The mudstones were well fractured with 10 to 20% healed fractures and 5 to
20% free crystalline calcite. Below 11,320" the fracturing decreased to 5% healed fractures and traces
t0 5% crystalline calcite. Where dolomitic mudstones were interbedded with pellet siltstones to pellet
packstones, pellets, silt, and sand content increased in the underlying interval.
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Thin sections of the Rich were made from 12,780 to 13,180" from cutting samples caught after
mud returns were established at 12,780". From the available Rich samples two units were recognized,
an upper pellet dominated packstone, and a lower 00id dominated packstone. Fracturing was rare
to absent in both units and only occurred at 12,900 to 12,920 and 12,960 to 12,980" in the pellet
dominated unit where mudstones were present. A zone of free crystalline calcite was observed at
12,920 to 12,980, which may indicate a fractured interval in the base of the interbedded pellet and
mudstone unit. No fracturing was found below 12,980 or in the ooid dominated packstone.

F. Geologic Controls on Hydrocarbon Production

Virtually all the effective porosity in the Twin Creek Formation is from fractures.
Existing vertical production comes from five members of the Twin Creek. However, horizontal wells
produce from fractured intervals in only the Rich and Watton Canyon members. In the Rich the
upper 30 feet is the fractured interval.

The Watton Canyon is the most prolific hydrocarbon-producing member of the Twin
Creek and it is also the most intensely fractured. The bottom 100 feet of the Watton Canyon contains
fractures. A zone approximately 20 feet thick near the base of the Watton Canyon is the primary
target for most of UPRC’s horizontal wells, including the 34-1H in Section 34. Based on outcrop
studies, FMS logs, and production data, the fractures run NW-SE. Fracturing was produced by
faulting and tight folding of the hanging wall of the Absaroka Thrust sheet (Bruce, 1988). The
Gypsum Springs Member served as a detachment surface between the Nugget and Twin Creek in the
thrusting process. The trapping mechanisms is structural closure on asymmetrical anticlines in the
hanging wall. The geometry of the Watton Canyon member of the Twin Creek Formation is given
by the structural map and the structural cross-section shown in Figures 4 and 5. Figure 8 is an
enlargement of the fractured intervals with the lithology added.

G. Petrophysical Analysis

- Lithologic calculations from the logs, shown in Figure 8, confirm the mixture of
lithologies seen in the cuttings and show that fracturing in the Rich Member is in the dolomitic facies.
A similar pattern is seen in the Watton Canyon fractured interval in the 34-3 well.

Grading of the fractures on the FMS log, using UPRC's classification, shows two
main fracture intervals along the horizontal path of the 34-1H well: 11,800-12,000' and 12,300-
13,200, see Figure 12. The fractured interval from 12,300-13,200" shows up as an anomaly on the
velocity inversion of the migrated seismic section as shown in Figure 13. Figure 14 shows an example
of the FMS log over a fractured interval within the velocity inversion anomaly. In contrast, Figure
15 is the FMS log of an interval outside the velocity inversion anomaly that has little fracturing.

In the fractured interval within the Watton Canyon, sonic velocity ranges from 18,500-
20,000 feet/second and bulk density ranges from 2.6 to 2.75 g/cm®. The upper boundary does not
appear to have a significant change in sonic velocity, but the lower boundary is a shale with a sonic
velocity of 16,000-17,000 feet/second. Table II summarizes the petrophysical properties of the
fractured intervals and the intervals that surround them.
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For most of the fractured interval in the Rich, sonic velocities range from 18,800 to
21,000 feet/second and bulk density ranges from 2.65 to 2.8 g/cm’. The interval is bounded above
by a shale with a sonic velocity of 16,000 feet/second and below by a shaly limestone with a velocity
of approximately 18,000 feet/second. The fractured interval is relatively clean (i.e. shale-free). The
upper 15 feet of the fractured interval contains a significant percent of dolomite, which may explain,
at least in part, the higher sonic velocities. The fractured interval in the Rich has more shale than the
fractured interval in the Watton Canyon. :

H. Integration of Surface Seismic and Well Log Data

Seismic line CREA-25K was selected because it follows the horizontal path of well
34-1H Judd. This well and well 34-2 are plotted in the migrated seismic section given in Figure 16.
A synthetic seismogram was produced using the compressional wave velocity log and the density
log from well 34-2. The synthetic was superimposed on the migrated seismic line together with the
geological boundaries defined by the well logs in Figure 9. Both Figures 16 and 17 show the
horizontal path of well 34-1H intercepting the fracture zone in the Watton Canyon (refer to the cross-
section in Figure 8). The Watton Canyon is the most prominent geologic unit in the seismic sections
of Figures 16 and 17. Its upper and lower boundaries correlate with the sonic, density and gamma
logs, and the seismic events on the seismic sections. In fact, the synthetic seismogram fits reasonably
well at the position of the Judd 34-1H in “ time-depth” on the seismic section. For example, the top
of the Watton Canyon is at 1600 ms and the top of the Rich Member is at 1640 ms.

In general, the petrophysical boundaries defined by the well logs correlate with the
seismic events in the seismic section. The seismic signatures associated with the Watton Canyon
suggest lateral velocity changes between wells 34-1H and 34-2. There is a change on the seismic
signature associated with this region of interest between the trace at position 2190 and well 34-1H.
This event may be associated with the petrophysical characteristics of the Rich Member in the region
below the Watton Canyon

- The fractured zones are located in the bottom part of the Watton Canyon Merber and
in the top of the Rich Member, where these fractured zones are intercepted by well 34-2, Both
fractured zones are associated with low gamma ray counts. The fracture zone in the Watton Canyon
is separated from the fracture zone in the Rich by the 50-foot thick Boundary Ridge Member, which
consists of siltstones and claystones. A reflection event associated with this boundary is observed in
the seismic sections of Figures 16 and 17 and is below the horizontal path of well 34-1H. This
analysis suggests that the Watton Canyon in the region between both wells under consideration is
associated with the “trough”- reflection response ,which may be caused by the presence of a
fractured zone containing vertical fractures. This fractured zone is intercepted by the horizontal well
in the bottom part of the Watton Canyon. The FMS logs recorded in the horizontal well intercepted
vertical fractures having a variable fracture density distribution.
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Interwell Seismic Modeling
Computer Models

To evaluate transmission and detection of seismic waves in the Twin Creek Formation
of the Utah-Wyoming Overthrust Belt, computer models were constructed using rock physical
properties from the Lodgepole field. We have selected petrophysical parameters from a cross-section
including the Watton Canyon, Boundary Ridge, and Rich Members between wells 34-2 and 34-3.
The P-wave and S-wave velocities, densities, and thicknesses from these two wells are given in Table
I1 . These parameters were used to construct a twelve-layer model to produce particle velocity and
pressure seismograms to evaluate if the seismic energy in the formations will reach the desired
interwell distance of about ¥ mile in Lodgepole field. The P-wave and S-wave velocities of the
twelve-layer model are shown in Figure 18.

The seismic responses were calculated using a Ricker wavelet as a source pulse
function for a pressure source placed at 31.5 m and 55 m below the top layer interface of the Watton
Canyon Member and an array of 60 detectors placed at 800 m from the source well. Synthetic
seismograms and spectral density plots of interwell seismic signatures were produced by taking into
account the source signal strength of 10 cm® and receiver noise levels using a buried point source
mechanism [i.e, a point source in a fluid-filled borehole can be represented by an equivalent force
system of a monopole and a dipole ( Parra et al., 1995, and Parra et al., 1993, )].

The spectral density plots and amplitude-depth distribution curves were produced to
characterize interwell seismic signatures and to evaluate the propagation characteristics of seismic
waves in the Twin Creek Formation for planning interwell seismic experiments.

Synthetic Seismograms and Amplitude Depth Distribution Curves
for a Source at 31.5 m Below Top Layer Interface

Full waveform particle velocity seismograms given in Figures 19 and 20 show strong
P headwave events and reflections. The vertical component particle velocity captures most of the
main boundaries such as the Watton Canyon fracture member/ heterogenous zone, and the shale
/ lower fracture interval. The heterogenous zone and the shale unit are part of the Boundary Ridge
Member, where trapped waves are observed in the vertical particle velocity seismogram. On the
otber hand in the horizontal particle velocity and the pressure seismograms (given in Figure 20) it
is difficult to correlate the reflections with the formation interfaces. However, amplitude-depth
distribution curves of the horizontal component show a better correlation with the layer interfaces
in Figure 21, in particular with the contact between the main fracture interval in the Watton Canyon
Member and the heterogenous zone (formed by units having different rock physical properties) above
the shale unit. These plots also show that most of the energy appears to be distributed in the main
fracture interval at higher frequencies. This suggests that a source having a center frequency of about
400-500 Hz will be appropriate to resolve the main features in the Watton Canyon formation at the
well separation of 800 m.
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Spectral Density for a Source at 31.5 m Below Top Layer Interface

We have used computer modeling to analyze how far the source signal can travel in
realistic media and still be received above the noise level at a desired interwell distance. The models
were used to produce spectral densities of interwell seismic signatures by taking into account the
source signal strength and receiver noise levels (see Figures 22 and 23). Seismic traces were selected
for the pressure source at 31.5 m and detectors at 31.5 m and 22.5 m (both source and detectors are
placed below top layer interface) to produce spectral density plots. These plots were compared with
ambient seismic noise levels having RMS values of 1 mPa and 100 mPa, respectively. The computed
spectral density of vertical and horizontal particle velocity components are above the ambient seismic
noise level in quiet and noisy environments. The spectral amplitude of the horizontal component is
about 20-25 dB above the specified velocity noise level of 7.1 pcmy/s, which was based on the RMS
pressure noise level of 100 mPa, and the spectral amplitude of the vertical component is about
12.5 dB above the same velocity noise level. Alternatively, the spectral density signatures of the
pressure are below the specified ambient seismic noise level of 1mPa and the electronic noise level
of the OAS hydrophone.

Synthetic Seismograms and Amplitude Depth Distribution Curves
for a Source at 55 m Below Top Layer Interface

Full waveform synthetic seismograms given in Figures 24 and 25 show direct waves,
head waves, trapped waves (leaky modes), reflections, and normal modes (Rayleigh-type of waves)
for a source placed in the Boundary Ridge Member at 55 m below the top layer interface. The
horizontal component particle velocity and the pressure seismograms show strong head waves and
trapped waves (see Figure 24). In particular, the horizontal component particle velocity has head
wave events followed by direct events, reflection, and leaky modes. This seismogram captures the
boundary between the main fractured interval (top) and the heterogenous zone (bottom) which is
formed by four petrophysical units having different rock physical properties. Also the interface
between the shale and lower fractured zone can be detected by measuring the horizontal particle
velocity. Similarly, the vertical component seismogram captures the same interfaces (Figure 25).
However, it also shows Rayleigh-type of waves (normal modes) associated with the shale waveguide
at about the source position of 55 m. The modes are excited in the shale as well as in the
heterogeneous zone below the main fracture interval. These results suggest that guided waves can
be used to map the continuity of shales which are permeability barriers in the Twin Creek reservoir.

In addition, amplitude-depth distribution curves of the horizontal and vertical particle
velocities were produced to evaluate the propagation frequency for resolving the features of interest
in the formation at the well separation of 800 m, when a source is placed in the low-velocity shale.
A center frequency of 200 Hz can excite Rayleigh-type of waves in the shale waveguide as wells as
waves in the low-velocity units within the heterogeneous zone (see Figure 26). On the other hand,
a center frequency of about 400 Hz will resolve geological units of about 2-3 m thick.
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Spectral Density for a Source at 55 m Below Top Layer Interface

In a similar manner as the previous example, seismic traces were selected for the
pressure source at 55 m and detectors at 55.5 m and 61.5 m below top layer interface to produce
spectral density plots shown in Figures 27 and 28. These plots were compared with ambient seismic
noise levels having RMS values of | mPa and 100 mPa, respectively. The spectral densities signatures
of the pressure are below the specified ambient seismic noise level of 1 mPa and the electronic noise
level of the OAS hydrophone. Alternatively, the computed spectral density of vertical and horizontal
particle velocity components are above the ambient seismic noise level in quiet and noisy
environments. The spectral amplitude of the horizontal component is about 25 dB above the specified
velocity noise level of 6.1 penys, which was based on the RMS pressure noise level of 100 mPa, and
the spectral amplitude of the vertical component is about 20 dB above the noise level of 100 mPa.
In this case, when the source is placed in the waveguide the spectral density is greater than when the
source is placed in the main fracture interval of the Watton Canyon. The main reason is that energy
can be trapped in the waveguide and it can travel for long distances in the low velocity zone. On the
other hand the energy in high-velocity formations will leak as the wave propagates between wells at
large well separations.

DISCUSSIONS AND CONCLUSIONS

Correlation between the lithology and the well logs and the migrated seismic data from
the Lodgepole field served to identify seismic events associated with geological units of interest. The
surface seismic delineates the major geological boundaries between members of the Twin Creek
Formation. The fracture zones were not resolved directly by surface measurements techniques. The
surface seismic section shows a reflection at about 1640 ms (at the bottom of the Watton Canyon)
that was interpreted as a boundary surface between the Watton Canyon Member and the Rich
Member. In this case, the fracture zones (in the Watton Canyon and the Rich Members) and the
Boundary Ridge Member were interpreted to be part of this boundary surface. On the other hand, a
velocity anomaly observed in the inversion plot correlates with the fractured density distribution
which was determined from the FMS log.

In order to resolve the petrophysical units at the scale of the fracture zones and the
Boundary Ridge Member, cross-well seismic measurements are more appropriate. As a result, we
have conducted a model study for planning high-resolution interwell seismic experiments to map or
delineate the fracture zones of interest in Lodgepole field. The models demonstrate that a source
having a center frequency of 400- 500 Hz can resolve the features of interest in Lodgepole between
wells 800 m apart. We expect that if we can transmit energy in the frequency range of 1000 Hz we
have the potential to map the fracture zones in the Watton Canyon and in the top of the Rich
Member, as well as to properly identify the boundaries that were not resolve by the surface seismic.
The surface seismic did not resolve the fracture zones and the heterogeneous Boundary Ridge
Member, which is formed by four units with different petrophysical properties and a low-velocity
shale with a thickness of approximately 9 m.

The computer model study suggests that high-resolution cross-well measurements are
necessary to map the fracture zones in Lodgepole field, in particular in the Watton Canyon Member
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and the upper part of the Rich Member. The model results also show that it is feasible to detect
seismic waves propagating in the Twin Creek Formation above the ambient noise levels of a noisy
environment using particle velocity detectors and existing broadband seismic sources at well
separations exceeding 800 m. In addition, the spacing between detectors should be about 1.5 m and
a source frequency range about 1000 Hz, We expect that the travel time tomography and the
reflection imaging can be used to map the fracture boundary zones. The trapped energy and normal
modes excited in waveguides can be useful information to determine the degree of continuity of zones
of interest such as permeability barriers, layer thickness variations, inhomogeneities, and boundary
surfaces. Polarization diagrams from three-component seismic data can be used to evaluate the
anisotropy associated with the presence of vertical fractures in the formations.
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LIST OF CAPTIONS

Figure 1. Regional map showing location of Overthrust Field.

Figure 2. Location map showing horizontal well path for the 35-1H Judd and seismic line CREA-25K

Figure 3. Well log display for well 34-2 Judd including gamma ray, deep lateral log, compressional wave
velocity and density-neutron porosity.

Figure 4. Structural map on top of Watton Canyon member of the Twin Creek Formation.

Figure 5. Structural cross-section along traverse AA'.

Figure 6. A structural cross-section through the Wells 34-2 and 34-1 at the Lodgepole field.

Figure 7. A structural cross-section through the wells 34-2 and 34-3 at the Lodgepole field.

Figure 8. Stratigraphic cross-section of Lodgepole Field.

Figure 9. Fractured dolomitic mudstone facies.

Figure 10. Thin sections photomicrographs.

Figure 11. Relationship between fracturing and pellet/peloid/oolite facies in the 34-1H well.

Figure 12. Distribution of gradable fractures from the FMS log in the 34-1H well.
Figure 13. Velocity inversion of migrated seismic section CREA-25K along horizontal well path 34-1H.

Figure 14. FMS image of an interval with high-grade fractures within the inversion velocity anomaly.

Figure 15. FMS image of an interval with low-grade fractures outside of the velocity inversion anomaly.

Figure 16. Migrated seismic section CREA-25k along horizontal well path of well 34-1H Judd.

Figure 17. Migrated seismic section CREA-25k of Figure 8 with synthetic seismogram inserted at well
location 34-2 Judd.

Figure 18. Compressional and shear wave velocity parameters for the twelve-layer model.

Figure 19. (a) Common source horizontal particle velocity seismogram with source at a depth of 31.5 m

below top layer interface. Well separation = 800 m.; (b) Common source vertical particle velocity
seismogram with source at a depth of 31.5 m below top layer interface. Well separation = 800 m

Figure 20. Common source pressure velocity seismogram with source at a depth of 31.5 m below top layer
interface. Well separation = 800 m.
Figure 21. Amplitude-depth distribution of horizontal particle velocity produced by source at a depth of

31.5 m below top layer interface.
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Figure 22.

Figure 23.

Figure 24.

Figure 25.
Figure 26.

Figure 27.

Figure 28.

(a) Comparison of spectral density of horizontal particle velocity with seismic noise levels in
quiet and noisy environments. Source depth= 31.5 m below top layer interface; (b) Comparison
of spectral density of vertical particle velocity with seismic noise levels in quiet and noisy
environments. Source depth=31.5 m below top layer interface.

Comparison of spectral density of pressure with electronic and seismic noise levels in quiet and
noisy environments. Source depth=31.5 m below top layer interface.

(a) Common source horizontal particle velocity seismogram with source at a depth of 55 m
below top layer interface. Well separation = 800 m.; (b) Common source pressure velocity
seismogram with source at a depth of S5 m below top layer interface. Well separation = 800 m.
Common source vertical particle velocity seismogram with source at a depth of 55 m below top
layer interface. Well separation = 800 m. (a) 100 ms time window; (b) 200 ms time window.
Amplitude-depth distribution of vertical particle velocity produced by source at a depth of 55 m
below top layer interface. (a) Amplitudes of 100 and 200 Hz., (b) Amplitudes of 200 and 400 Hz.
(a) Comparison of spectral density of horizontal particle velocity with seismic noise levels in quiet
and noisy environments. Source depth= 55 m below top layer interface.; (b) Comparison of
spectral density of vertical particle velocity with seismic noise levels in quiet and noisy
environments. Source depth=55 m below top layer interface.

Comparison of spectral density of pressure with electronic and seismic noise levels in quiet and
noisy environments. Source depth= 55 m below top layer interface.
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Appendix 1

Lithologic Description of the Twin Creek Formation
UPRC Judd # 34-1H

Giraffe Creek Member (10,440' MD)

10,400-10,460" Pelletal siltstones with trace sandstone; some argillaceous; scattered porosity at
base.

10,460-10,610' Predominately interbedded pellet siltstones & pelletal packstones.

10,610-10,930' Interbedded packstones & mudstones; some interbedded oolitic sandstones &

siltstones: only a trace of fractures in the sample.
Leeds Creek Member (10,918’ MD)

Kick-off point 10,972’ MD
10,930-11,020° Interbedded pelletal siltstone with minor pellet packstones & mudstones.

11,020-11,060' Sandy oolitic packstones interbedded with sandstone; traces of interbedded oolitic
sandstone; no fracturing.

11,060-11,180' Pelletal siltstones, pelletal packstones with minor interbedded mudstones; trace
fracturing.

Watton Canyon Member (11,270' MD)
11,180-11,360' Slightly dolomitic silty mudstones; slight increase in fracturing (trace - 5%);
slight-very dolomitic mudstones; some very silty mudstone units.

11,360-11,400' Slightly silty to very silty pelletal packstones to pelletal siltstones; decreasing
fracturing (trace or less); increasing siltstones- sandstones.

11,400-11,470' slight-very silty mudstone; increasing fracturing (10-20%); slight increase in
dolomite; slight decrease in silt & siltstones.

11,470-11,550' Silty pelletal packstone with minor scattered mudstones; decrease in dolomite;
decrease in fracturing (trace or less).

Top 30' target zone (11,590' MD)
11,550-11,730' Slightly dolomitic mudstone; trace very dolomitic mudstone; decreasing silt;
increasing dolomite.

11,730-11,900' Slightly to very dolomitic mudstone; abundant dolomitic and dolomite at top;

increasing dolomite; increasing fracturing (trace-10%); 5-10% healed fractures;
5-10% crystal calcite.
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11,900-11,990°

Slightly silty, slightly dolomitic mudstone; decrease fractures (1% to trace); 5-
10% crystal calcite.

Fault 12,354' MD ~94' throw

11,990-12,540°

12,540-12,690'

12,690-12,960'

12,960-13,050°

13,050-13,260°

Very slightly silty, slightly dolomitic mudstone; trace to scattered ooids; increase
fracturing (5-20%); increasingly silty at base; 5-15% crystal calcite.

Slightly dolomitic mudstone; decreasing silt; decreasing dolomite; decreased
fracturing (trace); decreasing crystal calcite.

Very slightly dolomitic pellet packstone; pellet packstone with abundant pellets;
trace fracturing; increasing silt.

Slightly dolomitic mudstone with minor interbedding pellet packstone; increasing
fractures (trace-10%); increasing crystal calcite.

Silty pellet packstone with minor slightly dolomitic mudstone; increasingly silty,
decreased fracturing; slight increase in porosity 13,260-13,290.

Fault 13,330' MD ~9' throw

13,260-13,470'

Slightly dolomitic to dolomitic mudstone with traces of dolomite beds; some
pellet packstone; decreasing silt; 5-20% dolomite at 13,260-13,350; increasing
fractures (trace- 10%); traces of porosity at top.
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Appendix 2

Lithologic Description of the Twin Creek Formation
UPRC Judd # 34-1H Redrill

Leeds Creek Member (10,946' MD)
11,200-11,220' Silty sandstone-siltstone; 30% argillaceous pelletal siltstone; trace of fractures.

Watton Canyon Member (11,270" MD)
11,220-11,460' Slightly silty to sandy dolomitic mudstone; increased fracturing (5-20%);

decreasing siltstone.

Watton Canyon target (11,436-11,480' MD)

11,460-11,780 Missing
Rich target (11,640' MD)
11,780-13,020' Sandy to silty ooid pellet packstone; decreased fracturing (trace or less).

13,020-13,180° End of samples; silty 0oid packstone; decreasing fracturing (trace to none).
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Structure Map on Top of Watton Canyon Member
of the Twin Creek Formation

LODGEPOLE FIELD
SUMMIT COUNTY. LTAH

STRUCTURE MAP
N TOP WATTON CANYON MEMBER
l TWIN CREEK FM.
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Figure 2.
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Location Map Showing Horizontal Well Path
for the 35-1H Judd and Seismic Line CREA-25k
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VELOCITY INVERSION OF MIGRATED SEISMIC SECTION CREA-25K

ALONG HORIZONTAL WELL PATH 34-1H
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COMMON SOURCE PARTICLE VELOCITY SEISMOGRAMS
WITH SOURCE AT A DEPTH OF 31.5m
BELOW TOP LAYER INTERFACE
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COMPARISON OF SPECTRAL DENSITY OF
HORIZONTAL & VERTICAL PARTICLE VELOCITY WITH SEISMIC
NOISE LEVELS IN NOISY & QUIET ENVIRONMENTS
SOURCE DEPTH= 31.5 m BELOW TOP LAYER INTERFACE

Weli Separation= 800 m; Peak Freq.= 400 Hz
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COMPARISON OF SPECTRAL DENSITY OF
PRESSURE WITH ELECTRONIC SEISMIC
NOISE LEVELS IN QUIET ENVIRONMENTS

SOURCE DEPTH= 31.5 m BELOW TOP LAYER INTERFACE

Well Separation= 800 m; Peak Freq.= 400 Hz
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COMMON SOURCE SEISMOGRAMS WITH SOURCE
AT A DEPTH OF 55 m BELOW TOP LAYER INTERFACE
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AMPLITUDE-DEPTH DISTRIBUTION OF VERTICAL PARTICLE
VELOCITY PRODUCED BY A SOURCE AT A DEPTH
OF 55 m BELOW TOP LAYER INTERFACE
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COMPARISON OF SPECTRAL DENSITY OF
HORIZONTAL & VERTICAL PARTICLE VELOCITY WITH SEISMIC
NOISE LEVELS IN NOISY & QUIET ENVIRONMENTS
SOURCE DEPTH= 55 m BELOW TOP LAYER INTERFACE

Well Separation= 800 m; Peak Freq.= 400 Hz
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COMPARISON OF SPECTRAL DENSITY OF

PRESSURE WITH ELECTRONIC AND SEISMIC

Spectral Density, dB Rel. to 1uPa/\Hz
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VI. TECHNOLOGY TRANSFER

A. Technology Transfer Topics - Phase 1

Four technical research topics were studied in detail during the past year (Phase I) of
the project. The work accomplished in these studies provides the basis for focused transfer of project
milestone progress information on characterization of fractured reservoirs directly to the oil and gas
industry. These accomplishments are also being widely disseminated to industry and to the scientific
community through technical presentations at conferences and in peer-review publications. The four
research topics are:

(1) Theoretical analysis of seismic wave propagation in poroelastic anisotropic formations,
incorporating Biot and squirt-flow fluid permeability petrophysical characteristics in the medium.
This analysis is based on plane harmonic compressional and shear waves propagating in a horizontally
layered medium. Parametric studies are carried out using the derived theoretical models to determine
the seismic dispersion and attenuation effects of permeability anisotropy.

(2) Theoretical analysis of monopole and horizontal dipole source logging tool responses
(acoustic pressure waves and elastic wave displacements) in a poroelastic anisotropic formation.
Parametric studies of fullwave sonic logs are carried out to indicate and aid in the interpretation of
formation permeability anisotropy.

3) Application of the above theoretical seismic and sonic log response models to geologic
and petrophysical conditions in the Union Pacific Resources Company Twin Creek reservoir (a
fractured reservoir in the Utah-Wyoming Overthrust Belt).

) Semi-analytical model of multiphase fluid flow in fractured rock reservoirs. Simulation
of 3D multiphase flow distributions using the approximate 3D geometry of the Twin Creek fractured

reservoir.

B. Industry Contacts and Application Interests

A formal letter of invitation was sent to reservoir geophysicists and engineers in the
oil and gas industry and to scientists and engineers in the oil field services industry. This letter
described the four primary projects being studied and announced plans for organizing and conducting
technical workshops on the research project activities in the second year (Phase II) and on added
topics in the third year (Phase III). More than 100 geologists, geophysicists, and engineers were
invited to respond by indicating their interest in: (1) receiving project milestone technical newsletters;
(2) participating in future project-oriented workshop activities; and (3) denoting their specific
technical application areas of interest in reservation characterization. The letter was very successful
in establishing contact with 62 professional individuals representing 30 oil and gas companies and
their divisions. All of the responding individuals expressed strong interest in the project goals and
projected research studies. Nearly all of these respondents also indicated their interest in participating
in the technology workshops. Appendix E presents a specimen of the project announcement and
letter of invitation sent to industry.
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[NOTE: Appendix E is contained in a separate WP6.1 file: niperann.app]

The oil and gas industry companies and the number of interested individuals in each
company responding to the project announcement letter are:

AMOCO Production Company (3)
ARCO Exploration and Production (2)

BP Exploration (UK) (5)

Chevron Petroleum Technology Co. (2)
Conoco, Inc. (Ponca City) (1)

Marathon Oil Company (3)

Phillips Petroleum Company (Norway) (1)
Shell International Expl. & Prod. (1)
Texaco Houston Research Center (3)

Unocal Corporation (1)

Halliburton Energy Services (3)
Schlumberger-Austin Res. Center (1)
Schlumberger-Doll Res. Center (1)
Western Atlas Wireline Services (4)

RC Squared Consultants (1)

AMOCO Production Research Center (3)
BP Exploration, Inc. (1)

Chevron USA, Inc. (1)

Conoco, Inc. (Houston) (1)

Exxon Production Research Company (7)
Phillips Petroleum Company (Oklahoma) (2)
Shell Development Company (1)

Texaco, Inc. U.S.A. (4)

Union Pacific Resources Company (2)
GECO/PRAKLA (1)

Halliburton Logging Services (2)
Schlumberger-Cambridge Res. Center (1)
Schlumberger-Houston Production Center (1)
New Ground Resources Ltd. (1)

Sound Energy, LLL (2)

The application areas of interest indicated by the responding industry representatives are

summarized as follows:

Reservoir Geophysics
Surface: 75%
Downhole: 85%
Technology: 67%

Reservoir Engineering
Production: 52%
Development: 48%
Modeling: 69%

Other Topics:
4%

C. Project Newsletter

Reservoir Geology
Structure: 52%
Petrophysics: 60%

Formation Evaluation
Log Analysis: 69%
Fracture Interpretation: 79%

Participate in Project Workshops
Yes: 83%
No: 6%
Did Not Indicate: 11%

Project research studies conducted during the first year (Phase 1) have resulted in

three technical papers scheduled to be published in the project newsletter during the first quarter of
Phase II. These papers are entitled:
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(nH "The Transversely Isotropic Poroelastic Wave Equation Including the Biot and the
Squirt Mechanisms: Theory and Application” by J.O. Parra (accepted for publication
in Geophysics, 1997)

(2) "Seismic Signatures of the Lodgepole Fractured Reservoir in the Utah-Wyoming
Overthrust Belt" by J.O. Parra, H.A. Collier, and B. Angstman

(3) "Semi-Analytic Approach to Multiphase Flow Computations" by A. Datta-Gupta and
S. Peddibhotla

These research papers are the result of project accomplishments achieved during the past year and
are considered ready to be communicated to industry for information and review. The essential
aspect of this communication is to present, in an objective way, the project research studies at their
earliest practical stages for industry peer review and to solicit possible guidance regarding industry
requirements relevant to the research topics.

The strategy underlying the project newsletter is to present such technical milestones
in summary report form, provide an avenue for industry response to those accomplishments, and ,
through follow-up contacts with industry, clarify or otherwise incorporate industry concerns into the
research program wherever practical The newsletter will also serve as a vehicle for soliciting broader
industry interest and participation by requesting the recipients to recommend other individuals who
may be interested in the work and to identify other potential field sites where the fractured reservoir
technology might be evaluated. To facilitate this expansion of interest in the project, the newsletter
format will include a convenient reader reply form for returning technical review comments and
suggestions on the work.

Work anticipated in the second year (Phase II) will include plans for a project-oriented
seminar and workshop designed to communicate the accomplishments of Phase I to industry and to
host presentations on related topics by industry. The expected results of this mechanism of
information exchange will provide timely industry review of the work being accomplished and a
clearly defined consensus on the industry priorities for the fractured reservoir characterization
technology under study and development.
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APPENDIX E

Southwest Research Institute Letterhead
and SwRI mailing labels

ADDRESSEE September 6, 1996
CCCCCCC Company

Dear MM. MMMMM:
This letter describes an active research project underway at Southwest Research Institute for

CHARACTERIZATION OF FRACTURED RESERVOIRS USING STATIC AND DYNAMIC
DATA: FROM SONIC AND 3D-SEISMIC TO PERMEABILITY DISTRIBUTION

sponsored by the National Institute for Petroleum and Energy Research (NIPER), Bartlesville,
Oklahoma. Our purpose in contacting you is to inform you of the project goals and activities and to
enlist your interest in following the progress of this work and possibly participating in its industry-
oriented seminars and workshops beginning next Spring. Similar contacts are being made with
scientists and engineers at more than 20 oil, gas, and field service companies to develop a strong and
broadly based interest group.

Attached is a brief summary of the project describing its primary objectives and the research
tasks for Phase I of the three year program. One of our primary goals is to disseminate the project
information as it progresses and to transfer its useful results and technology related to
characterization of fractured reservoirs to all interested parties. A reply form and return envelope is
enclosed by which you can express your scientific and/or engineering interests in the project and be
placed on the project information distribution list. Participation bears no obligations whatsoever.

We invite you to sign up to receive our research progress reports and workshop schedule on
characterization of fractured reservoirs. If you should not wish to participate, we ask that you please
pass this letter and reply form on to a colleague at CCCCCC Company who may be interested.

If there are any questions concerning our present project activities or the planned project
seminars and workshops, please contact

Thomas E. Owen, Ph.D., P.E.

Task Leader, Technology Transfer - Proj. 15-17346

Southwest Research Institute

P.O. Box 28510 Ph. (210) 522-2715
San Antonio, TX 78228-0510 Fax (210) 647-4325
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TEO/dI

or

Page 2

Jorge O. Parra, Ph.D.
Project Leader, Proj. 15-17346
Southwest Research Institute

P.O. Box 28510 Ph. (210} 522-3284
San Antonio, TX 78228-0510 Fax (210) 647-4325

We look forward to receiving your reply soon.

Sincerely,

Thomas E. Owen
Task Leader, Technology Transfer
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ANNOUNCING
CHARACTERIZATION OF FRACTURED RESERVOIRS USING STATIC AND
DYNAMIC DATA: FROM SONIC AND 3D-SEISMIC TO PERMEABILITY
DISTRIBUTION
A Research Project in Progress
Sponsored by
National Institute for Petroleum and Energy Research (NIPER)
Bartlesville, Oklahoma
(Contract No. G4S51731)
at
Southwest Research Institute

San Antonio, Texas
(SwRI Project 15-17346)

SOLICITING INDUSTRY INTEREST
~ AND
PARTICIPATION IN FUTURE SEMINARS AND WORKSHOPS
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CHARACTERIZATION OF FRACTURED RESERVOIRS USING STATIC AND
DYNAMIC DATA: FROM SONIC AND 3D-SEISMIC TO PERMEABILITY
DISTRIBUTION
A Research Project in Progress
Sponsored by
National Institute for Petroleum and Energy Research (NIPER)
Bartlesville, Oklahoma
(Contract No. G4S51731)
Performed by
Southwest Research Institute
San Antonio, Texas
(SwRI Project 15-17346)
i e e i i
Project Time Schedule: March 1996 through November 1998 (32 months)
Project Organization:
PHASE 1 (March 1996 - February 1997)
Theoretical Models Using Deterministic Interwell Seismic Solutions, Petrophysical
Analysis, and Semi-Analytical Approaches to Multiphase Flow in Fractured
Formations
PHASE II (March 1997 - December 1997)
Theoretical Models Using Stochastic Solutions, Fracture Connectivity Using
Production Data, and Interwell Seismic/Sonic Log Signal Analysis

PHASE III  (January 1998 - November 1998)

Numerical Modeling, Analysis, and Integration of Geophysical, Petrophysical, and
Engineering Data to Characterize Fractured Reservoirs
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PHASE I RESEARCH STUDIES AND INFORMATION DISSEMINATION TOPICS

() Theoretical analysis of seismic wave propagation in poroelastic anisotropic formations,
including Biot and squirt-flow fluid permeability petrophysical characteristics in the medium. Plane
harmonic compressional and shear waves in a horizontally layered medium having azimuthal
anisotropy. Parametric studies using the derived theoretical models to determine the seismic
dispersion and attenuation effects caused by permeability anisotropy.

2) Theoretical analysis of monopole and horizontal dipole source logging tool responses
(acoustic pressure waves and elastic wave displacements) in a poroelastic anisotropic mediunm.
Parametric studies of fullwave sonic logs to indicate and aid in the interpretation of formation
permeability anisotropy.

3) Apply theoretical seismic and sonic log response models to geologic and petrophysical
conditions in the Union Pacific Resources Company Twin Creek Reservoir (a fractured rock
reservoir in the Utah and Wyoming Overthrust).

4) Semi-analytical model of multiphase fluid flow in fractured rock reservoirs. Simulation
of 3D multiphase flow distributions using the approximate 3D geometry of the Twin Creek
Reservoir.

KEY PROJECT PERSONNEL
Project Leader: Jorge O. Parra, Ph.D.
Principal Scientist, SWRI
Signal Processing: Brian J. Zook, Ph.D.

Research Scientist, SWRI
Petrophysics and
- Reservoir Geology: Hughbert A. Collier, Ph.D.
Asst. Prof., Geology
Tarlton State University
(Consultant to SWRI)

Reservoir Engineering: Akhil Datta-Gupta, Ph.D.
Asst. Prof., Petroleum Engineering
Texas A&M University
(Consultant to SWRI)

Technology Transfer: Thomas E. Owen, Ph.D., P.E.

Institute for Research in Sciences and Engineering
The University of Texas at San Antonio
(Consultant to SwRI)
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INDUSTRY INTEREST REPLY FORM

RESEARCH PROJECT: Characterization of Fractured Reservoirs Using Static and

Dynamic Data: From Sonic and 3D-seismic to Permeability
Distribution

1. YES. I am interested in receiving the Project Progress Newsletter on the research project.

Name:

Position:

Company:

Mail Address:

Telephone: ()
Fax Number: ( )

E-Mail:
2. My technical interests related to the project are (check all topics that apply):
Reservoir Geophysics Reservoir Engineering
[T Surface 0 Production
0J Downhole/Interwell O Development
O Technology O Modeling
Reservoir Geology Formation Evaluation
O Structure O Log Analysis/Fullwave Sonic
O Petrophysics [J Fracture Interpretation
3. I am interested in the future seminars and workshops on characterization of fractured
IeServoirs. O Yes O No
4. Others in my company who may be interested in this project and its newsletter are:
NAME |_ADDRESS (if different from mine)
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VII. CONCLUSIONS AND ACCOMPLISHMENTS

The basic theoretical analysis in geophysics and petroleum engineering were completed. The
geophysical techniques included the theoretical development of plane-harmonic seismic waves in
poroelastic and anisotropic layered media, and the theoretical development of a multipole acoustic
logging system in a fluid-filled borehole surrounded by an anisotropic poroelastic and anisotropic
viscoelastic formation. The petroleum engineering techniques included the development of a semi-
analytical approach to multiphase flow calculations and applications.

The feasibility of using seismic measurement techniques to map fracture zones in the Twin
Creek reservoir (between wells spaced 2,400 feet apart at a depth of 11,000 feet) was completed.
To determine the rock physical properties and the reservoir geometries for the computer models, well
logs and thin sections of cutting were integrated with 2D seismic sections. The results of the
integration delineated the major boundary surfaces between members of the Twin Creek formation.
The integration of the surface seismic and well logs demonstrates that the fracture zones cannot be
resolved by surface seismic measurements alone. Instead, it is more appropriate to use high-
resolution cross-well seismic data. The results of the feasibility study suggests that it may be possible
to map variations in the geometry of the fracture zone with borehole reflection imaging and traveltime
tomography. In addition, the modeling results suggests that the trapped energy and normal modes
excited in the low-velocity shales will be useful to determine the degree of continuity of permeability
barriers, layer thickness variations, inhomogeneities, and boundary surfaces.

The boundaries delineated with the geophysical and petrophysical data will be used as input
parameters together with the Twin Creek production data to test the multiphase flow model based
on the semi-analytical approach.

The manuscript titled “The transversely isotropic poroelastic wave equation: theory and
application,” was published in the January-February issues of Geophysics, Vol. 62, p. 309-318.

The poster paper titled “Seismic signatures of the fractured Twin Creek Reservoir in
Lodgepole field, Utah-Wyoming overthrust belt,” was presented at the 4® International
Characterization Technical Conference, Advances in Reservoir Characterization for Effective
Reservoir Management. This conference was co-sponsored by the U.S. Department of Energy and
BDM-Oklahoma, Inc.

A manuscript titled “The analysis and seismic responses of wave propagation in poroelastic
media having azimuthal anisotropy” (given in this report) will be submitted to Geophysics in the first
quarter of the second year project efforts.

Acoustic logging responses for a multipole source in a fluid-filled borehole surrounded by an

anisotropic viscoelastic medium will be calculated in the second year project. The theory and
application will be submitted for publication in a peer review journal.
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Seismic responses will be calculated for plane-harmonic waves propagating in poroelastic and
anisotropic layered media. This theory and application will be submitted for publication in a peer
review journal.

The manuscript titled, “Rapid simulation of multiphase flow through fine-scale geostatistical
realizations using a new 3D streamline model: A field example,” was published in the Proceedings
of the 11" SPE Petroleum Computer Conference held in Dallas, Texas, June 1996.

The manuscript titled “Multiphase streamline modeling in three dimensions: Further

generalizations and a large-scale field example,” was published in the Proceedings of the 14* SPE
Reservoir Simulation Symposium held in Dallas, Texas, June 1997.
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