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Project Overview

• Project Schedule
– 9/17/2009 to 9/16/2011

– Project  tasks are complete; we are now working on the final report

• Project Cost
– Funding: $950k DOE; $150k MTR and $ 90k Tetramer Technologies

– Actual costs through 5/31/11: $1,129,362

• Project Manager – Rick Dunst

• Project Milestones
– Confirm that composite membranes meet target performance – hydrogen permeance 

of 200 gpu and H2/CO2 selectivity of 10 with mixtures.

– Using actual membrane performance data, complete design studies that show the 

membrane process has the potential to meet DOE program targets.

– Complete fabrication of bench-scale membrane modules and demonstrate module 

performance/lifetime during simulated  water gas shift (WGS) mixture testing.

– Finish data analysis, process optimization studies, and comparative economic 

evaluation.  
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• Membrane development

– High-temperature stable polymers for use in H2/CO2 

– Composite membranes that have H2/CO2 >10 and H2 permeance 

>200 gpu at syngas cleanup temperatures (100-200°C)

• Membrane performance evaluation

– Evaluate membrane and lab-scale membrane module 

performance using pure gases in the lab

– Evaluate membrane stamps using simulated syngas lab mixtures

• Process design analysis

− Optimize membrane process designs and assess the optimal 

integration of a membrane system

− Perform a cost analysis of the polymer membrane process vs. 

current cleanup technologies, e.g., Selexol

Project Overview:  
Objectives and Scope of Work 
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• Spiral-wound and hollow fiber modules are used.

• Membranes have to be 

thin to provide useful 

fluxes.

Membrane Technology Basics

55



Syngas Cleanup Options

• Hot syngas cleanup membranes offer the potential for process intensification

• Warm/cool syngas cleanup membranes offer fewer operating challenges
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 Can operate warm/hot to reduce the need for heat exchange

 Can use nitrogen sweep to maintain permeate fuel gas at turbine pressure

 Water goes with fuel gas; reduces CO2 dehydration costs

H2-Selective Membranes Offer Advantages
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New High-Temperature 

Polymer Membranes Show Promise

a) Robeson et al., JMS 320, 390-400 (2008); assumes a     

1 m selective layer.

b) O’Brien K. et al., DOE NETL project fact sheet 2009; 

assumes a 1 m selective layer.

c) Low, B.T., et al., Macromolecules 41(4), 1297-1309 

(2008); assumes a 1 m selective layer.

d) Krishnan, G., 2010 NETL CO2 Capture Technology 

Conference, Pittsburgh, PA  and Klaehn, J., et al.,

NAMS 2011, Las Vegas, NV.

8



High temperature improves performance
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 Membranes have very low permeance and modest H2/CO2 selectivity at room temperature

 Increasing temperature improves permeance and selectivity; selectivity maximum?

Permeance Selectivity
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Temperature cycling gives reproducible results

 Closed symbols = cycle 1; open symbols = cycle 2; both cycles show selectivity maximum 

 Mixed-gas selectivities are slightly lower than pure-gas values

Permeance Selectivity
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 Membrane performance at 50 psig, 135°C with a 50%/50% CO2/H2 mixture

Significant Progress During this Project



Development of Lab-scale Module

 Lab-scale prototype module: 12’’ length with a membrane area of 0.14 m2

 Module components were stable after cycling from 20 to 160°C

Module housing

Lab-scale prototype module
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Performance of Lab-scale Modules

1

10

100

1000

20 40 60 80 100 120 140 160

Pure-gas 

permeance

(GPU)

Temperature (°C)

a) H
2

CO
2

0

5

10

15

20

25

20 40 60 80 100 120 140 160

Temperature (°C)

H
2
/CO

2

Selectivity

b)

Permeances Selectivity

• Performance of lab-scale module is consistent with performance of 

membrane stamps. 
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Field Tests at NCCC

• MTR pilot testing at the National Carbon Capture Center (NCCC) run by Southern

• Feed is coal-derived syngas at 180 psia shifted or unshifted and with or w/o sulfur 

compounds14
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NCCC Results 1: 
Stable Performance with Desulfurized Syngas

 Tests were conducted on membrane stamps (area = 30.2 cm2) with a coal-derived 

syngas mixture at 150 psig and 135°C.  Average H2 permeance = 260 gpu and H2/CO2

selectivity = 16.
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NCCC Results 2: 
Stable Performance with High Sulfur Syngas
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 Tests were conducted on membrane stamps with a coal-derived shifted syngas mixture containing 780 

ppm H2S at 175 psig and 120°C or 135°C. 

 H2/gas selectivities (CH4, N2, CO and H2S) are higher than H2/CO2; water permeates with H2
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NCCC Results 3: 
Module Field Tests
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 Tests were conducted on a membrane stamp and a membrane module with a coal-derived 

shifted syngas mixture at 175 psig and 135°C and 120°C respectively. 

 H2 content was enriched from ~12% to ~ 80% for a membrane stamp and ~ 60% for a 

membrane module.

0

5

10

15

20

25

30

35

40

10 15 20 25 30 35 40

Mixed-gas 

H2/CO2 

selectivity

Time (days)

Membrane Stamp 

at 135
o
C

Membrane Module 

at 120
o
C



Key Field Test Findings

• Bench and field tests show that the performance of MTR Proteus™ 

membranes exceeds the project targets.

• NCCC field results demonstrate the membrane performance is 

stable at high temperature (up to 150°C) treating coal-derived 

syngas containing up to 780 ppm H2S.

• Average field performance gives a mixed-gas H2/CO2 selectivity of 

15-25, and a hydrogen permeance of 150-300 gpu at 120-150°C. 

• 10 lb/h small module tests is on-going; full-scale modules require 

500 lb/h syngas.
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A Possible Process Design

• N2 sweep on H2-selective membrane greatly reduces energy requirements

• CO2-selective membrane increases the operating temperature of the CO2

purification/liquefaction step → reduces material costs and process complexity

ASU – Air separation unit
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Higher H2/CO2 selectivity is beneficial

Calculations are for shifted syngas from a GE gasifier (case 2 in the DOE Bituminous Coal Baseline 

Report, DOE/NETL-2007/1281).  Power includes compression to liquid CO2.  
20
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21



Next Steps
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• Continue membrane improvements

• Develop commercial-scale modules

• Conduct relevant field tests

• Identify other H2/CO2 applications 

where these membranes can be 

used

• Test membrane modules

at NCCC in 2011/12

→ 10 lb/h syngas run 

→ 50 lb/h syngas run 



Summary

• H2-selective membranes have greater potential for cost

and energy savings compared to CO2-selective

membranes

• Current membranes show H2/CO2 selectivities >20 with

H2 permeances > 200 gpu

• The best current design uses a hot H2-selective sweep

membrane combined with a cold CO2-selective

membrane to reduce CO2 purification/liquefaction costs

• Current membranes give an increase in LCOE of ~15%,

approaching DOE targets

• Higher H2/CO2 selectivity helps performance, especially

up to 20; above this value, higher H2 permeance is more

beneficial
23
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