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ABSTRACT  
 
The	objective	of	this	program	was	to	understand	the	multiple	causes	of	loss	of	fracture	area	
and	 fracture	conductivity,	and	define	solutions	 to	mitigate	 these	 for	enhancing	 long‐term	
reservoir	 production	 and	 recovery.	 	 To	 achieve	 this	 goal	 we	 conducted	 theoretical	 and	
experimental	 work,	 and	 anchored	 our	 analysis	 on	 a	 comprehensive	 evaluation	 of	 rock	
properties	 from	 the	 Marcellus,	 Barnett	 and	 Haynesville	 tight	 shale	 reservoirs	 in	 North	
America.	 	 These	 included	 understanding	 the	 drivers	 of	 hydraulic	 fracture	 networks,	 and	
determine	 the	 critical	 parameters	 to	 maintain	 productive	 fracture	 area	 and	 fracture	
conductivity—including	optimal	proppants,	 fracture	 fluids,	and	pumping	schedules,	all	as	
they	are	related	 to	 the	heterogeneous	rock	 formations	 that	are	 to	be	produced.	 	The	end	
product	 deliverable	 is	 an	 improved	 workflow	 for	 fracture	 design,	 rock	 characterization,	
and	 production	 of	 tight	 gas	 shales.	 The	 problem	 is	 difficult,	 but	 the	 potential	 for	 greatly	
improved	production	is	real.	
	
We	conducted	detailed	material	property	characterization	on	reservoir	and	non‐reservoir	
facies	of	each	of	these	reservoirs.		The	effort	included	evaluation	of	petrology,	mineralogy,	
reservoir	 properties,	 geochemical	 properties	 and	mechanical	 properties,	 including	 time‐
dependent	 behavior	 (creep).	 	 We	 evaluated	 core	 fracture	 types	 and	 geometries,	 with	
particular	attention	to	the	interactions	between	coring	induced	fractures	with	mineralized	
fractures	in	the	core	and	other	planes	of	weakness	(e.g.,	weak	bedding).		This	allowed	us	to	
propose	 a	 conceptual	model	 for	 generating	 large	 surface	 area	 per	 unit	 reservoir	 volume	
(i.e.,	fracture	complexity)	based	on	understanding	the	presence	and	orientation	of	planes	of	
weakness	in	the	reservoir	rock.		We	proposed	typical	fracture	geometries	and	used	these	to	
evaluate	 well	 production	 configurations	 and	 showed	 that	 knowledge	 of	 fracture	 surface	
area	and	fracture	geometry	are	critical	to	understanding	and	predicting	stage	production.			
	
We	 evaluated	 fracture	 conductivity	 on	 un‐propped	 and	 propped	 fracture	 surfaces,	 as	 a	
function	 of	 confining	 stress,	 fluid	 type	 and	 proppant	 type.	 	 We	 also	 measured	 fracture	
conductivities	to	water	and	nitrogen	gas.		On	tests	with	un‐propped	samples,	we	conducted	
measurements	 of	 surface	 hardness	 and	 fracture	 conductivity	 with	 and	 without	 shear	
displacement,	 to	 evaluate	 the	 impact	 of	 shear	 and	 rock	 hardness	 to	 preserve	 fracture	
conductivity.	 	 Results	 indicate	 that	 on	 soft	 facies	 (e.g.,	 all	 Haynesville	 facies	 and	 most	
Marcellus	 facies)	 shear	 displacement	 does	 not	 contribute	 to	 the	 preservation	 of	 fracture	
conductivity,	proppant	does.			
	
The	effort	 included	evaluation	of	 reservoir	 geology,	mechanical	properties,	 in‐situ	 stress,	
and	 rock‐fluid	 interactions.	 	 This	 is	 required	 to	 predict	 how	 sparsely	 propped	 or	 self‐
propped	 fractures	 can	 have	 and	maintain	 conductivity	 and	 to	 understand	 the	 rock	 fluid	
sensitivity	 which	 could	 adversely	 affect	 the	 movement	 of	 gas	 from	 the	 matrix	 into	 the	
fracture	and	the	conductivity	of	the	fracture.		And,	we	must	understand	and	be	better	able	
to	predict	 the	 fracture	 connectivity—fracture	 conductivity	 alone	 is	not	 enough;	 fractures	
must	be	connected.	
	
The	 project	 team	 included	 Texas	 A&M	 University	 (prime	 contractor),	 TerraTek,	 A	
Schlumberger	Company	(subcontractor),	and	producers	and	cost	sharing	participants	Shell,	



EnCana	Oil	 &	 Gas	 USA,	 and	 Pennsylvania	 General	 Energy	 Co.	 	 	 The	 participants	 brought	
critical,	 essential	 technology,	 unique	 laboratory	 and	 field	 experience,	 access	 to	 reservoir	
core,	 logs,	 completions	 information	 (including	 micro‐seismic	 measurements),	 and	
production	history,	as	well	as	cash	and	in‐kind	financial	contributions.	 	This	was	a	strong	
team.			The	management	of	the	project	was	led	by	Co‐Principal	Investigators,	Dr.	Ghassemi,	
Petroleum	 Engr.	 Dept.	 at	 Texas	 A&M	 University,	 and	 Dr.	 Suarez‐Rivera,	 Schlumberger	
Advisor	and	Director	of	the	Schlumberger	Innovation	Center,	at	TerraTek	in	Salt	Lake	City.		
Other	 team	members	 included	 geologists	 and	 engineers,	 and	most	 importantly,	 support	
from	production	companies.	
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EXECUTIVE SUMMARY 

This	 project	 consisted	 of	 theoretical	 and	 experimental	work,	 to	 understand	 the	multiple	
causes	of	loss	of	fracture	area	and	fracture	conductivity,	and	to	define	solutions	to	mitigate	
the	resulting	loss	of	production.		To	accomplish	this	we	endeavored	to	understand	both	the	
simpler	 and	 the	 often	 complex	 hydraulic	 fracture	 networks,	 and	 determine	 the	 critical	
parameters	 to	 maintain	 productive	 fracture	 area	 and	 fracture	 conductivity—including	
optimal	 proppants,	 fracture	 fluids,	 and	 pumping	 schedules,	 all	 as	 they	 are	 related	 to	 the	
heterogeneous	rock	formations	that	are	to	be	produced.		The	end	product	deliverable	is	an	
improved	workflow	for	fracture	design,	rock	characterization,	and	production	of	tight	gas	
shales.	The	problem	is	difficult,	but	the	potential	for	greatly	improved	production	is	real.	
	
The	 components	 of	 this	 effort	 included	 the	 evaluation	 of	 reservoir	 geology,	 mechanical	
properties,	 in‐situ	 stress,	 and	 rock‐fluid	 interactions	 on	 three	 representative	 tight	 shale	
plays	 in	 North	 America:	 Barnett,	 Marcellus	 and	 Haynesville	 shales.	 	 Results	 include	
evaluation	 of	 loss	 of	 fracture	 conductivity	 and	 loss	 of	 fracture	 surface	 area.	 	 Fracture	
conductivity	measurements	were	conducted	under	various	conditions	of	propped	and	un‐
propped	 fractures,	 flowing	 with	 water	 and	 gas,	 as	 well	 as	 evaluating	 the	 effects	 of	
temperature,	creep,	and	water	interaction	prior	to	fracture	conductivity	measurements.			
	
Results	were	subsequently	compared	to	a	large‐scale	fracture	conductivity	experiment,	to	
understand	 the	 effect	 of	 scale	 on	 the	 measurements.	 	 Results	 of	 loss	 of	 surface	 area	
included	 numerical	 simulations	 using	 fracture	 networks	 of	 complex	 geometries,	 and	
allowing	 the	 second	 and	 third	 tier	 fractures	 in	 the	network	 to	 be	 disconnected	 from	 the	
main	fracture,	by	insufficient	connectivity	or	insufficient	conductivity.		In	addition,	and	for	
a	 reference	 to	 the	above	work,	 the	effort	 included	an	extensive	discussion	of	 the	 current	
(best)	practices	by	the	industry	and	the	best	practices	by	the	operator	participants	to	this	
project.	 	 The	 project	 also	 included	 a	 thorough	 discussion	 of	 the	 various	 regions	 of	 the	
fracture	 system	 needed	 for	 adequate	 characterization.	 	 It	 is	 by	 understanding	 and	
integrating	the	above	that	the	workflow	proposes	production	improvement.	
	
Results	 for	material	property	characterization	provided	a	strong	reference	 for	comparing	
the	reservoir,	geochemical,	petrologic	and	mechanical	behavior	of	the	various	rock	facies	in	
the	Barnett,	Marcellus	and	Haynesville	rocks.			
	
Results	of	 fracture	surface	area	characterization	indicated	that	the	fracture	geometry	and	
the	total	surface	area	are	both	important	to	well	production.		We	show	that	fractures	with	
identical	first	tier	fracture	length	and	fracture	conductivity,	and	multiple	realizations	of	the	
secondary	 fracture	 geometry,	 under	 conditions	 of	 constant	 surface	 area,	 results	 in	
considerable	 differences	 in	 daily	 production	 and	 cumulative	 production.	 	We	 found	 that	
some	 fracture	 network	 geometries	 promote	 high	 early	 productivity,	 where	 as	 other	
network	geometries	promote	 long	term	productivity	at	 the	expense	of	early	productivity.		
We	 also	 show	 that	 the	 contribution	 of	 the	 second	 and	 third	 tier	 fracture	 networks	 to	
production	 depends	 strongly	 on	 the	 transport	 of	 proppant	 to	 these	 fractures.	 	 It	 also	
depends	on	their	mechanical	properties	(e.g.,	hardness,	creep)	and	rock‐fluid	sensitivity.	
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A	considerable	component	of	this	report	was	the	characterization	of	fracture	conductivity	
on	 laboratory	 samples	 under	 multiple	 conditions.	 	 For	 consistent	 analysis	 and	
interpretation,	fracture	conductivities	of	0.01	mD‐ft	or	lower	were	assumed	to	be	too	low	
for	 production.	 	 Results	 show	 that	 smooth	 fractures	 without	 proppant	 do	 not	 retain	
sufficient	conductivity	to	be	of	relevance	to	production.		In	contrast,	fractures	with	natural	
asperities	are	important	to	production,	and	particularly	so	when	the	closure	stress	is	below	
4000	 to	 6000	 psi.	 The	 sensitivity	 with	 stress	 for	 these	 is	 approximately	 2	 decades	 per	
10,000	psi.	There	is	a	great	deal	of	consistency	on	the	measured	data	between	samples,	and	
at	high	closure	stress,	there	is	no	rock	type	differentiation.		The	sensitivity	to	temperature	
and	 time	dependence,	 creep,	was	also	 investigated.	 	Temperature	appears	 to	 introduce	a	
dramatic	decrease	 in	 fracture	conductivity	at	 some	critical	 stress.	 	Creep	 introduces	high	
initial	stress	dependence,	at	low	confining	stress.		Thus,	laboratory	conditions	for	fracture	
conductivity	may	need	to	include	temperature	and	creep	to	be	more	representative	of	field	
conditions.			
	
Results	 also	 show	 that	 in	 all	 cases,	 adding	 proppant	 to	 the	 fractures	 resulted	 in	 a	
considerable	 increase	 in	 fracture	 conductivity,	 by	 several	 orders	 of	 magnitude,	 and	 a	
considerable	reduction	of	the	stress	sensitivity.	Typical	reductions	of	fracture	conductivity	
with	 stress	 for	 un‐propped	 and	 propped	 fractures	 are	 3	 to	 2	 decades	 per	 10,000	 psi.	 	 A	
great	deal	of	consistency	on	the	measured	data	between	samples	was	found,	and	in	general,	
there	 is	no	rock	 type	differentiation.	 	When	there	 is,	 this	 is	most	apparent	at	 low	closure	
stress.		
	
The	 effect	 of	 water	 soaking	 the	 fracture	 surfaces	 prior	 to	 fracture	 conductivity	 testing	
showed	 a	 clear	 softening	 of	 the	 rock	 surface	 hardness	 and	 an	 associated	 loss	 in	 both	
fracture	 area	 and	 fracture	 conductivity	 with	 stress.	 	 Results	 of	 tests	 with	 increased	
proppant	concentration	(3	monolayers)	show	a	consistent	and	strong	increase	in	fracture	
conductivity	and	a	 reduction	 in	 stress	 sensitivity	 from	2	decades	 to	1	decade	per	10,000	
psi,	compared	to	proppant	concentrations	of	a	single	monolayer.	
	
Large	scale	 laboratory	 tests	on	a	rock	block	of	approximately	36	 inches	x	36	 inches	x	36	
inches,	provided	a	strong	insight	in	to	the	development	of	fracture	geometry	and	fracture	
conductivity,	 and	 the	 scaling	 of	measurements	 on	 small	 samples.	 	 Results	 show	 that	 the	
laboratory	data	on	small	samples	is	conservative	and	represents	an	over‐estimation	of	the	
large‐scale	 change	 in	 fracture	 conductivity	 with	 stress.	 	 It	 also	 shows	 that	 fracture	
complexity	 is	 inevitable,	 particularly	 along	 the	 far‐wellbore	 fracture	 region,	 and	 is	
associated	to	the	textural	complexity	of	the	medium.				
	
Results	of	this	program	indicate	that	there	is	no	simple	solution	for	alleviating	the	loss	of	
surface	 area	 and	 fracture	 conductivity	 during	 production,	 and	 consequently	 there	 is	 no	
simple	solution	for	alleviating	the	loss	of	productivity	with	time.		The	solution	is	complex.		
It	requires	understanding	of	multiple	reservoir	and	completion	quality	properties	affecting	
the	 characteristic	 regions	 of	 the	 fracturing	 system.	 	 These	 are	 the	 wellbore,	
wellbore/fracture	 connector,	 near	 wellbore	 fracture	 region	 and	 far‐wellbore	 fracture	
region.		Because	each	of	these	regions	may	require	different	conditions	of	optimization,	the	
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solution	 also	 requires	 understanding	 the	 conflicting	 requirements	 and	 needed	
compromises	to	obtain	an	optimum	overall	solution.		Unconventional	tight	shale	reservoirs	
are	 geologic	 plays	 and	 understanding	 their	 geologic	 complexity	 is	 a	 fundamental	
prerequisite.	 	 The	 observed	 heterogeneous	 distribution	 of	 rock	 properties	 and	 in‐situ	
stress	 are	 a	 direct	 reflection	 of	 their	 geologic	 complexity.	 	 Because	 of	 their	 low	
permeability,	production	depends	on	the	creation	of	surface	area	in	contact	with	the	high	
reservoir	quality	sections	of	 the	play,	and	on	 the	 long‐term	retention	of	surface	area	and	
fracture	 conductivity.	 	 As	 indicated,	 however,	 it	 also	 depends	 on	 selecting	 the	 adequate	
landing	point	for	 improving	the	conditions	of	 fracture	initiation	and	depends	critically	on	
the	wellbore/fracture	connectivity.			
	
Although	 this	 report	and	 the	experimental	effort	addressed	primarily	 the	 loss	of	 fracture	
surface	area	and	loss	of	fracture	conductivity	in	the	far‐wellbore	region	(i.e.,	region	with	no	
proppant	 or	 low	 proppant	 concentration),	 it	 is	 clear	 from	 the	 discussion	 that	 defining	 a	
workflow	for	improving	well	productivity	requires	the	integration	and	optimization	of	the	
various	components	of	the	fracturing	system.		This	includes:	
	

 Understanding	the	geologic	system,	
 Understanding	the	distribution	of	material	properties	in	the	system,	
 Understanding	 the	 combination	 of	 these	 rock	 properties,	 to	 define	 critical	

conditions	of	reservoir	quality	and	completion	quality,		
 Understanding	 the	 implication	 of	 the	 distribution	 of	 reservoir	 quality	 and	

completion	quality	properties	on	the	four	fracture	regions	of:	wellbore,	wellbore	
fracture	connector,	near	wellbore	region	and	far‐wellbore	region,	and	

 Understanding	the	combined	contribution	of	these	regions	to	well	production.			
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1 MATERIAL PROPERTY CHARACTERIZATION 

1.1 Introduction  

The	 objective	 of	 material	 property	 characterization	 is	 to	 provide	 a	 summary	 of	
fundamental	 petrophysical,	 petrological,	 geochemical,	 and	 mechanical	 properties	 of	 all	
formations	 included	 in	 the	 study:	 Barnett,	 Haynesville,	 and	 Marcellus	 tight	 shale	 plays.		
This	 includes	 defining	 in	 a	 quantitative	 and	 non‐subjective	 manner	 the	 presence	 and	
distribution	of	unique	facies	in	each	of	these	plays,	and	sampling	these	adequately	to	obtain	
a	representative	assessment	of	their	properties.	
	
Key	components	of	this	effort	are	as	follows:	

(i) Define	average	reservoir	petrophysical	properties	following	the	Tight	Rock	Analysis	
(TRA)	methodology,	 including	porosity,	gas‐filled	porosity,	permeability,	and	pore	
fluid	saturations	(mobile	oil,	water	and	gas).		

(ii) Define	average	petrological	and	mineralogical	properties	via	thin	section,	Scanning	
Electron	 Microscope	 (SEM)	 and	 X‐ray	 diffraction	 (XRD)	 testing.	 This	 includes	
mudstone	type	classification	by	age,	depositional	texture,	matrix	composition,	and	
organic	content	and	type.		

(iii) Define	average	geochemical	properties	of	organic	content,	type	and	maturation.	

(iv) Define	 average	 anisotropic	 mechanical	 properties	 (including	 static	 and	 dynamic	
anisotropic	elastic	moduli	and	strength).	This	will	cover	the	matrix	features	as	well	
as	 the	 properties	 of	 the	 characteristic	 discontinuities,	 as	 determined	 by	 direct	 or	
triaxial	shear	testing.	

	
For	 analysis	 of	 heterogeneity	 and	 optimal	 selection	 of	 laboratory	 sample	 locations	 for	
testing,	we	 used	 advanced	 n‐dimensional	 heterogeneous	 rock	 analysis	 (HRA)	 of	well	 log	
measurements,	 to	 define	 distinct	 rock	 classes,	 and	 maximize	 representations	 of	 their	
variability	 while	 optimizing	 the	 number	 of	 samples	 taken.	 The	 analysis	 provides	 a	
mathematically	 precise	 method	 for	 identifying	 patterns	 of	 bulk	 log	 responses	 and	 for	
finding	small	but	consistent	variations	in	texture	and	composition	along	the	 length	of	the	
region	of	interest	(including	reservoir	and	non‐reservoir	rocks).	HRA	identifies	rock	classes	
with	similar	texture	and	composition,	and	with	corresponding	similar	material	properties,	
and	 discriminates	 those	 with	 different	 texture	 and	 composition,	 thus	 identifying	 the	
building	 blocks	 of	 the	 heterogeneous	 medium.	 The	 analysis	 results	 in	 a	 color‐coded	
representation	 of	 the	 distinct	 rock	 classes	 along	 the	 region	 of	 interest	 and	 provides	 a	
quantitative	assessment	of	the	distribution,	stacking	patterns	and	relative	abundance	of	the	
various	 units.	 	 This	 allows	 us	 to	 define	 the	 dominant	 reservoir	 and	 non‐reservoir	 units.		
Sample	locations	for	laboratory	testing	are	then	selected	within	each	of	these	rock	classes	
and	 the	 resulting	 characterization	 is	 representative	 of	 the	 various	 realizations	 of	 these	
classes,	along	the	core	tested,	and	outside	the	cored	section,	along	the	well.	
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HRA	also	allows	identification	of	these	rock	classes	from	log	responses	of	other	wells	in	the	
basin	 by	 comparison	 to	 log	 responses	 defined	 in	 the	 reference	well	 (with	 core	 and	with	
adequate	 laboratory	 measurements	 of	 geologic,	 petrologic,	 reservoir,	 geochemical	 and	
mechanical	properties).		This	process	facilitates	the	propagation	of	laboratory	data	via	logs	
to	other	 locations	 in	the	play	without	core	data.	 	Propagation	of	the	knowledge	gained	in	
this	study	to	multiple	wells	was,	however,	not	part	of	this	study.		
	
Laboratory	 properties	 were	 measured	 using	 the	 Tight	 Rock	 Analysis	 (TRA)	 method	 for	
laboratory	characterization	of	tight,	organic‐rich	mudstone	systems,	on	core	samples.		The	
TRA	method	was	specifically	developed	to	accurately	resolve	petrophysical	properties	on	
nano‐darcy	permeability	and	ultra‐low	porosity	rocks.	 	Laboratory	measurements	include	
pore	 fluid	 saturations	 (oil,	 water	 and	 gas),	 effective	 porosity,	 total	 porosity,	 and	 matrix	
permeabilities	in	tight	reservoirs.		It	includes	organic	content,	degree	of	maturation,	as	well	
as	canister	desorption	and	adsorption	measurements	for	assessment	of	adsorbed	gas,	gas	
composition	and	adsorption	capacity.	 	 It	 includes	core	geologic	descriptions	and	detailed	
petrology	and	X‐ray	diffraction	(XRD)	analysis.	It	includes	fluid	sensitivity	analysis	and	the	
evaluation	of	anisotropic	mechanical	properties	for	completion	design.			
	
The	data	presented	below	summarizes	the	TRA	characterization	for	dominant	facies	of	the	
Barnett,	Haynesville,	and	Marcellus	tight	gas	shale	plays.		Reservoir	and	non‐reservoir	units	
were	 characterized.	 	 Results	 provide	 a	 good	 reference	 data	 set	 for	 evaluation	 of	 the	
variability	 in	properties	 from	 facies	 to	 facies	and	between	plays.	 	 It	 also	provides	a	good	
data	set	for	defining	the	type	of	property	combinations	resulting	in	good	reservoir	quality	
and	poor	reservoir	quality.		Furthermore,	the	data	provides	the	opportunity	for	relating	the	
set	 of	 properties	 representative	 of	 good	 or	 poor	 quality	 reservoir	 rocks	 to	 the	
corresponding	rock	mechanical	behavior,	which	controls	 the	 loss	 in	 fracture	conductivity	
and	surface	area.		Data	are	presented	in	groups	representative	of	each	HRA	rock	class	and	
denoted	by	a	particular	color.		This	color	labeling	allows	us	to	associate	these	properties	to	
rock	 classes	 identified	 with	 logs	 with	 similar	 colors	 throughout	 the	 play.	 	 Subsequently	
each	 rock	 class	 is	 also	 classified	according	 to	 its	 respective	 reservoir	quality	 index	 (RQI)	
into	one	of	 the	 following	 five	 groups:	Best,	 good,	 fair,	 poor,	 and	worst.	RQI	 evaluation	 is	
based	on	the	combined	evaluation	of	gas	filled	porosity,	permeability,	total	organic	content	
and	pore	pressure.		The	latter	is	considered	constant	for	each	of	these	plays.			
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1.2 Barnett Shale Properties 

The	Barnett	Shale	is	a	geological	 formation	located	in	the	Bend	Arch‐Fort	Worth	Basin.	It	
consists	of	sedimentary	rocks	of	Mississippian	age	 (354–323	million	years	ago)	 in	Texas.	
The	formation	underlies	the	city	of	Fort	Worth	and	underlies	5,000	mi²	(13,000	km²)	and	
at	 least	 17	 counties.	 	 The	 Barnett	 shale	 stratigraphic	 section	 consists	 of	 limestone	 and	
organic‐rich	 shales.	 The	Barnett	 Shale,	 in	 particular,	 consists	 of	 dense,	 organic‐rich,	 soft,	
thin‐bedded,	 petroliferous,	 fossiliferous	 shale	 and	 hard,	 black,	 finely	 crystalline,	
petroliferous,	fossiliferous	limestone.	In	the	northeastern	portion	of	the	basin,	the	Barnett	
is	divided	into	informal	upper	and	lower	shale	members	by	the	presence	of	the	intervening	
Forestburg	 Limestone	 Member.	 	 In	 addition,	 the	 shale	 members	 themselves	 contain	 a	
significant	 volume	 of	 interbedded	 limestone	 and	minor	 dolomite	 in	 the	 north.	 	 Over	 the	
Bend	 Arch	 the	 lower	 Barnett	 passes	 laterally	 into	 the	 Chappel	 Limestone,	 a	 crinoidal	
limestone	with	 local	 buildups	 up	 to	 300	 ft.	 The	 upper	 shale	 is	 usually	 thinner	 than	 the	
lower	member	and	not	divided.	The	middle	Forestburg	Member	 ranges	up	 to	300	 ft,	 but	
thins	to	a	feather	edge	in	southernmost	Wise	and	Denton	Counties	Where	the	Forestburg	is	
absent.	(Wikipedia,	2012;	Bruner	and	Smosna,	2011).	
	
Two	wells	representative	of	the	Johnston	County	of	this	play	were	selected	for	this	study.		
Petrologic	evaluation	conducted	on	selected	Barnett	shale	from	the	Barnett	Well	1	include	
siliceous	 mudstones,	 mixed	 siliceous/calcareous	 mudstones,	 mixed	 siliceous/phosphatic	
mudstones,	and	mixed	siliceous/argillaceous	mudstones.	Overall	 reservoir	quality	 is	high	
with	 a	 high	 average	 measured	 porosity	 (7.8%),	 average	 gas‐filled	 porosity	 (6.9%),	 and	
average	 calculated	permeability	 (473	nanodarcies).	 	 	 The	 lithotype	 that	 exhibits	 the	best	
quality	 is	 the	siliceous	mudstone	with	an	average	gas‐filled	porosity	of	7.4%	and	average	
calculated	permeability	of	530	nanodarcies.	Recrystallized	silica	is	the	dominant	authigenic	
mineral	 in	 the	 cored	 interval	 and	 imparts	 a	 high	 reservoir	 quality	 zone	 by	 lining	 pore	
throats	and	providing	rigidity	to	compressive	stress.	Amorphous	kerogen	is	admixed	with	
silica	cement	creating	organic	matter	that	typically	has	a	high	surface	area	and	propensity	
to	adsorb	various	gas	species.	A	very	slight	 reduction	 in	 reservoir	quality	 is	noted	at	 the	
base	 of	 the	 cored	 interval	 where	 detrital	 clays	 are	 more	 common.	 Clay	 species	 are	
dominated	 by	 illite	 and	 mixed‐layer	 illite‐smectite,	 with	 only	 trace	 amounts	 (<1%)	 of	
chlorite	 and	 kaolinite.	 Overall	 fresh	 water	 sensitivity	 is	 considered	 very	 low;	 total	
expandable	clay	content	is	variable	and	ranges	from	0‐2%	(XRD	data).	Reservoir	sensitivity	
to	acid‐based	completion	fluids	is	regarded	as	low	with	total	iron	bearing	mineral	species	
present	such	as	pyrite,	ferroan	dolomite/ankerite,	and	siderite	ranging	from	3‐7%.	
	
Samples	selected	for	petrologic	study	from	samples	from	the	second	core,	Barnett	Well	2,	
include	 predominantly	 siliceous	 and	 siliceous/argillaceous	 facies	 of	 the	 Barnett	 Shale.		
These	 are	 characterized	 by	 pervasive	 microcrystalline	 silica	 cement	 in	 the	 matrix	 and	
variable,	 but	 generally	 common	 to	 abundant	 ferroan	 dolomite,	 disseminated	 organic	
matter,	 and	 phosphatic	 grains,	 and	 represent	 the	 best	 reservoir	 quality	 units	 in	 the	
sampled	 interval.	Reservoir	sensitivity	 to	 fresh	water	 is	moderate	to	high,	particularly	 in,	
but	not	restricted	to,	argillaceous	samples.	Illite‐smectite	makes	up	to	31%	of	clays	present	
and	expandability	 is	as	high	as	35%.	Due	to	 the	presence	of	 ferroan	dolomite	and	pyrite,	
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Table 1.2  Summary of Barnett Petrophysical Properties 

Rock 
class 

No of 
Samples 

Bulk 
Density 

Grain 
Density 

Dry Gas 
Density 

Effective 
Porosity 

Water 
Saturation 

Gas 
Saturation 

  (g/cc) (g/cc) (g/cc) (% BV) ( % PV) ( % PV) 
  Avg STD Avg STD Avg STD Avg STD Avg STD Avg SRD 

DarkBlue 2 2.59 0.05 2.65 0.04 2.67 0.03 3.54 1.03 11.92 13.04 71.54 14.93 
Yellow 4 2.54 0.10 2.62 0.08 2.66 0.07 5.09 1.63 26.97 7.81 61.81 8.20 
Red 6 2.52 0.02 2.59 0.02 2.62 0.02 4.62 0.74 21.25 8.12 57.65 8.84 
Brown 6 2.47 0.05 2.58 0.04 2.61 0.04 5.86 1.22 14.50 9.19 66.25 8.65 
Purple 8 2.48 0.03 2.59 0.03 2.62 0.03 6.06 0.95 13.35 3.73 68.93 7.99 
Olive 3 2.48 0.01 2.57 0.03 2.60 0.03 5.34 1.43 12.95 6.67 71.17 4.34 
Orange 12 2.45 0.03 2.64 0.01 2.65 0.01 7.88 0.50 6.04 2.04 88.48 2.80 
Grey 6 2.49 0.04 2.56 0.04 2.59 0.05 4.62 0.86 12.58 5.34 65.13 7.62 

Summary of Barnett Petrophysical Properties (continued …) 

Rock 
class 

No of 
Samples 

Mobile Oil 
Saturation 

Gas Filled 
Porosity 

Bound 
Hydrocarbon 

Saturation 

Clay 
Bound 
water 

Pressure 
Decay 

Permeability 
  (% PV) (% BV) (% BV) (% BV) ( nD) 
  Avg STD Avg STD Avg STD Avg STD Avg STD 

DarkBlue 2 16.54 1.89 2.46 0.20 0.62 0.20 4.01 2.94 76 6.79 
Yellow 4 11.22 4.66 3.10 0.94 0.64 0.57 6.07 1.12 86 52.64 
Red 6 21.10 5.19 2.69 0.71 0.74 0.39 6.48 1.11 87 38.81 
Brown 6 19.25 4.04 3.95 1.28 0.84 0.20 5.53 1.59 168 95.64 
Purple 8 17.72 5.05 4.22 1.04 0.83 0.33 5.32 0.75 211 85.34 
Olive 3 15.88 3.15 3.84 1.25 1.08 0.37 5.65 0.23 157 93.17 
Orange 12 5.48 1.09 6.98 0.60 0.70 0.57 4.22 1.00 400 74.32 
Grey 6 22.29 4.85 3.00 0.61 0.82 0.53 6.75 0.78 106 59.46 

 

 

Table 1.3  Summary Barnett Geochemical Properties 

Rock 
class 

No of 
Samples 

Total Organic Content 

  (% Wt) 
  Avg STD 
DarkBlue 2 3.56 1.95 
Yellow 4 2.92 1.39 
Red 6 3.76 1.03 
Brown 6 3.83 0.39 
Purple 8 4.17 0.32 
Olive 3 4.20 1.10 
Orange 12 3.72 0.33 
Grey 6 5.21 1.51 
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Table 1.4  Summary of Barnett Geomechanical Properties ‐ Static 

Rock 
class 

No of 
Samp. 

Bulk Density Effective 
Confining 

Stress  
Peak Strength  

(V) 
Peak Strength 

(H)  
Young’s 
Mod (V)  

Young’s 
Mod (H)  

  (g/cc) (psi) (psi) (psi) (psi x E6) (psi x E6) 
  Avg STD Avg STD Avg STD Avg STD Avg STD Avg STD 

Dark Blue 2 2.51 0.087 2509 364 30636 11035 26340 1627 3.99 2.33 5.4 0.16 
Red 1 2.54 --- 2204 --- 19883 --- 23590 --- 2.90  4.03  
Brown 1 2.45 --- 2553  24164 --- 24790 --- 3.27  4.33  
Olive 3 2.52 0.016 2562 273 16988 3364 21546 470 2.88 0.39 4.53 0.43 
Orange 5 2.50 0.046 3030 320 25909 828 30758 3624 3.86 0.26 5.60 0.36 

Summary of Barnett Geomechanical Properties – Static (continued …) 

Rock 
class 

No of 
Samples 

Poisson's Ratio 
(V) 

Poisson's Ratio 
(H) 

    
  Avg STD Avg STD 

Dark Blue 2 0.219 0.047 0.190 0.008 
Red 1 0.156 --- 0.143 --- 
Brown 1 0.153 --- 0.183 --- 
Olive 3 0.131 0.026 0.162 0.008 
Orange 5 0.201 0.017 0.256 0.058 

 

 

Table 1.5  Summary of Barnett Geomechanical Properties ‐ Dynamic 

Rock 
class 

No of 
Samples 

Bulk 
Density 

Mean 
Stress 

P-Wave Vel 
(V)  

P-Wave Vel 
(H)  

S-Wave Vel 
(V)  

S-Wave Vel 
(H)  

  (g/cc) (psi) (ft/s) (ft/s) ( ft/s) ( ft/s) 
  Avg STD Avg STD Avg STD Avg STD Avg STD Avg SRD 

Dark Blue 2 2.59 0.086 4196 844 16296 2702 17003 1312 9015 962 9589 128 
Red 1 2.56 --- 4553 --- 13000 --- 16091 --- 7756 --- 9402 --- 
Brown 1 2.46 --- 3226 --- 13070 --- 15342 --- 7887 --- 9162 --- 
Olive 3 2.53 0.021 3559 325 13562 797 16216 626 8132 516 9350 353 
Orange 5 2.51 0.05 3729 328 13088 799 15123 873 7849 608 8775 871 

Summary of Barnett Geomechanical Properties – Dynamic (continued…) 

Rock 
class 

No of 
Samples 

Bulk 
Density 

Young’s 
Mod (V)  

Young’s 
Mod (H) 

Poisson's Ratio 
(V) 

Poisson's Ratio 
(H) 

  (g/cc) (psi x E6) (psi x E6)   
  Avg STD Avg SRD Avg STD Avg STD Avg STD 

Dark Blue 2 2.59 0.086 7.53 2.07 8.16 0.59 0.258 0.058 0.257 0.083 
Red 1 2.56 --- 4.53  7.37  0.24 --- 0.193 --- 
Brown 1 2.46 --- 4.84  6.81  0.211 --- 0.206 --- 
Olive 3 2.53 0.021 5.05 0.72 7.43 0.68 0.234 0.005 0.226 0.018 
Orange 5 2.51 0.05 4.68 1.25 6.43 1.31 0.240 0.065 0.208 0.086 
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Table 1.6  Summary of Barnett XRD Mineralogy 

Rock 
class 

No of 
Samples 

QUARTZ CALCITE 
TOTAL 
CLAY OTHER TOTAL 

  % % % % % 
  Avg STD Avg STD Avg STD   

DarkBlue 2 26 --- 16 --- 39 --- 19 100 
Yellow 4 29 --- 6.9 --- 31 --- 33.1 100 
Red 6 27 --- 5.5 --- 38 --- 29.5 100 
Brown 6 47 13 4.6 3.9 30 10 18.4 100 
Purple 8 43 12 7.9 2.7 29 9.7 20.1 100 
Olive 3 31 --- 12 --- 41 --- 16 100 
Orange 12 50 4.1 8.1 2.5 24 4 17.9 100 
Grey 6 36 12 1.8 2.5 43 11 19.2 100 

 

Table 1.7  Summary of Barnett RockEval Properties 

Rock Class Tmax Calc. Ro 

Orange 472 1.33 

Brown 473 1.35 

Olive 469 1.28 

Red 254 0.98 
 

Table 1.8  Summary of Barnett Surface Hardness and Strength Measurements 

Rock Class 
No of 

Samples 

BHN 
kgf/mm2 

UCS 
ksi 

Avg STD Avg STD 
Red 7 28 7.0 13.1 1.1 

Brown 12 29 10.6 12.1 1.4 
Olive 8 33 1.1 10.5 2.4 

Orange 11 33 8.9 13.8 2.0 
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Table 1.9  Barnett Petrologic Summary 

Rock Class DarkBlue Yellow Red 

Lithology silty, Argillaceous mudstone  phosphatic to siliceous argillaceous  argillaceous to calcareous and 
Dolomitic mudstone 

Detrital Grains very common; Q > F; maximum 
grain, size coarse silt 

minor to abundant; Q > F; 
maximum grain size ranges from 
coarse silt to very fine sand 

fairly to very common; Q > F; 
maximum grain size ranges from 
medium silt to very fine sand 

Dominant Matrix 
Composition 

argillaceous argilalcoeus & silcieous or 
phosphatic 

argilalcoeus & silcieous or 
calcaroeus 

Clay Minerals IL > I/S IL ≈ I/S IL > I/S 

Biotic Grains calcareous shell fragments 
abundant; conodonts fairly common 

calcareous shell fragments 
uncommon to common; conodonts 
rare to uncommon; radiolaria rare; 
sponge spicules locally abundant 

calcareous shell fragments common 
to abundant; conodonts rare to 
common 

Organic 
Components 

stringers, blebs, & disseminated in 
matrix 

stringers, blebs, & disseminated in 
matrix 

algal macerals common; stringers, 
blebs, & disseminated in matrix 

Accessory Grains mica & glauconite mica > glauconite mica > glauconite 

Authigenic Minerals calcite abundant in recrystallized 
shell fragments & common in 
matrix; pyrite common; ferroan 
dolomite rare 

calcite common in recrystallized 
shell fragments & common to fairly 
common in matrix; pyrite common; 
ferroan dolomite rare; silica 
replacing macerals and locally shell 
fragmetns; fluorapatite local 

pyrite common to abundant; calcite 
locally common in recrystallized 
shell fragments & matrix; ferroan 
dolomite locally common replacing 
fossils and in matrix; silica minor 
replacing macerals and some shell 
fragmetns 

Pore Types micropores intercrystalline within 
the matrix 

micropores intercrystalline within 
the matrix 

micropores intercrystalline within 
the matrix 

Petrographic 
Comments 

matrix very opaque; laminations 
defined by large shell fragments and 
calcite-cemented layers; clay- and 
silt-filled burrows common; 
phosphatic pellets common; pyrite 
as few large concretions 

matrix moderately to highly opaque; 
phosphatic pellets common to 
abundant; pyrite local; intraparticle 
porosity in sponge spicules and 
phosphatic pallets locally filled with 
cements including phoshate and 
calcite, respectively; stress-release 
cracks locally abundant 

matrix locally highly opaque; 
phosphatic pellets rare to common; 
pyrite locally replacing macerals 
and shells alongside silica and 
ferroan dolomite 
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Barnett Petrologic Summary (Continued …) 

Rock Class Brown Purple Olive 

Lithology siliceous/argilalceous mudstone siliceous mudstone commonly with 
mixed argilaceous and locally 
phosphatic 

siliceous/argill mudstone 

Detrital Grains minor to common; Q > F; maximum 
grain size ranges from medium silt 
to  fine sand 

minor to very common; Q > F; 
maximum grain size ranges from 
medium silt to  fine sand 

Q > F minor to fairly common 

Dominant Matrix 
Composition 

argilalcoeus & silcieous argilalcoeus & silcieous  silcieous/ argillaceous 

Clay Minerals IL > I/S IL > I/S ILL >  I/S 

Biotic Grains sponge spicules ucommon to 
abundant; calcareous shell 
fragments rare to common; 
conodonts rare to uncommon 

sponge spicules rare to common; 
calcareous shell fragments rare to 
fairly abundant; radiolaria rare to 
very common; conodonts rare 

shell fragments fairly abundant; rare 
spicules, radiolarians, & forams; 
possible calcispheres 

Organic components algal macerals common; stringers, 
blebs, & disseminated in matrix 

algal macerals locally common; 
stringers, blebs, & disseminated in 
matrix 

stringers, blebs, & disseminated in 
matrix 

Accessory Grains mica > glauconite mica > glauconite phosphate grains/pellets 

Authigenic Minerals silica commonly in matrix and 
replacing organic particles; pyrite 
common; calcite and ferroan calcite 
locally abundant in recrystallized 
shell fragments & matrix; ferroan 
dolomite rare to uncommon; 
fluorapatite local 

silica in matrix, recrystalized 
microfossils, and replacing 
macerals; pyrite common; calcite 
common to abundant in 
recrystallized shell fragments & 
matrix; ferroan dolomite 
uncommon; fluorapatite local 

Cal, Fe-cal, & Py common in matrix 
& recryst. fossils; Fe-dol & 
fluorapatite nodules uncommon; 
chert replacing macerals 
 

Pore Types micropores intercrystalline within 
the matrix 

micropores intercrystalline within 
the matrix 

micro intercrystalline within the 
matrix 

Petrographic 
Comments 

matrix commonly opaque; 
laminations locally defined by 
calcite-cemented layers; phosphatic 
pellets common to fairly abundant; 
pyrite locally replacing macerals 
alongside silica and ferroan 
dolomite; some burrows filled with 
silt and some kerogen 

pyrite locally replacing macerals 
and radiolaria alongside silica, 
ferroan dolomite, and ferroan 
calcite; patches of calcite cement; 
amorphous phosphate locally 
encrusts calcareous and siliceous 
fossils as well as older phosphatic 
pellets, which are fairly common to 
abundant 

spherical calcite grains may be shell 
frags, recryst. spicules, or 
calcispheres; authigenic f-spar 
occurs in microcrystalline patches 
of cal cement; tends to have 
anomalous concentration of 
phosphatic particles  
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Barnett	Petrologic	Summary	(Continued	…)	
	

Rock Class Orange Gray 

Lithology siliceous mudstones including 
phosphatic or calcareous varieties 

argillaceous to mixed 
siliceous/argilalceous mudstones 

Detrital Grains niderate to abundant; Q & F; 
maximum grain size, medium silt 

fairly common to common; Q > F; 
maximum grain size, coarse silt 

Dominant Matrix 
Composition 

 silcieous & phosphatic or 
calcareous 

argilalcoeus & silcieous 

Clay Minerals IL & I/S IL > I/S 

Biotic Grains sponge spicules; radiolaria; 
ostracode; foraminifera; bivalve, 
thin-shelled  

conodonts uncommon to fairly 
common; sponge spicules 
uncommon and local 

Organic components stringers, blebs, & disseminated in 
matrix 

algal macerals uncommon to 
abundant; stringers, blebs, & 
disseminated in matrix 

Accessory Grains mica mica > glauconite 

Authigenic Minerals phoshatic nodules sparse to very 
common; silica in matrix & 
recrystalized microfossils; pyrite; 
calcite local as recrystallized fossils 
& in matrix; dolomite & ferroan 
dolomite 

pyrite common; silica replacing 
macerals and locally in the matrix; 
ferroan dolomite minor to common 

Pore Types micropores intercrystalline within 
the matrix 

micropores intercrystalline within 
the matrix 

Petrographic 
Comments 

faintly laminated; rare bioturbation 
including burrows 

opaque matrix; common organic-
poor lenses representing possible 
burrows; pyrite and ferroan 
dolomite local as nodules; common 
phosphatic pellets 
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Figure 1.5  Representative thin section (top) and SEM (bottom) of the best reservoir quality rock 
class of the Barnett shale.  The image shows show detrital clay minerals that originally 
composed the matrix in best reservoir intervals of the Barnett intimately admixed with 
diagenetic silica, and extensively coated with highly degraded kerogen. SEM shows a 

heterogeneous microfabric in the matrix where favorable gas‐filled porosity and matrix 
permeability occurs. 

Table 1.10  Abbreviations for Barnett Images and Tables 

Argill = argillaceous cal = calcite Calc = calcareous 
dissem = disseminated dol = dolomite F = feldspar 
Fe-cal = ferroan calcite Fe-dol = ferroan dolomite fos = fossil tests 
frag or frags = fragment(s) interg = intergranular intxln = intercrystalline 
IL = illite I/S = mixed-layer illite-smectite lam or lams = laminations 
m-mica = micromica mpor = micropore(s) phos = phosphate 
por = pore(s) py = pyrite Q = quartz 
silic = siliceous XRD = X-ray diffraction   

 
  



Sustaining	Fracture	Area	and	Conductivity	 Page	35	
	

1.3 Haynesville Shale Properties 

The	 Haynesville	 Shale	 (also	 known	 as	 the	 Haynesville/Bossier	 shale)	 is	 a	 Late	 Jurassic	
Kimmeridgian	shale	accumulation	underlying	an	area	of	approximately	9,000	square	miles	
extending	to	parts	of	southwestern	Arkansas,	northwest	Louisiana,	and	east	Texas.	 	It	lies	
at	depths	of	10,500	to	13,000	feet	and	is	overlain	by	sandstone	of	the	Cotton	Valley	Group	
and	underlain	by	limestone	of	the	Smackover	Formation.		This	Haynesville	shale	represents	
a	transgressive	flooding	event	 in	a	restricted	shelfal	basin	following	the	deposition	of	the	
Smackover	 formation.	 	 Laterally	 this	 shale	 grades	 into	 Haynesville,	 or	 Cotton	 Valley	
limestone	build‐ups	along	the	margins	of	the	basin.	Thicknesses	approaching	300	feet	are	
common	 in	 the	 northern	 area	 and	 130	 to	 150	 feet	 is	 common	 in	 the	 south.	 Above	 the	
Haynesville,	the	Bossier	shale	is	present	with	less	organic	facies	preserved	and	represents	
shallower	more	oxygenated	shelfal	conditions	(Wikipedia,	2012).	
	
Two	cored	wells	 representative	of	 the	Haynesville	and	Bossier	sections	of	 this	play	were	
selected	 for	 this	 study.	 Haynesville	 Well	 1	 represents	 an	 extended	 vertical	 section	 that	
includes	 the	Late	 Jurassic	Age	Bossier	Shale,	and	the	Haynesville	Shale.	 	Thin	horizons	of	
dolostones	 and	 dolomitic	 mudstones	 are	 interbedded	 throughout	 the	 upper	 cores	
representing	the	Bossier	Shale.	Samples	here	primarily	represent	argillaceous	mudstones	
and	 silty,	 argillaceous	mudstones.	 	 A	 large	 influx	 of	 terrigenous	 silt	 and	 calcareous	 fecal	
pellets	are	observed	 in	the	samples	 from	the	 lower	core,	representing	predominantly	 the	
Haynesville	 Shale.	 	 Silty	 argillaceous	mudstones	 and	 silty,	 calcareous	mudstones	 are	 the	
dominant	 lithotypes.	 	The	base	of	 this	core	 is	 represented	by	a	silty,	dolomitic	mudstone	
and	 one	 a	 wackestone	 variation	 of	 limestone	 at	 the	 base	 of	 the	 Haynesville	 shale	 and	
representative	 of	 the	 Smackover	 formation.	 	 The	 best	 potential	 reservoir	 quality	 with	
favorable	 gas‐filled	 porosity	 and	 permeability	 exists	 in	 silty,	 argillaceous	 and	 silty,	
calcareous	mudstones	 of	 the	 Haynesville	 Shale,	 as	well	 as	 select	 argillaceous	mudstones	
and	 silty,	 argillaceous	mudstones	 of	 the	middle	 Bossier	 Shale.	 	 Calcite	 is	 in	 the	 form	 of	
recrystallized	 biotic	 grains	 and	 fecal	 pellets	 composed	 of	 degraded	 organic	material	 and	
coccolith	 plates	 is	 observed	 in	 the	 Haynesville	 shale	 section.	 	 Organic	 material	 is	 also	
observed	 as	 particles	 similar	 to	 the	 overlying	 Bossier	 Shale	 and	 as	 amorphous	 kerogen	
thickly	coating	the	matrix.		Clay	minerals	throughout	the	well	consist	primarily	of	illite	and	
expandable	 mixed‐layer	 illitesmectite.	 	 The	 clay	 presents	 a	 marginal	 risk	 of	 reservoir	
sensitivity	to	freshwater	completion	fluids.	
	
Haynesville	Well	 2	 also	 represent	 the	 Bossier	 and	Haynesville	 shale	 sections.	 	 However,	
samples	 for	 laboratory	 testing	 represented	 primarily	 the	 argillaceous	 mudstones	 and	
intercalated	dolomitic	mudstones	of	the	Bossier	section.	Textural	development	here	varied	
from	 non‐laminated	 to	 well‐defined	 laminae	 consisting	 of	 silt,	 biotic	 grains,	 authigenic	
minerals,	and/or	admixed	layers	of	organic	material	and	pyrite.	Organic	material	occurs	as	
both	smooth	and	degraded	particles	and	as	disseminated	kerogen	 in	 the	matrix.	 	Detrital	
clay	 minerals	 that	 predominantly	 compose	 the	 matrix	 are	 illite	 and	 mixed‐layer	
illitesmectite.	 	 Authigenic	 chlorite	 flakes	 are	 commonly	 associated	with	 other	 authigenic	
minerals	 such	as	albite	and	calcite.	 	According	 to	X‐ray	diffraction	analyses	based	on	 the	
amounts	 of	 expandable	 smectite	 interlayers	 within	 mixed‐layer	 illite‐smectite	 clays,	
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Table 1.12  Summary of Haynesville Petrophysical Tables 

Rock 
class 

No of 
Samples 

Bulk 
Density 

Grain 
Density 

Dry Gas 
Density 

Effective 
Porosity 

Water 
Saturation 

Gas 
Saturation 

  (g/cc) (g/cc) (g/cc) (% BV) ( % PV) ( % PV) 
  Avg STD Avg STD Avg STD Avg STD Avg STD Avg SRD 
DarkBlue 3 2.489 0.080 2.637 0.041 2.661 0.030 6.830 2.360 8.77 5.68 82.80 4.90 
Light 
Blue 

22 2.469 0.039 2.648 0.033 2.669 0.030 7.820 0.880 4.89 2.84 86.70 7.60 

Yellow 1 2.568 --- 2.665 --- 2.673 --- 4.060 --- 7.93 --- 90.00 --- 
Red 6 2.651 0.020 2.703 0.015 2.718 0.017 2.770 0.398 26.90 8.00 69.80 8.10 
Brown 8 2.601 0.061 2.718 0.041 2.715 0.043 4.500 0.980 4.94 0.98 92.00 5.20 
Purple 5 2.713 0.070 2.789 0.092 2.795 0.097 3.001 1.250 1.420 1.340 91.90 5.10 
Green 29 2.618 0.030 2.692 0.018 2.706 0.021 3.550 0.870 18.490 11.080 78.60 11.10 

Summary of Haynesville Petrophysical Tables (Continued …) 

Rock 
class 

No of 
Samples 

Mobile Oil 
Saturation 

Gas Filled 
Porosity 

Bound 
Hydrocarbon 

Saturation 

Clay Bound 
Water 

Pressure 
Decay 

Permeability 
  (% PV) (% BV) (% BV) (% BV) ( nD) 
  Avg STD Avg STD Avg STD Avg STD Avg STD 
DarkBlue 3 8.410 7.000 5.630 1.860 0.321 0.131 7.39 2.25 397 212 
Light Blue 22 8.380 5.380 6.760 0.800 0.456 0.156 4.92 0.91 509 108 
Yellow 1 2.100 --- 3.650 --- 0.151 --- 8.23 --- 235 --- 
Red 6 3.300 1.600 1.930 0.370 0.160 0.073 10.60 0.70 105 20 
Brown 8 3.020 2.020 4.180 1.100 0.304 0.144 5.01 1.27 294 104 
Purple 5 6.650 3.800 2.730 1.050 0.152 0.052 2.960 0.960 143 24 
Green 29 2.940 1.610 2.780 0.820 0.134 0.085 9.600 1.340 150 69 

 

 

Table 1.13  Summary of Haynesville Geochemical Properties 

Rock 
class 

No of 
Samples 

Total Organic Content 

  (% Wt) 
  Avg STD 
DarkBlue 7 1.830 0.610 
LightBlue 4 2.150 0.120 

Yellow 1 1.860 --- 
Red 1 1.580 --- 

Green 10 1.700 0.550 
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Table 1.14  Summary of Haynesville Geomechanical Properties – Static 

Rock class 
No of 

Samples 
Bulk Density 

Effective 
Confining Stress

Peak Strength (V)  Peak Strength (H)  

(g/cc) (psi) (psi) (psi) 
Avg STD Avg STD Avg STD Avg SRD 

Dark Blue 2 2.47 0.01 2364 1 --- --- --- --- 
Light Blue 10 2.49 0.04 2370 4 18047 2016 18853 2596 
Red 1 2.67 --- 2310 --- 19223 --- 23012 --- 
Brown 6 2.27 0.99 2340 37 28083 7699 30654 9497 
Purple 3 2.81 0.01 2300 2 --- --- --- --- 
Green 7 2.61 0.02 2300 4 20118 1155 20620 1039 

Summary of Haynesville Geomechanical Properties – Static Continued (continued …) 

Rock 
class 

No of 
Samples 

Young’s Mod 
(V) 

Young’s 
Mod (H) 

Poisson's 
Ratio (V) 

Poisson's 
Ratio (H) 

  (psi x E6) (psi x E6)   
  Avg STD Avg STD Avg STD Avg SRD 
Dark Blue 2 2.14 0.198 5.01 0.036 0.14 0.006 0.235 0.008 
Light Blue 10 2.57 0.612 4.27 0.911 0.176 0.035 0.217 0.071 
Red 1 5.94  5.93  0.120 --- 0.166 --- 
Brown 6 4.76 1.83 6.64 2.23 0.208 0.030 0.258 0.065 
Purple 3 5.48 0.263 6.04 0.177 0.232 0.005 0.291 0.027 
Green 7 2.39 0.199 4.96 0.558 0.184 0.034 0.223 0.056 

 
 

Table 1.15  Summary of Haynesville Geomechanical Properties ‐ Dynamic 

Rock 
class 

No of 
Samples 

Bulk 
Density 

Mean 
Stress 

P-Wave Vel 
(H) 

P-Wave Vel 
(V) 

S-Wave Vel 
(V) 

S-Wave Vel 
(H) 

  (g/cc) (psi) (ft/s) (ft/s) ( ft/s) ( ft/s) 
  Avg STD Avg STD Avg STD Avg STD Avg STD Avg SRD 

DarkBlue 1 2.48 --- 3250 ---- 12147 --- 15136 --- 7491 --- 9161 --- 
LightBlue 4 2.50 0.040 3283 200 12016 1028 15428 949 7510 538 9475 309 
Brown 2 2.70 0.018 3406 414 14733 1786 16701 995 9268 1464 9964 198 
Purple 1 2.82 --- 3503 --- 17246 --- 18836 --- 10355 --- 10340 --- 
Green 3 2.63 0.02 3322 344 12222 103 17101 462 7390 92 10698 197 
 

Summary of Haynesville Geomechanical Properties – Dynamic (continued …) 

Rock 
class 

No of 
Samples 

Bulk 
Density 

Young’s 
Mod (V) 

Young’s Mod 
(H) 

Poisson's Ratio 
(V) 

Poisson's Ratio 
(H) 

  (g/cc) (psi x E6) (psi x E6)   
  Avg STD Avg STD Avg STD Avg STD Avg STD 

DarkBlue 1 2.48 --- 4.48 --- 6.80  0.193 --- 0.211 --- 
LightBlue 4 2.50 0.040 4.51 0.799 7.29 0.76 0.178 0.018 0.195 0.028 
Brown 2 2.70 0.018 7.47 2.57 8.86 1.20 0.174 0.04 0.222 0.034 
Purple 1 2.82 --- 9.93  10.4  0.218 --- 0.284 --- 
Green 3 2.63 0.02 4.68 0.06 9.55 4.36 0.211 0.015 0.178 0.023 
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Table 1.16  Summary of Haynesville XRD Mineralogy 

Rock 
class 

No of 
Samples 

QUARTZ CALCITE 
TOTAL 
CLAY OTHER TOTAL 

       
  Avg STD Avg STD Avg STD   
Dark Blue 3 25.13 3.43 14.43 7.85 44.27 10.02 16.17 100.00 

light Blue 15 25.42 4.02 23.44 12.96 33.45 7.80 17.69 100.00 

Yellow 1 27.00 --- 9.00 --- 47.00 --- 17.00 100.00 

Red 4 20.98 0.6 4.85 1.33 59.70 2.74 14.47 100.00 

Brown 4 22.55 3.47 27.05 10.96 33.20 3.81 17.20 100.00 

Purple 3 16.73 7.38 32.13 31.39 22.93 8.08 28.21 100.00 

Green 9 22.46 2.57 7.01 4.50 51.79 7.15 18.74 100.00 

 

Table 1.17  Summary of Haynesville RockEval Properties 

Rock Class Tmax Calc. Ro 

Light Blue 529 2.37 

Green 531.5 2.41 

Red 514 2.09 
 

 

Table 1.18  Summary of Haynesville Surface Hardness and Strength Properties 

Rock Class 
No of 

Samples 

BHN 
kgf/mm2 

UCS 
ksi 

Avg STD Avg STD 
Light Blue 6 17 1.5 9.5 1.3 

Red 8 27 2.3 11.8 1.7 
Green 7 25 3.8 9.8 1.0 
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Table 1.19  Haynesville Petrologic Summary 

Rock Class 
Dark Blue Light Blue Yellow 

Lithology silty, argillaceous mudstone silty, argillaceous mudstone silty, argillaceous mudstone 

Detrital Grains abundant Q & F silt abundant Q & F silt abundant Q & F silt 

Dominant Matrix 
Composition 

argillaceous, calcareous argillaceous > calcareous argillaceous 

Clay Minerals abundant IL + I/S, rare KA abundant IL + I/S abundant IL + I/S, rare KA 

Biotic Grains sparse indistinct siliceous forms, 
thin-shelled bivalve & ammonite 

frags, calc cysts common, 
coccoliths 

indistinct siliceous forms, sparse 
foraminifera & cysts, thin-

shelled bivalve and ammonite 
frags, indistinct calc hash, 

coccoliths 

modest indistinct siliceous 
forms, abundant thin-shelled 
bivalve and ammonite frags, 

sparse brachiopod frags 

Organic 
Components 

very abundant carb particles 
(some partially silicified), 
stringers, lenses, dissem 

amorphous kerogen 

abundant carb particles (some 
partially silicified), stringers, 

lenses, dissem amorphous 
kerogen 

very abundant carb particles 
(most partially silicified), lenses, 

stringers, dissem amorphous 
kerogen 

Accessory Grains abundant mica, sparse CHL abundant mica & peloids, fecal 
pellets, rare CHL 

abundant mica & CHL 

Authigenic 
Minerals 

abundant cal ( fos + matrix, 
pellets and peloids), silica (fos + 

matrix), py, dol 

moderate cal (fos + matrix 
micrite), silica (fos + matrix), 

py, dol, Fe-dol, rare sph 

abundant silica (forms + matrix), 
cal (fos), py, dol, Fe-dol, F 
(organic particles + frags) 

Pore Types intxln matrix mpor, sparse interg 
por within silt-filled burrows 

intxln matrix mpor, sparse interg 
por within silt-filled burrows 

intxln matrix mpor, interg por 
among silty lamina and silt-

filled burrows 

Petrographic 
Comments 

very well lam defined by 
partially silicified organic 

particles, lenses, and stringers, 
silt is more common and closely 
associated with organic matter 

subtly lam, abundant amount of 
micritized fecal pellets, thin 

calcite-filled fractures, very silty 
with abundant burrows 

very well lam as defined 
partially silicified organic 

particles and stringers, increased 
silt content, F frequently 

replaces organic particles and 
biotic frags 
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Haynesville Petrologic Summary (continued …) 

Rock Class 
Red Brown Purple 

Lithology argillaceous mudstone silty, dolomitic mudstone dolostone 

Detrital Grains sparce Q & F silt abundant Q & F silt rare Q & F silt 

Dominant Matrix 
Composition 

argillaceous calcareous > argillaceous dolomitic 

Clay Minerals IL + I/S, sparce KA abundant IL, sparce I/S sparse IL + I/S, rare KA 

Biotic Grains sparse indistinct siliceous forms, 
sparse thin-shelled bivalve and 

ammonite frags 

sparce thin shelled bivalve and 
ammonite frags, abundant, 
coccoliths, sparce siliceous 

forms 

rare indistinct siliceous forms 
and thin-shelled bivalve frags 

Organic 
Components 

moderate carb particles (some 
partially silicified), stringers, 
lenses, & dissem amorphous 

kerogen 

moderate carb particles (some 
partially silicified), stringers, 
dissem amorphous kerogen 

moderate carb particles (some 
partially silicified), stringers , 
rare lenses, dissem amorphous 

kerogen 

Accessory Grains abundant mica & CHL abundant mica, peloids & 
pellets, rare CHL 

sparse mica, rare CHL 

Authigenic 
Minerals 

silica (matrix + forms), cal (fos 
+ matrix), py, dol, Fe-dol, rare 

sph 

very abundant cal (fos + matrix 
micrite, sparry), silica (fos + 

matrix), py, dol 

pervasive dol & Fe-dol, sparse 
silica (matrix + forms), py, cal 

(fos) 

Pore Types intxln matrix mpor, rare interg 
por within silt-filled burrows 

intxln matrix mpor, interg por 
among most silt grains 

intxln matrix mpor, sparse intxln 
por around sparry dol & Fe-dol 

Petrographic 
Comments 

very well lam, sparse burrows - 
bioturbated, modest visual 

organic matter, rare 
anastomosing fractures filled 

with cal & fe-cal 

subtly lam defined by pervasive 
micritized pallets aligned 

parallel to bedding and organic 
stringers, sparce silt-filled 

borrows-bioturbated 

very subtly lam as defined by 
layer-parallel organic stringers. 
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Haynesville Petrologic Summary (continued …) 

Rock Class 
Green 

Lithology argillaceous mudstone 

Detrital Grains moderate Q & F silt 

Dominant Matrix 
Composition 

argillaceous 

Clay Minerals abundant IL + I/S, rare KA 

Biotic Grains modest indistinct siliceous 
forms, thin-shelled bivalve and 
ammonite frags more common, 
silicified cysts 

Organic 
components 

abundant carb particles (some 
partially silicified), stringers, 
lenses, dissem amorphous 
kerogen 

Accessory Grains abundant mica & CHL 

Authigenic 
Minerals 

silica (forms + matrix), cal (fos), 
dol, Fe-dol, py, rare sph 

Pore Types intxln matrix mpor, interg por in 
silty lamina and silt-filled 

burrows 

Petrographic 
Comments 

very well lam defined by 
abundant organic particles and 
stringers, abundant silt-filled 

burrows (bioturbated) frequent 
layer-parallel fractures filled 

with silica 
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Figure 1.9  Representative thin section (top) and SEM (bottom) of the best reservoir quality rock 
class of the Haynesville shale include moderate amounts of detrital clay minerals, significantly 

high amounts of microcrystalline calcite, and widespread fine kerogen.  SEM depicts 
microtextural features such as fecal pellets that are defined by increased amounts of calcite and 

highly degraded kerogen, hosting the best gas‐filled porosity and matrix permeability.  

 

Table 1.20  Abbreviations for Haynesville Images and Tables 

cal = calcite calc = calcareous carb = carbonaceous 
CHL = chlorite dissem = disseminated dol = dolomite 
F = feldspar Fe-cal = ferroan calcite Fe-dol = ferroan dolomite 
fos = fossils frac = fracture(s) frag or frags = fragment(s) 
IL = illite interg = intergranular intrap = intraparticle 
intxln = intercrystalline I/S = mixed-layer illite-smectite KA = kaolinite 
lam = laminated mpor = microporosity por = porosity 
py = pyrite Q = quartz sph = sphalerite 
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1.4 Marcellus Shale Properties 

The	Marcellus	formation	(also	classified	as	the	Marcellus	Subgroup	of	the	Hamilton	Group,	
Marcellus	Member	 of	 the	Romney	Formation,	 or	 simply	 the	Marcellus	 Shale)	 is	 a	 unit	 of	
marine	sedimentary	rock	found	in	eastern	North	America.		Named	for	a	distinctive	outcrop	
near	the	village	of	Marcellus,	New	York	in	the	United	States,	it	extends	throughout	much	of	
the	Appalachian	Basin.		Stratigraphically,	the	Marcellus	formation	is	the	lowest	unit	of	the	
Devonian	age	Hamilton	Group,	and	is	divided	into	several	sub‐units.		Although	black	shale	
is	the	dominant	lithology,	 it	also	contains	lighter	shales	and	interbedded	limestone	layers	
due	to	sea	level	variation	during	its	deposition	almost	400	million	years	ago.		The	organic‐
rich	 black	 shale	 was	 deposited	 in	 relatively	 deep	 water	 devoid	 of	 oxygen,	 and	 is	 only	
sparsely	fossiliferous.		Most	fossils	are	contained	in	the	limestone	members,	and	the	fossil	
record	 in	 these	 layers	 provides	 important	 paleontological	 insights	 on	 faunal	 turnovers	
(Wikipedia,	2012).			
	
One	 cored	well	 representative	of	 the	Pennsylvanian	 section	of	 this	 play	was	 selected	 for	
this	 study.	 	 The	 cored	 interval	 in	Marcellus	Well	 1	 consists	 of	 hard,	 fissile,	 pyritic	 black	
mudstones	 and	 shales	 of	 the	Burkett	 and	Marcellus	 Formations,	 overlying	Carbonates	 of	
the	Onondaga	Limestone,	and	spiculitic	chert	of	the	Huntersville	Formation.	 	Organic‐rich	
mudstones	show	excellent	 reservoir	properties	despite	high	 clay	 contents.	 	Clays	 include	
coarse	grained	illite,	and	micromicas;	microporosity	is	observed	as	teepee‐shaped	voids	in	
brittlely	deformed	clays.	 	This	 relatively	 large	grain	size	and	brittle	behavior	preserves	a	
system	 of	 micropores	 fostering	 good	 permeability	 and	 other	 reservoir	 properties.	 In	
addition,	 microcrystalline	 silica	 and	 authigenic	 feldspar	 cements	 prop	 open	micropores,	
and	preserve	porosity	and	permeability.	 	The	best	overall	reservoir	quality	is	exhibited	in	
organic‐rich	 mudstones	 with	 mixed	 siliceous/argillaceous	 matrices,	 present	 in	 both	 the	
upper	and	lower	cored	intervals.		Rock	property	characterization	for	selected	units	present	
in	this	core	is	described	below.	
	
Figure	 1.10	 shows	 the	 HRA	 classification	 of	 one	well	 in	 the	Marcellus	 play	 showing	 the	
presence	and	distribution	of	6	rock	classes	within	the	cored	section.	 	We	noticed	that	the	
Marcellus	 Well	 1	 exhibits	 a	 significant	 amount	 of	 vertical	 heterogeneity	 with	
representation	of	all	the	rock	classes.		To	the	right	side	of	the	well	log	classification	are	box	
and	whisker	plots	defining	the	distribution	of	gas	filled	porosity	(GFP),	total	organic	carbon	
(TOC)	 and	 pressure	 decay	 permeability	 (perm),	 for	 each	 of	 the	 rock	 class	 (indicated	 by	
numbers).		The	relationship	between	the	rock	class	color	and	the	number	sequence	is	also	
provided.		This	information	is	used	to	define	the	reservoir	quality	index	for	each	rock	class.		
The	Dark	Blue,	Light	Blue	classes	are	classes	with	good	to	best	reservoir	quality.		The	Red	
and	Brown	classes	are	non‐reservoir	classes.		Table	1.21	shows	the	corresponding	testing	
matrix	for	these	units	and	their	relative	reservoir	quality	index	(RQI).	
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Table 1.22  Summary of Marcellus Petrophysical Properties 

Rock 
class 

No of 
Samples 

Bulk 
Density 

Grain 
Density 

Dry Gas 
Density 

Effective 
Porosity 

Water 
Saturation 

Gas Saturation 

  (g/cc) (g/cc) (g/cc) (% BV) ( % PV) ( % PV) 
  Avg STD Avg STD Avg STD Avg STD Avg STD Avg SRD 

Brown 5 2.66 0.02 2.74 0.01 2.77 0.02 4.09 1.39 26.19 9.01 71.81 7.88 
DarkBlue 12 2.43 0.06 2.64 0.06 2.67 0.07 9.56 1.45 13.17 2.89 86.07 2.79 
Green 5 2.64 0.06 2.71 0.04 2.71 0.04 2.54 0.62 3.64 5.03 93.97 4.70 
LightBlu
e 

17 
2.50 0.07 2.66 0.05 2.69 0.06 7.41 1.51 17.78 5.61 80.93 5.92 

Red 5 2.63 0.06 2.71 0.05 2.73 0.07 4.07 1.73 17.46 18.03 81.16 18.33 
Yellow 18 2.60 0.06 2.71 0.05 2.74 0.04 5.72 1.64 28.09 7.09 69.91 7.61 
 

Summary of Marcellus Petrophysical Properties (continued …) 

Rock 
class 

No of 
Samples 

Mobile Oil 
Saturation 

Gas Filled 
Porosity 

Bound 
Hydrocarbon 
Saturation 

Clay Bound 
Water 

Pressure Decay 
Permeability 

  (% PV) (% BV) (% BV) ( % BV) ( nD) 
  Avg STD Avg STD Avg STD Avg STD Avg STD 

Brown 5 2.00 1.23 2.90 0.99 0.31 0.15 5.96 2.99 94.00 32.99 
DarkBlue 12 0.76 0.24 8.22 1.24 0.35 0.07 5.19 0.87 424.00 61.21 
Green 5 2.39 1.24 2.39 0.58 0.06 0.03 1.00 0.45 75.00 63.69 
LightBlue 17 1.29 0.70 5.99 1.23 0.29 0.12 5.85 1.02 272.00 87.07 
Red 5 1.38 0.99 3.13 1.28 0.10 0.09 2.37 1.60 84.00 57.67 
Yellow 18 2.01 1.23 4.04 1.33 0.30 0.11 5.84 1.65 165.00 69.41 

 

Table 1.23  Summary of Marcellus Geochemical Properties 

Rock 
class 

No of 
Samples 

Total Organic Content 

  (% Wt) 
  Avg STD 
Brown 5 0.602 0.385 
DarkBlue 12 7.342 1.734 
Green 5 0.928 1.566 
LightBlue 17 3.779 1.722 
Red 5 0.727 0.541 
Yellow 18 1.758 1.374 
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Summary of Marcellus Geomechanical Properties – Static (continued …) 

Rock 
class 

No of 
Samples 

Bulk 
Density 

Poisson’s 
Ratio (V) 

Poisson’s 
Ratio (H) 

  (g/cc)   
  Avg STD Avg STD Avg SRD 

Brown 5 2.68 0.02 0.224 0.019 0.295 0.02 
DarkBlue 3 2.50 0.06 0.237 0.059 0.334 0.024 
Green 2 2.68 0.01 0.284 0.036 0.356 0.063 
LightBlue 4 2.54 0.06 0.179 0.057 0.276 0.096 
Red 1 2.61 --- 0.272 --- 0.228 --- 
Yellow 3 2.62 0.03 0.217 0.026 0.296 0.046 

Table 1.24  Summary of Marcellus Geomechanical Properties – Dynamic 

Rock 
Class 

No. of 
Samples 

Bulk Density 
(g/cc) 

Mean Stress 
(psi) 

P-Wave Vel 
(V) (ft/s) 

P-Wave Vel 
(45) (ft/s) 

S-Wave Vel 
(V) (ft/s) 

S-Wave Vel 
(45) (ft/s) 

Avg STD Avg STD Avg STD Avg STD Avg STD Avg STD 
Brown 5 2.68 0.02 4583 643 14906 1504 16135 1555 8315 768 8998 624 
Dark 
Blue 

3 2.5 0.06 4222 403 13318 4020 12873 810 7790 1479 7954 306 

Green 2 2.68 0.01 5898 640 18424 828 19423 43 9685 239 10141 70 
Light 
Blue 

4 2.54 0.06 4060 280 12610 1204 13273 870 7433 461 8125 477 

Red 1 2.61 --- 9657 --- 18233 --- 16990 0 10775 --- 10302 --- 
Yellow 3 2.62 0.03 3964 53 12475 423 14825 258 7366 389 8804 46 

Summary of Marcellus Geomechanical Properties – Dynamic (continued …) 

Rock 
Class 

No. of 
Samples 

Bulk Density 
(g/cc) 

Young's Mod 
(V) (psi x E6) 

Young's Mod 
(45) (psi x E6) 

Poisson's Ratio 
(V) 

Poisson's Ratio 
(45) 

Avg STD Avg STD Avg STD Avg STD Avg STD 
Brown 5 2.68 0.02 6.48 1.21 7.52 1.18 0.274 0.015 0.272 0.021 

Dark Blue 3 2.5 0.06 5.43 2.57 5.08 0.52 0.223 0.040 0.187 0.025 
Green 2 2.68 0.01 8.90 0.50 9.78 0.12 0.310 0.000 0.315 0.005 

Light Blue 4 2.54 0.06 4.77 0.83 5.42 0.71 0.228 0.050 0.203 0.008 
Red 1 2.61 --- 10.39 --- 8.79 --- 0.230 0.000 0.210 0.000 

Yellow 3 2.62 0.03 4.73 0.41 6.81 0.21 0.230 0.022 0.223 0.012 

Table 1.25  Summary of Marcellus XRD Mineralogy 

Rock 
class 

No of 
Samples 

QUARTZ CALCITE 
TOTAL 
CLAY OTHER TOTAL 

       
  Avg STD Avg STD Avg STD   

Brown 2 19.50 13.44 41.50 43.13 27.00 25.46 12.00 100.00 
DarkBlue 4 28.25 8.06 8.50 12.34 39.50 10.97 23.75 100.00 
Green 2 9.50 2.12 85.00 0.00 2.50 2.12 3.00 100.00 
LightBlue 5 34.40 5.27 3.00 2.45 44.80 5.36 17.80 100.00 
Red 3 35.33 37.31 35.00 45.92 15.00 17.32 14.67 100.00 
Yellow 7 29.71 5.25 9.50 10.52 46.71 5.50 14.07 100.00 
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Table 1.26  Summary of Marcellus RockEval Properties 

Rock Class Tmax Calc. Ro 

Dark Blue 475 1.39 

Light Blue 479 1.46 
 

Table 1.27  Summary of Marcellus RockEval Properties 

Rock Class 
No of 

Samples 

BHN 
kgf/mm2 

UCS 
ksi 

Avg STD Avg STD 
Dark Blue 6 21 9.8 10.6 1.8 
Light Blue 7 35 9.4 10.4 1.2 
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Table 1.28  Marcellus Petrologic Summary 

Rock Class 
Brown Dark Blue Green 

Lithology silty argillaceous mudstone calcareous silic/argill mudstone calcareous mudstone 

Detrital Grains feldspar quartz  quartz  

Dominant Matrix 
Composition 

argillaceous silica/argillaceous silica/argillaceous 

Clay Minerals illite, I/S, CHL illite, I/S trace illite 

Biotic Grains silica-replaced microfossils, 
styliolinids, ostracodes 

silica-replaced microfossils; 
conodonts 

echinoderms, bryozoans 

Organic 
Components 

disseminated carbonaceous 
material + streaks, flecks, blebs 

disseminated carbonaceous 
material, oil stain + streaks, 

flecks, blebs 

oil stains 

Accessory Grains abundant micromicas, chlorite few to abundant micromicas none 

Authigenic 
Minerals 

silica, py, trace Fe-dol silica, Fe-dol, pyrite cal, fe-cal, silica, pyrite 

Pore Types matrix intercrystalline, induced matrix intercrystalline visible 
under UV 

matrix intercrystalline 

Petrographic 
Comments 

alternate, fine, muddy & silty 
laminae; truncated laminae, 

slightly bioturbated 

dark matrix, abundant 
micromicas, disseminated 

carbon and particles 

tightly crystalline; argillaceous 
matrix; well-preserved 

ostracodes 
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Marcellus Petrologic Summary (continued …) 

Rock Class 
Light Blue Red Yellow 

Lithology silty/argillaceous mudstone calcareous or glauconitic  
mudstone 

silty/argillaceous mudstone 

Detrital Grains quartz  quartz quartz  

Dominant Matrix 
Composition 

silic/argillaceous argillaceous or Siliceous argillaceous 

Clay Minerals illite, I/S, CHL illite, I/S, minor CHL illite, I/S, CHL 

Biotic Grains silt-replaced microfossils; 
conodonts some with adherent 

micas 

silica-replaced microfossils calcareous hash, styliolinids, 
silica-replaced microfossils,  

Organic 
Components 

carbonaceous flecks, some py-
replaced 

carbonaceous streaks, flecks, 
some py-replaced 

carbonaceous streaks, flecks; 
concentration varies in laminae 

Accessory Grains abundant micromicas, 
siliceous/illitic pods 

abundant glauconite; phosphatic 
pellets; micromicas 

abundant micromicas, illitic 
pods 

Authigenic 
Minerals 

silica, Fe-dol, Fe-cal, py calcite, Fe-cal, minor silica, py cal, Fe-cal, Fe-dol, py, minor 
silica 

Pore Types matrix intercrystalline visible 
under UV; induced 

matrix intercrystalline matrix intercrystalline; induced 

Petrographic 
Comments 

weakly laminated; abundant 
micromicas; mixed 

siliceous/argill matrix 

bioturbated; pervasive 
glauconite pellets; pyrite-

replaced carbonaceous material 

laminated; organic streaks & 
laminae; illite pods, siderite-

replaced microfossils 
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Figure 1.12  Representative thin section (top) and SEM (bottom) of the best reservoir quality 
rock class of the Marcellus shale which includes a clay‐dominated matrix that hosts relatively 

high amounts of diagenetic pyrite in framboidal form and variably degraded kerogen, 
commonly coating clay particles.  SEM reveals that the associated microtextural features 

contributes to enhanced gas‐filled porosity and matrix permeability. 

Table 1.29  Abbreviations for Marcellus Images and Tables 

cal = calcite calc = calcareous carb = carbonaceous 
CHL = chlorite dissem = disseminated dol = dolomite 
F = feldspar Fe-cal = ferroan calcite Fe-dol = ferroan dolomite 
fos = fossils frac = fracture(s) frag or frags = fragment(s) 
IL = illite interg = intergranular intrap = intraparticle 
intxln = intercrystalline I/S = mixed-layer illite-smectite KA = kaolinite 
lam = laminated mpor = microporosity por = porosity 
py = pyrite Q = quartz sph = sphalerite 
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1.5 Creep Behavior  

Creep	is	a	time‐dependent	deformation	in	response	to	a	constant	load.		It	is	also	the	time‐
dependent	 relaxation	 in	 response	 to	 the	 removal	 of	 the	 load.	 	 In	 contrast	 to	 the	 elastic	
response	 that	 is	 instantaneous	 and	 time‐independent,	 creep	 is	 time	 dependent	 and	 it	
reaches	 its	 final	 value	 over	 a	 period	 of	 time,	 often	 a	 considerable	 time.	 	 Because	 of	 an	
analogy	 with	 the	 time‐delayed	 response	 of	 mechanical	 systems	 built	 with	 springs	 and	
dashpots,	creep	is	also	known	as	a	visco‐elastic	behavior.	This	means	that	in	practice,	there	
is	an	instantaneous	and	time‐independent	component	of	deformation	that	is	followed	by	a	
delayed	response	 that	stabilizes	over	 time	(Figure 1.13).	 	Therefore,	 the	total	deformation	
obtained	from	applying	a	constant	stress	to	the	material	is	the	sum	of	its	elastic	response	
and	 its	 creep	 response.	 	 The	 creep	 function	 (Figure 1.14)	 characterizes	 the	 rheological	
(viscous)	properties	of	the	material	and	is	characterized	experimentally	for	a	given	stress	
range,	temperature,	water	content	and	lithology.		
	

	

Figure 1.13 Time‐dependent behavior associated to spring and dashpot mechanical systems. 

	

	

Figure 1.14 Strain‐time creep function: The example shows the strain‐time relationship of a 
typical creep test. 
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In	 this	 program,	we	 conducted	 laboratory	 testing	 to	 evaluate	 the	 creep	properties	 of	 six	
shale	samples	from	the	Barnett,	Marcellus	and	Haynesville	reservoirs.	 	These	were	tested	
under	hydrostatic	and	multistage	triaxial	compression	testing	conditions.		Multistage	creep	
tests	facilitated	the	evaluation	of	creep	parameters	at	different	stress	states,	and	different	
temperatures,	 using	 a	 single	 sample,	 by	 applying	 a	 step‐wise	 loading	 path.	 	 Hydrostatic	
creep	tests	were	conducted,	to	evaluate	volumetric	creep	behavior.		
	
The	 tested	 samples	 varied	 in	 mineralogical	 composition,	 total	 organic	 content,	 organic	
maturity	 and	 degree	 of	 diagenesis.	 	 Results	 show	 that,	 rocks	 with	 more	 biogenic	
cementation,	 less	clay	and	 less	organic	content	have	higher	stiffness	and	higher	strength.		
Creep	 strain,	 at	 a	 given	 time,	 correlates	 strongly	with	Young’s	modulus,	 clay	and	organic	
content.	Higher	confining	pressure	 increased	 the	amount	of	 creep	strain,	 at	a	given	 time,	
under	the	same	deviatoric	stress	conditions.		Under	hydrostatic	loading	creep	behavior	can	
be	 described	 using	 a	 power‐law	 strain‐time	 model.	 	 Under	 deviatoric	 loading,	 creep	
behavior	was	better	described	by	a	Burgers	model	(Figure 1.15)	but	could	also	be	described	
with	 a	 power	 law	 strain‐time	 model.	 At	 higher	 deviatoric	 stresses,	 the	 visco‐elastic	
deformation	deviated	considerably	from	a	linear	behavior	and	the	sample	eventually	fails	
under	tertiary	creep	(Figure 1.14).		
	

	

Figure 1.15  Visco‐elastic creep behavior as defined by the Burgers model.  The strain‐time 
dependence is shown. 
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1.5.1 Sample Description 

Table	1.30	shows	sample	 identification,	depths,	mineral	content	and	elastic	moduli	of	 the	
six	samples	used	in	this	investigation.		Prior	to	testing,	these	were	wrapped	in	Teflon	heat‐
shrink	 tube	 and	 kept	 at	 room	 condition.	 	 Tests	 were	 conducted	 under	 as‐received	
conditions	 of	 saturation	 and	 under	 drained	 conditions.	 	 This	 allowed	 us	 to	 eliminate	
poroelastic	 effects	 and	 characterize	 the	 behavior	 of	 the	 rock	 frame.	 All	 samples	 had	
nominal	 dimensions	 of	 1”	 diameter	 and	 2”	 length,	 cylindrical	 shape,	 and	 axes	 oriented	
perpendicular	to	the	bedding	planes.	
	

  Table 1.30  Mineral contents of four shale samples 

Sample	Name	
(Depth)	

Qtz/Felds
par	
%	

Carbonate
%	

Clay	
%	

Others	
%	

TOC	
%	

Confining	
Pressure	

psi	

Young’s	
modulus	
psi	

Marcellus	09‐30	
(5,899.48	ft)	 28	 9	 40	 24	 	

2755	 2501320	

2320	 2245619
725	 1840964

Barnett	3‐20	
(5,552.35	ft)	 60	 10	 25	 5	 	

2320	 4661077	
0	 4036689

Haynesville	05‐21	
(12,424.75	ft)	

25	 23	 33	 18	 	 0	 2100146	

Haynesville	05‐22	
(12,454.55	ft)	 25	 23	 33	 18	 	 2320	 2554549	

Haynesville	07‐11	
(12,079.14	ft)	 	 	 	 	 	 	 	

Haynesville	07‐12	
(12,080.14	ft)	 	 	 	 	 	 	 	

	
	
Figure	 1.16	 shows	 examples	 of	 four	 shale	 samples	 used	 for	 creep	 testing.	 	 The	 second	
sample	–from	the	left‐	was	photographed	after	testing	and	still	wrapped	on	its	Teflon	heat	
shrink	isolation	sleeve.	 	 	This	sleeve	is	used	to	isolate	the	sample	from	the	hydraulic	fluid	
used	for	applying	confining	pressure	to	the	sample.	
	



Sustaining	Fracture	Area	and	Conductivity	 Page	58	
	

	

Figure 1.16 Examples of four shale samples used for creep testing.  

	

1.5.2 Experimental Procedures  

All	of	the	creep	tests	were	performed	on	GCTS	triaxial	rock	test	system	and	two	additional	
Teledyne	syringe	pumps	were	used	to	provide	constant	confining	pressure	and	axial	load.		
The	 latter	was	 applied	 to	 the	 samples	 via	 a	hydraulic	 jack.	 	Table 1.31	 shows	 the	 loading	
paths	for	each	of	the	six	samples	used.			
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Figure 1.21  Strain rate‐stress relation, confining pressure 2755 psi, Marcellus‐09‐30. 

	
Results	show	a	linear	relationship	with	a	constant	slope	up	to	a	deviatoric	stress	of	11600	
psi.	 	 This	 means	 that	 creep	 for	 this	 sample	 can	 be	 modeled	 using	 a	 linear	 viscoelastic	
Burgers	 model.	 	 Unfortunately,	 the	 confining	 stress	 during	 the	 first	 two	 creep	 stages	
changed	 from	2320	psi	 to	 2755	psi,	 and	we	 are	 consequently	 ignoring	 this	 in	 fitting	 the	
Burger’s	model	to	the	measured	data.		Equation	1	describes	the	model	and	we	used	a	least‐
square	fitting	method	over	the	3rd	to	7th	stage	of	creep,	to	model	the	measured	data.	
	

1 																																	(1)	

																																												(2)	

	
The	two	elastic	and	two	viscous	parameters	(E1,	E2,	1,	2)	were	obtained	using	the	least‐
square	fitting	method.	The	burgers	model	gives	a	relatively	good	fit	to	the	creep	data	with	a	
least‐square	error	of	0.040238.	
	

Table 1.32  Burger creep parameters 

	 E1	,psi		 E2,	psi η ,	psi/s η ,	psi/s
Marcellus	09‐30	
(2755	psi)	

2556144	 32059278	 3364881.6	 128648.71	

Barnett0	3‐20	
(2320	psi)	

4747809	 354417895	 13720594.8	 1414120.5	

Haynesville	
(2320	psi)	

2508572	 46731509	 19725168.0	 465572.0	
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One	advantage	of	the	methodology	is	that	HRA	workflow	allows	identification	of	these	rock	
classes	on	other	wells	in	the	basin,	by	comparison	of	their	log	responses	in	relation	to	log	
responses	 in	 the	 reference	 HRA	 model.	 	 This	 process	 facilitates	 the	 propagation	 of	
laboratory	 data	 via	 logs	 to	 other	 locations	 in	 the	 play	 without	 core	 data.	 	 However,	
propagation	of	 the	knowledge	gained	 in	 this	 study	 to	multiple	wells	was	not	part	of	 this	
study.			
	
The	following	summary	of	reservoir	properties	is	noted	for	the	best	reservoir	quality	facies	
of	the	three	rocks	studied:	
	
Barnett	 shale:	 	 Bulk	 density	 2.45	 ±	 0.03	 g/cc;	 effective	 porosity	 7.88	 ±	 0.5%;	 water	
saturation	6.04	±	2.04%;	gas	saturation	88.48	±	2.80%;	oil	saturation	5.48	±	1.09;	gas	filled	
porosity	6.98	±	0.60%;	clay	bound	water	4.22±	1.00;	and	permeability	400±	74.32	nD;	and	
TOC	3.72	±	0.33%	(BW).			

Haynesville	 shale:	 	 Bulk	 density	 2.469	 ±	 0.039	 g/cc;	 effective	 porosity	 7.820	 ±	 0.880%;	
water	saturation	4.89	±	2.84%;	gas	saturation	86.70	±	7.60%;		oil	saturation	8.380	±	5.38%;	
gas	filled	porosity	6.760	±	0.80%;	clay	bound	water	4.92	±	0.91%;		permeability	509	±	108	
nD;	and	TOC	2.150	±	0.120%	(BW).	

Marcellus	 shale:	 Bulk	 density	 2.43	 ±	 0.06	 g/cc;	 effective	 porosity	 9.56	 ±	 1.45%;	 water	
saturation	13.17	±	2.89%;	gas	saturation	86.07	±	2.79%;	oil	saturation	0.76	±	0.24%;	gas	
filled	 porosity	 8.22	 ±	 1.24%;	 clay	 bound	 water	 5.19	 ±	 0.87%;	 permeability	 424.00	 ±	
61.21nD;	and	TOC	7.342	±	1.734%	(BW).		

	
The	following	summary	of	mechanical	properties	is	also	noted	for	the	same	units:	
	
Barnett	shale	(Measured	at	a	confining	pressure	of	2500	psi):	 	Peak	strength	V=25909	±	
828	psi	and	H	=	30758	±	3624	psi;	Young	modulus	EV	=	3.86	±	0.26x106	psi,	EH	=	5.60	±	
0.36x106	psi;	Poisson’s	ratio	V	=	0.201±	0.017,	H	=	0.256±	0.058.		

Haynesville	 shale	 (Measured	 at	 a	 confining	 pressure	 of	 2370	 psi):	 	 Young	modulus	 EV	 =	
2.57±	 0.612	 x106	 psi,	 EH	 =	 4.27±	 0.911	 x106	 psi;	 Poisson’s	 ratio	V	 =	 0.176±	0.035,	H	 =	
0.217±	0.071.	

Marcellus	shale:	Measured	at	a	confining	pressure	of	2160	psi):		Peak	strength	V=24348±	
10592	psi,	H=11906	±	2482	psi;	Young	modulus	EV	=3.57	±	2.84	x106	psi,	EH	=2.17	±	0.28	
x106	psi;	Poisson’s	ratio	V	=0.237	±	0.059,H	=	0.334	±	0.024.	
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2 LOSS OF SURFACE AREA IN FRACTURE NETWORKS  

2.1 Introduction 

The	 objective	 of	 this	 section	 is	 to	 evaluate	 the	 loss	 of	 connectivity	 between	 fracture	
branches,	 in	 fracture	 networks	 and	 at	 junctions,	 by	 performing	 numerical	 modeling	 of	
fracture	network	geometries,	and	parametric	study	of	the	propensity	for	isolating	branches	
and	developing	local	restrictions.		
	
Key	components	of	this	effort	are	as	follows:	

(i) Generate	 fracture	 networks	 based	 on	 comparisons	 with	 published	micro‐seismic	
measurements	 from	 representative	 reservoirs.	 Supplement	 this	 effort	 with	
structural	geological	considerations,	delineating	stratigraphic	and	structural	fabric,	
as	well	as	tectonic	overprinting.		

(ii) Conduct	a	numerical	evaluation	of	well	production	through	fracture	networks	with	
varying	 distributions	 of	 fracture	 conductivity	 within	 branches,	 using	 discrete	
fracture	models	 (Eclipse	or	 equivalent).	 	The	model	 is	 used	primarily	 to	 estimate	
how	the	geometry	of	fracture	branches	(fracture	tiers)	affects	well	production	and	
propensity	of	losing	connectivity.		

(iii) Evaluate	 well	 production	 through	 fracture	 networks	 numerically,	 as	 described	
above,	 but	 using	 measured	 values	 of	 fracture	 conductivity.	 Results	 help	 defining	
metrics	 to	 evaluate	 the	 potential	 loss	 of	 fracture	 surface	 area,	 for	 characteristic	
reservoir	 mudstone	 types	 (Marcellus,	 Haynesville,	 Barnett),	 and	 for	 different	
fracture	network	and	depletion	scenarios.	

2.2 Background 

Achieving	economic	production	 in	nano‐Darcy	permeability	gas‐shale	 reservoirs	 requires	
creating	 a	 large	 surface	 area	 by	 hydraulic	 fracturing.	 	 In	 general,	 the	more	 complex	 the	
created	 hydraulically	 fractured	 system,	 the	 more	 difficult	 it	 is	 to	 transport	 and	 place	
adequate	 proppant	 volumes;	 the	 un‐propped	 branches	 are	 more	 susceptible	 to	 closing,	
particularly	when	unfavorably	oriented	 in	 relation	 to	 the	 in‐situ	 stresses,	 and	 the	 loss	of	
effective	surface	area	during	production	is	more	severe.		Factors	that	contribute	to	the	loss	
of	productive	fracture	area	are:	complex	rock	fabric,	the	presence	of	fracture	branches	with	
connectors	 aligned	 unfavorably	 to	 the	 intermediate	 and	 maximum	 in‐situ	 stress;	 poor	
proppant	 delivery	 and	 placement,	 low	 fracture	 surface	 hardness,	 and	 degradation	 of	
fracture	 surface	 hardness	 by	 fluid‐rock	 interactions.	 	 In	 addition,	 and	 possibly	 less	
understood,	 is	 the	 loss	of	 fracture	surface	area	(and	 loss	of	 fracture	 face	permeability)	at	
the	proppant‐fracture‐face	interface.		The	implication	of	this	is	that	the	higher	the	proppant	
coverage	along	 the	 created	 fracture	area,	 the	 lower	may	be	 the	effective	 surface	area	 for	
fluid	flow	to	the	fracture.	
	



Sustaining	Fracture	Area	and	Conductivity	 Page	77	
	

Loss	of	 fracture	area	can	take	place	rapidly	(resulting	 in	a	rapid	drop	from	IP),	or	over	a	
longer	 time,	 (leading	 to	 lower	 stabilized	 gas	 flow	 rates	 and	 often	 to	 marginal	 or	
uneconomical	 production).	 	 The	 problem	may	 be	 less	 severe	 in	 reservoirs	 with	 limited	
fabric,	simpler	hydraulic	fractures,	less	fracture	branches,	less	connectors,	better	cemented	
mudstones,	 higher	 surface	 hardness,	 moderate	 in‐situ	 stress	 conditions	 (i.e.,	 moderate	
depths	 and	 relatively	 low	 tectonic	 loading),	 and	moderate	 rock‐fluid	 sensitivity.	 	 Current	
operational	 experience	 in	 tight	 shale	 reservoirs	 indicates	 that	 retention	 of	 productive	
fracture	area	and	fracture	conductivity	are	major	economic	issues	in	these	plays.	
	
The	objective	here	is	to	understand	the	multiple	causes	of	loss	of	fracture	area	and	define	
solutions	 to	mitigate	 the	 resulting	 loss	 of	 production.	 	 To	 accomplish	 this	 goal	 one	must	
understand	 complex	 hydraulic	 fracture	 networks	 and	 determine	 critical	 parameters	 to	
maintain	 productive	 fracture	 area,	 and	 fracture	 conductivity	 on	 these.	 	 One	 must	 also	
understand	the	geologic	conditions	affecting	rock	 fabric,	 fracture	complexity	and	fracture	
surface	 area	 development	 and	 preservation.	 	 The	 desirable	 end	 product	 is	 an	 improved	
methodology	for	production	of	tight	gas	shales.	

2.3 Fracture Characterization 

Natural	 fractures	and	fracture	networks	were	studied	via	core	 fracture	evaluation	on	the	
three	plays	under	study	(Barnett,	Marcellus	and	Haynesville	shales).	 	We	found	that	near‐
vertical,	calcite‐	or	other	mineral‐filled	 fractures	were	common	on	all	cores.	 	 Interactions	
between	 these	 mineralized	 fractures	 and	 the	 rock	 fabric	 and	 mineralized	 fractures	 and	
coring	induced	fractures	were	also	common.		Petal	fractures,	centerline	fractures,	partings,	
interaction	with	the	rock	fabric	were	observed	to	be	recurrent	features.		Examples	of	these	
observations	are	provided	in	Figure	2.1	through	Figure	2.4.		When	available,	core	fracture	
characterization	was	compared	with	borehole	imaging	(e.g.,	FMI)	fracture	characterization.		
It	was	noted	that	some	hair‐line	mineralized	 fractures,	clearly	visible	 in	 the	core,	may	be	
interpreted	as	 conductive	 fractures	 (non‐mineralized)	 in	 the	FMI.	 	Calibration	of	 the	FMI	
fracture	characterization	with	the	core	fracture	characterization	considerably	improves	the	
reliability	of	the	interpretation.	
	 	



Sustainin
	

	

Figu
centerli
fracture

	

Figure 2

ng	Fracture

ure 2.1  Fract
ne and bedd
es and the ro

.2  The cont

e	Area	and	C

ture analysis
ding partings
ock fabric, an

inuous stren
lengt

Conductivity

s on core.  E
s are shown
nd between 

ngth measur
th, on a rock

y

xamples of c
.  Also show
mineralized

rement is us
k class by roc

 

coring‐ and 
wn are intera
d fractures an

ed to quant
ck class basis

 

handling‐ind
ctions betw
nd coring ind

 

ify fracture 
s. 

Pag

duced petal,
een mineral
duced fractu

density, per

ge	78	

, 
lized 
ures. 

 unit 



Sustainin
	

Figure 
length o
conduct
(Yellow

	

Figure 

 
 

ng	Fracture

2.3   Fractur
of the cored 
tive fracture
w), core open

2.4  Stereog
The appro

e	Area	and	C

re density pe
section.  Res
es (Dark Blue
n fractures (

graphic proje
oximate direc

Conductivity

er unit lengt
sults are inte
e), FMI resist
Dark Green)

ection of frac
ction of the 

y

h in the Barn
egrated with
tive fracture
) and core fi

cture poles f
maximum h

nett shale (W
h borehole im
es (Light Blue
lled fracture

for core sect
horizontal str

 

Well‐1), eval
maging obse
e), drilling in
es (Light Gre

 

tions of the 
ress is also s

Pag

luated over t
ervations. FM
duced fractu

een) are show

Barnett Wel
shown. 

ge	79	

the 
MI of 
ures 
wn. 

ll‐1. 



Sustainin
	

Figure 2

 
Figure	 2
evaluatin
centerlin
shown.	 	
fractures
fractures
rock	typ
observed
fractures
density	
Figure	 2
strength
boundar
in	the	fig
Barnett	
integrate
conducti
fractures
Figure	2
The	 app
shows	a	
the	 distr
lithologi
between

ng	Fracture

2.5  Fracture 
We

2.1	 shows	 r
ng	all	fractu
ne	and	bedd
The	 analy
s	 and	 the	
s.		This	allow
pes.	 	In	addi
d	to	be	affec
s	 on	 these	
per	 unit	 co
2.2	 shows	 a
h	 measurem
ries)	betwee
gure.		Figur
shale	 (We
ed	with	 bor
ive	 fracture
s	(Yellow),	c
2.4	shows	th
proximate	 d
graphical	r
ribution	 of	
c	 represent
n	 rock	 type

e	Area	and	C

type and or
ells 1 and 2.  

results	 of	 fr
ures	observ
ding	parting
ysis	 also	 inc
rock	 fabric
wed	us	to	u
ition,	contin
cted	by	the	
measurem

ore	 length.	 	
an	 example
ments	 and	 t
en	rock	faci
re	2.3	shows
ll‐1),	 condu
rehole	 imag
es	 (Dark	 bl
core	open	f
he	stereogra
direction	 of	
rendering	of
HRA	 rock	 c
tation	 in	 th
es	 across	 w

Conductivity

rientation ov
The analysis

racture	 anal
ed	in	the	co
gs)	and	natu
cluded	 the	
c,	 and	 betw
understand	
nuous	meas
presence	o

ments	 allow
Figure	 2.2

e	 of	 the	 par
the	 differen
ies.		These	a
s	an	evalua
ucted	 over	
ging	 results
lue),	 FMI	 r
fractures	(D
aphic	proje
the	maxim
f	the	type	an
classes	 for	
hese	 two	 w
wells	 could	

y

verlaying the
s is extended

lysis	 on	 cor
ore,	includin
ural	fractur
evaluation	
ween	 miner
common	ge
surements	o
of	fractures,	
wed	 us	 to	 h
and	 Figure
rtings	 that	
nce	 in	 spaci
are	represe
tion	of	the	
the	 length
s	 from	 FMI	
resistive	 fra
ark	green)	
ction	of	fra

mum	 horizon
nd	orientat
Barnett	We
wells,	 a	 com
not	 be	 ma

e distributio
d to the logg

re.	 	 Core	 fr
ng	coring‐in
res	(e.g.,	min
of	 interact
ralized	 frac
eometric	pa
of	strength	
	open	or	mi
have	 a	 qua
e	 2.3	 show	
are	 seen	 i
ing	 betwee
ented	with	t
fracture	de
h	 of	 the	 co
logs.	 	 In	 th
actures	 (Lig
and	core	fil
acture	poles
ntal	 stress	
ion	of	the	v
ells	 1	 and	2
mparison	 of
ade.	 	 A	 sig

 

n of rock cla
ged section. 

racture	 ana
nduced	fract
neralized,	s
tions	 betwe
ctures	 and	
atterns	betw
along	the	c
ineralized,	a
ntitative	 m
examples	 o
in	 the	 core
en	 partings	
the	Olive	an
ensity	per	u
ored	 section
his	 example
ght	 blue),	 d
lled	fracture
s	for	the	sam
is	 also	 sho
various	fract
2.	 	 Because	
f	 the	 fractu
nificant	 hig

Pag

asses for Bar

lysis	 consis
tures	(e.g.,	p
slickensides
een	 minera
coring	 ind

ween	the	var
ore	length	
and	the	effe
measure	 of	
of	 these	 res
	 via	 contin
(e.g.,	 weak
nd	Brown	c
nit	length	in
n.	 	 These	 w
e,	we	 show
drilling	 ind
es	(Light	gr
me	core	sec
own.	 	 Figur
tures	overla
of	 the	 diffe

ure	 distribu
gher	 numbe

ge	80	

rnett 

sts	 of	
petal,	
s)	are	
alized	
duced	
rious	
were	
ect	of	
their	
sults.		
nuous	
k	 bed	
olors	
n	the	
were	

w	 FMI	
duced	
reen).		
ction.		
e	 2.5	
aying	
erent	
tions	
er	 of	



Sustaining	Fracture	Area	and	Conductivity	 Page	81	
	

fractures	(open	and	mineralized)	were	observed	in	Well	2	than	in	Well	1.	A	corresponding	
increase	in	the	FMI	detected	fractures	was	also	observed.	
	
For	the	purposes	of	understanding	the	geometry	of	fracture	networks	and	the	relationship	
of	these	geometries	with	the	rock	fabric,	evaluating	fracture	densities	and	fracture	types	is	
important	for	defining	a	criterion	to	select	the	most	common	fractures	types.		This	is	how	
the	 information	was	used.	 	This,	 in	 turn,	gave	us	 information	on	geometrical	 interactions	
with	 the	 rock	 fabric	 and	 helped	 us	 developing	 simplified	 models	 of	 common	 fracture	
networks.	 	 The	 analysis	 was	 also	 considered	 for	 providing	 information	 on	 the	 effect	 of	
tectonic	overprinting.		This	however,	proved	to	be	difficult.	
	
In	relation	to	tectonic	overprinting,	we	analyzed	the	case	of	bending	of	geologic	strata	due	
to	 lateral	 tectonic	 deformation.	 	 Bending	 causes	 redistribution	 of	 strains	 within	 the	
formation	and	an	associated	redistribution	of	 stresses.	 	 In	 locations	where	 the	change	 in	
stress	 (increase	 or	 decrease)	 exceeds	 the	 strength	 of	 the	 formation	 (compression	 or	
tension),	 failure	occurs.	 	Thus,	estimates	of	 local	changes	 in	strains	associated	to	tectonic	
deformation,	 and	 the	 resulting	 changes	 in	 stresses,	 are	 critical	 to	understanding	 fracture	
development.		Geomechanical	analysis	of	folded	structures	typically	assumes	isotropic	and	
homogeneous	 rock	 behavior.	 	 Unfortunately,	 this	 is	 not	 an	 adequate	 representation	 for	
heterogeneous	and	anisotropic	organic‐rich	mudstone	systems	(tight	shales).			
	
In	 tight	 shales,	 vertical	 and	 lateral	 heterogeneity	 develops	 as	 a	 result	 of	 depositional	
complexity	and	post‐depositional	diagenetic	transformations.		The	result	is	the	presence	of	
spatial	variability	in	properties.		This	has	a	strong	influence	on	how	the	rock	mass	deforms,	
and	more	importantly,	where	the	maximum	and	minimum	stresses	develop.			For	example,	
whereas	in	homogeneous	media	the	location	of	high	strains	(extension	and	compression)	is	
the	 same	 as	 the	 location	 of	 the	 maximum	 and	 minimum	 stresses	 (i.e.,	 the	 material	
properties	do	not	change	with	location),	this	is	not	the	case	in	heterogeneous	media.			
	
Studies	of	folded	structures	(Burghardt	et.	al.,	20121)	with	various	conditions	of	anisotropy	
and	heterogeneity,	including	layering,	indicate	that	understanding	the	distribution	of	rock	
properties	within	 the	 structure	 is	 the	most	 important	 condition	 to	 infer	 regions	 of	 high	
stress	 and	 potential	 presence	 of	 fractures.	 	 In	 complex,	 heterogeneous,	 distributions	 of	
properties,	the	distribution	of	fractures	is	difficult	to	predict.		For	example,	zones	with	high	
strains	are	often	located	in	regions	of	low	stiffness	and	develop	lower	stresses	than	other	
regions	 with	 lower	 strains	 but	 higher	 stiffness.	 	 Similarly,	 the	 tectonic	 influence	 on	
fracturing	 is	 strongly	 affected	 by	 the	 distribution	 of	 material	 properties.	 	 Figure	 2.6	
summarizes	these	concepts.	

																																																								
1 Burghardt,  J, Suarez‐Rivera, R., and C. Deenadayalu, Effect of Anisotropy and Heterogeneity on  the Bending of 
Geologic Structures. Presented at  the 46th US Rock Mechanics  / Geomechanics Symposium held  in Chicago,  IL, 
USA, 24‐27 June 2012. 
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understood,	 however,	 that	 during	 the	 fracturing	 process	 microseismic	 monitoring	
measures	 the	 combination	 of	 fracture	 generation	 as	 well	 as	 slippage	 failure	 of	 existing	
weak	 interfaces	 in	 the	neighborhood	of	 the	 fracture.	 	These	events,	however,	 result	 from	
changes	in	stress	and	pore	pressure	during	fracturing,	and	are	currently	perceived	to	occur	
close	to	the	fractured	region.	That	is,	that	the	fracture	geometry	is	not	considerably	altered	
by	 these	 events.	 In	 contrast,	we	 believe	 that	 the	 effective	 surface	 area	 is	 defined	 during	
initial	 depressurization	 and	 early	 production,	 after	 the	 fracture	 connectors	 without	
proppant	 have	 closed,	 and	 after	 the	 fracture	 surface	 regions	 with	 low	 proppant	
concentration	have	also	closed.		As	a	result,	the	effective	surface	area	is	often	considerably	
smaller	than	the	created	surface	area.		Comparison	of	field	production	with	predictions	of	
field	production	suggests	that	this	could	be	decreased	by	as	much	as	90%.		
	
After	 differentiating	 the	 created	 and	 effective	 surface	 areas,	 we	 also	 estimated	 realistic	
fracture	network	 geometries	based	on	 fracture	observations	on	 core,	 outcrops	 and	mine	
back	studies.		The	goal	was	to	obtain	a	reasonable	representation	of	the	fracture	geometry	
and	evaluate	the	effect	of	changes	in	fractured	surface	area	and	geometry	on	production.		In	
addition	 to	 the	 above,	 production	 is	 also	 affected	 by	 matrix	 permeability,	 fracture	
conductivity,	 hydrocarbon	 filled	 porosity,	 pore	 pressure,	 hydrocarbon	 rheology,	 the	
effective	 surface	 for	 flow,	 and	 the	 fracture	 geometry.	 	 However,	 the	 effects	 of	 these	
parameters	on	production	are,	in	general,	better	understood.		In	this	study	we	focus	on	the	
role	of	effective	fracture	surface	area	and	fracture	geometry	on	hydrocarbon	flow	and	stage	
production.	

2.6 Effective Fracture Surface Area  

Numerical	 simulations	of	 reservoir	production	 through	 a	 fracture,	with	 single	phase	 gas,	
were	 conducted	 to	 evaluate	 effective	 surface	 area	 requirements	 for	 attaining	 a	 desired	
production	 rate.	 	 Sensitivity	 analysis	 of	 input	 variables	 indicates	 that	 the	 reservoir	
pressure,	reservoir	permeability,	and	effective	fracture	surface	area	are	the	dominant	input	
properties.	 	By	fixing	reservoir	pressure,	to	the	normal	pressure	gradient	of	0.45	psi/ft,	 it	
was	 possible	 to	 analyze	 effective	 surface	 area	 requirements,	 to	 attain	 a	 desired	 gas	
production	rate,	as	a	function	of	reservoir	permeability	alone.		Results	indicate	a	nonlinear	
increase	in	effective	surface	area	with	decreasing	permeability.			
	
Numerical	 modeling	 was	 conducted	 with	 production	 rate	 targets	 of	 1	 MMscf/D	 to	 5	
MMscf/D,	 and	 permeability	 ranges	 from	 0.1	 nD	 to	 500	 nD.	 	 Figure	 2.9	 summarizes	 the	
results	 from	the	modeling.	 	For	a	given	reservoir	matrix	permeability	of	400	nano‐Darcy,	
the	figure	indicates	an	effective	surface	area	requirement	of	5.8x106	ft2	per	well	to	achieve	
a	5MMscf/D	production,	and	1.0x106	ft2	per	well,	to	achieve	a	1MMscf/D	production.		For	
wellbores	with	eighteen	producing	stages,	and	only	six	of	these	contributing	to	production,	
the	required	effective	surface	area	and	production	rate	per	effective	stage	 is	0.96x106	 ft2	
and	 0.83MMscf/D,	 for	 a	 well	 production	 of	 5MMscf/D.	 	 Similarly,	 this	 requirement	 is	
0.16x106	 ft2,	 and	 0.16MMscf/D	 per	 stage,	 for	 a	 well	 production	 of	 1MMscf/D.	 	 As	 a	
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reference,	 the	effective	surface	area	per	stage	corresponds	to	an	equivalent	 fracture	half‐
length	of	1208.3	ft,	and	200	ft	respectively,	on	a	200	ft	thick	reservoir2.		
		
In	comparison	to	these	predictions,	we	considered	typical	volumes	of	slick	water	and	sand	
per	stage	(e.g.,	483,000	gal	of	slick	water	and	390,000	pounds	of	sand),	and	by	assuming	an	
average	fracture	width	(0.15	in),	we	calculated	a	created	fracture	surface	area	of	10.7x106	
ft2,	per	stage,	and	64.3x106	ft2	 for	6	stages.	 	 In	relation	to	results	presented	in	Figure	2.9,	
the	 above	 values	 indicate	 that	 significantly	 more	 fracture	 surface	 area	 is	 created	 than	
required	for	economic	production,	and	the	ratio	of	these	two	varies	from	11:1	to	64:1.		It	is	
reasonable	to	assume	that	because	of	lack	of	containment	and	heterogeneous	distribution	
of	 reservoir	 quality,	 a	 significant	portion	of	 the	 created	 surface	 area	 extends	outside	 the	
reservoir.		In	addition,	if	the	fracture	geometry	is	complex,	fracture	branches	have	smaller	
fracture	 widths,	 and	 some	 of	 these	 are	 inaccessible	 by	 the	 proppant	 and	 become	
disconnected	 from	the	 fractured	system.	 	 It	 is	also	possible	 that	 some	 level	of	 imbibition	
may	take	place,	thus	reducing	the	liquid	volume	available	for	creating	surface	area.		Recent	
laboratory	 testing	 of	 water	 imbibition	 to	 various	 organic	 rich	 mudstones	 (Pagels	 et.	 al.,	
20113)	indicates	an	imbibition	rate	of	approximately	650	x10‐6	gal/ft2/hr.	This	corresponds	
to	 approximately	 14,000	 gal	 over	 2	 hours	 of	 pumping	 over	 an	 exposed	 surface	 area	 of	
10.7x106	ft2	and	represents	2.9%	of	the	total	volume	pumped.	
	
The	 above	 calculations	 indicate	 that	 the	 bulk	 of	 the	 volume	 pumped	 contributes	 to	 the	
creation	of	 surface	area	and	 that	only	a	 small	 fraction	of	 this	 surface	area	 contributes	 to	
production.		It	also	suggests	that	while	microseismic	monitoring	provides	an	indication	of	
the	 total	 created	 surface	 area	 during	 pumping,	 it	 does	 not	 provide	 a	 measure	 of	 the	
effective	 surface	 area,	 in	 contact	with	good	quality	 reservoir,	 and	 that	 remains	open	and	
conductive	during	production.	 	The	 above	 calculations	 also	 indicate	 that	 the	opportunity	
for	improving	the	efficiency	of	the	hydraulic	fracturing	process	is	high.	
  

																																																								
2 In  reality,  the  number  of  stages may  be  10,  12,  18  or  higher.   However,  the  number  of  producing  stages  is 
approximately one third of this number.  Thus, the above estimate with 6 effective stages is reasonable. 
3 Pagels, M, Willberg, D. M., Edelman, E., (2011) Chemo‐mechanical Effects of Induced Fluid Invasion Into Ultralow 
Permeability Rocks, Abstract H21B 1091 presented at 2011 Fall Meeting, AGU, San Francisco, CA, USA, 5‐9 Dec. 
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Figure 2.9  Required surface area, in million square feet, for production rates of 1 MMscf/D 
(red) and 5 MMscf/D (blue) for reservoir permeability in the range of 0.1 to 100 nano‐Darcy 

(left) and 100 to 500 nano‐Darcy (right).  For example, production at 5 MMscf/D by a 400 nano‐
Darcy reservoir requires a surface area of 5.8x106 ft2. 

2.7 Numerical Simulations of Production through Complex Fractures  

Numerical	 simulations	 of	 single‐stage	 production	 with	 ideal	 gas,	 and	 single‐phase	 flow	
were	 conducted	 in	 this	 study.	 	 Following	 the	 conceptual	 type	 geometries	 defined	 in	 the	
previous	section,	the	reservoir	height	is	200	ft.		The	primary	near‐wellbore	fracture	is	200	
ft	 high,	 600	 ft	 long	 (300	 ft	 half	 length),	 has	 a	 surface	 area	 of	 0.24x106	 ft2	 and	 a	 fracture	
conductivity	of	500	md‐ft.	 	This	near‐wellbore	fracture	is	connected	to	a	secondary	set	of	
fractures	with	a	total	surface	area	of	approximately	12x106	ft2.		These	secondary	fractures	
are	200	ft	high,	800	ft	long	(400	ft	half	length),	and	have	a	lower	fracture	conductivity	of	0.2	
md‐ft.	 	 Tertiary	 and	 fourth	 tier	 fracture	 systems	 exist,	 however,	 have	 negligible	 fracture	
conductivity,	 and	 are	 ignored	 in	 these	 simulations.	 The	 reservoir	matrix	 permeability	 is	
400	nano	Darcy,	and	 the	 initial	 reservoir	pressure	 is	5000	psi.	 	These	values	correspond	
directly	to	measurements	and	field	data	from	the	Haynesville	shale	play.	
	
The	fracture	surface	area	was	calculated	based	on	typical	field	pumping	volumes	of	11,500	
Bbs	slick	water	and	390,000	lbs	of	proppant.	 	Table	2.1	shows	the	details	of	the	proppant	
schedule,	density	and	volume.		The	sand	volume	balance	per	stage	is	shown	to	be	2,375	ft3.		
Given	a	total	water	volume	of	11,500	bbl,	the	total	volume	of	incompressible	slurry	in	the	
fracture	is	66,947	ft3.		The	geometry	represents	a	realistic	field	case	where	approximately	
23%	of	the	created	surface	area	is	effective	surface	area,	1%	of	the	fracturing	fluid	volume	
is	 lost	 to	 imbibition	 and	does	 not	 contribute	 to	 surface	 area	 generation,	 and	76%	of	 the	
created	 surface	 area	 is	 disconnected	 or	 contacts	 rock	 units	 with	 poor	 reservoir	 quality	
rock.			

Table 2.1  Sand volume balance per stage for numerical simulations 

 Weight (1000 lb) Density (gr/cc) Volume (ft3) 
100 mesh sand 90 2.63 548 

30/70 mesh sand 250 2.63 1522 
30/50 mesh sand 50 2.63 304 
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geometrical	configuration	of	the	effective	surface	area)	makes	a	considerable	difference	to	
production.	 	 This	 is	 contrary	 to	 anticipated	 concepts,	 based	 on	 analytical	 models,	
indicating	that	production	is	primarily	proportional	to	the	square	root	of	permeability	and	
the	surface	area,	and	independent	of	fracture	geometry.	
	
Numerical	 modeling	 results	 provided	 input	 to	 evaluate	 the	 effect	 of	 surface	 area	 and	
fracture	geometry	on	production	characteristic	of	tight	shale	reservoir	systems	(Marcellus,	
Haynesville,	 Barnett).	 	 For	 example,	 results	 show	 that	 reservoirs	 that	 promote	 the	
preferential	generation	of	“fish	bone”	fracture	networks	provide	higher	initial	production	
but	 lower	 long‐term	 production	 and	 lower	 total	 recovery.	 	 Conversely,	 reservoirs	 that	
promote	 the	 preferential	 generation	 of	 “fork”	 fracture	 networks	 with	 long	 secondary	
fractures	 and	 wide	 spacing,	 provide	 lower	 initial	 production	 and	 higher	 long‐term	
production	and	higher	total	recovery.	
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3 FRACTURE CONDUCTIVITY OF UN‐PROPPED FRATURES ON CORE  

3.1 Introduction 

The	objective	of	this	section	is	to	evaluate theoretically and experimentally the conductivity of 
un‐propped fractures of the representative shale lithotypes.			
	
Components	of	this	effort	are	as	follows:	

(i) Measure	 the	 fracture	 surface	 area,	 Brinell	 hardness,	 continuous	 scratch	 test,	 and	
fracture	conductivity	to	water	and	gas,	on	fractured	core	samples	without	proppant,	
under	reasonable	conditions	of	shear	displacement,	and	as	a	function	of	stress.	

(ii) Measure	 the	 fracture	 surface	 area,	 Brinell	 hardness,	 continuous	 scratch	 test,	 and	
fracture	conductivity	to	water	and	gas,	on	fractured	core	samples	without	proppant,	
under	a	given	condition	of	shear	displacement	(obtained	from	the	previous	section	‐
i),	at	in‐situ	stress	and	elevated	temperature,	and	with	prolonged	loading	and	fluid	
exposure.	

3.2 Testing Matrix 

The	matrix	of	testing	carried	out	is	shown	in	Table	3.1.	The	basic	variables	were:	
	

 Shale	Play:	Barnett,	Haynesville	and	Marcellus.	
 Reservoir	Quality:	Samples	were	described	as	“best,	good,	fair,	and	poor,”	reservoir	

quality	based	on	criteria	defined	in	Section	1.	
 Surface	Roughness:	Three	qualitatively	comparable	surfaces	were	prepared.	These	

included	saw‐cut,	samples	split	by	Brazilian	loading	(core	loaded	across	its	axis)	and	
samples	mechanically	split	by	wedge	loading.	

 Temperature:	 Barnett	 samples	 were	 run	 at	 temperatures	 of	 70°F.	 One	 Barnett	
sample	with	best	reservoir	quality	was	run	at	120°F.	All	other	samples	from	other	
formations	were	tested	at	nominally	ambient	temperature	(~70°F).		Also,	additional	
three	tests,	one	per	formation,	were	performed	at	240oF 

 Flowing	 Fluid:	 Some	 samples	 were	 tested	 using	 nitrogen	 as	 the	 flowing	 fluid.	
Synthetic	formation	water	was	also	used.	The	composition	of	this	is	shown	in	Table	
3.2.	

 Fluid	Exposure:	A	restricted	number	of	sample	surfaces	were	exposed	to	water	and	
conductivity	testing	was	subsequently	undertaken.	

 Long‐Term	Measurements:	One	sample	was	allowed	to	creep	at	a	closure	stress	of	
5,000	psi.	This	implies	that	the	closure	stress	was	applied	and	held	constant	for	an	
extended	time	with	periodic	flow	measurements.	
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 Shear	Displacement:	A	 one‐mm	 lateral	 displacement	was	made	perpendicular	 to	
bedding	planes	and	conductivity	measurements	were	repeated.	The	motivation	was	
to	 determine	 if	 asperity	 override	 had	 a	 substantial	 impact	 and	 ‐	 even	 more	
important	 ‐	 if	 the	 asperities	 hold	 up	 with	 increasing	 effective	 normal	 stress	
consistent	 with	 drawdown	 or	 depletion.	 In	 other	 words,	 can	 substantial	 and	
permanent	conductivity	result	from	self‐propping?	

	

Table 3.1  Testing Matrix for Un‐propped Samples 

Formation  Sample 
Identifier 

Reservoir 
Quality 

Surface 4

 
Temperature

(°) 
Flowing 
Fluid 

Exposure
(No Data) 

Creep

Barnett  01  Best  SC, NA 120 Water,N2    5000 
psi 

  02  Good  SC,NA,BR 70 Water, N2    ‐

  03  Fair  SC,NA 70 Water, N2    ‐

  04  Poor  SC,NA 70,240 Water, N2    ‐

Haynesville  05  Good  SC,NA 70 Water, N2    ‐

  06  Fair  SC,NA 70,240 Water, N2    ‐

  07  Poor  SC,NA 70 Water, N2    ‐

Marcellus  09  Best  SC,NA 70,240 Water, N2    ‐

  10  Good  SC,NA 70 Water, N2    ‐

	

Table 3.2  Properties of Synthetic Water 

Component Concentration
(mg/l) 

Calcium Chloride Dihydrate 451.17

Magnesium Chloride Hexahydrate 175.63

Potassium Chloride 17.16

Sodium Sulphate 337.1

Sodium Bicarbonate 239.64

	
	
The	data	for	the	un‐propped	measurements	are	included	in	Appendix	2.	

3.3 Observations on Experimental Protocol 

 Flow	 Direction:	 The	 flow	 in	 the	 experiments	 is	 vertical.	 	 Thus,	 for	 the	 small	
pressure	drops	encountered,	 at	 least	when	water	or	oil	 is	 flowed,	 the	 transducers	
are	tared.		However,	in	the	cases	where	reverse	flow	was	carried	out,	the	calibration	
to	accommodate	for	the	gravity	effects	is	no	longer	needed.	

																																																								
4 SC is saw cut, NA is natural asperity, BR is Brazilian 
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 Calibration:	 Calibration	 of	 the	 differential	 pressure	 transducers	 was	 carried	 out	
using	 pressure	 standards	 specific	 to	 the	 pressure	 range	 of	 the	 transducer	 being	
calibrated.		Three	separate	differential	pressure	transducers	with	the	following	full	
scale	 pressure	 ranges,	 0‐3	 psi,	 0‐20	 psi	 and	 0‐200	 psi,	 were	 used	 during	 the	
experiments.	 	An	inclined	oil	manometer	standard	(using	Meriam	oil),	was	used	to	
calibrate	the	0‐3	psi	transducer.		An	upright	mercury	manometer	standard	was	used	
to	 calibrate	 the	 0‐20	 psi	 transducer.	 	 And,	 a	 rotating	 hydraulic	 ‘dead	 weight’	
standard	 was	 used	 to	 calibrate	 the	 0‐200	 psi	 transducer.	 	 An	 example	 of	 typical	
calibration	data	are	shown	in	Appendix	3.		As	a	result	the	very	small	pressure	drops,	
accurate	calibration	is	essential	for	successful	experimentation.		

 Resolution	and	Accuracy	of	Transducers:	Some	measurements	were	found	to	be	
less	than	0.5	percent	of	full	scale	of	the	differential	pressure	transducer	used.		Those	
data	should	be	considered	with	caution.	

 Viscosity:	1	cP	was	used	for	all	water	measurements.	This	was	changed	to	0.56	cP	
for	measurements	at	120°F.		

 Flow	Length:	 The	 sample	 flow	 length	was	usually	 less	 than	 the	 sample	diameter.	
Entrance	effects	might	be	an	issue.	However,	the	particle	Reynolds’	numbers	for	the	
flow	were	verified	to	be	small	such	that	the	end	effects	are	also	small.	

 Flow	Rate	 and	 Flow	Volume:	 The	 flow	 rate	 for	 liquid	 was	 on	 the	 order	 of	 0.1	
ml/minute.	The	 flow	rate	 for	gas	measured	was	of	 the	order	of	27	cm3/min	 to	15	
cm3/min.	 This	was	 observed	while	 testing	 Barnett	 good	 reservoir	 quality	 sample.	
Typical	flow	times	at	individual	closure	stresses	were	on	the	order	of	5	minutes.	For	
a	liquid,	this	suggests	0.5	ml	of	flow	at	each	stage.		

 Baseline	Testing:	 Flow	 through	steel	blanks	was	undertaken.	The	results	 for	 two	
smooth	 steel	 halves	 in	 contact	 (mimicking	 the	 saw	 cut	 situation)	 are	 shown	 in	
Figure	3.1.	Figure	3.2	 shows	 flow	 for	 a	 sample	with	 shims	 to	 create	 a	 finite,	 open	
aperture.		An	analytical	reality	check	on	the	calculated	conductivity	between	the	two	
steel	 billets	 was	 conducted.	 	 Appendix	 4	 shows	 the	 derivation	 for	 a	 lubrication	
theory	 relationship	 that	gives	 the	 conductivity	of	 two	smooth,	parallel	plates	with	
no	 flow	 alterations	 due	 to	 boundary	 conditions,	 for	 laminar	 flow	 of	 a	 Newtonian	
fluid	like	water.	Figure	3.1	shows	conductivity	measured	in	the	steel	billets	versus	
hydraulic	 aperture	 in	 mm,	 as	 well	 as	 predictions	 from	 lubrication	 theory.	 	 Any	
deviations	 suggest	 unaccounted	 friction	 or	 deviations	 from	 the	 simple	 calibration	
experiment.	
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3.4 Comparisons 

The	mechanically	split	and	Brazilian	data	are	not	sufficiently	reliable	to	draw	conclusions.		
There	 is	 substantial	 fluctuation	 at	 low	 confining	pressure	 that	 can	be	directly	 correlated	
with	 sample	 quality.	 	 Figure	 3.3	 is	 a	 photograph	 of	 a	 typical	 split	 sample.	 	 Brazil	 tensile	
failure,	and	the	 fragile	nature	of	 the	planes	of	weakness	during	handing	and	preparation,	
led	 to	bedding	plane	parting	 (or	other	 fracturing)	 that	affected	 the	measurements	at	 low	
confining	pressure.	 	Sometimes	even	at	high	confining	stress	alternative	 flow	paths	were	
open.	 	 This	 problem	 was	 exacerbated	 by	 the	 small	 flow	 rates,	 which	 sought	 out	 these	
preferential,	 alternative	 flow	paths.	Figure	3.4	 is	 a	 schematic	 illustrating	how	substantial	
conductivity	 correlates	 with	 bedding	 plane	 parting.	 Figure	 3.5	 through	 Figure	 3.7	 show	
annotated	data	for	liquid	as	the	flowing	fluid.	Figure	3.8	through	Figure	3.10	are	for	gas.	
	
 

 

Figure 3.3  Photograph of a mechanically split sample showing bedding plane fractures that 
accepted the very small amounts of fluid injected at low rate and without backpressure. These 
fractures are usually a consequence of unloading during sample recovery and desiccation. 
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 Fluid	 Exposure:	 A	 number	 of	 sample	 surfaces	 were	 exposed	 to	 water	 prior	 to	

fracture	 conductivity	 measurements.	 Comparative	 data	 for	 propped	 fractures	 are	
provided	 in	 the	 next	 section.	 	 Further,	 the	 general	 observations	 from	 all	 saw	 cut	
samples,	 even	 without	 pre‐treatment	 with	 a	 weakening	 fluid,	 is	 that	 un‐propped	
conductivity	will	contribute	little,	particularly	in	distal	parts	of	the	reservoir	where	
drawdown	will	be	restricted.	

 Long‐Term	Creep	Measurements:	One	Barnett	sample	was	allowed	to	creep	at	a	
closure	stress	of	5000	psi	and	a	temperature	of	120oF.	This	implies	that	the	closure	
stress	 was	 applied	 and	 held	 constant	 at	 an	 effective	 stress	 of	 5000	 psi	 for	 an	
extended	 time,	with	 periodic	 flow	measurements.	 The	 results	 are	 quite	 definitive.	
Figure	3.177	shows	the	creep	data	on	the	one	sample.		
	

 

Figure 3.17  Creep data from one Barnett shale sample. All measurements were carried out at 
an effective closure stress of 5,000 psi. The reservoir quality was “best,” and the flowing fluid 

was the synthetic water. 

 Shear	Displacement:	 In	 these	 experiments,	 a	 one‐mm	 lateral	 displacement	 was	
imposed,	perpendicular	 to	bedding,	and	 fracture	conductivity	measurements	were	
repeated.	 The	motivation	was	 to	 determine	 if	 asperity	 override	 had	 a	 substantial	
impact	on	 fracture	 conductivity,	 and	even	more	 important,	 if	 the	asperities	would	
hold	up	with	increasing	effective	normal	stress	that	is	consistent	with	drawdown	or	
depletion.	 	 These	 measurements	 were	 carried	 out	 on	 mechanically	 split	 samples	
without	creep	periods.		Data	from	these	tests	are	shown	with	commentary	in	Figure	
3.18	through	Figure	3.20.			
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3.5 Summary 

The	 conductivity	 of	 un‐propped	 fractures	 of	 Barnett,	Marcellus	 and	Haynesville	 samples	
were	 measured.	 	 Three	 types	 of	 surface	 conditions	 were	 considered:	 Saw	 cut	 surfaces,	
representing	 smooth	 surfaces.	 	 Brazil	 loading	 tensile	 fractures,	 representative	 of	
intermediate	roughness,	and	fractures	with	natural	asperities,	created	by	wedge	loading	on	
a	notched	sample	were	tested.		In	addition,	similar	measurements	were	conducted	flowing	
nitrogen	gas	and	flowing	water.	 	 	Few	measurements	were	also	conducted	to	understand	
the	 effect	 of	 temperature	 and	 time	 dependent	 creep.	 	 In	 addition,	 measurements	 were	
repeated	with	 a	 shear	 displacement	 added,	 perpendicular	 to	 bedding,	 to	 investigate	 the	
effect	 of	 shear	 and	 overriding	 asperities	 on	 fracture	 conductivity.	 General	 results	 are	 as	
follows:	

	
(i) Fracture	 conductivities	 of	 0.01	 mD‐ft	 or	 lower	 were	 assumed	 to	 be	 too	 low	 for	

production.	 	Thus	fractures	with	conductivities	below	this	 level	should	be	ignored	
for	production	assessment.	

(ii) Smooth	 fractures	without	 proppant	 do	 not	 retain	 sufficient	 conductivity	 to	 be	 of	
relevance	 to	 production.	 	 In	 practice,	 these	 are	 far‐field	 second	 and	 third	 tier	
network	fractures	that	are	predominantly	filled	with	water.	

(iii) Fractures	with	natural	asperities	are	 important	 to	production,	 and	particularly	 so	
when	the	closure	stress	 is	below	6000	to	4000	psi.	The	sensitivity	with	stress	 for	
these	is	approximately	2	decades	per	10,000	psi.	

(iv) There	is	a	great	deal	of	consistency	on	the	measured	data	between	samples,	and	at	
high	 closure	 stress,	 there	 is	 no	 rock	 type	 differentiation.	 	 However,	 a	 strong	
differentiation	 by	 rock	 type	 occurs	 at	 low	 closure	 stress.	 Here,	 the	 Haynesville	
samples	 are	 the	 most	 sensitive	 to	 stress.	 	 The	 Barnett	 samples	 are	 the	 most	
resilient.	

(v) The	sensitivity	to	temperature	and	time	dependence,	creep,	was	also	investigated.		
Temperature	appears	to	 introduce	a	dramatic	decrease	 in	 fracture	conductivity	at	
some	critical	 stress.	 	This	effect	 should	be	 investigated	 further.	 	Creep	 introduces	
high	initial	stress	dependence	(at	low	confining	stress).		Thus,	laboratory	conditions	
for	 fracture	 conductivity	may	 need	 to	 include	 temperature	 and	 creep	 to	 be	more	
representative	of	field	conditions.	

(vi) Comparisons	between	samples	with	and	without	shearing	show	that	for	the	Barnett	
and	the	Marcellus	shales,	 the	effect	of	shearing	 is	substantial	and	results	 in	stress	
dependence	that	is	approximately	half	of	the	rate	of	the	unsheared	sample.		Because	
of	the	low	surface	hardness	of	the	Haynesville	shale,	shearing	these	samples	do	not	
result	in	any	improvement	in	fracture	conductivity.		Values	of	unconfined	strength	
and	Brinell	hardness	for	these	samples	are	reported	in	Section	1.			
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4 FRACTURE CONDUCTIVITY OF PROPPED FRACTURES ON CORE  

4.1 Introduction 

The	 objective	 of	 this	 section	 is	 to	 conduct	 a	 theoretical	 and	 laboratory	 evaluation	 of	 the	
fracture	 conductivity	 to	 gas	 and	water,	 using	 the	 same	 representative	material	 that	was	
used	 in	 the	previous	 section,	under	various	 conditions	of	proppant	 size,	distribution	and	
concentration.		
	
Key	components	of	this	effort	are	as	follows:	

(i) Measure	 the	 fracture	 surface	 area,	 Brinell	 hardness,	 continuous	 scratch	 test,	 and	
fracture	conductivity	to	water	and	gas,	on	saw‐cut	samples	with	different	proppant	
sizes	and	concentration,	as	 function	of	effective	stress	(proxy	 for	depletion).	 	This	
will	lead	us	to	investigate	the	fracture	conductivity	for	flow	of	gas	and	water.	

(ii) Measure	 the	 fracture	 surface	 area,	 Brinell	 hardness,	 continuous	 scratch	 test,	 and	
fracture	 conductivity	 on	 core	 samples	 exposed	 to	 water	 and	 oil	 under	 given	
conditions	 stress,	 and	 temperature.	 	 Basic	 evaluation	 to	 investigate	 the	 effect	 of	
sensitivity	to	fluids.	

(iii) Measure	the	fluid	production	from	water‐exposed	fractures,	during	gas	flow	and	at	
in‐situ	 stress	 conditions.	 	 This	 will	 lead	 us	 to	 investigate	 the	 water	 mobility	 (or	
retention)	due	to	capillary	forces	induced	by	rock‐water	and	rock‐fluid	interactions.	

4.2 Testing Matrix 

The	matrix	of	testing	carried	out	is	shown	in	Table	4.1.	The	basic	variables	were:	
 

 Shale	Play:	Barnett,	Haynesville	and	Marcellus	
 Reservoir	Quality:	Samples	were	described	as	“best,	good,	fair,	and	poor”	reservoir	

quality,	based	on	a	criterion	presented	in	Section	1.		
 Surface	 Roughness:	 All	 samples	 were	 saw	 cut	 (i.e.,	 representative	 of	 smooth	

surfaces).	
 Temperature:	 Barnett	 samples	 were	 run	 at	 temperatures	 of	 70°F.	 One	 Barnett	

sample	with	best	reservoir	quality	was	run	at	120°F.	All	other	samples	from	other	
formations	were	tested	at	nominally	ambient	temperature	(~70°F).		

 Flowing	Fluid:	 Some	samples	were	 tested	using	nitrogen	gas	as	 the	 flowing	 fluid.	
Synthetic	formation	water	was	also	used.	The	composition	of	that	fluid	is	shown	in	
Table	4.2.	

 Fluid	Exposure:	A	restricted	number	of	sample	surfaces	were	exposed	to	water	for	
18	hours	prior	to	conducting	fracture	conductivity	measurements.	
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 Long‐Term	Measurements:	 Four	 samples	 from	 each	 reservoir	 quality	 and	 two	
samples	 from	 Barnett	 best	 reservoir	 quality	 were	 allowed	 to	 creep	 at	 a	 closure	
stress	 of	 5000	 psi.	 	 This	 implies	 that	 the	 closure	 stress	 was	 applied	 and	 held	
constant	for	an	extended	time	with	periodic	flow	measurements.	

 Proppant	 Concentration	 and	 Size:	 Experiments	 for	 all	 reservoir	 quality	 shales	
were	performed	using	different	sizes	of	proppants	namely	40/70	sand,	80/100	sand	
and	 a	 mixture	 containing	 equal	 volumes	 of	 40/70	 sand	 and	 80/100	 sand.	 A	
restricted	 number	 of	 experiments	were	 performed	 for	 different	 concentrations	 of	
proppant.	The	concentrations	used	were	monolayer	(1x)	and	three	monolayers	(3x)	
as	shown	in	Table	7.1.		

Table 4.1. Testing Matrix for Propped Samples 

Formation Sample 
Identifier 

Reservoir 
Quality 

Proppant 
Size 

 

Proppant 
Concentration

Proppant 
Distribution 

Exposure
 

Creep

Barnett 01 Best 40/70, 
80/100 & 

mix 

1x, 3x - Water, oil @5000 
psi 

 02 Good 40/70, 
80/100 & 

mix 

1x 40/70, 
channel 

Water, oil @5000 
psi 

 03 Fair 40/70, 
80/100 & 

mix 

1x, 3x - Water, oil @5000 
psi 

 04 Poor 40/70, 
80/100 & 

mix 

1x - Water, oil @5000 
psi 

Haynesville 05 Good 40/70, 
80/100 & 

mix 

1x, 3x 40/70, 
channel 

Water, oil @5000 
psi 

 06 Fair 40/70, 
80/100 & 

mix 

1x - Water, oil @5000 
psi 

 07 Poor 40/70, 
80/100 & 

mix 

1x - Water, oil @5000 
psi 

Marcellus 09 Best 40/70, 
80/100 & 

mix 

1x, 3x - Water, oil @5000 
psi 

 10 Good 40/70, 
80/100 & 

mix 

1x 40/70, 
channel 

Water, oil @5000 
psi 
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Table 4.2. Properties of Synthetic Water 

Component Concentration
(mg/l) 

Calcium Chloride Dihydrate 451.17 
Magnesium Chloride Hexahydrate 175.63 
Potassium Chloride 17.16 
Sodium Sulphate 337.1 
Sodium Bicarbonate 239.64 

 
	
The	data	for	the	propped	measurements	are	included	in	Appendix	6.	
 

4.3 Comparisons 

4.3.1 Proppant Size and Distribution   
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4.4 Summary 

The	conductivity	of	propped	fractures	of	Barnett,	Marcellus	and	Haynesville	samples	were	
measured.		Three	types	of	proppant	distributions	were	considered:	uniform	monolayer	of	
40/70	sand,	uniform	monolayer	of	80/100	sand,	uniform	monolayer	of	a	50%	mixture	of	
80/100	and	40/70	proppant,	and	a	discontinuous,	patchy,	configuration	of	40/70	proppant	
(Channel).	 	 These	 results	 were	 compared	 to	 a	 number	 of	 measurements	 using	 three	
monolayers	 of	 proppant,	 and	 also	 to	 tests	 where	 the	 samples	 were	 preconditioned	 by	
immersion	in	water	for	18	hours	prior	to	testing.		This	condition	is	intended	to	simulate	the	
period	of	time	that	the	fracture	is	in	contact	with	the	fracturing	fluid	prior	to	experiencing	
an	increase	in	closure	stress.		Values	of	unconfined	strength	and	Brinell	hardness	for	these	
samples	are	reported	 in	Section	1.	 	These	results	show	that	 the	surface	hardness	 for	 this	
samples	increases	in	the	following	order:	Haynesville,	Marcellus	and	Barnett.	

	
(i) Fracture	 conductivities	 of	 0.01	 mD‐ft	 or	 lower	 are	 assumed	 to	 be	 too	 low	 for	

production.		Thus,	fractures	with	conductivities	below	this	level	should	be	ignored	
for	production	assessment.	

(ii) All	 surfaces	 used	 in	 this	 comparative	 study	 are	 smooth	 (saw	 cut)	 and	 thus	
represent	 ideal	 and	 pessimistic	 conditions	 for	 fracture	 conductivity.	 	 In	 reality,	
fracture	surfaces	will	have	some	asperities	and	these	may	help	retaining	additional	
conductivity.	

(iii) In	 all	 cases,	 adding	 proppant	 to	 the	 fractures	 results	 in	 considerable	 increase	 in	
fracture	conductivity,	by	several	orders	of	magnitude,	and	a	considerable	reduction	
of	the	stress	sensitivity.	Typical	reductions	of	 fracture	conductivity	with	stress	for	
un‐propped	and	propped	fractures	are	3	to	2	decades	per	10,000	psi.	

(iv) There	is	a	great	deal	of	consistency	on	the	measured	data	between	samples,	and	in	
general,	there	is	no	rock	type	differentiation.		However,	the	rock	type	differentiation	
is	 present,	 and	 often	 is	 more	 apparent	 at	 low	 closure	 stress.	 The	 Haynesville	
samples	 are	 the	 most	 sensitive	 to	 stress.	 	 The	 Barnett	 samples	 are	 the	 most	
resilient.	

(v) Mixed	proppant	and	discontinuous	proppant	placement	were	tested	for	comparison	
with	the	standard	uniform	proppant	experiments.	 	Results	indicate	that	the	mixed	
proppant	 helps	 retaining	 fracture	 conductivity.	 	 However,	 it	 may	 also	 result	 in	
lower	proppant	pack	permeability	and	thus	increasing	the	plugging	effect	by	debris,	
as	a	function	of	time.		The	effect	of	long	term	plugging	by	fines,	produced	solids,	salt	
precipitation	and	others	was	not	tested	in	this	study	and	should	be	 included	for	a	
proper	 appreciation	 of	 the	 various	 conditions	 of	 loss	 in	 fracture	 conductivity.		
Results	 also	 indicate	 that	 discontinuous	 proppant	 placement	 may	 results	 in	
increased	 fracture	 conductivity	 and	 increased	 retention	 of	 fracture	 conductivity	
with	stress,	if	used	in	the	appropriate	rock.			
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(vi) The	 effect	 of	 water	 soaking	 the	 fracture	 surfaces	 prior	 to	 fracture	 conductivity	
testing	shows	a	clear	softening	of	the	rock	surface	hardness	and	an	associated	loss	
in	 both	 fracture	 conductivity	 and	 fracture	 conductivity	with	 stress.	 	 Surprisingly,	
the	effect	is	stronger	on	the	well	cemented	less	clay‐sensitive	Barnett	samples	and	
less	strong	for	the	Haynesville	and	Marcellus	samples.		This	may	be	so	because	the	
rock/proppant	 interaction	for	the	latter	are	already	strong	and	resulting	 is	strong	
degradation	of	fracture	conductivity	even	without	fluid	interaction.	

(vii) Finally,	 results	 of	 tests	 with	 increased	 proppant	 concentration	 (3	 monolayers	
instead	 of	 a	 single	monolayer)	 show	 a	 consistent	 and	 strong	 increase	 in	 fracture	
conductivity	 and	a	 reduction	 in	 stress	 sensitivity	 from	2	decades	 to	1	decade	per	
10,000	psi.		
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5 INTEGRATION  OF  THE  LOSS  OF  EFFECTIVE  SURFACE  AREA  AND 
CONNECTIVITY  IN FRACTURE NETWORKS AND THE DEGRADATION 
OF FRACTURE CONDUCTIVITY  

5.1 Introduction 

The	objective	of	this	section	is	to	integrate	the	results	and	concepts	obtained	from	previous	
sections	on	fracture	conductivity	and	fracture	surface	area	into	numerical	models	designed	
to	demonstrate	the	impact	of	the	measured	properties	on	well	production.			
	
Key	components	of	this	effort	are	as	follows:	

(i) Evaluate	 numerically	 well	 production	 through	 fracture	 networks,	 with	 varying	
distributions	of	fracture	conductivity	within	various	branches.	The	simulations	will	
be	run	with	the	results	from	un‐propped	and	propped	fractures.			

(ii) Evaluate	 numerically	well	 production	 through	 fracture	 networks	 using	measured	
dependence	 of	 the	 conductivity	 with	 stress,	 under	 un‐propped	 and	 propped	
conditions.	

5.2 Background 

In	 the	discussion	on	 the	 effect	 of	 fracture	 geometry	and	 fracture	 conductivity,	 in	 Section	
2.2,	 it	was	demonstrated	via	numerical	models	that	the	geometry	and	spatial	variation	of	
fracture	conductivity	within	a	hydraulic	fracture	has	a	significant	impact	on	the	production	
rate	obtained	from	the	fracture.	 	In	that	work,	several	plausible	fracture	geometries	were	
used	 to	 simulate	 production	 while	 assuming	 that	 the	 fracture	 conductivity	 remained	
constant	throughout	production.		The	laboratory	conductivity	tests	discussed	in	Sections	3	
and	 4	 demonstrated	 that	 fracture	 conductivity	 is	 a	 function	 of	 the	 closing	 stress	 acting	
normal	 to	 the	 fracture.	 	Work	conducted	 in	Section	4	also	demonstrated	 that	 the	density	
and	 distribution	 of	 proppant	 within	 the	 fracture	 and	 the	 rock	 properties	 determine	 the	
degree	 to	 which	 the	 fracture	 conductivity	 decreases	 with	 stress.	 	 The	 objective	 of	 this	
section	 is	 to	 integrate	 via	 numerical	modeling	 the	 combined	 effect	 that	 these	 conditions	
have	on	well	productivity.	 	To	accomplish	 this,	numerical	 simulations	are	presented	 that	
are	 similar	 to	 those	 discussed	 in	 Section	 2,	 but	 with	 the	 additional	 feature	 of	 using	 the	
laboratory	 conductivity	 measurements	 defined	 in	 Sections	 3	 and	 4,	 to	 determine	 how	
fracture	conductivity	and	production	potential	vary	as	a	result	of	increases	in	closure	stress	
during	 production.	 	 Furthermore,	 to	 explore	 the	 effect	 of	 stress	 dependency	 of	 fracture	
conductivity,	production	simulations	are	presented	with	varying	levels	of	horizontal	stress	
contrast.	

5.3 Methods 

Well	production	is	modeled	using	the	equations	of	single‐phase	transient	Darcy	flow	with	
the	produced	gas	being	modeled	as	an	ideal	gas.	 	The	rock	matrix	is	modeled	using	linear	
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elasticity	with	a	transversely	isotropic	vertical	(TIV)	stiffness	tensor.	 	The	COMSOL	finite‐
element	package	was	used	to	solve	these	equations	numerically.		The	parameters	for	these	
models,	which	are	given	 in	detail	below,	were	measured	 in	 the	material	 characterization	
tests	discussed	in	Section	1.	
	
The	in‐situ	stress	state	for	each	play	considered	is	estimated	using	measured	transversely	
isotropic	 elastic	 properties	 and	 a	 passive	 basin	 approximation.	 	 	 Organic‐rich	mudstone	
reservoirs	rocks	have	relatively	 low	porosity	 (i.e.	 less	 than	10%)	and	exhibit	a	negligible	
amount	of	volumetric	compaction.		In	addition,	plastic	dilation	within	the	reservoir,	during	
production,	 is	 also	 thought	 to	 be	 negligible.	 	 As	 a	 result,	 the	 coupling	 between	 the	 fluid	
transport	and	solid	deformation	is	very	weak	and	is	neglected	in	this	work.		Therefore,	the	
change	in	the	effective	stress	at	any	point	in	the	reservoir	is	only	a	function	of	the	in‐situ	
stress	existing	prior	to	production	and	the	pore	pressure	at	that	point.		This	indicates	that	
although	a	large	uncertainty	may	exist	in	the	absolute	values	of	the	in‐situ	stress	at	initial	
conditions,	 the	 relative	 change	 from	 this	 condition	 to	 the	 depleted	 condition,	 given	 the	
specified	 new	 reservoir	 pressure,	 will	 be	 well	 represented.	 	 Additionally,	 the	 effective	
closure	 pressure	 at	 a	 given	 point	 in	 the	 fracture	 network	 depends	 on	 the	 far‐field	 total	
normal	stress	and	the	fluid	pressure	within	the	fracture:	
	
	 'c h fP P   	 	

	
where	 	is	 the	 effective	 closure	 pressure,	 	is	 the	 far‐field	 total	 normal	 stress,	 	is	 the	
Biot	coefficient	for	the	proppant	pack	(here	assumed	to	be	1.0),	and	 	is	the	fluid	pressure	
at	a	given	point	inside	the	fracture.		As	discussed	above,	the	fracture	conductivity	decreases	
with	 effective	 closure	 stress,	 and	 as	 a	 result	 of	 the	 decrease	 in	 fluid	 pressure	within	 the	
fracture	during	production.		The	conductivity	at	each	point	in	the	fracture	is	specified	to	be	
a	piecewise	 linear	 interpolation	of	 the	values	measured	 for	 each	 rock	 class	 as	defined	 in	
Sections	3	and	4.	 	Since	the	fluid	pressure	distribution	within	the	fracture	is	non‐uniform,	
so	is	the	fracture	conductivity.			
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reduction	in	production.	 	Thus,	 the	two	decade	reduction	 in	fracture	conductivity,	 	 	 	over	
10,	000	psi,	which	is	characteristic	of	the	40/70	proppant	in	the	Haynesville	shale,	does	not	
provide	 sufficient	 change	 as	 to	 affect	 the	 overall	 flow	performance.	 	 Once	 the	 secondary	
fracture	conductivity	is	reduced	to	0.1	mD‐ft.,	however,	the	production	is	reduced	sharply.		
This	would	be	the	case	for	the	other	propped	cases	of	80/100,	50%	mixtures	of	40/70	and	
80/100,	and	the	discontinuous	proppant	configuration	(channel).			
	
In	the	simulations	presented	in	Section	5.4,	the	well	flowing	pressure	was	set	to	be	2,000	
psi	less	than	the	pore	pressure.		The	resulting	maximum	possible	closure	pressure	on	any	
hydraulic	fracture	is	then	approximately	4,000	psi.		With	4,000	psi	closure	pressure	and	a	
monolayer	 of	 40/70	 proppant	 the	measured	 conductivity	 on	 the	 Haynesville	 Light	 Blue	
rock	 reported	 in	 Section	 4	 is	 10.1	 mD‐ft.	 	 Therefore,	 even	 at	 the	 highest	 closure	 stress	
possible	 the	 secondary	 fractures	 with	 only	 a	monolayer	 of	 proppant	 are	 still	 effectively	
infinite	conductivity	fractures.		On	the	other	hand,	the	un‐propped	fracture	conductivity	on	
this	 rock	 class	 at	 the	 same	 level	 of	 closure	pressure	 is	 0.0005	mD‐ft.	 	With	 this	 value	 of	
fracture	 conductivity	 the	 secondary	 fractures	 are	 not	 able	 to	 effectively	 drain	 the	
surrounding	reservoir.			
	
We	 understand	 that	 fracture	 conductivity	 of	 the	 primary	 fracture	 can	 decrease	
substantially	 in	 this	 region	 as	 a	 function	 of	 time	 due	 to	 plugging	 with	 fines,	 salt	
precipitation	 and	 debris	 arriving	 from	 the	 fracture	 far	 field	 boundaries.	 	 We	 have	 also	
argued	 that	 the	 permeability	 at	 the	 fracture	 face	 may	 change	 substantially	 (due	 to	
embedment	and	the	uniformity	of	the	pack	on	the	near	wellbore	fracture).		Thus,	it	seems	
reasonable	to	anticipate	that	as	the	fracture	conductivity	of	the	primary	fracture	decreases	
with	 time,	 the	relative	contribution	of	 the	secondary	and	 tertiary	 fractures	 to	production	
may	 also	 change	with	 time	 and	depletion.	 	 They	may	be	 less	 relevant	 initially	 and	more	
important	later	on.			

5.6 Summary 

Production	 simulations	 were	 performed	 using	 the	 rock	 mechanical	 and	 reservoir	
properties	for	the	Haynesville	shale	best	reservoir	quality	rock	(Light	Blue	rock	class).		For	
this	 rock	 class,	 a	 propped	 fracture	 with	 a	 monolayer	 of	 40/70	 sand	 has	 a	 fracture	
conductivity	of	10.1	mD‐ft	at	a	closure	stress	of	4000	psi.		Assuming	fork	fracture	geometry,	
for	the	secondary	fractures,	and	using	the	reservoir	properties	measured	in	Section	1,	these	
propped	 fractures	 exhibit	 an	 effectively	 infinite	 conductivity	 and	 therefore	 contribute	
effectively	to	the	production	of	hydrocarbons	to	the	wellbore.		For	this	reason,	for	this	rock	
class,	 and	 the	 given	 proppant	 type	 and	 concentration,	 no	 significant	 reduction	 in	 well	
production	 would	 be	 expected	 as	 a	 result	 of	 depletion	 or	 changes	 in	 drawdown,	 and	
consequent	increase	in	closure	stress,	during	production.			
	
Simulations	performed	with	un‐propped	secondary	fractures	indicate	a	dramatic	reduction	
in	production	as	compared	to	the	monolayer‐propped	secondary	fracture	simulations.		This	
indicates	 that	 un‐propped	 fractures	 do	 not	 significantly	 contribute	 to	 production	 at	 any	
conditions	of	fracture	closure	stress.	 	



Sustaining	Fracture	Area	and	Conductivity	 Page	144	
	

6 LARGE‐SCALE  SIMULATION  OF  FIELD  PRODUCTION  –  BLOCK 
TESTING  

6.1 Introduction 

The	 objective	 of	 this	 section	 is	 to	 use	 fracture	 geometry	 characterization	 and	 fracture	
conductivity	 measurements	 on	 a	 large‐scale	 shale	 block,	 to	 validate	 results	 obtained	 in	
previous	 sections.	 	A	Niobrara	 shale	outcrop	block	 (approximately	3	 ft.	 x	3	 ft.	 x	3ft.)	 and	
representative	of	the	reservoir	facies	of	the	Niobrara	formation	was	used.	
	
Components	of	this	effort	are	as	follows:	
(i) Induce	 a	 hydraulic	 fracture	 and	measure	 its	 un‐propped	 fracture	 conductivity	 at	

various	 levels	 of	 closure	 stress.	 After	 completion	 of	 the	 un‐propped	 fracture	
conductivity,	 transport	 proppant	 into	 the	 fracture	 and	 evaluate	 fracture	
conductivity,	finally,	evaluate	proppant	embedment	as	a	function	of	stress	and	time.		

(ii) Monitor	 fracture	 propagation	 with	 acoustic	 emission	 and	 acoustic	 transmission	
measurements.	

(iii) If	 possible,	 image	 the	 block	 using	 X‐ray	 computer	 tomography	 before	 and	 after	
testing,	 to	 investigate	 the	 effect	 of	 the	 rock	 textural	 complexity	 on	 hydraulic	
fracture	complexity.	

(iv) Measure	the	surface	area	and	surface	roughness	of	the	produced	fracture.		Measure	
the	distribution	of	proppant	on	the	created	fracture	surface.	Measure	the	amount	of	
proppant	embedment	and	proppant	crushing	after	the	stress	cycles.	

	
Fracture	conductivity,	measured	as	a	part	of	 this	 large‐block	 test,	was	compared	to	core‐
scale	 measurements,	 made	 in	 Sections	 3	 and	 4.	 	 To	 understand	 the	 comparison,	 it	 is	
important	 to	 highlight	 several	 key	 differences	 between	 the	 large‐block	 test	 conductivity	
and	 those	 on	 small	 samples,	 discussed	 as	 part	 of	 Sections	 3	 and	 4.	 The	 large‐block	 test	
offers	an	opportunity	to	understand	differences	associated	with	changes	in	scale.	
	
Also,	 the	 large	 block	 offers	 an	 opportunity	 to	 evaluate	 surfaces	 that	 are	 created	 via	
hydraulic	fracturing.	 	These	are	strongly	affected	by	the	rock	fabric	effect.	 	This	is	not	the	
case	on	the	small	samples	that	were	predominantly	conducted	on	saw	cut	surfaces.		Fabric	
complexity	 results	 in	 fracture	 complexity,	 complex	 flow	 paths,	 and	 heterogeneous	
distribution	 of	 proppant.	 	 Finally,	 in	 the	 large	 block	 test,	 proppant	 is	 transported	 and	
deposited	by	fluid	flow.		In	the	small	samples,	it	is	deposited	manually,	to	produce	uniform	
monolayer	coverage	across	the	surface.			
	
The	 large‐block	 fracture	 propagation	 and	 fracture	 conductivity	 test	 described	 in	 this	
section	help	us	understand	the	relationship	and	representativeness	of	small	sample	testing	
to	the	larger‐scale	processes	occurring	in‐situ.	
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6.2 Large‐scale Simulation (Block Test) Methodology and Results 

6.2.1  Objectives  

The	following	were	the	objectives	for	this	test:	
1) Create	 a	 planar	 hydraulic	 fracture,	with	 simple	 geometry,	 using	Niobrara	 outcrop	

shale	sample,	and	using	Glycerol	as	the	fracturing	fluid.	
2) Measure	 un‐propped	 fracture	 conductivity	 at	 different	 levels	 of	 fracture	 closure	

stress.		
3) Inject	and	transport	100	mesh	proppant	into	the	fracture.	
4) Measure	propped	fracture	conductivity	at	different	levels	of	fracture	closure	stress.	

6.2.2  Testing Equipment 

6.2.2.1 	Loading	System	

This	 test	 was	 performed	 in	 TerraTek’s	 large	 block	 multi‐axial	 stress	 frame.	 	 The	 stress	
frame	makes	it	possible	to	apply	unique	stresses	in	three	principal	directions,	North‐South	
(N‐S),	 East‐West	 (E‐W),	 and	 Top‐Bottom	 (T‐B).	 	 The	 stresses	 are	 generated	 using	 four	
flatjacks	for	the	horizontal	directions	and	actuators	 in	the	vertical	direction.	Flatjacks	are	
planar	steel	bladders	 that	are	pressurized	with	 fluid	 to	expand	and	 transmit	 loads	 to	 the	
sample	 inside	the	stress	 frame.	 	The	stress	 frame	can	apply	a	maximum	vertical	stress	of	
10,000	psi,	and	a	maximum	horizontal	stress	of	8000	psi.		A	photo	of	the	large	stress	frame	
can	be	seen	in	Figure	6.1.	
 
Three	 sets	of	 continuous	 injection	 intensifier	pumps	were	used	 to	 create	 and	 supply	 the	
pressure	 for	 the	 flatjacks.	 	 The	 continuous	 pumps	 are	 computer	 controlled	 and	may	 be	
operated	in	either	volume	or	pressure	control.	 	For	this	series	of	 testing	the	pumps	were	
run	in	constant	pressure/stress	control.	
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Figure 6.1. A photograph of TerraTek’s large multi‐axial stress frame is shown. 

	

6.2.2.2 	Injection	System	

A	40	hp	hydraulic	pump	was	used	in‐line	with	a	pressure	intensifier	for	the	fluid	injection	
during	 the	 testing.	 	 The	 intensifier	 was	 used	 to	 generate	 the	 bore	 pressure	 that	 was	
necessary	to	fracture	the	block	sample.		It	can	generate	a	maximum	of	10,000	psi	and	has	a	
volume	capacity	of	3.27	 liters.	 	The	 intensifier	 flow	rate	was	 computer	 controlled	during	
the	block	testing.	
	
For	 the	 proppant	 injection	 phase,	 a	 continuous	 displacement	 MOYNO	 pump	 was	 used.		
Lastly,	 a	 separate	 (TerraTek	 system)	 continuous	 injection	 system	was	 used	 for	 fracture	
conductivity	measurements.	
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6.2.3 Sample Preparation and Quality Control  

The	 Niobrara	 shale	 outcrop	 used	 for	 this	 testing	 program	 was	 acquired	 from	 a	 quarry	
located	 in	 Colorado	 near	 the	 city	 of	Denver.	 	 	 The	 approximate	 location	 of	 the	 quarry	 is	
shown	on	a	regional	map	in	Figure	6.2.	
	
The	boulder	from	which	the	rock	was	cut	is	shown	in	Figure	6.3.	The	block	was	cut	with	a	
large	rotary	impregnated	diamond	saw	to	the	final	dimensions	of	27.25	in	x	27.25	in	x	32	
in.	 	 An	 initial	 cut	was	made	 on	 the	 bottom	 of	 the	 sample.	 	 The	 sample	was	 then	 placed	
bottom	side	down	on	this	initial	cut	and	the	four	vertical	faces	were	cut,	forming	the	sides	
of	the	block.		Using	the	sides	as	a	reference,	the	top	face	was	cut	perpendicular	to	the	sides.		
The	 final	 face	 was	 cut	 from	 the	 bottom	 surface,	 parallel	 to	 the	 top	 face,	 completing	 the	
block.		This	process	was	done	such	that	the	bedding	planes	were	oriented	perpendicular	to	
the	longest	axis	of	the	block.	
	

	

Figure 6.2.  The approximate location of the Niobrara quarry is shown. 
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Figure 6.3. Niobrara boulder acquired from the quarry.  The surfaces are painted for preventing 
changes in humidity during transport and storage. 

A	visual	 evaluation	 of	 the	 sample	was	 conducted	 to	 characterize	 the	 rock	 fabric	 prior	 to	
testing,	 as	 shown	 in	 Figure	 6.4.	 	 The	 photos	 show	 the	 bedding	 orientation,	 a	 large	
distribution	 of	 calcite	 inclusions	 predominantly	 oriented	 parallel	 to	 the	 bedding	 and	 the	
presence	 of	 partings	 along	 planes	 of	weakness.	 	 	 The	 photos	 also	 show	 that	 the	 bottom	
section	of	the	block	represents	a	different	geologic	facies,	which	is	more	homogeneous	and	
less	laminated	than	the	rest	of	the	block.			
	
To	highlight	the	partings	along	planes	of	weakness,	a	second	set	of	photographs	were	taken	
after	dabbing	the	surfaces	of	the	block	surface	with	odorless	mineral	spirits	(OMS).		These	
are	shown	in	Figure	6.5.	 	OMS	is	a	low	viscosity	hydrocarbon,	inert	to	the	rock	chemistry,	
and	 one	 that	 imbibes	 easily	 into	 hairline	 fractures	 and	 then	 evaporates,	 making	 them	
temporarily	more	 visible.	 	 	 The	 photographs	 show	 a	 large	 number	 of	 partings	 along	 the	
direction	 of	 bedding	 as	 well	 others	 that	 occur	 oblique	 to	 bedding.	 	 The	 presence	 of	
lithologic	 contacts,	 bedding	planes	with	different	degrees	of	weakness,	 parted	 interfaces,	
calcite	 interfaces,	 hairline	 mineralized	 fractures,	 and	 the	 various	 partings	 in	 directions	
oblique	to	bedding	provide	the	rock	with	a	large	amount	of	textural	complexity.			
	
Understanding	 this	 fabric	 is	 fundamental	 for	 understanding	 the	 evolution	 hydraulic	
fracture	propagation	during	testing.		As	it	will	become	apparent	in	the	subsequent	section,	
the	 resulting	hydraulic	 fracture	was	 complex	despite	 the	 fact	 that	 several	design	 choices	
were	taken	to	promote	a	simple	fracture.	
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Figure 6.4. Photographs of all faces of the block showing calcite inclusions. 

	

	

Figure 6.5. OMS dabbed on the block surfaces highlight the texture of the rock fabric. 
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Figure 6.7. AE sensor pockets drilled on the south face of the block. 

 

Figure 6.8. AE sensor pockets drilled on the west face of the block. 
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The	hydraulic	fracture	was	designed	to	propagate	in	the	North	and	South	direction	and	a	
200	um	x	200	um	steel	mesh	was	 installed	on	 the	 rock	on	 the	North	and	South	 faces,	 to	
collect	proppant	and	fines	during	injection	after	the	initial	fracturing	stage.			
	
The	important	steps	in	the	set‐up	process	include:	

 Placement	of	the	block	in	a	steel	can	and	filling	the	annular	gap	between	the	rock	
and	the	can	with	a	permeable	layer	of	high	strength	30/60	mesh	proppant.	

 Placement	of	two	0.25”	flow	tubes	in	the	proppant	pack	along	the	North	face	of	the	
block.		These	were	placed	16	inches	deep	and	were	used	to	measure	the	pore	
pressure	in	the	proppant	and	for	fluid	flow	out	of	the	can.	

 Placement	of	a	third	flow	tube	in	the	proppant	pack	along	the	South	face	of	the	block	
and	2	inches	deep.	This	was	used	to	saturate	the	bead	pack	before	the	fracture	
conductivity	measurements.	

 Sealing	the	top	section	of	the	can	with	a	precast	polyurethane	sheet	27.5	in.	x	27.5	
in.		x	1in.	with	5	in	centered	hole.	

 Placement	of	the	loading	top	plate,	flat	jacks,	spacers	and	ancillary	components	of	
the	axial	loading	system.		

 Making	the	acoustic	transducer	cables	accessible	to	the	exterior	of	the	block	through	
the	can	corners	and	through	the	sealing	plate.			

 	Bled	air	from	the	hydraulic	system,	including	the	flatjacks.	
 Connect	the	flatjacks,	actuators	and	wellbore	to	the	corresponding	components	of	

the	injection	and	injection	control	system	

6.2.5  Test Results 

The	description	of	test	results	is	divided	into	the	following	five	sections:	
	

1) Hydraulic	Fracturing	

2) Borehole	Cleanout	

3) Un‐propped	Fracture	Conductivity	Measurements	

4) Proppant	Transport	

5) Propped	Fracture	Conductivity	Measurements	

6.2.5.1 Hydraulic	Fracturing	

As	 indicated	 in	Section	9.1,	 the	 first	objective	 in	 this	 test	was	 to	obtain	a	planar	 fracture,	
with	 reasonable	 width	 and	 simple	 fracture	 geometry,	 to	 allow	 proppant	 transport	 with	
slick	water.		To	accomplish	this,	the	initial	fracture	was	conducted	with	1000cp	glycerol,	at	
a	constant	injection	rate	of	1000	mL/min,	and	with	the	sample	subjected	to	representative	
in‐situ	stress	and	with	a	significant	stress	contrast	in	the	plane	perpendicular	to	the	plane	
of	the	fracture.			
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Given	the	presence	of	weak	interfaces	in	this	sample,	prevention	of	shear	failures	during	
loading	was	critical	to	the	success	of	the	test.		For	this,	we	imposed	a	loading	protocol	that	
minimized	the	development	of	shear	stress	at	low	confining	stress.		A	summary	of	the	
testing	conditions	are	shown	in	Table	6.1.	The	details	of	the	application	of	the	applied	
external	stresses	to	the	rock	are	listed	in	Table	6.2.	
	
The	stress	histories	applied	during	this	test	are	shown	in	Figure	6.9.		These	were	increased	
to	a	maximum	hydrostatic	stress	of	4000	psi	on	all	sides	and	then	reduced	individually	in	
each	direction	to	obtain	the	desired	final	loading.		The	associated	change	in	flatjack	
volumes	during	this	same	time	period	are	shown	in	Figure	6.10.		These	measurements	are	
best	considered	in	a	relative	sense	and	not	on	their	absolute	values.		Differences	in	the	
loading	system	(flatjacks	versus	actuators)	and	the	associated	compliances	in	the	interfaces	
(including	spacers,	flatjacks,	polyurethane	pads,	can,	and	proppant	pack)	complicate	the	
evaluation	of	the	absolute	rock	deformation.		The	intensifier	and	borehole	pressurization	
history,	injected	borehole	volume	and	the	applied	stresses	are	shown	in	graphical	format	in	
Figure	6.11.			
	
Borehole	fluid	injection	at	1000	mL/min	started	at	approximately	138.42	minutes	after	the	
application	of	stress	to	the	rock.		The	injection	continued	at	a	constant	rate	until	borehole	
breakdown	was	observed,	at	a	pressure	of	4202	psi.	 	Fluid	injection	was	continued	at	the	
same	 rate,	 during	 fracture	 propagation,	 as	 the	 borehole	 pressure	 dropped	 continuously	
and	stabilized	at	a	pressure	of	1585	psi.		
	
Figure	 6.12	 shows	 the	 flatjack	 volumetric	 deformation,	 for	 the	 duration	 of	 the	 injection	
period.	Figure	6.13	shows	borehole	pressure	and	flatjack	volumetric	deformation	closer	to	
the	 wellbore	 breakdown.	 	 At	 approximately	 138.67	 minutes,	 a	 reduction	 in	 East‐West	
flatjack	 volumes	 was	 observed	 which	 is	 slightly	 before	 the	 wellbore	 breakdown	 was	
measured.	This	response	suggests	opening	of	a	longitudinal	fracture.	The	small	volumetric	
deformation	in	the	North‐South	flatjack	volume	suggests	momentary	opening	of	a	fracture	
against	 the	 intermediate	 stress,	 which	 closes	 immediately	 after.	 	 Furthermore,	 the	
stabilized	 pressure	 response	 after	 139	minutes	 indicates	 that	 the	 fracture	 geometry	 has	
stopped	developing	and	that	the	fracture	has	reached	the	boundary	of	the	rock.	
	
	  



Sustaining	Fracture	Area	and	Conductivity	 Page	154	
	

Table 6.1.  Test details and conditions for test 

Test:  203871‐RPSEA‐Niobrara 

Completion: 

Vertical completion with a cased borehole and 7 inch long 
open hole section located 15 inches to 22 inches from the 
top face of the block. Two sandblasted slots  in the north 
and south direction were created along the  length of the 
open hole section 

Block Size:  27.25 in x 27.25 in x 32 in 

Rock Type:  Niobrara Shale 

Fracturing Fluid:  Glycerol, 1000cP 

Acoustic  Emission 
Sensors: 

37  P‐wave  sensors  were  installed  in  bored  pockets, 
distributed on the five faces of the block. 

Vertical Stress    = 4500 psi    (Top‐Bottom 

 

Maximum 
Horizontal Stress  

3000 psi    (North‐South) 

 

Minimum 
Horizontal Stress  

1000 psi    (East‐West)   
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For	each	value	of	the	closure	stress	a	linear	regression	curve	was	fit	to	these	pressure/flow	
measurements.		The	data	points	and	regression	curves	for	each	case	are	shown	in	Figure	
6.19,	Figure	6.21,	Figure	6.23,	and	Figure	6.25.		The	slope	of	these	regression	curves	was	
then	used	together	with	finite‐element	simulations	of	flow	through	the	fracture,	to	
numerically	invert	for	the	effective	fracture	conductivity.		Figure	6.26	shows	an	example	
flow	field	from	one	of	the	numerical	simulations	used	to	perform	this	inversion.		The	
calculated	effective	conductivity	for	each	value	of	the	closure	stress	is	shown	in	Table	6.3.	
	

Table 6.3. Applied stress conditions, measured differential pressure, an approximate flow rate 
and calculated Fracture conductivity at each stress state for un‐propped fracture conductivity 

measurements are listed 

  
NS 

Stress 
EW 

Stress
TB 

Stress

Estimated
Fracture 
Delta P

Approximate 
Flow Rate

Best‐Fit 
Fracture 

conductivity 
mD‐ft 

   psi  psi  psi psi mL/min   

   1000  500 1000 5.8 25

20.2 Stage 1  1000  500 1000 11.6 65

   1000  500 1000 17.4 117

                 

   1000  1000 1000 192  41

0.7 
   1000  1000 1000 321 75

Stage 2  1000  1000 1000 385 89

   1000  1000 1000 481 94

                 

   2000  2000 2000 687 22

0.1 
Stage 3  2000  2000 2000 918 27

   2000  2000 2000 1377 45

   2000  2000 2000 1606 60

                 

   4000  4000 4000 1702 11

0.035 
Stage 4  4000  4000 4000 2917 27

   4000  4000 4000 3160 39

   4000  4000 4000 3404 41
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Figure 6.26.  An example of the finite‐element results that were used to invert for the effective 
conductivity from the block test measurements.  Fluid flows from the 7” open‐hole section of 
the wellbore (left‐hand side of plot), through the fracture at out the edge of the block (right‐
hand side of plot).  Red indicates high pressure and blue indicates low pressure and the red 

arrows are the fluid velocity vectors. 

	

6.2.5.4 Proppant	Transport	

After	un‐propped	conductivity	measurements,	the	borehole	injection	system	was	switched	
from	the	continuous	intensifier	system	to	the	high‐rate	MOYNO	pump	system.	The	goal	was	
to	inject	100	mesh	proppant	into	the	previously	created	hydraulic	fracture.	To	achieve	this	
goal	following	steps	were	taken:	

1) The	stresses	on	the	Top‐Bottom	and	North‐South	flatjacks	were	kept	constant	at	
a	value	of	1000	psi	and	the	stress	on	the	East‐West	flatjacks	was	reduced	to	50	
psi,	as	shown	in	Figure	6.27.	

2) Water	injection	was	started	at	a	rate	of	approximately	6	l/min.	
3) Once	the	bead	pack	(pore)	pressure	was	stabilized,	¼	lb	of	100	mesh	sand	was	

added	to	the	flow	approximately	every	1.5	minutes	as	shown	in	Figure	6.28.	The	
bead	 pack	 pressure	was	 diligently	 observed	 in	 order	 to	maintain	 it	 below	 the	
minimum	confining	stress	of	50	psi.	
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the	 test.	 	Water	was	 then	 flowed	 through	 the	sand‐filled	wellbore	and	 the	pressure	drop	
was	measured	 at	 several	 flow	 rates.	 	 This	measured	 relationship	 between	 the	 flow	 rate	
through	 and	 the	 pressure	 drop	 across	 the	 sand‐filled	 wellbore	 was	 used	 calculate	 the	
pressure	drop	across	only	the	fracture	during	each	stage	of	the	propped	conductivity	test.		
The	differential	pressure	value	reported	in	Table	6.4	is	the	calculated	pressure	drop	across	
only	 the	 fracture.	 	 Figure	 6.29,	 Figure	 6.31,	 Figure	6.33,	 and	Figure	6.35	 are	plots	 of	 the	
pressure	and	 flow	measurements	during	each	 stage	of	 the	propped	 fracture	 conductivity	
measurements.	 	 Figure	 6.30,	 Figure	 6.32,	 Figure	 6.34,	 and	 Figure	 6.36,	 and	 plots	 of	 the	
pressure	and	flow	measurements	along	with	the	linear	regression	curve	used	to	calculate	
the	effective	propped	fracture	conductivity	at	each	stage.	
	

Table 6.4. Applied stress conditions, measured DeltaP, an approximate flow rate and calculated 
Fracture conductivity at each stress state for propped fracture conductivity measurements are 

listed 

  
NS 

Stress  
EW 

Stress 
TB 

Stress

Estimated 
Fracture 
Delta P 

Flow 
Rate

Fracture 
Conductivity md‐

ft 

   psi  psi  psi psi mL/min   

   1000  500  1000 6.8 448

153 Stage 1  1000  500  1000 15.0 697

   1000  500  1000 22.6 1040

                 

   1000  1000  1000 51.2 980

49 Stage 2  1000  1000  1000 85.9 1600

   1000  1000  1000 104 1870

                 

   2000  2000  2000 219 1460

22 Stage 3  2000  2000  2000 256 1685

   2000  2000  2000 292 1950

                 

   4000  4000  4000 478 1235

8.4 Stage 4  4000  4000  4000 538 1375

   4000  4000  4000 597 1550

  



Sustainin
	

Figure 6

	

Figure 6
made du
regress

	

ng	Fracture

6.29. Pressu

6.30.  Flow r
uring stage 1
sion curve w

e	Area	and	C

re drop acro
meas

ate vs. differ
1 of the prop
was used to c

Conductivity

oss the prop
ured flow ra

rential press
pped fracture
calculate the

y

ped fracture
ate are show

sure across t
e conductivi
e best‐fit con
stress. 

e (DeltaP), a
wn for stage 

the fracture 
ty measurem
nductivity va

pplied flatja
1. 

for the four
ment. The sl
alue at this v

Page

	

ack stresses a

	

r measureme
lope of the l
value of clos

e	170	

and 

ents 
inear 
ure 



Sustainin
	

Figure 6

	

Figure 6
made du
regress

ng	Fracture

6.31. Pressu

6.32.  Flow r
uring stage 2
sion curve w

e	Area	and	C

re drop acro
meas

ate vs. differ
2 of the prop
was used to c

Conductivity

oss the prop
ured flow ra

rential press
pped fracture
calculate the

y

ped fracture
ate are show

sure across t
e conductivi
e best‐fit con
stress. 

e (DeltaP), a
wn for stage 

the fracture 
ty measurem
nductivity va

pplied flatja
2. 

for the four
ment. The sl
alue at this v

Page

	

ack stresses a

	

r measureme
lope of the l
value of clos

e	171	

and 

ents 
inear 
ure 



Sustainin
	

Figure 6

	

Figure 6
made du
regress

ng	Fracture

6.33. Pressu

6.34.  Flow r
uring stage 3
sion curve w

e	Area	and	C

re drop acro
meas

ate vs. differ
3 of the prop
was used to c

Conductivity

oss the prop
ured flow ra

rential press
pped fracture
calculate the

y

ped fracture
ate are show

sure across t
e conductivi
e best‐fit con
stress. 

	

e (DeltaP), a
wn for stage 

the fracture 
ty measurem
nductivity va

pplied flatja
3. 

for the four
ment. The sl
alue at this v

Page

	

ack stresses a

	

r measureme
lope of the l
value of clos

e	172	

and 

ents 
inear 
ure 



Sustainin
	

Figure 6

	

Figure 6
made du
regress

ng	Fracture

6.35. Pressu

6.36.  Flow r
uring stage 4
sion curve w

e	Area	and	C

re drop acro
meas

ate vs. differ
4 of the prop
was used to c

Conductivity

oss the prop
ured flow ra

rential press
pped fracture
calculate the

y

ped fracture
ate are show

sure across t
e conductivi
e best‐fit con
stress. 

e (DeltaP), a
wn for stage 

the fracture 
ty measurem
nductivity va

pplied flatja
4. 

for the four
ment. The sl
alue at this v

Page

	

ack stresses a

	

r measureme
lope of the l
value of clos

e	173	

and 

ents 
inear 
ure 



Sustainin
	

Figure 

One	of	th
of	 this	 b
calculate
block	tes
the	un‐p
that	 for	
correspo
core	sam
Haynesv
measure
program
	
The	 stre
fracture	
roughne
(smooth
small	sa
depende
consider
	
The	abso
than	 tha
addition
collected
pressure
pressure
samples	

ng	Fracture

6.37. Un‐pro

he	goals	of	t
block	 test	
ed	 un‐propp
st	as	well	a
propped	cor
the	Marcel
onding	 stre
mples	and	p
ville	poor	re
ements	on	c
m.			

ess	 depend
is	substant
ess	 and	 the	
h)	surface	of
mples	are	c
ence	 is	 low
rable	for	the

olute	magni
at	 measure
nal	pressure
d	 fines,	 and
e	 drop	 betw
e	drop	was	
at	the	initia

e	Area	and	C

opped and P

this	program
to	 the	 con
ped	 and	 pr
s	the	core	s
re	sample	is
llus	 sample
ss	 depende
particularly	
eservoir	qua
core	sample

ence	 on	 fra
tially	lower	
tortuous	 n
f	the	small	s
conservativ
wer	 than	 p
e	un‐proppe

itudes	of	fra
d	 on	 the	 s
	drop	betwe
d	 the	 press
ween	 the	 p
evaluated	b
al	pressure	

Conductivity

Propped frac

m	was	to	co
nductivities	
ropped	 con
samples.	 	Th
s	similar	to	
,	 and	 spans
ence	 of	 the	
similar	to	t
ality	rock.		I
es	 for	 the	N

acture	 cond
than	in	the
nature	 of	 th
sample.		Th
ve	estimates
predicted	 fr
ed	surfaces	

acture	cond
small	 samp
een	the	tip	o
ure	 probe.	
pressure	 sen
by	equating
step.	

y

cture conduc

ompare	the	
measured	
ductivity	 as
he	stress	de
that	for	th
s	 approxim
propped	 co
the	Macellu
In	general,	
Niabrara	sha

ductivity	 of
	small	samp
he	 hydrauli
is	indicates
s	of	 fracture
rom	 lab	 ex
and	smaller

ductivity	on
ples.	 	 This	
of	the	fractu
	 Numerica
nsor	 and	 th
g	the	fractur

ctivity as a fu

un‐propped
in	 the	 cor
s	 a	 function
ependence	
e	Haynesvil

mately	 	 4	 de
ore	 sample
us	good	rese
there	is	str
ale	and	the	

f	 the	 un‐pr
ple.		This	is	
ic	 fracture	
s	that	the	lab
e	conductiv
xperiments.
r	for	the	pro

n	the	large	b
was	 argue
ure	the	scre
al	 modeling
he	 end	 of	 t
re	conductiv

unction of co

d	and	propp
re.	 Figure	 6
n	 of	 applie
on	fracture
lle	and	sligh
ecades	 over
	 is	 represe
ervoir	qual
rong	similar
	other	shal

ropped	 and
expected	g
as	 compare
boratory	m
vity	and	tha
	 	 The	 diff
opped	surfa

block	sampl
d	 to	 be	 so
een	on	the	fr
g	 was	 used	
the	 probe.	
vity	of	the	t

Page

	

onfining stre

ped	conduct
6.37	 shows
d	 stress	 fo
e	conductivi
htly	higher	
r	 4500	 psi.	
ntative	 of	 o
ity	rock	and
rity	between
es	tested	 in

d	 propped	
given	the	su
ed	 to	 a	 saw
measuremen
at	the	real	s
ference	 ma
aces.	

les	were	sm
o	 because	 o
racture	face
to	 evaluate
	 The	 addit
two	un‐pro

e	174	

ess. 

tivity	
s	 the	
r	 the	
ity	of	
than	
	 The	
other	
d	the	
n	the	
n	this	

large	
rface	
w	 cut	
nts	on	
stress	
ay	 be	

maller	
of	 an	
e	that	
e	 the	
tional	
pped	



Sustaining	Fracture	Area	and	Conductivity	 Page	175	
	

6.2.6 Block Fracture and Proppant Placement Evaluation 

6.2.6.1 Fracture	Traces	on	the	Block	External	Faces	

Once	the	fracture	had	been	generated	and	the	conductivity	measurements	were	completed	
the	block	was	removed	from	the	vessel	and	the	can.		The	bead	pack	surrounding	the	block	
was	then	cleaned	from	the	surface	of	the	sample	to	allow	better	viewing	of	the	200	mesh	
screen	 covering	 the	 fracture	 (Figure	6.38).	 	When	 viewing	 the	 screens	 on	 the	North	 and	
South	faces	of	the	block	the	trace	of	the	hydraulic	fracture	is	seen	in	the	screen,	as	a	result	
of	 fines	 collected	 during	 the	 various	 stages	 of	 flow.	 The	 fracture	 on	 the	 North	 face	 is	
oriented	slightly	off	vertical,	and	the	bottom	of	the	screen	is	noted	to	have	limiting	staining,	
indicating	 limited	 conductivity	 from	 the	 fracture	 at	 the	 bottom	 of	 the	 block.	 	 Along	 the	
South	 face,	we	 observe	 a	 continuous	 trace	 in	 the	 screen,	 indicating	 a	 vertically	 oriented	
fracture	that	experienced	uniform	flow	through	the	entire	fracture	height.	 	In	this	face,	 in	
addition	to	the	vertical	fracture,	one	observes	two	additional	horizontal	traces	marked	on	
the	screen.		Later	analysis	revealed	that	these	were	partings	that	resulted	from	two	distinct	
lithologic	transitions	in	the	block.		These	are	also	apparent	along	the	East	and	West	faces	of	
the	block	(without	screens).	
	

	

Figure 6.38: Large block faces North (left) and South (right) with screens still on. 
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Figure 6.39: Block exterior with screens removed displaying the fracture face (North and South 
faces of the block respectively). 

Once	the	screens	were	removed	from	the	block	faces,	a	direct	observation	of	the	fractures	
was	possible.		Figure	6.39	shows	images	of	the	same	faces	of	the	block	after	removal	of	the	
screens.		Unfortunately,	handling	of	the	block	to	reposition	it	caused	a	slight	opening	of	the	
fracture.	 	This	is	particularly	clear	at	the	bottom	of	the	sample,	where	the	fracture	is	now	
seen	 clearly	open.	 	The	direction	of	 the	 fracture	 is	 also	 clearly	 seen.	 	The	 fracture	 in	 the	
South	 face	 extends	 clearly	 from	 the	 bottom	of	 the	 sample	 to	 the	 top	 following	 a	 general	
vertical	 orientation,	 and	 with	 a	 slight	 deviation	 of	 approximately	 10	 degrees	 from	 the	
middle	of	the	sample	downwards.		The	fracture	on	the	North	face	was	found	to	deviate	by	
approximately	8	degrees	along	the	entire	length	of	the	sample.		In	addition,	in	this	view,	it	
appears	to	be	arrested	approximately	8	to	10	inches	from	the	top	of	the	block.	 	However,	
close	 examination	 shows	 the	 generation	 of	 complexity	 and	 en‐echelon	 fracturing	 which	
occurred	 by	 branching	 and	 shear	 displacement.	 	 Figure	 6.40	 show	 a	 detail	 image	 of	 this	
region.	 	 The	 image	 was	 rotated	 sideways	 for	 convenience.	 	 Fracture	 complexity	 in	 this	
region	 is	 the	 result	 of	 mixed	 mode	 fracturing	 events	 converging	 to	 meet	 the	 centered	
fracture	 propagating	 across	 the	 top	 of	 the	 block.	 	 These	 fractures	 daylight	 on	 the	 North	
surface	of	 the	block	with	widths	varying	 from	0.5	 to	5.0	mm,	 and	 forming	 clear	 stacking	
patterns.	 	 Towards	 the	 interior	 of	 the	 block	 these	 coalesce	 together	 forming	 one	
predominant	fracture.			
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Figure 6.40:  The en echelon fracture found on the North side of the block. 

	

Figure 6.41:  Exterior of the South face of the block displaying proppant bound to the fracture 
face. 

	
Along	 the	 South	 face,	 the	 fracture	 looks	more	macroscopically	 uniform.	 	 However,	 close	
observation	 along	 its	 length	 demonstrates	 the	 presence	 of	 textural	 complexity	 and	 en‐
echelon	min‐mode	fracture	propagation.		Figure	9.41	shows	this	pattern	along	the	length	of	
the	fracture.		It	also	shows	a	detail	of	the	region	towards	the	bottom	of	the	sample	showing	
the	 irregular	 distribution	 of	 proppant	 associated	 to	 the	 textural	 heterogeneity	 of	 the	
fracture.	
	
Figure	 6.42	 shows	 the	 top	 view	 of	 the	 block	 and	 highlights	 important	 details	 of	 the	
fracturing	 process	 that	 shed	 additional	 information	 on	 the	 fracturing	 process.	 	 The	 blue	
arrows	in	this	figure	help	identifying	the	trace	of	the	macroscopic	fracture	on	this	face.		The	
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trace	of	the	half	length	fracture	section	growing	from	the	wellbore	towards	the	South	face	
is	relatively	planar	and	simple,	exhibiting	minimal	deviation.	 	 In	contrast,	 the	trace	of	the	
opposite	 half	 length	 fracture	 section	 growing	 from	 the	wellbore	 towards	 the	 North	 face	
exhibits	considerable	complexity	and	en‐echelon	fracturing.	 	These	patterns	are	observed	
at	a	distance	of	1	inch	from	wellbore	and	continued	to	the	edge	of	the	block.		As	shown	in	
Figure	6.40,	they	also	continue	several	inches	down	the	North	face	of	the	block.		Figure	6.43	
shows	a	close‐up	image	of	the	near	wellbore	region.	 	The	white	arrows	show	the	trace	of	
the	 fractures.	 	 The	 left	 section	 (towards	 the	 North	 face	 of	 the	 block)	 clearly	 shows	 that	
significant	branching	has	occurred	in	this	region.		This	image	also	shows	that	the	fracture	
trace	on	 the	 top	of	 the	block	was	 filled	with	proppant	and	 this	appears	 to	be	distributed	
uniformly	 along	 the	 fracture	 length	 (in	 the	 Top	 face	 of	 the	 block).	 	 Figure	 6.44	 shows	 a	
close‐up	view	of	this	region.		A	ruler	seen	in	this	image	shows	a	fracture	approximately	0.8	
mm	wide.	 	Given	that	100	mesh	proppant	was	used	and	that	this	has	a	mean	diameter	of	
0.145	mm,	one	can	calculate	the	presence	of	5	to	6	proppant	layers	in	the	proppant	pack.				
These	observations	correspond	to	 the	 trace	of	 the	 fracture	on	 the	external	 surface	of	 the	
block	and	may	not	be	representative	 the	proppant	distribution	 in	the	rest	of	 the	 fracture	
(internal	to	the	block).			
	

	

Figure 6.42: The top of the block displaying the fracture radiating from the wellbore.  The South 
face of the block is at the top of the picture and the North is at the bottom.  En echelon 
fractures are found along the fracture from the wellbore to the edge of the North face. 
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Figure 6.43:  The top surface of the block displaying the wellbore and fracture.  The North face 
of the block is to the left of the photo and to the right is the South face of the block. 

	

	

Figure 6.44:   The fracture on the top of the block displaying 5‐6 layers of proppant. 

6.2.6.2 Fracture	Geometry	Inside	the	Block	

After	 external	 inspection	 of	 the	 fracture	 traces	 on	 the	 block,	 the	 block	was	 prepared	 for	
post‐test	CT	scanning.	 	First,	the	steel	casing	had	to	be	removed	by	coring,	to	allow	X‐Ray	
imaging	of	the	near	wellbore	region.		Unfortunately,	during	this	process,	a	large	portion	of	
the	proppant	in	the	fracture	was	washed	away	by	the	fluid	circulation	used	during	coring.			
	
Subsequently,	 during	 handling,	 preparation	 and	 packaging	 to	 send	 the	 block	 to	 the	 CT‐
scanning	facility,	the	block	parted	along	the	fracture	plane,	and	along	two	additional	planes	
of	weakness	that	had	not	been	previously	noticed.		As	a	result,	the	CT‐scanning	operation	
was	aborted	and	the	block	was	made	available	for	internal	inspection	of	the	fracture	face.	
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Figure 6.45:  Images of the open fracture displaying the proppant placed on the fracture surface 
(East and West faces respectively). A representative drawing of the open hole section of the 
casing along with the stress concentrator is displayed towards the center of the block image. 

Figure	 6.45	 show	 the	 two	 reconstructed	 sections	 of	 the	 block	 and	 the	 exposed	 surface	
generated	 by	 the	 hydraulic	 fracture.	 	 The	 parted	 horizontal	 planes	 of	weakness	 are	 also	
seen.	 	 These	 partings	 occurred	 after	 the	 block	was	 removed	 from	 the	 can.	 	 There	 is	 no	
indication	of	their	opening	during	testing	(e.g.,	by	the	fluid	evacuation	of	the	top	actuator,	
by	AE	 localization,	or	by	 the	presence	of	proppant	 in	 these	surfaces).	 	These	were	closed	
during	 the	 fracturing	process	and	did	not	affect	 the	 fracture	 conductivity	measurements.		
Remnants	 of	 proppant	 placement	 and	 their	 distribution	 are	 easily	 identified	 along	 the	
periphery	 of	 the	 block.	 	 However,	 proppant	 in	 the	 near‐wellbore	 region	 had	 been	 fully	
flushed	 out	 by	 the	 casing	 coring	 operation.	 	 In	 addition,	 this	 figure	 shows	 three	 distinct	
regions	of	 fracturing:	a	wellbore	region,	connecting	the	wellbore	to	the	 fracture,	which	 is	
characterized	 by	 some	 degree	 of	 complexity	 and	 tortuosity	 as	 the	 hydraulic	 fracture	
develops	 from	 the	 sand	 blasted	 slots;	 a	 near‐wellbore	 region	 that	 is	 characterized	 by	 a	
reasonably	planar	and	smooth	fracture,	and	a	far‐wellbore	fracture,	near	the	edges	of	the	
block,	that	is	associated	with	extensive	branching	and	mix‐mode	fracture	propagation.		
	
Figure	 6.46	 highlights	 the	 presence	 of	 a	 calcite‐filled	 fracture	 oriented	 parallel	 to	 the	
wellbore	 and	 perpendicular	 to	 the	 direction	 of	 fracture	 propagation.	 	 	 This	 fracture	was	
observed	 to	 open	 and	 then	 close	 immediately	 after	 breakdown	 (Figure	 6.13	 in	 Section	
6.2.5.1).	 	The	activation	of	 this	 fracture	during	hydraulic	 fracturing	was	also	detected	via	
acoustic	 emission	 localization	 and	 is	 reported	 in	 the	 next	 section.	 	 Interestingly,	 there	
appears	 to	be	 a	 strong	 relationship	 between	 the	presence	 and	 activation	 of	 this	 fracture	
and	 the	presence	of	mix‐mode	en‐echelon	 fractures	on	 this	 side	of	 the	block.	 	The	 figure	
shows	 the	 vertical	 extent	 of	 the	 calcite‐filled	 fracture	 and	 its	 orientation	 parallel	 to	 the	
wellbore	(left	side)	and	the	relationship	between	the	activation	of	these	and	the	generation	
of	branches	on	 the	hydraulic	 fracture	 (right	side).	 	Evidence	 that	 this	 transverse	 fracture	
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sealed	itself	after	initial	activation	is	found	in	the	record	of	the	displacement	volume	by	the	
North‐South	flatjacks,	and	also	in	the	absence	of	any	proppant	along	this	interface.				
	

	

Figure 6.46: Top image of block (left) before casing and fracturing of the block.  The pre‐existing 
calcite healed fracture can be seen.  The image on the right displays the post image of the 

hydraulic fracture (Yellow) interacting with a pre‐existing fracture (Red). 

Additional	information	on	the	origin	and	evolution	of	complex	fracturing	and	branching	on	
this	 section	 of	 the	 block	 is	 presented	 in	 Figure	 6.47.	 	 In	 the	 left	 side	 of	 the	 figure	 two	
regions	of	the	fracture	face	are	bounded	with	red	and	blue	rectangles.	 	The	portion	of	the	
fracture	within	the	red	rectangle	is	in	direct	contact	with	the	calcite‐filled	natural	fracture,	
and	develops	complexity	by	interaction	with	this	interface.		This	region	is	also	highlighted	
in	 the	 right	 side	 of	 the	 figure.	 	 Here,	 the	 red	 dotted	 line	 represents	 the	 direction	 of	 the	
natural	fracture.		A	transition	from	few	en‐echelon	factures,	to	the	left	of	the	interface,	and	
more	tightly	spaced	multilayer	of	fractures,	to	the	right	of	the	interface,	is	clearly	apparent.			
	
The	blue	rectangle	 in	 the	 left	side	of	Figure	6.47	shows	the	presence	of	multiple	 fracture	
step‐overs	 with	 one	 predominant	 one	 occurring	 along	 the	 North	 face	 of	 the	 block	 (mid	
section	of	the	highlighted	area).		This	fracture	was	further	analyzed	to	assess	the	details	of	
the	stepover	generation.		When	closely	viewing	this	large	stepover,	it	is	observed	that	the	
hydraulic	 fracture	 does	 not	 simply	 stops	 at	 the	 calcite‐filled	 interface,	 slides	 along	 it,	
creating	 the	 stepover,	 and	 propagates	 along	 a	 parallel	 direction.	 	 It	 also	 crosses	 the	
interface	and	continues	propagating	away	of	the	 interface	for	several	 inches	before	being	
arrested.		Figure	6.48	shows	the	details	of	this	complex	interaction.		Contact	with	the	initial	
interface	results	in	branching	and	each	of	the	branches	themselves	interact	independently	
with	additional	interfaces	present	in	the	rock	to	develop	additional	complexity.			
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Figure 6.47:  Left image: En echelon fractures are observed along the top north section of the 
block (Red) and a large stepover, with other smaller stepovers, occurr on the north face (Blue).  
Right image: The Red line is used to delineate the location of the preexisting fracture and the 
Green arrows are used to display how the en echelon material broke in thin sheet along the 

rock surfaces. 

 

Figure 6.48:  A large stepover fracture on the North face of the block is observed to have 
continued on for several inches after passing a stepover fracture deviation.  

In	addition	to	the	above	analysis	of	the	region	with	large	fracture	complexity,	we	analyzed	
the	 transitional	 region,	which	 is	defined	by	a	 gradual	development	of	 fracture	branching	
and	complexity.	 	Figure	6.49	shows	an	example	of	a	region	along	the	middle	of	the	block,	
near	the	perforation	interval,	and	along	the	East	section	of	the	block.		The	figure	shows	the	
presence	of	fracture	branching	with	three	sub‐millimeter	thick	stacked	fractures	of	7	to	8	
inches	in	length.		Each	of	these	layers	of	fractures	contains	proppant	in	their	first	half	inch.		
In	addition,	only	the	dominant	fracture	has	proppant	along	the	entire	length	of	its	surface.	
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Table 6.5:  Distribution of proppant in grams, at defined locations on the fracture surface, and 
average proppant diameter at each of these locations 

Location 
Proppant  

(g) 

Average 
Proppant 

Diameter (µm) 

Wellbore  ‐‐‐‐  242.7 

Site 1  0.134  198.1 

Site 2  0.091  220.0 

Site 3  0.169  216.6 

Site 4  0.240  197.4 

Site 5  0.137  213.2 

Site 6  0.122  238.9 

Site 7  0.058  219.1 

Site 8  0.271  236.2 

Site 9  0.159  219.6 

Site 10  0.207  231.5 

Site 11  0.107  242.7 

	
Results	 show	 that	 the	 proppant	 left	 at	 the	 wellbore	 during	 injection	 have	 the	 largest	
average	proppant	diameter.		In	comparing	the	average	proppant	diameters	to	the	location	
of	the	sampling	sites	(Figure	6.51),	it	is	observed	that	the	largest	average	proppant	particle	
sizes	 are	 found	 nearest	 or	 just	 above	 the	 wellbore	 (sites	 6,	 8,	 10,	 and	 11),	 and	 these	
decrease	 as	 they	 move	 towards	 the	 outer	 corners	 of	 the	 block	 (sites	 1	 and	 4).	 	 This	
occurrence	can	be	attributed	to	the	fracture	width	narrowing	away	from	the	wellbore.			
	
When	 viewing	 the	 proppant	 under	 a	 digital	 microscope	 at	 100X	 no	 clear	 signs	 of	 grain	
crushing	were	observed.		Figure	6.52	shows	an	example	of	these	observations.		The	image	
shows	 very	 little	 debris	 or	 visual	 information	 of	 crushing.	 	 Thus,	 either	 the	 crushed	
proppant	developed	fines	that	migrated	to	the	screen	on	the	exterior	surface	of	the	block,	
or	very	little	to	no	proppant	grain	crushing	occurred.			
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Figure 6.52:  Digital microscope images of proppant grain quality and diameters being 
measured. 

For	 each	 of	 the	 eleven	 locations	 on	 the	 block	 the	 overall	 proppant	 weight	 was	 also	
measured	 and	 compared	 to	 assess	 the	 uniformity	 of	 the	 proppant	 concentration	
transported	along	the	 length	of	 the	fracture	(Table	6.5).	 	Sites	4,	8,	and	10	were	found	to	
contain	 the	 highest	 concentration	 of	 proppant	 and	were	 located	 just	 above	 the	wellbore	
casing.	 	 	The	sites	 found	to	contain	the	 least	proppant	concentration	(sites	2,	7,	11)	were	
positioned	 below	 the	 fracture	 initiation	 region,	 or	 close	 to	 the	 edge	 of	 the	 block.		
Interestingly,	we	found	a	strong	correlation	between	the	distribution	of	regions	with	high	
proppant	 concentration	 and	 the	 distribution	 of	 acoustic	 emission	 (AE)	 events	 during	
fracture	closure,	after	proppant	 transport.	 	Here,	 the	AE	are	generated	by	rock/proppant	
and	proppant/proppant	interactions	as	a	function	of	the	fracture	closure	stress.			Thus,	the	
regions	 found	 to	 contain	 the	 largest	 amounts	 of	 proppant	 also	 exhibited	 the	 highest	
number	of	AE	events.		These	results	are	seen	in	Figure	6.53.			
	

  

Figure 6.53:  Acoustic emissions on the East/West face of the block at fracture closure following 
the placement of proppant.  The image displays acoustic events of proppant embedding and 

consolidation around one another. 
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Once	the	distribution	of	proppant	concentration	was	analyzed,	we	conducted	an	additional	
evaluation,	using	the	digital	microscope,	to	determine	the	degree	of	proppant	embedment	
on	 the	 fracture	 surface.	 	 The	 same	 eleven	 locations	 used	 in	 the	 proppant	 concentration	
study	 were	 used	 for	 proppant	 embedment	 analysis.	 	 Results	 show	 that	 little	 to	 no	
embedment	occurred	on	the	sample.	 	 	An	example	of	 the	surface	topography	 is	shown	in	
Figure	6.54.			
	

	

Figure 6.54:  The embedment on the facture surface (Red) was measured using the Green lines 
to determine the overall surface height change.  In this instance a total of 0.059 mm height 

change occurred.  Additionally no clear signs of embedded particles were found. 

In	addition	to	proppant	concentration,	grain	crushing	and	proppant	embedment,	we	
measured	the	degree	of	surface	roughness	generated	during	fracturing.		Images	at	200x	
and	300x	magnification	were	used	to	evaluate	the	surface	roughness,	and	this	was	
calculated	as	the	ratio	of	the	measured	surface	area	over	the	projected	surface	area.			
	
Table	6.6	shows	these	results.	
	
The	 areas	with	 the	 highest	 roughness	 values	 (Site	 3,	 6,	 9,	 and	 11)	were	 located	 directly	
opposite	to	the	fracture	initiation	zone,	and	toward	the	edge	of	the	block.		The	locations	on	
the	 block	 with	 the	 lowest	 surface	 roughness	 where	 those	 located	 above	 and	 below	 the	
weak	bedding	interface	(Sites	1,	5,	7,	and	8).			
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Table 6.6:  Surface area measurements using 200x and 300x for the eleven locations on the 
block 

Location 
Roughness Measurements 

(Magnification) 

200x  300x 

Site 1 1.26 2.66
Site 2 4.39 5.21
Site 3 7.07 9.01
Site 4 4.17 4.29
Site 5 3.83 3.66
Site 6 6.08 7.47
Site 7 2.23 3.78
Site 8 2.96 3.85
Site 9 5.09 5.12

Site 10 4.02 5.18
Site 11 5.75 6.04

	

6.2.7 AE Results During Hydraulic Fracturing of the Block 

6.2.7.1 	Post‐Test	Analysis	of	Acoustic	Emission	and	Ultrasonic	Transmission	

	
For	 this	 project,	 38	 specialized,	 waterproofed	 sensors	 were	 designed,	 tested	 and	
manufactured	 in	 TerraTek,	 to	 perform	 acoustic	 emission	 and	 ultrasonic	 transmission	
measurements,	 under	 elevated	 fluid	 pressure.	 	 The	 following	 acoustic	 emission	 and	
ultrasonic	transmission	data	processing	were	performed	on	the	measured	data:		
	

(a) Real‐time‐data	processing,	using	the	Vallen	GmbH	acquisition	system	software,	was	
used	 to	 evaluate	 sensor	 quality	 and	 analyze	 ultrasonic	 transmissions	 (amplitude	
and	velocity).	

(b) Post‐test	 acoustic	 emission	 processing	 and	 data	 analysis	was	 conducted	 based	 on	
proprietary	 statistical	 criteria	 of	 onset	 time	 determination,	 using	 time‐dependent	
heterogeneous	anisotropic	velocity	model	for	AE	hypocenter	determination.	
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6.2.7.2 	Stressing‐up	the	Rock	Block	

	

Figure 6.55. Variation of triaxial stresses (pink, green and blue curves) and bead pack (pore) 
pressure (red curve) applied to the block during testing. Labels UT_0, UT_1 and UT_2 indicate 

moments of auto‐calibrations performed to estimate P‐wave velocity of the rock. 

Figure	 6.55	 shows	 the	 loading	 history	 of	 the	 block	 and	 time	 intervals	 of	 ultrasonic	
transmissions	measurements,	 labeled	as	UT_	0,	UT_1	and	UT_2,	and	marked	by	arrows	in	
Figure	 6.55.	 	 During	 the	 suite	 of	 acoustic	 transmissions	 events	 (called	 auto‐calibration)	
each	 sensor	 operated	 as	 a	 sender	 of	 elastic	waves,	 triggered	 by	 a	 450	 V	 electrical	 pulse	
provided	 by	 the	 Vallen	 System.	 	 All	 other	 sensors	 received	 the	 elastic	 wave	 signal.	
Measured	 Acoustic	 Emission	 (AE)	 and	 Ultrasonic	 Transmission	 (UT)	 signals	 were	
separated	automatically.	 	Evaluation	of	the	P‐wave	velocities	along	different	transmission	
traces	was	 performed.	Unfortunately,	 during	pressurization	 of	 the	 block	 during	 the	 time	
between	UT_0	and	UT_1	measurements,	 the	connection	to	12	sensors	was	 lost.	 	Post‐test	
analysis	 of	 the	 block	 indicated	 that	 these	 were	 sheared	 by	 an	 unexpected	 extrusion	 of	
polyurethane	 sealing	 (Figure	 6.565).	 For	 the	 current	 test,	we	 analyzed	 acoustic	 emission	
and	ultrasonic	transmission	data	collected	by	the	remaining	26	sensors	of	the	original	38	
sensors.	
	 	

																																																								
5 We have now implemented a method with tension releasing loops, to minimize the risk of shearing cables in the 
future. 
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Figure 6.56. Photo of cables broken during block pressurization. 

	

	

Figure 6.57. Velocity (km/s) of P‐wave propagation along multiple paths inside the testing 
vessel. a) unstressed condition (UT_0); b) E‐W Stress 2450 psi (UT_1); and c) E‐W Stress 1000 

psi (UT_2). 

Figure	6.57	shows	histograms	of	P‐wave	velocities	of	auto‐calibration	results	measured	by	
26	sensors	at	the	moments	marked	as	UT_0,	UT_1	and	UT_2	in	Figure	6.55.	Results	show	an	
increase	 in	 the	 average	 P‐wave	 velocity	 with	 stress.	 One	 of	 the	 main	 reasons	 of	 the	
measured	 stress	 dependence	 of	 velocity	 is	 the	 closure	 of	 the	 open	 fractures	 and	 the	
corresponding	decrease	in	acoustic	attenuation.	Analysis	of	the	waveforms	recorded	before	
application	of	 stresses	 (moment	UT_0)	 shows	 that	 because	of	 high	 attenuation	 along	 the	
majority	of	ray‐paths,	it	was	not	possible	to	detect	the	wave	first	motion	or	measure	the	P‐
wave	velocity	 reliably,	 along	many	 ray‐paths.	However,	 along	 some	 ray	paths,	 successful	
picking	 of	 P‐wave	 first	motion	was	 possible.	 Results	 of	 velocity	measurements	 along	 10	
selected	 ray‐passes	 crossing	 the	 block	 in	 horizontal	 direction,	 under	 unstressed	 and	
stressed	conditions,	are	shown	in	Figure	6.58.	
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Figure 6.58. a) and d) Variation of P‐wave velocities measured along 10 selected traces during 
the stressing of the block; b) and e) synoptic pictures demonstrating North View of selected 
traces; c) and f) synoptic pictures demonstrating Top View of selected traces. Upper row: 

sensors 3, 8 and 11 are transmitters; lower row: sensors 12 and 13 are transmitters of elastic 
waves. 

Figure	 6.58	 shows	 that	 along	 a	 few	 ray‐paths	 with	 low	 acoustic	 attenuation,	 mostly	
oriented	parallel	to	bedding	direction,	stress	sensitivity	in	this	Niobrara	Shale	block	is	very	
small.	 All	 selected	 traces	 show	 velocity	 variations	within	 1%.	 This	 is	 only	 slightly	 above	
accuracy	of	 the	 velocity	measurements,	 estimated	 as	0.5%.	 	 In	 a	 summary,	 the	 following	
conclusions	are	noted.		
	

(a) The	 stress	 sensitivity	 in	 velocity,	 measured	 along	 specific	 traces	
propagating	 through	 the	 unfractured	 rock	 matrix,	 is	 small.	 Velocity	
variations	on	the	majority	of	the	selected	traces	are	within	1%.		

(b) Stress	sensitivity	of	acoustic	velocity	propagating	through	bedding	planes	
is	 high.	 	 Effective	 velocities	 in	 the	 range	 of	 2‐5	 km/s	were	 observed	 in	
ambient	 conditions	 and	 in	 the	 range	3.6‐5	km/s	 ‐	 after	 the	 stressing	up	
the	rock.	

	
Using	 results	 of	 ultrasonic	 transmission	measurements	 UT_2	 obtained	 under	 final	 stress	
condition	 (T‐B	Stress	=	4500	psi;	N‐S	Stress	=	3000	psi;	E‐W	Stress	=	1000	psi),	 and	 the	
analysis	 of	 300	 traces,	 results	 of	 the	 measured	 distance	 between	 sensors	 and	 the	
corresponding	distance	evaluated	via	the	measured	onset	time,	are	shown	in	Figure	6.59.	
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Figure 6.59. Distance between sensors versus observed onset time. The slope characterizes the 
mean value of homogenized velocity. 

The	slope	of	the	best	fit	line	of	these	data	set	provides	the	median	homogenized	velocity	of	
the	rock,	which	is	equal	to	4538	m/s.	Since	there	was	no	AE	sensors	installed	on	the	bottom	
of	 the	 block,	 it	 was	 not	 possible	 to	 measure	 vertical	 components	 of	 P‐wave	 velocity.	
Therefore,	 we	 are	 forced	 to	 assume	 that	 velocity	 model	 is	 close	 to	 isotropic.	 As	 a	
consequence	of	this	assumption,	the	error	of	AE	hypocenter	localization	could	be	larger	in	
vertical	 direction.	 However	 the	 distribution	 of	 AE	 events	 in	 horizontal	 direction	 was	
captured	more	accurately.	

6.2.7.3 	Analysis	and	Localization	of	Acoustic	Events		

Localization	 of	 acoustic	 emission	 events	 is	 based	 on	 the	 identification	 of	 P‐wave	 onset	
times,	using	technique	commonly	applied	in	seismology	(Akaike	Information	Criteria	‐‐	AIC	
technique6,	and	then	iteratively	solving	the	equations,	which	find	the	common	source	of	the	
events	measured	by	multiple	transducers.		This	is	done	by	minimization	of	residuals	of	the	
time‐distance	relationship	using	SIMPLEX	minimization	technique7.	 	The	present	solution	
is	 obtained	 using	 a	 homogeneous	 velocity	 model.	 The	 error	 associated	 with	 identifying	
each	 acoustic	 emission	 source	 location	 is	 given	 by	 a	 localization	 uncertainty	 parameter.		
This	is	equal	to	the	remaining	residual	of	hypocenter	localization.	In	the	current	test	only	
AE	 events	 satisfying	 a	 remaining	 residual	 less	 than	 5	 µs	were	 used.	 	 This	 value	 roughly	
corresponds	 to	 24	mm	 spatial	 accuracy	 of	 AE	 hypocenter	 localization	 (or	 ±	 12	mm).	 All	
these	 AE	 events,	 localized	 with	 lower	 accuracy,	 were	 rejected.	 Thus,	 noisy	 sensors	 or	
sensors	with	weak	 signals	 are	 automatically	 excluded	 from	 the	 analysis.	 	 The	minimum	
number	of	sensors	required	for	localization	is	8,	though	the	larger	the	number	of	sensors,	
the	 larger	 accuracy	 and	 error	 quantification.	 	 After	 localization	 and	 analysis	 of	 the	
convergence	of	the	solution,	spatial	locations	(x,	y,	z)	of	the	successful	events	are	tabulated	
for	subsequent	analysis	and	visualization.	
	
																																																								
6 http://en.wikipedia.org/wiki/Akaike_information_criterion) 
7 http://en.wikipedia.org/wiki/Simplex_algorithm 
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The	time	history	of	the	applied	bore	pressure	and	the	measured	volumes	of	the	East‐West,	
North‐South	flat	jacks	and	the	Top‐Bottom	actuator,	are	presented	in	Figure	6.60.		
	

 

Figure 6.60.  Bore pressure (red), cumulative number of localized AE (black), East‐West flat jack 
volume (green), North‐South flat jack volume (pink) and Top‐Bottom Actuator volume (blue). 
All parameters are plotted versus loading time, separation of loading stages (a)‐(e) is shown by 

vertical dash lines. 

The	 cumulative	number	of	 localized	AE	 is	 shown	 in	Figure	6.60	 (black).	One	 can	 see	 the	
slight	 increase	 of	 AE	 activity,	 about	 2	 seconds	 before	 peak	 of	 borehole	 pressure	 (red).	
Based	 on	 the	 analysis	 of	mechanical	 parameters,	 the	 loading	 process	was	 divided	 into	 7	
stages	labeled	(a)	–	(g).	Stage	(a)	characterizes	the	initial	part	of	injection.	Here	we	see	no	
indication	 of	 fracturing.	 During	 the	 stage	 (b)	 we	 observe	 volumetric	 deformation	 of	 the	
rock	 in	 East‐West	 direction,	 it	 coincides	 with	 increase	 of	 AE	 rate	 and	with	 the	 onset	 of	
hydraulic	 fracture	 initiation.	 During	 the	 stage	 (c)	 we	 observe	 continuation	 of	 block	
dilatancy	in	East‐West	direction	(green),	indicating	hydraulic	fracture	opening.		The	onset	
of	block	dilatancy	in	North‐South	direction	(pink),	 is	most	likely	related	to	the	opening	of	
some	preexisting	fractures	oriented	parallel	to	bedding	planes	(East‐West	direction).		This	
may	be	caused	by	the	application	of	bore	pressure	above	the	maximum	horizontal	stress	of	
3000	 psi.	 The	 onset	 of	 Top‐Bottom	 volumetric	 deformation	 (blue)	 during	 the	 stage	 (c)	
indicates	 block	 shortening	 in	 the	 vertical	 direction	 and	 is	 related	 to	 hydraulic	 fracture	
propagation	and	opening	 in	 the	horizontal	direction.	After	breakdown,	during	stages	(d)‐
(e),	we	observed	continuation	of	block	shortening	in	vertical	direction	(blue)	and	extension	
in	 both	 horizontal	 directions,	 indicating	 opening	 of	 hydraulic	 fracture	 (green	 curve)	 and	
most	likely,	some	orthogonally	oriented	preexisted	fractures	(pink	curve).	During	the	very	
last	stages	(f)‐(g),	we	observed	compaction	of	block	 in	North‐South	direction,	most	 likely	
indicating	 closure	 of	 preexisting	 fractures	 by	 maximum	 horizontal	 stress	 caused	 by	
decrease	of	bore	pressure	below	3000	psi	level.	It	is	worth	mentioning	that	during	stages	
(f)‐(g)	the	bore	pressure	was	above	the	minimum	horizontal	stress	(1000	psi),	and	caused	
the	 continuation	 of	 hydraulic	 fracture	 opening	 indicated	 by	 the	 volumetric	 deformation	
observed	in	the	East‐West	direction	(green	curve).	
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6.2.7.4 	Acoustic	Emission	During	Initial	Stage	of	Fluid	Injection	(Stage	a)	

Figure	 6.61	 (a)‐(c)	 show	 three	 orthogonal	 projections	 of	 AE	 hypocenters,	 and	 Figure	
6.61(d)	 shows	 the	 time	 progression	 of	 the	 borehole	 pressure	 (red),	 the	 rate	 of	 acoustic	
emissions	 (pink)	 and	 the	 volumetric	 displacement	 along	 the	 EW	 direction	 (green).	 	 The	
highlighted	portion	of	these	curves	(in	colors	violet	to	red)	indicates	the	time	interval	of	the	
stage.	The	 color	 scheme	 is	used	 to	define	 the	 sequence	of	AE	events	 in	 time:	 from	violet	
(earliest)	 to	 red	 (latest).	 The	 AE	 hypocenters	 recorded	 before	 pressurization	 of	 the	
borehole	lay	almost	uniformly	distributed	within	the	block,	with	a	bit	higher	activity	in	the	
upper	part	of	the	block	(pink	–	blue	color	of	hypocenter	dots).	AE	clusters	near	the	top	and	
North	faces	of	the	block	may	indicate	the	effect	of	the	loading	action	on	these	surfaces.		
	

 

Figure 6.61. (a)‐(c) Three orthogonal projections of AE hypocenters; d) Loading history recorded 
during Stage (a) of injection. The color of the dots corresponds to the time sequence of AE 

events appearance according to the color bar at the bottom of the figure. 

To	enhance	the	rendering	of	AE	hypocenters,	we	calculated	the	density	of	these	AEs	within	
a	sliding	cube	of	dimensions	10	x	10	x	10	mm.	These	results	are	subsequently	calculated	as	
a	normalized	fraction	of	the	maximum	number	of	events	counted	per	sliding	cube,	and	then	
plotted	on	each	orthogonal	projection.	The	section	of	the	borehole,	where	the	perforations	
were	 located,	 is	marked	 by	 a	 pink	 rectangle	 (dashed	 lines).	 Results	 are	 shown	 in	 Figure	
6.62		and	demonstrate	the	slightly	higher	AE	density	in	the	vicinity	of	the	open	hole	section	
of	the	borehole.	This	is	most	likely	related	to	the	presence	of	perforations	that	create	stress	
concentrators.	
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Figure 6.62.  (a)‐(c) Three orthogonal projections of AE hypocenters; d) Loading history 
recorded during Stage (a) of Injection. Original AE hypocenter data are the same as presented 

in Figure 6.61 (a)‐(c). 

6.2.7.5 	Acoustic	Emission	During	the	Stage	of	Hydraulic	Fracture	Initiation	(Stage	b)	

Similarly	 to	 the	 stage	 (a),	 Figure	 6.63	 (a)‐(c)	 show	 three	 orthogonal	 projections	 of	 AE	
hypocenters,	and	Figure	6.63	(d)	shows	the	time	progression	of	the	borehole	pressure,	the	
volumetric	deformation	along	the	EW	direction,	and	the	cumulative	number	of	AE.		In	the	
selected	time	window	(marked	by	the	colors	from	violet	to	red),	the	borehole	pressure	data	
shows	a	slight	deviation	from	a	linear	increase	and	the	cumulative	AE	data	shows	a	slightly	
higher	density	of	AE	hypocenters	near	the	bottom	of	the	borehole,	where	the	perforations	
are	located.	This	behavior	coincides	with	the	onset	of	East‐West	flat	jack	volume	decrease,	
which	indicates	hydraulic	fracture	(HF)	initiation	and	beginning	of	fracture	opening.		
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Figure 6.63.  (a)‐(c) Three orthogonal projections of AE hypocenters; d) Loading history 
recorded during stage (b) of injection. The color of the dots corresponds to the time sequence 

of AE events appearance according to the color bar at the bottom of the figure. 

 

Figure 6.64.  Three orthogonal projections of AE hypocenter normalized density calculated for 
the stage (b) of injection. Original AE hypocenter data are the same as presented in Figure 6.63 

(a)‐(c). 
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The	AE	density	maps	presented	in	Figure	6.64	confirm	the	appearance	of	AE	clustering	in	
the	vicinity	of	perforation	and	fracture	initiation	during	the	stage	(b).	

6.2.7.6 	Acoustic	Emission	During	the	Stage	of	Fracture	Propagation	(Stage	c)	

Similarly	 to	 the	previous	stages,	Figure	6.65	(a)‐(c)	show	three	orthogonal	projections	of	
AE	hypocenters,	and	Figure	6.65	(d)	shows	the	time	progression	of	the	borehole	pressure,	
the	volumetric	deformation	along	the	EW	direction,	and	the	cumulative	number	of	AE.	 In	
the	 selected	 time	window	 (marked	 by	 the	 colors	 from	 violet	 to	 red),	 the	 data	 shows	 an	
additional	 increase	of	AE	activity,	 indicating	 fracture	propagation	 in	 the	Top‐Bottom	and	
North‐South	 directions.	 This	 process	 coincides	 with	 a	 decrease	 in	 East‐West	 flat	 jack	
volume	 and	 with	 the	 onset	 of	 North‐South	 flat	 jack	 volume	 decrease,	 indicating	 block	
dilatancy	in	both	horizontal	directions	during	the	stage	(c).	Note	that	during	this	stage	the	
value	 of	 bore	 pressure	was	 above	 the	maximum	horizontal	 stress,	 therefore,	 the	 sample	
extension	 in	 North‐South	 direction	 is	 most	 likely	 related	 to	 the	 fluid	 penetration	 into	
preexisting	fractures	oriented	parallel	to	the	bedding	planes	(East‐West	direction).	
	
A	 map	 of	 AE	 hypocenter	 density	 (Figure	 6.66)	 highlights	 the	 formation	 of	 a	 hydraulic	
fracture	propagating	 in	 the	North‐South	direction	 and	having	 a	 pancake‐like	 shape	 (East	
View,	 Figure	 6.66b),	 parallel	 to	 the	 wellbore.	 AE	 analysis	 shows	 that	 at	 the	 moment	 of	
breakdown	(at	 the	end	of	 stage	 (c))	 the	hydraulic	 fracture	has	almost	 reached	 the	North	
and	South	faces	of	the	block.		
	

 

Figure 6.65.  (a)‐(c) Three orthogonal projections of AE hypocenters; d) Loading history 
recorded during Stage (c) of Injection. The color of the dots corresponds to the time sequence 

of AE events appearance according to the color bar at the bottom of the figure. 
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Figure 6.66.  Three orthogonal projections of AE hypocenter normalized density calculated for 
the stage (b) of injection. Original AE hypocenter data are the same as presented in Figure 6.65 

(a)‐(c). 

6.2.7.7 	Acoustic	Emission	After	Breakdown	(Stages	d‐h)	

Right	after	the	breakdown	moment	during	the	stage	(d)	we	observed	the	appearance	of	AE	
activity	localized	at	the	distance	of	about	70‐90	mm	from	the	North	face	of	the	block.		These	
events	extended	slightly	towards	the	West	face	of	the	block,	as	indicated	in	Figure	6.68,	and	
also	on	the	AE	map	of	Figure	6.69.	At	the	beginning	of	the	stage	(d)	the	bore	pressure	was	
above	the	intermediate	stress,	in	the	North‐South	direction.		The,	significant	decrease	of	the	
North‐South	 flat	 jack	 volume	 indicated	 sample	 extension	 in	 North‐South	 direction,	
therefore,	most	likely,	the	AE	activity	localized	near	the	North	face	of	the	block	is	related	to	
the	opening	of	preexisting	fractures	parallel	to	the	bedding	direction	located	nearby.	This	
assumption	also	could	be	supported	by	analysis	of	post‐test	photos	of	the	block,	indicating	
branching	of	hydraulic	 fracture	propagating	northward,	and	also	by	 the	opening	of	 some	
orthogonal	fractures	visible	on	the	top	face	of	the	block	(Figure	6.67).		
	
Analysis	of	AE	activity	registered	during	the	next	stage	(e)	of	injection	indicates	extension	
of	this	AE	cloud	eastwards,	upwards	and	downwards	(Figure	6.70	and	Figure	6.71).	At	the	
end	of	stage	(e),	the	AE	cloud	almost	reached	the	bottom	of	the	block	and	it	coincided	with	
the	minimum	value	of	the	North‐South	flat	jack	volume,	indicating	highest	extension	of	the	
block	in	the	North‐South	direction.		Note	that	after	the	end	of	stage	(e),	the	bore	pressure	
flattened	at	 the	 level	below	 the	 intermediate	 stress,	 and	above	 the	minimum	stress.	This	
behavior	most	likely	indicates	water	seepage	off	the	block	at	almost	constant	rate.		
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Figure 6.67.  Top view photo of fractured sample. 

	

 

Figure 6.68.  (a)‐(c) Three orthogonal projections of AE hypocenters; d) Loading history 
recorded during Stage (d) of Injection. The color of the dots corresponds to the time sequence 

of AE events appearance according to the color bar at the bottom of the figure. 
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Figure 6.69.  Three orthogonal projections of AE hypocenter normalized density calculated for 
stage (d) of injection. Original AE hypocenter data are the same as presented in Figure 6.68 (a)‐

(c). 

 

Figure 6.70.  (a)‐(c) Three orthogonal projections of AE hypocenters; d) Loading history 
recorded during Stage (e) of Injection. The color of the dots corresponds to the time sequence 

of AE events appearance according to the color bar at the bottom of the figure. 
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Figure 6.71.  Three orthogonal projections of AE hypocenter normalized density calculated for 
stage (e) of injection. Original AE hypocenter data are the same as presented in Figure 6.70 (a)‐

(c). 

During	 the	 next	 stage	 (f)	 we	 observed	 farther	 extension	 of	 the	 AE	 cloud	 eastwards	 and	
westwards	(Figure	6.73a).	The	appearance	of	 the	AE	cloud	at	 the	South	 face	of	 the	block	
(Figure	6.73b	and	Figure	6.73c)	indicates	that	at	the	end	of	stage	(f)	the	hydraulic	fracture	
approached	 the	 South	 face	 of	 the	 block.	 Note	 that	 during	 the	 stage	 (f)	 we	 observed	 an	
increase	of	the	North‐South	flat	jack	volume	(Figure	6.73d,	pink	curve),	indicating	closure	
of	preexisting	cracks	located	near	the	North	face	of	the	block,	and	oriented	parallel	to	the	
North	 face.	At	 the	same	time	we	observed	 farther	decrease	of	East‐West	 flat	 jack	volume	
(Figure	 6.73d,	 green	 curve),	 indicating	 farther	 opening	 of	 hydraulic	 fracture.	 During	 the	
very	last	analyzed	Stage	(g)	we	observed	farther	spreading	of	AE	clouds	near	the	North	and	
South	faces	of	the	block	
Figure	6.74	and	Figure	6.75),	farther	increase	of	North‐South	flat	jack	volume,	and	decrease	
of	 East‐West	 flat	 jack	 volume	 (Figure	 6.75d).	 	 This	 indicates	 the	 closure	 of	 a	 preexisting	
fracture	and	opening	of	a	hydraulic	fracture.	
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Figure 6.72. (a)‐(c) Three orthogonal projections of AE hypocenters; d) Loading history recorded 
during Stage (f) of Injection. The color of the dots corresponds to the time sequence of AE 

events appearance according to the color bar at the bottom of the figure. 
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Figure 6.73.  Three orthogonal projections of AE hypocenter normalized density calculated for 
the stage (f) of injection. Original AE hypocenter data are the same as presented in Figure 6.72 

(a)‐(c). 

 

Figure 6.74.  (a)‐(c) Three orthogonal projections of AE hypocenters; d) Loading history 
recorded during Stage (g) of Injection. The color of the dots corresponds to the time 
sequence of AE events appearance according to the color bar at the bottom of the 
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figure. 

 

Figure 6.75.  Three orthogonal projections of AE hypocenter normalized density calculated for 
the stage (g) of injection. Original AE hypocenter data are the same as presented in  

Figure 6.74 (a)‐(c). 

6.2.7.8 	Periodic	Monitoring	of	P‐wave	Velocity	and	Amplitude	during	the	Test	

Additional	 information	 about	 the	process	 of	 hydraulic	 fracturing	 could	 be	obtained	 from	
the	 analysis	 of	 ultrasonic	 transmission.	 Acoustic	 transmissions	 were	 performed	 every	 5	
seconds	during	 the	 initial	 stage	of	 injection	and	 every	2	 seconds	after	 the	bore	pressure	
approached	1000	psi.	However,	the	very	high	injection	rate	of	1000ml/min	caused	a	very	
high	 AE	 activity	 of	 approximately	 240	 localized	 AE	 events	 per	 second,	 after	 hydraulic	
fracture	initiation.	This	value	of	AE	activity	is	very	close	to	the	maximum	rate	of	successful	
registration	 by	 the	 Vallen	 System.	 Such	 a	 high	 AE	 activity	 created	 problems	 in	 the	
acquisition	 and	 interpretation	 of	 ultrasonic	 transmission	 events,	 which	 overlapped	with	
the	high	AE	activity.	Often,	the	Vallen	system	was	triggered	by	AE	signal	and	blocked	during	
ultrasonic	 transmissions,	 in	 other	 cases	 the	 onset	 of	 ultrasonic	 transmission	 signals	was	
hidden	inside	the	high	amplitude	ringing	of	the	block,	caused	by	frequent	AE	signals.		



Sustaining	Fracture	Area	and	Conductivity	 Page	205	
	

 

Figure 6.76.  a) Time history of mechanical parameters and amplitude of localized AE events 
(pink color dots); b) P‐wave velocity measured by using sensor 8 as transmitter and sensors 17, 

19, 20, 21, 23 and 24 as receivers; c) P‐wave first motion amplitude vs time. 

Figure	 6.76a	 shows	 a	 comparison	 of	 localized	 AE	 amplitude	 (pink	 color	 dots)	 and	
mechanical	parameters,	during	the	fluid	injection	stage	that	indicates	significant	increase	of	
AE	amplitude	after	 the	onset	of	hydraulic	 fracturing	and	also	by	 the	absence	of	 localized	
low	amplitude	AE	events	during	 the	 fracture	propagation	stage.	Ultrasonic	 transmissions	
were	measured	 reliably	 every	2	 seconds	 in	numerous	directions	before	 the	beginning	of	
hydraulic	fracture	propagation	(Figure	6.76	b	and	c).	However,	after	the	onset	of	high	AE	
activity,	successful	ultrasonic	transmission	registration	was	significantly	less	frequent	and	
less	accurate,	because	of	the	often	missing	P‐wave	arrivals	inside	a	high	level	background	
AE	 signals.	 Nonetheless,	 we	 observed	 a	 decrease	 of	 effective	 P‐wave	 velocity	 during	
hydraulic	 fracture	propagation	 (Figure	6.76	b),	however	 this	decrease	was	related	 to	 the	
missing	 of	 the	 very	 first	 P‐wave	 arrival,	 within	 the	 high	 amplitude	 background	 noise,	
causing	significant	 increase	of	 the	automatically	picked	P‐wave	amplitude	(Figure	6.76c).	
Therefore	 and	 unfortunately,	 reliable	 ultrasonic	 measurements	 could	 not	 be	 performed	
during	the	time	of	very	high	AE	activity,	induced	by	fluid	injection	at	a	rate	of	1000	ml/s.	
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6.2.7.9 	Summary	(Stages	a	through	g)	

In	 summary	 the	 AE	 measurements	 and	 localization	 analysis,	 during	 fluid	 injection,	
provided	us	with	the	following	understanding:		
	

 Before	the	beginning	of	borehole	pressurization	we	observed	AE	activity	spread	in	
the	upper	part	of	the	stressed	block.		These	were	not	rock	fracturing	events	but	rock	
complaining	 events,	 associated	 to	 the	 contact	 between	 the	 rock	 external	 surfaces	
and	the	loading	flatjacks	After	borehole	pressurization	we	observed	the	appearance	
of	AE	activity	localized	in	the	vicinity	of	the	perforations,	as	one	would	anticipate	for	
a	fracture	initiation	event.	

 The	onset	of	fracture	initiation	was	detected	by	the	AE	analysis	reasonably	well,	and	
occurred	 at	 a	 bore	 pressure	 below	 the	 breakdown.	 This	 onset	 of	 fracturing	 is	
consistent	across	the	various	measurements	of	volumetric	deformation,	cumulative	
AE	and	AE	localization.	

 AE	analysis	confirmed	the	formation	of	a	planar	hydraulic	fracture,	during	about	2	
seconds,	with	pancake‐like	 shape	oriented	parallel	 to	 the	wellbore,	 parallel	 to	 the	
maximum	 horizontal	 stress	 direction,	 and	 perpendicular	 to	 bedding,	 In	 this	
condition,	and	prior	to	breakdown,	the	fracture	almost	reached	the	North	and	South	
faces	of	the	block.	

 During	 the	 later	 stages	of	 injection,	AE	analysis	 confirmed	 the	 formation	of	 an	AE	
cloud	 near	 the	 North	 face	 of	 the	 block,	 which	 coincided	with	 the	 decrease	 in	 the	
flatjack	volume	indicating	the	opening	of	orthogonal	fractures	oriented	in	East‐West	
direction.		

 The	moment,	when	AE	 activity	 indicated	 that	 the	 orthogonal	 fracture	 approached	
the	bottom	face	of	the	block,	coincides	with	the	maximum	extension	of	the	block	in	
North‐South	direction	as	 indicated	by	volumetric	deformation	measurements.	 	We	
assume	 that	 at	 this	moment	 the	 fluid	 front	 approached	 the	 block	 boundaries	 and	
afterwards	 we	 observed	 seepage	 of	 the	 fracturing	 fluid	 through	 the	 opened	
hydraulic	fracture.	

 Reliable	ultrasonic	measurements	could	not	be	performed	because	of	the	very	high	
rates	of	AE	activity	induced	by	rapid	fluid	injection	at	1000	ml/s.	

	

6.2.8 AE Results Registered during Proppant Injection 

6.2.8.1 Stages	of	Proppant	Injection	

Time	history	of	applied	bore	pressure,	measured	volumes	of	fluid	inside	East‐West,	North‐
South	 flat	 jacks,	 Top‐Bottom	 actuator,	 as	 well	 as	 variation	 of	 AE	 event	 amplitudes	 are	
presented	 in	 	Figure	6.77.	Whole	proppant	 injection	 interval	was	separated	 into	3	stages	
determined	as	follows:	during	stage	(a)	proppant	was	pumped	using	MOYNO	pump	with	6	
l/min	injection	rate;	during	the	stage	(b)	MOYNO	pump	was	stopped	and	during	the	stage	
(c)	East‐West	stress	was	increased	from	50	up	to	500	psi.		
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Volumetric	deformation	indicates	that	during	the	stage	(a)	the	block	extended	in	horizontal	
directions	‐	East‐West	and	North‐South	(green	and	pink	curves	in		Figure	6.77.).		

 
Figure 6.77. Bore pressure  (red), amplitude of  localized AE  (blue), East‐West  flat  jack volume 
(green), North‐South  flat  jack  volume  (pink) and East‐West  stress  (black). All parameters are 
plotted versus loading time, separation of loading stages (a)‐(c) is shown by vertical dash lines. 
 
During	 the	 stage	 (a)	 very	 high	 rate	 of	 Vallen	 System	 triggering	was	 observed	with	 high	
amplitude	of	recorded	events	(blue	dots	in		Figure	6.77.),	however	post‐test	analysis	of	AE	
demonstrated	that	MOYNO	pump	produced	very	high	amplitude	background	noise,	making		
it	 difficult	 to	 localize	 AE	 events	 and	 to	 measure	 velocity	 and	 amplitude	 of	 ultrasonic	
transmissions	reliably.	
	

	

Figure 6.78.  Representative example of waveforms recorded during the stage (a) at the 
moment of ultrasonic transmission by channel 8. 

Waveforms	presented	 in	Figure	6.78	 show	 that	during	 the	 stage	 (a)	very	high	amplitude	
non‐stop	vibrations	were	recorded	by	all	channels,	making	difficult	reliable	estimation	of	
onset	time	of	elastic	waves.	Most	likely	these	non‐stop	vibrations	were	related	to	very	high	
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flow	rate	through	the	hydraulic	fracture	and	bead	pack.	For	that	reason	the	stage	(a)	was	
excluded	from	AE	analysis.	

6.2.8.2 AE	Results	Registered	during	the	Stage	(b)	

Right	 after	 interruption	 of	 MOYNO	 pump	 operation,	 high	 amplitude	 background	 noise	
disappeared,	 and	 successful	 AE	 localization	 became	 possible.	 	 Figure	 6.79	 shows	
localization	of	AE	events	and	Figure	6.80	–	mapping	of	AE	activity,	indicating	clustering	of	
AE	events	in	the	center	and	upper	part	of	the	block.	Side	view	projections	(Figure	6.79a	and	
Figure	6.80a)	 show	 that	AE	events	 are	 localized	 in	 the	plane,	 slightly	 tilted	 from	vertical	
direction,	position	of	orientation	of	 this	plane	 is	 in	good	agreement	with	actual	hydraulic	
fracture	surface	captured	by	post‐test	photos.	At	the	very	beginning	of	the	stage	(b)	bore	
pressure	 dropped	 to	 zero	 very	 fast	 and	 during	 the	 whole	 stage	 (b),	 all	 mechanical	
parameters	 (stresses	 and	 deformation)	were	 almost	 constant.	 However,	 AE	 activity	 was	
very	high	for	at	least	5	minutes	after	the	interruption	of	MOYNO	pump,	it	was	most	likely	
related	to	the	process	of	proppant	readjustment	and	embedment	 into	the	rock.	Note	that	
AE	activity	 is	higher	 in	 the	upper	part	of	 the	rock,	 this	 is	 in	a	very	good	correspondence	
with	post‐test	analysis	of	the	fractured	surface	roughness.	Also,	Figure	6.79b	shows	that	AE	
activity	is	higher	in	the	vicinity	of	the	borehole.	Most	likely,	it	is	related	to	the	thicker	layer	
of	 proppant	 pack	 near	 the	 borehole,	 this	 assumption	 is	 supported	 by	 post‐test	
measurements	of	the	proppant	weight	measured	in	different	zones	of	the	fractured	surface.	
Therefore,	 we	 can	 conclude	 that	 AE	 is	 very	 reliable	 tool	 to	 investigate	 a	 proppant	
placement	process,	it	allows	to	highlight	areas	of	the	rock,	where	proppants	are	placed,	and	
generate	thousands	of	powerful	signals	by	holding	load.		
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Figure 6.79.  (a)‐(c) Three orthogonal projections of AE hypocenters; d) Loading history 
recorded during Stage (b) of proppant injection. The color of the dots corresponds to the time 
sequence of AE event appearances according to the color bar at the bottom of the figure. 

	

 

Figure 6.80.  (a)‐(c) Three orthogonal projections of AE hypocenters; d) Loading history 
recorded during Stage (b) of proppant injection. The color of the dots corresponds to the time 
sequence of AE event appearances according to the color bar at the bottom of the figure. 



Sustaining	Fracture	Area	and	Conductivity	 Page	210	
	

6.2.8.3 AE	Results	Registered	during	the	Stage	(c)	

Right	after	beginning	of	East‐West	stress	increase	(in	the	direction	orthogonal	to	hydraulic	
fracture	plane),	high	 increase	of	AE	activity	was	observed.	Figure	6.81	(a)‐(c)	show	three	
orthogonal	 projection	 of	 AE	 events	with	 the	 highest	 amplitude,	 and	 one	 can	 see	 that	AE	
events	 are	more	 uniformly	 distributed	 in	 the	 plane	 of	 hydraulic	 fracture	 (Figure	 6.81b)	
than	 in	the	previous	stage	(Figure	6.79b).	However,	clustering	of	AE	activity	 in	 few	spots	
could	be	seen	in	Figure	6.81,	most	likely	zones	of	increased	AE	activity	could	be	related	to	
the	roughness	of	created	hydraulic	fracture	surface	and	distribution	of	proppants	in	some	
patches	holding	the	load	orthogonal	to	the	fractured	surface.		
	

 

Figure 6.81.  (a)‐(c) Three orthogonal projections of AE hypocenters; d) Loading history 
recorded during Stage (c) of proppant injection. The color of the dots corresponds to the time 
sequence of AE event appearances according to the color bar at the bottom of the figure. 

These	clusters	of	AE	activity	could	be	seen	in	more	details	on	the	AE	mapping	presented	in	
Figure	6.82b.	North	side	view	of	AE	activity	in	Figure	6.82a	highlights	the	whole	surface	of	
hydraulic	 fracture,	 this	 image	was	 found	 in	a	good	agreement	with	the	post‐test	photo	of	
North	 face	 of	 the	 block,	 also	 demonstrating	 that	 orientation	 of	 fracture	 surface	was	 not	
precisely	vertical,	but	slightly	tilted.	Therefore,	we	can	conclude	that	AE	registration	during	
the	stressing	of	the	block	can	provide	very	useful	 information	about	propant	distribution	
over	the	whole	fracture	surface.	We	assume	that	clusters	of	AE	activity	could	be	related	to	
the	patches	of	proppant	distribution.				
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Figure 6.82.  (a)‐(c) Three orthogonal projections of AE hypocenters; d) Loading history 
recorded during Stage (c) of proppant injection. The color of the dots corresponds to the time 
sequence of AE event appearances according to the color bar at the bottom of the figure. 

6.2.9 General Conclusions based on AE Analysis 

 AE	registration	during	hydraulic	fracturing	allows	us	to	draw	the	following	picture	
of	 hydraulic	 fracturing:	 hydraulic	 fracture	 was	 initiated	 in	 the	 vicinity	 of	
perforations,	 then	 very	 fast,	 during	 less	 than	 2	 seconds,	 propagated	 toward	 the	
North	and	South	boundaries	of	 the	 rock,	 causing	activation	of	preexisting	 fracture	
located	near	 the	North	 face	of	 the	rock.	After	 that	we	observed	propagation	of	AE	
cloud	 at	 first	 toward	 East	 face	 of	 the	 rock,	 then	 westward	 and	 downward,	 most	
likely	 indicating	 position	 of	 the	 water	 front.	 At	 the	 very	 last	 stage	 we	 registered	
appearance	 and	 propagation	 of	 AE	 activity	 near	 the	 South	 face	 of	 the	 rock	 in	 all	
directions,	indicating	propagation	of	fluid	front	along	beads	surrounding	the	rock.				

 AE	registration	after	the	cease	of	proppant	pumping	shows	AE	activity	distributed	in	
the	 upper	 part	 of	 the	 rock	 and	 in	 the	 vicinity	 of	 the	 borehole.	 It	was	most	 likely	
related	to	the	process	of	proppant	readjustment	and	embedment	into	the	rock.	AE	
activity	 distribution	 was	 found	 in	 a	 very	 good	 correspondence	 with	 post‐test	
analysis	of	fractured	surface	roughness.			

 AE	 registration	 during	 the	 stressing	 of	 the	 block	 orthogonally	 to	 the	 hydraulic	
fracture	plane	shows	that	AE	events	are	more	uniformly	distributed	in	the	plane	of	
hydraulic	 fracture	with	some	clustering	of	AE	activity	in	few	spots.	These	zones	of	
increased	AE	activity	could	be	related	to	the	roughness	of	created	hydraulic	fracture	
surface	and	distribution	of	proppants	in	some	patches	holding	the	load	orthogonal	
to	the	fractured	surface.		
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6.3 Discussion and Summary 

The	 objective	 of	 this	 section	 was	 to	 complete	 a	 large‐scale	 laboratory	 test	 of	 hydraulic	
fracturing,	proppant	transport	and	fracture	conductivity	measurement,	to	validate	results	
presented	 in	 previous	 sections,	 and	 have	 a	 better	 reference	 to	 extend	 these	 learnings	 to	
field	operations.		We	used	a	Niobrara	shale	outcrop	block	(approximately	3	ft.	x	3	ft.	x	3ft.)	
representative	of	the	Niobrara	oil	and	gas	producing	formation	to	conduct	the	experiment.		
We	also	conducted	additional	measurements	of	 fracture	conductivity	on	small	samples	of	
Niobrara	shale,	and	compared	these	to	the	measurements	obtained	in	the	large	block.	
	
Large	 block	 experiments	 that	 simulate	 hydraulic	 fracturing,	 proppant	 transport	 and	
fracture	 conductivity	 on	 heterogeneous	 tight	 shales	 are	 difficult	 to	 conduct	 and	 not	
common.	 	 The	 present	 effort	 represents	 a	 unique	 opportunity	 for	 understanding	 the	
various	 components	 of	 the	 process,	 and	 provides	 a	 better	 mental	 picture	 to	 the	
corresponding	processes	occurring	at	depth	and	at	a	field	scale.	 	The	various	components	
of	the	laboratory	testing	process	are	listed	below:	
	

1. Hydraulic	 fracturing	 of	 the	 block	 under	 realistic	 conditions	 of	 in‐situ	 stress	 and	
pumping	 conditions.	 	 The	 fluid	 viscosity	 and	 pumping	 rates	 were	 scaled,	 using	
dimensionless	numbers,	to	represent	a	viscosity	dominated	flow	and	thus	facilitate	
the	development	of	a	planar,	simple	geometry	fracture.	

2. Measuring	fracture	conductivity	to	water	on	the	un‐propped	fracture	as	a	function	
of	the	fracture	closure	stress.	

3. Fracture	 re‐opening	and	proppant	 transport	 (100	mesh	sand)	using	water	at	high	
pumping	rates	as	the	carrying	fluid.	

4. Measuring	 fracture	conductivity	 to	water	on	 the	propped	 fracture	as	a	 function	of	
the	fracture	closure	stress.	

5. Supplementing	 these	 measurements	 with	 acoustic	 emission	 (AE)	 and	 acoustic	
transmission	 (AT)	 measurements,	 and	 with	 a	 comprehensive	 post‐test	
characterization,	 including	 observations	 of	 proppant	 distribution,	 proppant	
embedment	and	created	surface	roughness.			

6. Finally,	 the	 large‐scale	 measurements	 were	 compared	 with	 small	 scale	
measurements,	to	evaluate	the	size	effect	and	to	better	understand	the	processes	at	
in‐situ	conditions.	

	
The	following	summarizes	key	results	from	this	effort.			
	

 A	high	quality	block	sample,	representative	of	an	oil	and	gas	producing,	organic‐
rich,	mudstone	was	prepared	for	this	test.	 	Pre‐test	observation	of	the	external	
surfaces	show	a	representative	amount	of	textural	complexity	that	includes	well	
defined	bedding,	gradual	lithologic	transitions,	presence	of	calcite‐filled	laminae	
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and	 calcite‐filled	 hairline	 fractures,	 presence	 of	 organic‐filled	 slickensides,	 and	
presence	 of	 partings	 oriented	 parallel	 and	 oblique	 to	 bedding.	 	 The	 latter	
occurring	along	planes	of	natural	weakness	(i.e.,	mineralized	hairline	fractures).		
Pre‐test	measurements	of	acoustic	transmission	along	multiple	directions	show	
the	velocity	heterogeneity	associated	 to	 the	 rock	 fabric.	 	Unfortunately,	 during	
the	initial	loading	the	connection	of	12	of	the	36	acoustic	sensors	installed	in	the	
block	were	 lost.	 	 Thus	 results	 had	 to	 be	 interpreted	 based	 on	 a	 homogenized	
velocity	 field,	 with	 the	 corresponding	 loss	 of	 detailed	 velocity	 resolution	 and	
highest	accuracy	localization.	

 One	of	the	main	surprises	during	testing	was	the	strong	effect	of	the	rock	fabric	
on	 fracture	 propagation	 and	 their	 overriding	 control	 on	 local	 fracture	
propagation	and	complexity	over	the	imposed	boundary	conditions	of	stress	and	
flow.	 	 Large	 horizontal	 stress	 contrast,	 high	 viscosity,	 and	 high	 pumping	 rates	
were	 used	 to	 create	 a	 planar	 and	 simple	 geometry	 fracture.	 	 This	 was	
accomplished	 at	 a	 global	 scale.	 	 However,	 weak	 interfaces	 in	 the	 sample	
interacted	strongly	with	the	propagating	hydraulic	 fracture	and	resulted	 in	the	
development	 of	 a	 large	 amount	 of	 local	 fracture	 complexity,	 including	 the	
generation	 of	 multiple	 branching	 and	 stepovers.	 	 This	 resulted	 in	 a	
heterogeneous	 distribution	 of	 fracture	 apertures	 and	 proppant	 concentration.		
The	interaction	of	the	rock	texture	with	the	hydraulic	fracture	was	observed	via	
changes	 in	 the	 flatjack	volumes	during	 injection,	 acoustic	 emission	 localization	
during	 fracture	 closure,	 and	 detail	 post‐test	 observations	 of	 the	 fracture	
geometry.	

 An	 important	 element	 contributing	 to	 this	 complexity	 was	 the	 opening	 and	
subsequent	 closing	 of	 a	 mineralized	 fracture	 oriented	 perpendicular	 to	 the	
direction	 of	 the	 hydraulic	 fracture.	 	 This	 occurrence	 was	 clearly	 seen	 during	
testing.	 	 Its	 effect	 on	 the	 development	 of	 fracture	 branching,	 step‐overs,	 and	
multi‐layered	 fracture	propagation	was	 clearly	 seen	and	 reported	during	post‐
test	 analysis.	 	 These	 interactions	 compounded	 the	 complexity	 of	 the	 AE	
localization	and	the	understanding	of	the	evolution	of	the	fracture	geometry.	

 Re‐fracturing	 and	 proppant	 transport	 with	 water	 at	 high	 pumping	 rates	 was	
completed	 successfully.	 	 This	 allowed	 us	 to	 inject	 a	 relatively	 large	 amount	 of	
proppant	and	observe	the	evolution	of	the	net	pressure	as	a	function	of	proppant	
concentration	 in	 the	 fracture.	 	 Unfortunately,	 the	 proppant	 distribution	 in	 the	
fracture	was	 altered	during	 the	 subsequent	 coring	 operation	 for	 removing	 the	
casing.		Thus	observations	of	proppant	distribution	were	only	possible	along	the	
periphery	of	the	block	and	along	few	locations	in	the	near‐wellbore	region	of	the	
block	where	the	proppant	had	been	left	unaltered.	



Sustaining	Fracture	Area	and	Conductivity	 Page	214	
	

 Fracture	 conductivity	 measurements	 were	 conducted	 under	 un‐propped	 and	
propped	 conditions,	 and	 as	 a	 function	 of	 the	 fracture	 closure	 stress.	 	 Results	
show	that	the	stress	dependence	on	fracture	conductivity	of	the	un‐propped	and	
propped	 large	 fracture	 was	 substantially	 lower	 than	 that	 measured	 on	 the	
smaller	 core	 samples.	 	 This	 was	 expected	 given	 the	 surface	 roughness	 and	
tortuosity	 of	 the	 hydraulic	 fracture.	 	 The	 reduced	 stress	 dependence	 indicates	
that	the	laboratory	measurements	on	small	samples	are	conservative	estimates	
of	 fracture	 conductivity	 on	 large	 scale	 samples	 and	 field‐scale	 hydraulic	
fractures.		This	difference	is	higher	for	the	un‐propped	fractures	and	smaller	for	
the	propped	fractures.	

 Post	test	analysis	indicates	the	presence	of	three	distinct	regions	of	fracturing:	a	
wellbore	region,	connecting	the	wellbore	to	the	fracture,	which	is	characterized	
by	some	degree	of	complexity	and	tortuosity	as	the	hydraulic	fracture	develops	
from	 the	 sand	 blasted	 slots;	 a	 near‐wellbore	 region	 that	 is	 characterized	 by	 a	
reasonably	 planar	 and	 smooth	 fracture,	 and	 a	 far‐wellbore	 fracture,	 near	 the	
edges	 of	 the	 block,	 that	 is	 associated	with	 extensive	 branching	 and	mix‐mode	
fracture	propagation.		

 Post	test	analysis	indicates	limited	to	negligible	amount	of	proppant	crushing	or	
proppant	 embedment.	 	 This	 indicates	 that	 stress	 concentrations	 at	 the	 rock	
proppant	 interface	 did	 not	 exceed	 the	 hardness	 strength	 of	 the	 rock	 or	 the	
strength	of	the	proppant.			

 Post	 test	 analysis	 also	 indicates	 that	 there	 was	 a	 distribution	 of	 proppant	
concentration	 across	 the	 fracture	 that	 was	 in	 line	 with	 the	 distribution	 of	
acoustic	 emission	events	during	 fracture	 closure	and	after	proppant	 transport.		
This	 indicates	 that	 regions	 with	 higher	 proppant	 concentration	 resulted	 in	
higher	acoustic	emission	events	during	closure.	 	Post‐test	observations	showed	
that	 the	 propped	 fracture	 width	 was	 approximately	 1mm;	 this	 is	 in	 line	 with	
calculation	of	maximum	fracture	width	in	the	field.		Given	a	nominal	diameter	of	
0.149	 mm	 for	 100	 mesh	 proppant,	 this	 means	 that	 the	 proppant	 pack	 in	 the	
large‐block	test	can	accommodate	up	to	ten	proppant	layers.		Along	these	paths,	
the	 proppant	 to	 proppant	 interaction	 becomes	 more	 dominant	 than	 the	
proppant‐rock	 interaction,	 and	 the	 proppant	 conductivity	 is	more	 resistant	 to	
changes	in	stress	and	to	rock/fluid	interactions	with	time.			

 Post‐test	 analysis,	 acoustic	 emission	 localization	 and	 volumetric	 deformation	
measurements	 converge	 in	 the	 detection	 of	 fracture	 complexity.	 	 This	 was	
observed	to	be	related	to	the	interaction	of	the	hydraulic	fracture	with	planes	of	
weakness	in	the	sample.	
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Regarding	this	conceptual	hydraulic	fracture	system,	four	regions	can	be	clearly	identified:	
(1)	the	wellbore,	(2)	the	connection	between	the	wellbore	and	the	fracture	system,	(3)	the	
near‐wellbore	fracture,	and	(4)	the	far‐wellbore	fracture	network.		The	particular	nature	of	
these	regions	may	change	depending	on	the	play,	the	reservoir	fabric,	its	relation	to	the	in‐
situ	stress,	and	the	distribution	of	rock	properties.		However,	these	regions	will	always	be	
well	differentiated.	 	Understanding	 the	role	of	each	of	 these	components,	 to	hydrocarbon	
production,	is	fundamental	to	understand	the	dominant	sources	of	loss	of	production,	and	
their	associated	drivers.		For	example,	the	far‐wellbore	region	provides	the	highest	surface	
area	in	contact	with	the	reservoir,	the	lowest	fracture	conductivity,	and	offers	the	highest	
potential	 for	 improving	 productivity,	 by	 preserving	 surface	 area	 and	 improving	 fracture	
conductivity.	 	 Numerical	 simulations	 indicate	 that	 minor	 improvements	 in	 fracture	
conductivity	 in	 this	 region	 result	 in	 substantial	 improvements	 in	 production	 and	 total	
recovery.	 	 In	 contrast,	 the	 near‐wellbore	 region	 provides	 limited	 surface	 area	 in	 contact	
with	the	reservoir.		Because	the	majority	of	the	proppant	may	reside	in	this	region,	this	is	a	
region	 of	 high	 conductivity	 and	 often	 controls	 the	 overall	 production	 of	 the	 stage.		
Numerical	simulations	suggest	that	changes	in	fracture	conductivity	in	this	near‐wellbore	
region,	 even	when	substantial,	do	not	produce	 significant	 changes	 in	production.	 	This	 is	
because	it	 is	already	a	region	of	high	conductivity.	 	The	connection	between	the	wellbore	
and	the	fracture	system	is	a	critical	region	and	is	highly	susceptible	of	losing	connectivity.		
It	 is	also	a	region	of	convergence,	and	thus	a	choking	point.	 	 In	 this	region,	 the	high	 fluid	
velocity,	 during	 fracturing,	 results	 in	 low	proppant	 content,	 and	 this	 condition	 is	 further	
worsen	by	overflushing	at	 the	end	of	 the	 treatment.	 	 Lack	of	 sufficient	proppant	or	poor	
selection	 of	 rock	 quality	 in	 this	 region	 significantly	 increases	 the	 risk	 of	 fracture	 closure	
and	loss	of	stage	production.	 	This	is	so,	 independently	of	the	conditions	of	the	other	two	
regions.		The	wellbore	and	the	type	of	completion	(e.g.,	cased,	open	hole,	perforated,	sand	
blasted)	 defines	 the	 condition	 of	 fracture	 initiation	 and	 influences	 the	 geometry	 of	 the	
connector	 between	 the	 wellbore	 and	 the	 near‐wellbore	 fracture	 system.	 	 The	 wellbore	
location,	 type	 of	 completion,	 presence	 of	 fractures,	 type	 of	 perforations,	 use	 of	 cement	
dissolving	 acids,	 and	 even	 the	 time	 delay	 between	 perforating	 and	 fracturing,	 influence	
fracture	 initiation	and	 its	 initial	 tortuosity.	 	 Ideally	one	would	 like	 to	define	 the	wellbore	
conditions	 of	 fracture	 initiation	 such	 that	 the	 fracture	 connector	 is	 simple,	 planar,	wide,	
and	 provides	 a	 maximum	 connectivity	 between	 the	 wellbore	 and	 the	 near‐wellbore	
fracture	 system.	 	 Unfortunately,	 current	 fracture	 design	 criteria	 are	 defined	 to	 address	
broad	 objectives	 that	 are	 assumed	 to	 improve	 production	 (e.g.,	 rock	 properties,	 in‐situ	
stress,	 percent	 clay,	 presence	 of	 fractures),	 while	 the	 different	 influences	 of	 these	 four	
fracturing	regions	to	the	overall	success	of	the	treatment	is	ignored.	

7.2 Far‐wellbore Region 

Fracture	 containment	 is	 a	 dominant	 concern	 in	 the	 near‐wellbore	 and	 the	 far‐wellbore	
region,	and	is	perhaps	more	important	in	the	latter.		Proppant	transport	to	the	far‐wellbore	
region,	and	obtaining	sufficient	proppant	concentration	to	maintain	fractures	in	this	region	
open,	are	of	highest	concern.		Loss	of	surface	area	is	possibly	the	dominant	problem	in	this	
area.		At	low	proppant	concentrations,	low	fracture	widths,	and	high	stress	concentrations,	
rock/proppant	 interactions	 are	 critical	 to	 define	 weather	 proppant	 embedment	 or	
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America,	 that	 support	 these	 comments.	 	 A	 key	 observation,	 in	 this	 regard,	 is	 that	 low	
viscosity	fluids	injected	at	low	pumping	rates	create	fractures	that	propagate	preferentially	
along	existing	planes	of	weakness,	while	developing	minimal	fracture	width.		Depending	on	
the	rock	fabric	(including	the	presence	of	natural	or	drilling‐induced	fractures,	mineralized	
or	non‐mineralized)	 the	 resulting	geometry	may	be	of	 simple	 fractures	or	 closely	 spaced	
fracture	networks.			
	
The	development	of	longitudinal	fractures	and	orthogonal	transverse	fractures,	resembling	
a	manifold	configuration,	has	also	been	a	common	observation	in	laboratory	testing,	in	this	
connecting	region.		The	presence	or	absence	of	these	appears	to	be	strongly	dependent	on	
the	effectiveness	of	the	perforations.	 	Short	perforation	depths	with	multiple	entry	points	
support	the	generation	of	fractures	that	initiate	longitudinal	to	the	wellbore,	as	dictated	by	
the	local	stress	concentrations.	 	Laboratory	experiments	show	that	these	do	not	turn	into	
the	preferential	transverse	direction.		Instead,	they	appear	to	be	arrested	at	some	distance	
from	 the	wellbore	 and	 be	 intersected	 by	 one	 or	many	 transverse	 fractures.	 	 In	 contrast,	
laboratory	 results	 show	 that	oriented	perforations	with	high	 flow	capacity	 and	adequate	
penetration	 depth	 generate	 transverse	 fractures	 without	 the	 presence	 of	 longitudinal	
fractures.			
	
Under	poor	conditions	of	connectivity,	including	the	presence	of	multiple	fractures	of	small	
width,	high	tortuosity	and	high	degree	of	interaction	between	fractures,	the	development	of	
fracture	 width	 is	 restricted	 and	 proppant	 screenouts	 may	 occur	 during	 fracturing.	 	 In	
contrast,	under	favorable	conditions	of	fracture	initiation,	the	fracture	width	development	
is	unrestricted,	channels	of	adequate	width	are	created,	and	proppant	transport	is	possible	
with	limited	restrictions.		This	is	the	desired	outcome	during	fracturing.	
	
The	connection	between	the	wellbore	and	the	near‐wellbore	fracture	system,	however,	 is	
also	 a	 region	 of	 high	 fluid	 velocity	 and	 limited	 proppant	 deposition.	 	 As	 a	 result,	 the	
proppant	 concentration	 in	 this	 region	 is	 possibly	 very	 low,	 during	 the	 duration	 of	 the	
treatment.		Unfortunately,	the	low	proppant	retention	in	this	region	is	further	exacerbated	
by	 overflushing	 at	 the	 end	 of	 the	 treatment.	 	 This	may	 create	 the	 closure	 of	 the	 critical	
connecting	path	between	the	wellbore	and	the	created	fractured	system,	and	eliminate	the	
potential	 of	 production,	 from	 a	 specific	 stage.	 	 It	 is	 possible	 that	 the	 large	 variability	 in	
stage	 production	 and	 the	 current	 inefficiency	 of	 the	 stimulation	 process	 is	 controlled	
primarily	 by	 this	 region	 of	 connectivity.	 	 This	may	 be	 the	weakest	 link	 of	 the	 hydraulic	
fracturing	concept.	
	
Figure	 7.9	 shows	 the	 conceptual	 representation	 of	 the	 complex	 fracture	 system	 and	 the	
region	associated	to	the	connection	between	the	wellbore	and	fracture	system	(Region	2).		
It	 also	 shows	 laboratory	 results	 from	 perforations	 and	 hydraulic	 fracturing	 in	 North	
American	 organic‐rich	mudstones.	 	 The	 figure	 of	 the	 perforation,	 at	 the	 center,	 suggests	
that	 planes	 of	 weakness	 also	 play	 a	 role	 in	 the	 continuity	 and	 preservation	 of	 the	
perforation	 tunnel.	 	 The	 other	 figures	 provide	 examples	 of	 the	 degree	 of	 fracture	
complexity	 that	occurs	when	fracturing	with	slick	water,	given	the	textural	complexity	of	
the	rock.			
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7.6 Summary  

In	 unconventional	 tight	 shale	 systems,	well	 production	 depends	 of	 reservoir	 quality	 and	
completion	 quality.	 	 Each	 of	 these	 properties	 is	 multivariate.	 	 Reservoir	 quality	 (RQ)	 is	
defined	by	the	combined	contribution	of	hydrocarbon	filled	porosity,	matrix	permeability,	
organic	content	and	maturation,	and	pore	pressure,	among	others.	 	 In	addition,	 for	 liquid	
plays,	fluid	properties	of	composition	and	phase	transformations	are	essential.		Completion	
quality	 (CQ)	 is	 defined	 by	 the	 combined	 contribution	 of	 fracture	 containment,	 fracture	
surface	 area	 and	 fracture	 complexity,	 retention	 of	 fracture	 surface	 area	 and	 fracture	
conductivity,	and	the	effects	of	rock/fluid	and	proppant/fluid	interactions	on	the	previous.		
It	turns	out	however,	that	these	contributions	of	RQ	and	CQ	have	different	importance	and	
sensitivity	 along	 the	 four	 critical	 regions	 of	 the	 stimulated	 wellbore:	 the	 wellbore,	 the	
connector	 between	 the	 wellbore	 and	 the	 hydraulic	 fracture	 system,	 the	 near‐wellbore	
fracture	 region	 and	 the	 far‐wellbore	 fracture	 region.	 	 For	 example,	 the	 presence	 of	 high	
reservoir	quality	may	not	be	of	high	importance	to	the	wellbore.		Furthermore,	properties	
associated	to	fracture	containment,	fracture	complexity	and	others,	are	also	not	relevant	to	
the	wellbore.	 	 In	 contrast,	 high	 reservoir	 quality	 is	 critical	 at	 the	 near‐wellbore	 and	 far‐
wellbore	fracture	regions.		Fracture	containment	and	complexity	are	also	critical	here.			
	
Understanding	 the	 properties	 (or	measurements)	 required	 for	 successful	well	 (or	 stage)	
production	 is	 complicated	 because	 of	 the	 complex	 interrelations	 between	 the	 multiple	
properties	 and	 their	 varied	 influences	 along	 the	 length	 of	 fractures.	 	 This	 effort	 can	 be	
greatly	 facilitated	 by	 providing	 a	 breakdown	 of	 the	 dominant	 dependence	 of	 critical	
properties	 along	 the	 various	 stages	 of	 the	 fracture.	 	 Figure	 7.11	 shows	 a	 possible	
representation	of	 this	 concept.	 	 In	 this	Figure,	Red=	bad,	Yellow	=	 intermediate,	Green	=	
Neutral,	White	=	No	dependence.		This	is	done	for	the	various	regions	of	a	fracture:	NWC	=	
near	wellbore	connectivity,	NWF=near	wellbore	fracture;	FWF	=	far	wellbore	fracture.	
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Figure 7.11  List of dominant dependence (Red= Bad, Yellow = Intermediate, Green = Neutral, 
White = No dependence) of critical properties along the various regions of a fracture. 

7.7  Current Industry Practices and Concerns 

Keeping	 the	 above	 review	 as	 a	 background,	 and	 with	 the	 gained	 understanding	 of	 the	
multiple	conditions	that	affect	loss	of	productivity	in	wells,	on	a	stage	by	stage	basis,	during	
fracture	 initiation,	 propagation	 and	 termination,	 and	 including	 flowback	 procedures,	 we	
conducted	a	comprehensive	industry	review	of	current	practices	and	concerns,	to	see	the	
industry	perception	of	this	problem.		We	also	requested	additional	input	from	the	industry	
participants	 to	 this	 program,	 and	 summarized	 their	 input.	 	 Having	 these	 inputs	 and	
integrating	 these	with	 the	 results	of	 this	program	allowed	us	 to	produce	a	 summary	and	
recommendation	 of	 possible	 best	 practices	 to	 control	 production	 decline	 and	 increase	
production	rates.	
	
The	 following	 is	 an	 executive	 summary	 of	 a	 comprehensive	 industry	 review	 on	 current	
practices	for	controlling	loss	of	well	production.		The	study	was	conducted	by	Mike	Vincent	
at	our	request.		The	full	body	of	the	document,	including	references	is	provided	in	Appendix	
7.	

Problems / What it affects?

NWC NWF FWF NWC NWF FWF NWC NWF FWF

Proppant embedment

Proppant crushing

Poor propant transport

Proppant flowback

Rock/fluid Interaction (softening)

Rock/fluid Interaction (imbibition)

Rock/proppant interaction (embedment)

Pilar proppant distribution

Uniform proppant distribution

Degradation of proppant with time

Water retention in proppant

Solid retention in proppant

Hydrocarbon retention in proppant

Fines and solids migration

Salt precipitation

Filtering/Choking

High Drawdown

Fracture complexity

High No. of fracture connectors

Tortuosity

Plastic rock deformation

Overflushing

Narrow fracture width

Lack of fracture containment

Complex rock fabric

Landing point and trajectory

Perforation procedures

Breakdown procedures 

Presence of fractures (wellbore)

Wellbore stability

Surface Area

 Fracture 

Conductivity

Fracture Face 

Permeability
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7.7.1 Introduction 

The	ability	to	initiate	multiple	transverse	hydraulic	fractures	from	horizontal	wellbores	has	
allowed	economic	development	of	numerous	resource	plays,	including	the	Barnett,	Bakken,	
Marcellus,	Haynesville,	 the	Eagle	Ford	and	numerous	additional	evolving	plays.	 	Although	
advances	 in	 this	 technology	 have	 dramatically	 increased	 the	 economically	 recoverable	
reserves	in	these	plays,	there	is	a	growing	awareness	that	the	fracture	treatments	are	not	
optimized,	and	that	further	innovation	is	necessary	to	make	the	fracture	treatments	more	
effective	and	durable.			
	
The	purpose	of	 this	 review	of	 industry	practices	 and	 concerns	 is	 to	 identify	mechanisms	
believed	to	be	responsible	for	loss	of	fracture	effectiveness,	and	discuss	industry	practices	
that	 have	 been	 implemented	 in	 various	 reservoirs	 to	 combat	 these	 problems.	 	 The	 full	
report,	provided	as	an	appendix,	 reviews	 field	evidence,	using	refereed	publications,	 that	
hydraulic	fractures	fail	to	provide	durable	or	effective	conductivity,	throughout	the	created	
extent	of	their	surface	area.		A	large	number	of	suspected	damage	mechanisms	perceived	to	
cause	loss	of	fracture	effectiveness	were	reported	and	discussed.		Industry	“best	practices”	
that	emerged	in	specific	resource	plays	and	appear	to	have	proved	beneficial	in	combating	
specific	 damage	 mechanisms	 are	 reviewed	 and	 discussed.	 	 Furthermore,	 the	 emerging	
consensus	 on	 data	 collection	 requirements,	 research	 needs,	 and	 other	 efforts	 (e.g.,	 field	
studies)	necessary	to	identify	or	develop	best	practices,	on	a	play	by	play	basis	is	reviewed.		
In	the	following	sections,	the	main	conclusions	are	reviewed.	

7.7.2 Evidence that fractures are losing conductivity and/or surface area 

While	 many	 production	 trends	 fail	 to	 yield	 a	 unique	 interpretation	 as	 to	 the	 damage	
mechanism,	 there	 are	 a	 number	 of	 observations	 that,	 when	 considered	 in	 conjunction,	
compellingly	demonstrate	 that	 fractures	 are	not	 recovering	 the	hydrocarbon	 resource	as	
effectively	as	commonly	anticipated:	

	
 Infill	 drilling	 evidence	 –	 New	 wells	 drilled	 through	 a	 microseismic	 swarm	 are	

encountering	near‐virgin	reservoir	pressure	and	appear	to	recover	more	than	80%	
of	the	EUR	of	parent	wells	drilled	in	the	virgin	rock.		This	indicates	that	the	original	
“parent”	wells	have	not	depleted	the	rock	volume,	which	is	apparently	covered	with	
microseismic	events.	

 Restimulation	 evidence	 –	 Horizontal	 wells	 in	 most	 resource	 plays	 have	 been	
successfully	 restimulated,	 indicating	 that	 the	 initial	 fracture	 treatments	 were	
insufficient	to	drain	the	recoverable	reserves	accessible	from	the	wellbore.	

 Steep	decline	 evidence	 –	 Steep	 decline	 curves	 may	 be	 attributed	 to	 collapse	 of	
fracture	conductivity	and/or	loss	of	surface	area.	
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 Drawdown	management	evidence	 –	Evidence	 that	 in	 some	reservoirs	managing	
the	drawdown	seems	to	extend	EUR,	suggests	that	typical	operational	practices	may	
accelerate	 fracture	 degradation.	 	 This	 observation	 suggests	 that	 traditional	
hydraulic	 fracture	 treatments	 are	 insufficiently	 durable	 to	 withstand	 traditional	
drawdown	 or	 standard	 operating	 practices	 (multiple	 shut‐ins,	 cyclic	 stress,	 liquid	
loading,	and	others).	

 Laboratory	 testing	 evidence	 –	 Laboratory	 measurements	 shows	 that	 even	 in	
“ideal”	conditions	in	which	proppant	is	arranged	in	multilayered	packs	with	optimal	
packing	 arrangements,	 tremendous	 degradation	 of	 conductivity	 over	 time	 is	
measured.		This	effect	has	been	noted	in	every	published	extended	duration	test.		In	
the	 laboratory,	 proppants	 continue	 to	 crush	 and	 compact	 over	 time.	 	 Unless	
something	magical	 happens	 in	 the	 field,	when	we	pump	proppant	down	a	mile	 of	
pipe,	 it	 should	 be	 logically	 anticipated	 that	 actual	 fractures	 will	 similarly	 lose	
conductivity	over	time.	

 Fracture	complexity	evidence.	 	In	numerous	mine‐back	and	core‐through	studies	
it	 has	 been	 apparent	 that	 fractures	 are	 not	 simple,	wide,	 or	 planar.	 	 The	 industry	
should	 recognize	 that	 it	 is	 challenging	 to	place	a	uniformly	wide	 fracture	and	 that	
will	 retain	 hydraulic	 continuity	 through	 highly	 heterogeneous	 or	 laminated	
intervals.	

 Hydraulic	 connectivity	 evidence	 –	 This	 evidence	 refers	 to	 cases	 in	 which	
hydraulic	fractures	connect	two	wellbores.		In	a	number	of	reservoirs,	proppant	has	
been	pumped	to	the	surface	of	adjacent	wells	completed	at	exactly	the	same	depth,	
irrefutably	 indicating	 that	 a	 fracture	 was	 created	 between	 the	 two	 wells	 and	
proppant	was	 transported	 through	 the	entire	hydraulic	 fracture	 length.	 	However,	
subsequent	diagnostic	tests	during	production	(pulse	tests,	interference	tests,	PBUs,	
calculation	of	EUR)	typically	 indicate	 ineffective	retained	hydraulic	continuity,	and	
often	 zero	 sustained	hydraulic	 connection.	 	This	 indicates	 that	hydraulic	 fractures	
are	 either	 not	 sustaining	 sufficient	 conductivity	 or	 are	 collapsing	 at	 some	 point	
between	the	wellbores.	
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7.7.3 Potential mechanisms responsible for loss of fracture effectiveness 

To	identify	best	practices,	and	improve	fracture	effectiveness	and	durability,	it	is	necessary	
to	 review	 some	 of	 the	mechanisms	which	may	 be	 responsible	 for	 fracture	 collapse.	 The	
following	were	reported:	
	

 Degradation	of	proppant	over	time	
 Overflushing	 of	 proppant	 from	 the	 near‐wellbore	 area	 in	 transverse	 hydraulic	

fractures	
 Flowback	of	proppant	from	near‐wellbore	area	in	transverse	hydraulic	fractures	
 Failure	to	place	sufficient	proppant	concentrations	throughout	the	created	network	

(in	both	lateral	and	vertical	completions)	
 Insufficient	 fracture	 conductivity	 to	 accommodate	 high	 velocity	 hydrocarbon	 flow	

due	to	near‐wellbore	convergence,	especially	in	liquid‐rich	formations	
 Proppant	embedment	
 Thermal	degradation	of	sand‐based	proppants	
 The	appearance	of	extremely	 low	quality	 sand	and	 low	quality	 ceramic	proppants	

during	the	past	decade	
 Complex	 hydraulic	 fracture	 geometries	 requiring	 stronger	 or	 more	 conductive	

proppant	in	the	fracture	turns	and	“pinch	points”	
 Insufficient	 proppant	 concentrations,	 resulting	 in	 discontinuous	 proppant	 packs	

after	 fracture	 closure.	 	 This	 problem	 is	 compounded	 when	 operators	 specify	
intermediate	 or	 high	 density	 ceramics	 but	 pump	 the	 same	 mass	 concentration,	
resulting	in	reduced	fracture	width	and	20%	to	30%	smaller	areal	extent	

 Because	 of	 rock/fluid	 sensitivity,	 some	 fracturing	 fluids	 “soften”	 the	 formation,	
allowing	more	significant	embedment	and/or	spalling	(tensile	failure)	

 Durable	gel	 filtercakes,	deposited	using	crosslinked	fluids,	may	completely	occlude	
narrow	propped	fractures	

 Precipitation	 of	 salt,	 asphaltenes,	 barium	 sulfate	 and	 calcium	 carbonate	 scales	
results	on	severe	loss	of	fracture	conductivity	

 There	 appears	 to	 be	 a	 potential	 for	 chemical	 diagenesis	 of	 proppant	 (e.g.,	
precipitation	 of	 zeolites	 and	 reduction	 of	 proppant	 pack	 permeabilityy).	 	 This	
concept,	however,	is	still	controversial	given	the	existence	of	conflicting	laboratory	
results.		To	date,	proppant	samples	recovered	from	wells	do	not	appear	to	indicate	
formation	 of	 zeolite	 precipitants.	 	 It	 appears	 that	 zeolite	 precipitation	 can	 be	
encouraged	in	laboratory	tests	under	specific	conditions.	

 Failure	to	recover	water	from	liquid‐submerged	portions	of	the	fracture	below	the	
wellbore	elevation	
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 The	 industry	 rush	 to	 secure	 acreage	 to	 “hold	 acreage	by	production”	has	 reduced	
attention	 to	 completion	effectiveness	or	optimization.	 	 Frenetic	development	pace	
has	 created	 an	 environment	 with	 focus	 on	 scheduling,	 logistics	 and	 assuring	
materials	availability,	and	not	with	a	focus	to	optimizing	well	productivity.		

 Other	unrecognized	mechanisms	

7.7.4 Best field practices currently implemented to combat loss of fracture area and fracture 
conductivity 

There	 is	a	growing	awareness	 that	 fractures	 fail	 to	provide	durable,	 infinitely	conductive	
pathways	 to	 successfully	 recover	 all	 reserves	 within	 the	 “stimulated	 reservoir	 volume”.		
Although	 hydraulic	 fracturing	 with	 current	 techniques	 provides	 imperfect	 connections,	
hydraulic	stimulation	remains	the	most	cost‐effective	way	to	contact	the	reservoir	rock	and	
bring	the	massive	resource	plays	into	economic	production.	
	
It	 is	evident	that	there	 is	no	single	recipe	or	ideal	hydraulic	 fracturing	design	that	can	be	
optimal	 for	 all	 resource	 plays.	 	 “Changes	 in	 kerogen	 content,	 total	 organic	 content,	 rock	
brittleness,	thermal	maturity,	in	situ	pressure,	formation	thickness,	permeability,	porosity,	
degree	and	variability	of	natural	fracturing;	all	influenced	well	spacing,	lateral	lengths	and	
hydraulic	 fracturing	 design.”	 (Fisher,	 20129).	 	 However,	 there	 are	 a	 number	 of	 common	
observations	 that	appear	 to	apply	broadly	 to	resource	plays	developed	with	 transversely	
fractured	horizontal	wells:	
	

 Increased	number	of	stages	
 Dividing	a	treatment	into	more	stages	increases	production	in	most	plays	developed	

with	multiple	transverse	hydraulic	fractures.		This	is	in	contrast	to	what	is	predicted	
with	most	models,	which	incorrectly	indicate	that	placing	more,	but	smaller	stages	
(of	 reduced	 fracture	 length)	 would	 hurt	 long‐term	 productivity.	 	 This	 evidence	
strongly	suggests	that	at	least	one	of	the	following	factors	is	true:	

o Pressure	 losses	 are	 high	 within	 transverse	 fractures,	 and	 dividing	 the	
hydrocarbons	between	multiple	entry	points	is	advantageous	

o Fractures	 lose	hydraulic	 continuity	 at	 some	 location	within	 the	 fracture,	 so	
increasing	 the	 number	 of	 stages	 increases	 the	 proportion	 that	 remains	
productive	over	time	

o The	connection	between	the	wellbore	and	fracture	is	tenuous	and	increasing	
the	number	of	connections	(or	number	of	fractures)	increases	the	durability	

o The	 overflushing	 of	 proppant,	 or	 flowback	 of	 proppant	 is	 challenging	 well	
productivity,	 and	 therefore	 increasing	 the	 number	 of	 stages	 somewhat	
compensates	for	our	completion	practices	
	

																																																								
9 Fisher, K: Trends Take Fracturing ‘Back to the Future’. AOGR Aug 2012. 
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 Some	 reservoirs	 appear	 to	 be	 tolerant	 of	 overflushing	 and	 can	 be	 economically	
developed	 with	 industry‐standard	 practices	 that	 require	 flushing	 the	 wellbore	 of	
proppant	between	stages.		This	results	in	overflushing	proppant	in	some	number	of	
the	 created	 fractures.	 	 Other	 formation	 types	 appear	 to	 be	 damaged	 with	
overflushing.	 	 Field	 studies	 have	 led	 several	 operators	 to	 publically	 disclose	 their	
efforts	to	reduce	and/or	eliminate	overflushing,	and	some	operators	are	choosing	to	
screenout	 some	 stages	 to	 ensure	 good	 connection	 between	 the	 wellbore	 and	
fractures.	

 In	some	plays	with	wells	susceptible	to	proppant	flowback,	the	use	of	curable	resins	
near	 the	 wellbore	 have	 been	 beneficial,	 while	 the	 use	 of	 uncoated	 ceramic	
proppants	has	eliminated	proppant	flowback	in	others.	

 There	 is	 growing	 recognition	 that	 placing	 proppants	 in	 diffuse	 concentrations	 in	
crosslinked	fluids	is	yielding	discontinuous	proppant	packs	after	closure.		There	are	
two	 potential	 solutions	 that	 are	 being	 pursued.	 	 Some	 operators	 are	 switching	 to	
low	viscosity	banking	fluids	(slickwater)	that	build	a	continuous	proppant	bank	via	
the	mechanism	 of	 saltation.	 	 Other	 operators	 are	 trying	 to	 improve	 continuity	 by	
specifying	high	proppant	concentrations	(often	exceeding	6	to	9	ppa)	in	crosslinked	
fluids.		The	goal	here	is	to	place	a	sufficient	number	of	proppant	grains,	to	improve	
and	sustain	hydraulic	continuity.	 	Given	an	“industry	standard”	of	approximately	4	
ppa	 in	 many	 resource	 plays,	 it	 appears	 that	 either	 approach	 (slickwater	 at	 any	
concentration,	 or	 increasing	 to	8	 ppa	 or	 larger	 in	 crosslinked	 fluids)	 is	 improving	
continuity.	

 A	 growing	 number	 of	 operators	 are	 reporting	 using	 detectable	 proppants	
(radioactive	or	non‐radioactive	materials	that	can	be	 identified	with	 logging	tools)	
to	evaluate	which	fracturing	stages	contact	offset	wells.		Additionally,	the	use	of	oil‐
soluble	 and	 water‐soluble	 chemical	 tracers	 can	 indicate	 which	 injected	 fluids	
contact	adjacent	wells.	 	The	relative	productivity	of	 stages	 is	 then	evaluated	using	
recovery	of	water‐soluble	 and	oil‐soluble	 tracers	as	proxies	 for	 load	 recovery	and	
hydrocarbon	 productivity.	 	 Efforts	 to	 integrate	 the	 interpretation	 of	 these	
diagnostics	with	other	data	such	as	seismic	attributes,	microseismic	 frac	mapping,	
mud	 logging,	 wellbore	 depth,	 production	 logs,	 DTS/DAS	 data	 from	 fiber	 optic	
monitoring	 and	other	data	 are	 improving	 the	 understanding	 of	which	parameters	
most	directly	correlate	with	sustained	fracture	productivity	

 Several	 industry‐leading	 operators	 are	 recognizing	 that	 proppants	 are	 not	
equivalent.		There	are	more	than	60	mines	supplying	fracturing	sand,	over	70	plants	
supplying	 ceramic	 and	 over	 18	 plants	 supplying	 resin	 coated	 proppant.	 	 Vast	
variation	 in	 quality	 and	 durability	 of	 these	 proppants	 has	 been	 documented	 (SPE	
84304,	101821,	and	119242).		Industry‐leading	companies	are	beginning	to	specify	
exactly	which	material	and	which	quality	of	proppant	they	will	accept,	and	keeping	
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careful	 records	 such	 that	 wells	 stimulated	 with	 lower	 quality	 proppants	 can	 be	
identified	for	restimulation.	

 This	 current	 reduced	 activity	 associated	 to	 lower	 gas	 prices	 has	 given	 some	
operators	 their	 first	 opportunity	 to	 consider	 the	 use	 of	 more	 time‐consuming	
isolation	 procedures.	 These	were	 previously	 unavailable	 or	 not	 feasible	 given	 the	
required	development	pace.		

 In	 some	 reservoirs,	 compelling	 data	 is	 available	 suggesting	 that	 aggressive	
drawdown	 results	 in	 premature	 damage	 to	 the	 completion	 and/or	 reservoir	
resulting	 in	 loss	 of	 reserves.	 	 In	 other	 reservoirs,	 it	 appears	 that	 aggressive	
drawdown	 can	 only	 be	 pursued	 with	 specific	 completion	 types.	 	 In	 yet	 other	
reservoirs,	 drawdown	 procedures	 have	 not	 yet	 been	 proven	 to	 affect	 EUR.		
However,	industry	efforts	to	determine	the	best	operational	practices	are	ongoing	in	
all	resource	plays.	

 Refracs	 appear	 to	 be	 required	 and	 profitable	 in	 most	 resource	 plays,	 again	
indicating	 the	 opportunity	 to	 improve	 the	 quality	 and	 durability	 of	 initial	
stimulation	treatments.		It	would	be	much	cheaper	and	more	profitable	to	improve	
the	initial	treatment,	if	possible,	to	avoid	the	need	for	subsequent	restimulation.	

7.8 Participants Current Practices 

The	 following	 is	 a	 summary	 of	 answers	 to	 specific	 questions	 we	 asked	 to	 the	 industry	
participants	of	this	program,	regarding	the	Marcellus	and	Haynesville	plays.		Because	of	the	
public	 nature	 of	 this	 investigation,	we	 have	 requested	 them	 to	 only	 provide	 information	
that	 can	 be	 made	 available	 to	 others	 and	 do	 not	 represent	 proprietary	 operational	
practices.	 	We	 also	 indicated	 that	 their	 responses	will	 be	 identified	 by	 play	 name	 rather	
than	by	company	name.		The	following	are	the	collection	of	questions	and	answers:	
	
1. What	 is	 the	 extent	 of	 the	 loss	 in	 fracture	 conductivity	 and	 fracture	 surface	 area	

during	production	over	time?		How	is	this	measured?	How	does	one	differentiate	the	
effects	of	fracture	conductivity	and	surface	area?		

(Marcellus):	There	is	significant	loss	of	accessibility	to	created	fractures	early	in	the	
life	 of	 the	well.	 	 Evidence	 of	 this	 is	 the	 loss	 of	 pressure	 communication	 between	
wells.	 	This	 is	observed	during	stimulation	but	goes	away	soon	after	 the	wells	are	
placed	on	production.	 	It	is	anticipated	that	this	is	a	strong	function	of	un‐propped	
sections	of	the	fracture	that	close	during	production.	
	
(Haynesville‐1):	Loss	of	fracture	conductivity	has	been	noted	in	the	fields	based	on	
relative	drawdown	and	performance	of	wells.		Over	time	wells	that	have	maintained	
back	pressure	outperform	wells	that	have	not	been	restricted.		The	restricted	wells	
maintain	 higher	 pressure	 at	 a	 given	 cumulative	 production	 and	 outperform	 their	
counterparts	 on	 a	 rate	 versus	 cumulative	 production	 basis.	 	 Further,	 EUR	
predictions	have	been	consistently	higher.		Damage	has	also	been	noted	by	drawing	
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down	wells	 too	 rapidly.	 	 One	 cannot	 differentiate	 diagnostically	 the	 difference	 in	
conductivity	 loss	 versus	 the	 loss	 of	 fracture	 area.	 	 In	 modeling	 efforts,	 the	 two	
variables	can	be	shifted	and	consistently	 it	appears	 that	 loss	of	surface	area	 is	 the	
greater	driver.	
	
(Haynesville‐2):	 Analyses	 of	 production	 performance	 data	 seem	 to	 indicate	 a	
deterioration	 of	 network	 “conductivity”	 over	 time	 as	 a	 result,	 presumably,	 of	 gas	
pressure	depletion	and	the	consequential	 incremental	stresses	induced	in	the	rock	
fabric.		Further,	there	appear	to	be	a	characteristic	response	that	is	not	uniform	with	
time,	 with	 deterioration	 occurring	 in	 a	 “step‐wise”	 fashion.	 	 This	 appears	 as	 a	
succession	 of	 “events”	 that	 diminish	 well	 production	 performance.	 	 Frequently,	
there	 are	 clearly	 “step”	 changes	 in	 well	 production	 performance	 most	 likely	
associated	with	 a	 pinch‐off	 of	 a	major	 production	network	 or	 perforations.	 	 Since	
this	trend	is	quite	correlatable	across	the	Hayneville,	suspicions	are	that	it	relates	to	
the	limitation	of	the	rock	fabric	to	retain	the	fracture	network	conductivity	with	the	
increased	rock	face	stress	that	occurs	because	of	pressure	depletion.	
	

2. What	 is	 the	 extent	 of	 the	 loss	 in	 fracture‐face‐permeability 10 	and	 matrix	
permeability	over	 time?	 	How	do	we	know?	 	How	does	one	discriminate	between	
the	two?	

(Marcellus):	There	is	no	evidence	to	support	either	of	these	perceptions.	
	
(Haynesville‐1):	 	 In	 modeling	 it	 is	 necessary	 to	 impose	 pressure	 dependent	
permeability	 as	well	 as	 conductivity	 loss	 to	achieve	history	match.	 	 It	 is	unknown	
whether	this	parameter	could	be	an	effect	of	fracture	face	permeability	loss.			
	
(Haynesville‐2):	 	 Loss	 in	 matrix	 permeability	 is	 certainly	 a	 consideration,	 but	 it	
currently	appears	to	be	a	minor	consideration	in	comparison	to	other	mechanisms	
that	principally	control	production	performance.	 	There	should	be	encouragement	
to	 quantify	 the	 reduced	 matrix	 permeability/diffusion	 characteristics	 that	 occur	
with	pressure	depletion,	and	to	develop/apply	simulation	 tools	 that	consider	such	
effects.	
	

3. 	What	 are	 the	 best	 practices	 implemented	 to	 minimize	 these	 effects?	 	 	 To	 what	
extent	are	these	beneficial?		How	do	you	know?	

(Marcellus):	 	By	limiting	early	drawdown	we	have	seen	improved	projected	EUR’s.		
Wells	where	 the	 early	 drawdown	 has	 been	 restricted	 commonly	 surpass	wells	 in	
daily	production	within	90	days	and	cumulative	recovery	in	6‐9	months.	
	

																																																								
10 Fracture‐face  permeability  is  the  value  of  the matrix  permeability  at  the  face  of  the  fracture.    This may  be 
substantially reduced because of a number of factors (e.g., imbibition, surface damage by proppant embedment). 
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(Haynesville‐1):		Current	practice	is	to	restrict	flowback/keep	pressure	on	the	well.		
We	have	 seen	 improvement	 to	EUR	predictions	 employing	 this	method,	hence	we	
believe	 it	 is	 currently	aiding	 in	prevention	of	 conductivity	 loss.	 	 It	 is	 important	 to	
note	 that	 the	 drivers	 on	 stress	 in	 the	 plays	 within	 the	 study	 (HSVL/BSSR)	 are	
related	 mostly	 to	 a	 loading	 model	 with	 minimum	 tectonic	 influence.	 Hence	 the	
impact	of	back	pressure	could	be	less	in	more	tectonically	active	plays.			
	
(Haynesville‐2):	 	 Initially,	Choke	Management	was	the	tool	best	employed	to	defer	
the	damage	that	appeared	to	be	occurring	when	high	initial	net	stresses	were	placed	
on	 the	 rock	 fabric	 during	 initial	 completion	 of	 the	 well.	 	 Some	 companies	 have	
developed	 rather	 elaborate	 calculation	 methodologies	 to	 determine	 the	 optimum	
configuration	 of	 the	 well	 to	 maximize	 value	 by	 deferring	 the	 onset	 of	 fracture	
conductivity	 degradation.	 	 Other	 tools	 included	 the	 avoidance	 of	 flow	 back	 until	
water	production	was	expected	to	be	minimal.	
	

4. Are	the	best	practices	providing	the	desired	results?	

(Marcellus):	 They	 are	 yielding	 improved	 results	 but	we	 think	 they	 could	 be	 even	
better.	
	
(Haynesville‐1):	Yes,	as	best	as	we	can	tell.	
	
(Haynesville‐2):	There	is	no	clear	indication	that	the	production	performance	is	any	
more	improved	because	of	introducing	these	conductivity	preservation	techniques.		
On	cross	plots	of	Pressure	Normalize	Rates	vs.	EUR,	the	characteristic	trends	appear	
consistent	across	all	areas	of	the	field,	and	across	all	operating	companies.		It	has	not	
yet	been	proven/disproven,	but	 there	have	been	 suggestions	 that	 such	 trends	are	
consequential	 to	 the	 non‐uniformity	 of	 completion	 effectiveness	 when	 using	
multiple	 perforation	 clusters	 in	 the	 staging	 of	 these	 horizontal	 well	 completions.	
Most	of	the	public	“published”	Pressure	Transient	Analyses	to	date	fail	to	warn	the	
reader	that	irregularity	in	the	effectiveness	of	cluster‐to‐cluster	treatments	within	a	
stage	(and	from	stage	to	stage)	may	significantly	affect	the	interpretation	of	results.		
There	should	be	encouragement	to	study	this	effect.		It	may	very	well	be	that	what	is	
presumed	to	be	deterioration	in	well	production	performance	may	in	large	part	be	
consequential	 to	 highly	 variable	 completion	 effectiveness	 from	 cluster	 to	 cluster,	
and	from	stage	to	stage.	
	

5. Are	there	new	industry	procedures	or	products	that	could	mitigate	the	above	losses	
in	fracture	conductivity	and	fracture	surface	area?	If	so,	what	are	these?	

(Marcellus)	I	think	that	by	utilizing	new	completion	products	that	would	allow	more	
access	 points	 to	 the	 reservoir	 (more	 stages/perf	 clusters)	 and	 spreading	 the	
production	over	a	larger	area	we	can	reduce	the	effects	of	high	drawdown.	
	
(Haynesville‐1)	No.	
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(Haynesville‐2)	 The	 introduction	 and	 use	 of	 diverters	 (bio‐balls,	 and	 such)	 may	
promote	 more	 uniform	 completion	 effectiveness,	 but	 it	 has	 yet	 to	 be	 clearly	
demonstrated	that	this	has	been	effective.	The	innovative	use	of	the	“Channel	Frac”	
seems	to	respect	the	expectation	that	the	conduits	to	production	are	the	defects	that	
exist	 within	 the	 proppant	 packs,	 and	 that	 promoting	 the	 creation	 of	 these	 flow	
channels	my	 promote	 a	more	 effective	 proppant	 placement	while	minimizing	 the	
possibility	of	experiencing	a	pre‐mature	screen	out	during	the	 frac	 job.	 	Expanded	
use	 of	 distributed	 temperature	 (DTS)	 and	 distributed	 acoustical	 sonic	 (DAS)	 will	
better	help	to	quantify	both	stimulation	and	production	performance	effectiveness.	
	

6. Please	 summarize	 recommendations	 for	 fracture	 design	 (including	 comments	 on	
proppant	 selection,	 concentration,	 and	 scheduling,	 treating	 fluids	 and	 additives,	
staging,	clustering,	perforation	design,	horizontal	well	landing	considerations,	flow‐
back	 procedures,	 early	 production	 procedures).	 Please	 also	 indicate	 how	 these	
recommendations	may	vary	from	field	to	field?	

(Marcellus):	 	 Limiting	 drawdown	 during	 both	 flowback	 and	 early	 production	 is	
preferable.	 	 Landing	 point	 and	 target	 zone	 is	 reservoir	 specific.	 	 For	 economic	
reasons	we	are	 trying	 to	 cram	as	much	 sand	 in	 as	possible	with	as	 little	water	 as	
possible	 (sand=good	water=bad).	 	 Proppant	 selection	 is	more	 of	 a	 reservoir	 fluid	
decision	(how	fine	of	a	proppant	pack	will	my	reservoir	fluid	flow	through).	
	
(Haynesville‐1):	 	 In	 terms	of	proppant	selection,	we	currently	believe	conductivity	
testing	 to	 aid	 in	 selecting	 the	 optimal	mesh	 size,	 material,	 and	 to	 a	 lesser	 extent	
treatment	fluid.	 	We	also	employ	geomechanical	testing	and	understanding	of	rock	
strength	 to	 better	 understand	 the	 selection	 for	 a	 relative	 formation.	 For	 example,	
the	formations	within	the	study	have	relatively	low	UCS	values	and	it	is	believed	the	
driver	on	conductivity	 loss	 is	embedment	and	 failure	of	 the	 formation	rather	 than	
proppant	grain	crushing.		This	was	noted	to	be	the	case	with	both	sand	and	ceramic	
and	 it	 was	 difficult	 to	 differentiate	 improvement	 of	 conductivity	 retention	 with	
ceramic.	 	Hence	we	feel	more	comfortable	using	a	sand	rather	than	a	ceramic	as	a	
cost	saving	tool.		This	may	not/has	not	been	the	case	in	other	plays.		Treating	fluids	
are	 based	 on	 understanding	 of	 the	 response	 of	 the	 formation	 (clay	 swelling)	 and	
cost	 saving	 /performance.	 	 We	 have	 seen	 in	 most	 shale	 gas	 plays	 performance	
enhancement	and	cost	savings	associated	with	thin	fluids	over	viscous	gel	systems	
(this	 learning	 is	 fairly	ubiquitous	 in	the	industry).	 	We	are	currently	assessing	and	
testing	 the	 proper	 fluid	 type	 to	 employ	 in	 oil	 shales.	 	We	 have	 noticed	 consistent	
improvement	with	 tighter	cluster	spacing.	 	Perforation	design	 is	 limited	entry	and	
we	 have	 seen	 diminishing	 returns	 in	 over	 perforating	 a	 given	 stage.	 	 The	 current	
practice	 is	 to	 balance	 cost	 savings	 and	 performance	 by	 employing	 the	 maximum	
number	 of	 clusters	 per	 stage	 we	 can	 efficiently	 break	 down	 and	 stimulate.		
Horizontal	 well	 landing	 has	 been	 analyzed	 via	 production	 comparisons,	 fracture	
modeling,	 and	 reservoir	 simulation	 to	 attempt	 and	 determine	 the	 best	 zones	 and	
landing	strategy.	 	Flowback	has	been	an	iterative	procedure	to	avoid	well	damage.		
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We	 generally	 employ	 a	 conservative	 strategy	 for	 both	 flowback	 and	 early	 time	
production	 until	 performance	 and	 lab	 data	 indicate	 a	more	 aggressive	 strategy	 is	
acceptable.		We	have	noted	in	certain	fields	(such	as	the	ones	within	the	study)	that	
a	 conservative	method	 is	 preferred,	whereas	 other	 fields	 appear	 to	 accommodate	
higher	rates.	
	
(Haynesville‐2):	 	Clearly,	 the	 industry	has	not	developed	adequate	analytical	 tools	
necessary	 to	 understand	 the	 important	 mechanisms	 at	 play	 during	 the	 fracture	
stimulation	 of	 Shale	 Plays.	 These	 tools,	 however,	 are	 rapidly	 evolving.	 The	
Schlumberger	Mangrove	Project	was	one	of	the	first	to	demonstrate	that	relatively	
poor	 transport	 of	 proppants	within	 the	 fracture	networks	 created	by	 the	 fracture	
and	by	 the	 initial	 fracture	system	of	 the	rock	 fabric.	 	Similar	work	was	performed	
internal	to	Shell	with	the	use	of	commercially	available	CPFD‐Software	“Barracuda”	
simulations	 of	 proppant	 flow	 in	 wellbores	 and	 in	 fractures.	 	 Earlier	 prejudices	
demanding	 the	use	of	high	strength	proppants	have	been	discredited	(Haynesville	
specific)	 when	 improved	 production	 performance	 is	 gained	 by	 the	 use	 of	 lower	
density	 lower	strength	and	smaller	proppants	that	result	 in	significantly	improved	
proppant	 transport.	 	 Recent	 simulation	work	with	 tiered	 thresholds	 for	 fluid	 and	
proppants	 (i.e.	 threshold	 dilation	 aperture	 for	 water,	 for	 100	 mesh,	 for	 main	
proppant)	 has	 shown	 that	 significant	 improvements	 in	 contacted	 stimulated	
reservoir	 volume	 can	 be	 achieved	 with	 higher	 rate	 fracture	 stimulations.	 	 This	
learning	 appears	 to	 be	 supported	 by	 empirical	 data	 from	 many	 unconventional	
plays.	
	

7.9 Integration 

Results	of	this	program	indicate	that	there	is	no	simple	solution	for	alleviating	the	loss	of	
surface	 area	 and	 fracture	 conductivity	 during	 production,	 and	 consequently	 there	 is	 no	
simple	solution	for	alleviating	the	loss	of	productivity	with	time.		The	solution	is	complex.		
It	requires	understanding	of	multiple	reservoir	and	completion	quality	properties	affecting	
the	 characteristic	 regions	 of	 the	 fracturing	 system.	 	 These	 are	 the	 wellbore,	
wellbore/fracture	 connector,	 near	 wellbore	 fracture	 region	 and	 far‐wellbore	 fracture	
region.		Because	each	of	these	regions	may	require	different	conditions	of	optimization,	the	
solution	 also	 requires	 understanding	 the	 conflicting	 requirements	 and	 needed	
compromises	to	obtain	an	optimum	overall	solution.		Unconventional	tight	shale	reservoirs	
are	 geologic	 plays	 and	 understanding	 their	 geologic	 complexity	 is	 a	 fundamental	
prerequisite.	 	 The	 observed	 heterogeneous	 distribution	 of	 rock	 properties	 and	 in‐situ	
stress	 are	 a	 direct	 reflection	 of	 their	 geologic	 complexity.	 	 Because	 of	 their	 low	
permeability,	production	depends	on	the	creation	of	surface	area	in	contact	with	the	high	
reservoir	quality	sections	of	 the	play,	and	on	 the	 long‐term	retention	of	surface	area	and	
fracture	 conductivity.	 	 As	 indicated,	 however,	 it	 also	 depends	 on	 selecting	 the	 adequate	
landing	point	for	improving	the	conditions	of	fracture	initiation	and	depends	critical	on	the	
wellbore/fracture	 connectivity.	 	 Although	 this	 report	 and	 the	 experimental	 effort	
addressed	primarily	the	loss	of	fracture	surface	area	and	loss	of	fracture	conductivity	in	the	
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distribution	 of	 reservoir	 quality	 (RQ)	 and	 completion	 quality	 (CQ)	 in	 these	 regions.		
Reservoir	quality	is	evaluated	by	a	combination	of	properties	that	define	hydrocarbon	filled	
porosity	 (HFP)	 and	 hydrocarbon	 mobility	 (HM).	 	 Completion	 quality	 is	 evaluated	 by	 a	
combination	 of	 properties	 that	 define	 fracture	 conductivity	 (FC),	 fracture	 surface	 area	
(FSA),	and	fracture	face	permeability	(FFP).		Examples	of	the	various	properties	that	define	
these	conditions	are	shown	in	the	figure.	
	

7.10 Recommendations 

Recommendations	 for	 developing	 a	 workflow	 that	 improves	 the	 conditions	 of	 well	
productivity	and	decreases	the	loss	of	production	over	time,	include	the	following:	
	
 Characterization	of	the	geologic	system	
 Classification	 of	 rock	 type	 units	 with	 similar	 texture	 and	 composition	 and	

corresponding	similar	material	properties	within	the	geologic	system	
 Evaluation	of	comprehensive	material	properties	representative	of	each	rock	type.	
 Evaluation	 of	 the	 fundamental	 properties	 of	 reservoir	 quality	 and	 completion	

quality	and	their	variability	along	the	reservoir	
 Selection	of	the	landing	location	and	wellbore	orientation	based	on	the	distribution	

of	completion	quality	properties		
 Design	of	a	completion	strategy	(e.g.,	casing,	open	hole,	type	of	perforations	or	sand	

blasted	 groves,	 number	 and	 orientation	 of	 perforations	 and	 others)	 based	 on	 the	
understanding	of	near‐wellbore	rock	completion	quality		

 Design	of	a	fracture	initiation	strategy	for	maximizing	the	connectivity	between	the	
wellbore	and	the	fracture	system.	

 Design	 fracture	propagation	 in	 the	near‐wellbore	 fracture	 region	 for	 limiting	 fluid	
leak	 off,	 reducing	 embedment,	 limiting	 the	 loss	 of	 fracture	 face	 permeability,	 and	
preventing	 the	 long	 term	 plugging	 by	 debris	 of	 the	 near‐wellbore	 fracture.	 	 	 This	
should	be	in	contact	with	the	good	reservoir	quality	rock.	

 Design	 fracture	 propagation	 in	 the	 far‐wellbore	 fracture	 region	 for	 proppant	
transport,	preservation	of	surface	area	and	fracture	conductivity.	This	should	be	in	
contact	with	the	good	reservoir	quality	rock.	

 Control	the	fracture	termination	process	to	limit	or	eliminate	the	overflush	and	for	
maximizing	 the	 chances	 for	 building	 high	 proppant	 concentration	 in	 the	
wellbore/fracture	connector	region.	

 Control	the	initial	flow	back	to	maintain	the	surface	area	at	a	drawdown	that	does	
not	exceed	the	tensile	strength	of	the	rock	and	prevent	the	generation	of	fines.	

 Understand	the	potential	sources	of	solid	production,	including	the	precipitation	of	
salts.	
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7.11 Summary 

In	summary,	this	section	provides	a	good	discussion	of	the	multiple	conditions	required	for	
defining	 preferred	 practices	 for	 reservoir	 assessment	 and	 optimization	 of	 hydraulic	
fracturing	design	and	execution,	and	to	encourage	long‐term	deliverability.		The	discussion	
and	 associated	 industry	 survey	 clearly	 indicates	 that	 there	 is	 no	 simple	 solution	 to	 this	
problem.	 	 The	 solution	 consists	 in	 integrating	 key	 understandings	 of	 heterogeneity,	
distributions	 of	 rock	 properties	 and	 understanding	 the	 role	 of	 these	 on	 alleviating	 the	
various	challenges	associated	to	four	critical	regions	of	the	hydraulic	fracturing	system:	the	
wellbore,	 the	 wellbore/fracture	 connector,	 the	 near‐wellbore	 fracture	 and	 the	 far‐field	
fracture.	 	 These	 concepts	 were	 integrated	 to	 provide	 recommendations	 for	 reservoir	
characterization	and	fracture	design	that	reduces	the	potential	for	loss	of	surface	area	and	
loss	 of	 fracture	 conductivity,	 improves	 the	 effectiveness	 of	 the	 hydraulic	 fracturing	
treatments,	and	increase	well	production.	
	
As	a	 reference	 to	 the	above	concept,	we	conducted	an	extensive	summary	of	 the	current	
industry	best	practices	provided,	 including	best	practices	by	operator	participants	of	 this	
program.		It	appears	that,	in	general,	the	industry	is	still	searching	for	a	single	solution,	and	
becoming	confused	with	the	results.	 	 Individually,	operators	are	effectively	adapting	their	
practices	to	respond	to	the	few	parameters	that	give	them	good	results	in	their	particular	
plays.	 	 As	 a	 community,	 however,	 it	 is	 clear	 that	 the	 number	 of	 properties	 affecting	
production	is	very	numerous	and	should	be	more	broadly	understood.	
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10 LIST OF ACRONYMS AND ABBREVIATIONS 

AAPG	 	 American	Association	of	Petroleum	Geologists
	 	
AGU	 	 American	Geophysical	Union
	 	
ARMA	 	 American	Rock	Mechanics	Association
	 	
CQI	 Completion	Quality	Index	
	 	
DAS	 Distributed	Acoustical	Sonic	
	 	
DTS	 Distributed	Temperature	Sensing
	 	
EUR	 Estimated	Ultimate	Recovery
	 	
FMI	 	 Formation	Micro‐imaging	
	 	
GFP	 Gas	Filled	Porosity	
	 	
HRA	 Heterogeneous	Rock	Analysis	
	 	
IP	 Initial	Production		
	 	
PBU	 Pressure	Build‐up	
	 	
Perm	 Permeability	
	 	
RPSEA	 Research	Partnership	to	Secure	Energy	for	America
	 	
RQI	 Reservoir	Quality	Index	
	 	
SEM	 	 Scanning	Electron	Microscope
	 	
SPE	 	 Society	of	Petroleum	Engineers
	 	
TIV	 Transversely	Isotropic	Vertical
	 	
TOC	 Total	Organic	Carbon	
	 	
TRA	 	 Tight	Rock	Analysis	
	 	
XRD	 	 X‐ray	Diffraction	
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