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ABSTRACT

Recent successes  in “managed pressure drilling” have been hardware‐driven,
but  complementary  efforts  in  annular  flow  pressure  modeling  needed  for
wellbore control have been  lacking.   For example, steady‐state slot flow, narrow
annulus and  concentric models assuming  simplified  rheologies are  still used  for
job planning, field analyses and machine control.

In  the  present work,  geometric  details  related  to  high  annular  eccentricity
(typical of highly deviated and horizontal wells in ultradeep offshore applications)
are  modeled  exactly  using  automatically  generated  boundary‐conforming,
curvilinear  grid  systems,  and  all  governing  equations  are  written  to  these
computational meshes and solved transparently to the user.

Multiple  models  covering  steady‐state  and  transient,  two  and  three‐
dimensional  flow,  single  and multiphase  fluids, Newtonian  and  non‐Newtonian
rheologies,  for  both  drillpipe  and  eccentric  annulus,  are  solved,  checked  for
mathematical consistency and validated with lab or field data when possible.

New physical effects amenable  to  rigorous modeling  include  the  size,  shape
and location of plug zones associated with yield stress fluids in arbitrary eccentric
annular cross‐sections, and the corresponding pressure predictions in both steady
and  transient  applications.    In  addition,  the  effects  of  drillpipe  rotation  on
pressure have been computed on a stable numerical basis in full agreement with
field observation.  The work demonstrates how rotation can be used to effectively
control downhole pressures in managed pressure drilling applications.

All mathematical  formulations, numerical solution strategies and algorithms,
validation  examples  and  experimental  consistency  checks  are  described  in
complete  detail  and  all  of  the  algorithms  derived  have  been  “packaged”  for
convenient Windows‐based rig site use by all personnel without having need for
advanced fluid‐dynamic or computational training.
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Preface
The author’s first exposure to the importance of good hole cleaning and

pressure analysis occurred in 1981 on his initiation to the petroleum industry,
upon leaving aerospace, for which he had trained diligently.  The subject matter
was not glamorous, to say the least, but years later, he would come to
understand its significance in both drilling and cementing.  The advent of
deviated and horizontal wells elevated the role of annular flow in oilfield
operations.  A decade later, the author published his first book on borehole flow
modeling, introducing the use of curvilinear grid systems to capture the physics
accurately.  Over the years, this effort was self-funded and undertaken as a labor
of love.  Still another decade later, the author would launch his consulting
company, Stratamagnetic Software, LLC, supported by the United States
Department of Energy through its Small Business Innovation Research program
under Grant DE-FG03-99ER82895, to improve grid generation techniques for
oil industry applications.  Related work in this area with several clients would
continue over the years in different and varied applications.

In 2009, the Department of Energy awarded a contract to support the
author’s technical proposal “Advanced Steady-State and Transient, Three-
Dimensional, Single and Multiphase, Non-Newtonian Simulation System for
Managed Pressure Drilling.”  This comprehensive effort was administered by
the Research Partnership to Secure Energy for America (RPSEA) through its
Ultra-Deepwater Program under Subcontract No. 08121-2502-01.  The award
enabled us to “tie up loose ends” and integrate numerous models developed over
two decades.  More importantly, it provided the opportunity to significantly
extend our models in numerous directions, e.g., rotating flow, fully transient
effects, three-dimensionality, multiphase, and so on, and to perform research and
to develop software models that we feel would have a lasting influence on the
petroleum industry.  We are very fortunate that many in the industry have
recognized our efforts.  Aside from those who have provided us this source of
important funding, anonymous reviewers have made it possible for us to publish
four papers at the recent AADE (American Association of Drilling Engineers)
National Technical Conference and Exhibition during April 2011 in Houston
and one at the Offshore Technology Conference during May 2011 also in
Houston.  We are of course gratified that Elsevier Scientific Publishing has
offered to distribute Managed Pressure Drilling: Modeling, Strategy and
Planning in a move that promises wide dissemination of our ideas.



vii

Consistent with the author’s belief that scientific research should be openly
shared by the industry, this book and the prior papers disclose all elements of the
new annular flow models: mathematical theory, numerical implementation,
source code examples and computational validations with comparisons to
laboratory and field data and results whenever possible.  Because of our research
focus, and because our ideas are always evolving, the methods developed here
and implemented in software, are provided “as is” and no claim is made that
they address all the issues that may be material.

But it is our hope that others will study the models and help us improve
them through use and research.  Over the next several months, we hope to
disseminate the software, for which great effort has been expended to optimize
the user experience through a versatile and intuitive interface, widely, so that we
will obtain the feedback needed to support continued product development.  The
author is deeply appreciative of the opportunity offered by the United States
Department of Energy and the Research Partnership to Secure Energy for
America to work in this exciting technology area and looks forward to longer
term collaboration with all interested parties.

Wilson C. Chin, Ph.D., M.I.T.
Houston, Texas

Email:  wilsonchin@aol.com
Telephone:  (832) 483-6899
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1
Fluid Mechanics Challenges
and Technology Overview

The author’s early book on annular flow, entitled Borehole Flow Modeling
in Horizontal, Deviated and Vertical Wells (Gulf Publishing, 1992), was first to
use boundary-conforming, curvilinear grid systems to host highly eccentric
annular cross-sections that contained cuttings beds, washouts and local fractures.
That work also addressed related problems, e.g., helical flow and steady rotation
of Power law fluids in concentric annuli as well as the role of barite sag in
promoting local recirculation zones which dangerously block oncoming mud.
Ten years later, the second edition, renamed Computational Rheology for
Pipeline and Annular Flow (Elsevier, 2001) expanded the initial scope to model
effects like borehole axis curvature, flows in non-circular pipe (non-annular)
ducts, half-clogged annular domains, and so on.  These two works focused on
steady, two-dimensional flows without rotation, and then, single-phase non-
Newtonian rheologies absent of yield stress.  Many of the algorithms have been
adopted by operating and oil service companies over the past two decades.

The present book, which summarizes major improvements to accuracy,
speed and engineering focus, represents a significant contribution which renders
the prior works almost obsolete.  Even so, the curvilinear grid technology
employed in the early books remains state-of-the-art, and thus, provides the
mathematical foundation for the newer algorithms developed here.
Improvements in formulation and solution accuracy are provided, but the new
book substantially extends the range of problem-solving capabilities.  The
present work gained significant impetus with the recent award of United States
Department of Energy Contract No. 08121-2502-01 for “Advanced Steady-State
and Transient, Three-Dimensional, Single and Multiphase, non-Newtonian
Simulation System for Managed Pressure Drilling,” administered by the
Research Partnership to Secure Energy for America (RPSEA).  This award
provided the opportunity to integrate past work, tie up “loose ends,” introduce
new extensions and provide the software platform needed to bring much needed
algorithms to the industry for deepwater drilling and cementing applications.
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Although the prior works are by no means old, at least chronologically, the
methods developed therein are often cited as “new.”  However, in the context of
this book, they are antiquated and entirely replaced by newer algorithms.  The
methodologies here are described in their entirety so that interested researchers
can develop, improve and extend the models from first principles.  They are
“open source” in the above sense.  To set the stage for the presentations that
follow, we explain the limitations behind the previous works as well as
extensions that have appeared in papers published up to the late-2000s.  The
recent works in Chin and Zhuang (2011a,b,c,d), presented at the AADE
(American Association of Drilling Engineers) National Technical Conference
and Exhibition in Houston during April 2011, the paper of Chin and Zhuang
(2011e) given at the Offshore Technology Conference in Houston during May
2011, and the work in Chin and Zhuang (2010) presented at the CPS-SPE
International Oil & Gas Conference and Exhibition in Beijing during June 2010,
do represent up-to-date contributions.  However, the present book provides
much more information than is available in the published summaries, in addition
to special solutions that have not yet appeared in print.

Challenges in annular flow modeling.  The problems confronting
borehole flow modeling are numerous.  First, the governing partial differential
equations are highly nonlinear and difficult to solve: classical superposition
methods do not apply.  This is so even for flows without rotation, where a single
equation for axial velocity is found.  When rotation exists, azimuthal flow
coupling generally leads to numerical instabilities, which have only recently
been addressed satisfactorily.  When multiphase effects are considered,
difficulties in the solution process are compounded by the introduction of a
convective-diffusive equation for species concentration.  Depending on the
problem, steady solutions require stable iterative solutions, whereas transient
solutions require robust algorithms admitting larger integration time steps.

Second, annular geometries are complicated.  A highly eccentric geometry
typical of those encountered in the drilling and cementing of modern deviated
and horizontal wells is shown in (a) of Figure 1-1a.  A less-than-ideal annulus is
sketched in (f) which indicates a washout, although fractures and cuttings beds
are also possible.  The governing equations must be solved for practical
geometries and satisfactory coordinate systems provide the key to success.  In
engineering simulation, solutions for reservoir flow from single wells, for
instance, are developed naturally with circular coordinates.  Temperatures in
rectangular plates, in contrast, are obtained in rectangular coordinates.  For (a)
and (f), neither circular nor rectangular variables apply. Therefore, researchers
have introduced simplifying methods that render the equations amenable to
solution.  For instance, the concentric model in (b) can be solved for steady
Power law flows; however, yield stress formulations have so far defied rigorous
analysis with solutions available only for circular pipe flows.  Out of necessity,
real annuli are crudely modeled by “close” concentric annular flows.
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Equivalent hydraulic radii approaches model the eccentric annulus as an
equivalent pipe flow as suggested in (c).  Such approaches are completely adhoc
in nature and cannot be extended to other situations.  Slot flow methods are
suggested in (d), in which a narrow eccentric or almost concentric annulus is
“unwrapped” and approximated by a series of parallel plate problems that can be
solved.  However, circumferential inertia terms cannot be properly modeled and
extensions to transient flow are impossible.  Finally, the “pie slice” methods
indicated in (e) remove some limitations inherent in slot flow approaches.  Here,
concentric solutions are applied to different slices of the annulus, but again, the
final solution, somewhat crude, provides only as many simulation options as
those available for the concentric annuli and these are few.

(c)

(d)

(a)
(b)

(e)

(f)

Figure 1-1a.  Real and idealized annular geometry models.

Third, yield stress effects have introduced significant difficulties to
obtaining solutions that are consistent with reality.  In flows with nonvanishing
yield stress, plug flows are found which move as solid bodies; they are
embedded within the sheared flows we are accustomed to.  For flows in circular
pipes, simple formulas are available for plug radius, volumetric flow rate, and so
on.  For eccentric annuli, plug zone size and shape are generally unknown, so
that solutions to this important problem cannot be obtained at all.  Even if plug
zone location and geometry were available, mathematical issues associated with
matching regional solutions across internal boundaries are overwhelming.

Finally, we cite issues associated with utility and user-friendliness.  Even if
all the problems described above can be solved, they must be solved quickly and
stably with minimal trial and error.  Results must automatically display in three-
dimensional color graphics and movies. Computational and engineering
expertise should not be required to obtain practical solutions.  Simple definition
of annular geometry, rheological properties, and run-time inputs like flow rate or
pressure gradient, pipe axial and rotational speed, and so on, are all that should
be required.  Only when such conditions are fulfilled will the models find real
use.
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Simulation challenges met and exceeded.  We are pleased to report that
the difficulties cited above have been overcome through combined use of
rigorous mathematics and state-of-the-art numerical analysis.  In addition,
careful emphasis and focus on graphic interfaces and ease-of-use issues promise
to make the algorithms relevant to modern drilling, cementing and deepwater
applications requiring immediate answers.  These require fast solutions operable
at field offices and rig sites.  The applications are demanding because they
require methods that work the first time and every time.  As suggested earlier,
we now explain the limitations behind older (including the author’s) versus the
newer models in order to set the stage for the remainder of this book.

 While Borehole Flow Modeling, Computational Rheology and several
company algorithms do model eccentric annuli using the author’s
curvilinear grid systems, the transformed differential equations in the past
neglected partial derivatives of the (variable) apparent viscosity because
they led to numerical instabilities.  This approximation has been removed.

 In the author’s prior models, plug zone size and shape were determined by a
shock-capturing method that did not always satisfy conservation laws.  The
new method, using an “extended Herschel-Bulkley” constitutive relation,
recognizes that real fluids vary continuously and do not solidify suddenly.
Computations therefore reach into the plug zone, and plug size, shape and
interfacial gradients and details are calculated iteratively as part of the
solution.  The approach mirrors the author’s prior aerospace approaches in
gas-dynamic shock-capturing.  In high speed aerodynamics, shockwaves (or
pressure discontinuities) can form at wing surfaces.  In the late 1970s, the
author employed the so-called “viscous transonic equation” to naturally
compute evolving shocks that satisfied physical conservation laws and
standard thermodynamic and entropy constraints without partitioning the
flow into multiple domains.  A similar approach was undertaken here.

 Steady rotating pipe flow modeling for eccentric problems is beset with
numerical instability problems which have not been satisfactorily addressed.
Although a limited number of papers do report solutions, they are lacking in
numerical detail and the models do not appear to be available for general
use.  The present approach, which is robust and numerical stable, calculates
steady rotating flow solutions as the asymptotic limit of a transient problem.
Many steady and transient applications are given in this book.

 Steady, single-phase models with rotation have not been generally
addressed in the literature – and unsteady methods hosted on curvilinear
grids pose even rarer commodities.  Here we provide the first such
algorithms for annular borehole flow.  These represent more than obvious
“/t” appendages to steady flow operators and simple time integration.
Contradictory and confusing issues were addressed.  Prior to 1990,
mathematical solutions and field observations indicated that the effect of
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pipe rotation was increased flow rate (for a given pressure gradient) due to
shear-thinning; equivalently, when volumetric flow rate is prescribed,
rotation leads to a weaker pressure gradient.   Subsequent to that period,
field observations were completely opposite: pipe rotation decreases flow
rate for the same applied pressure gradient.  These contradictions have been
cited often in industry discussions, and the fact that field observations do
not represent controlled experiments does not help.  Our work has provided
a simple explanation for the apparent contradictions.  In the early work,
concentric annuli were the main focus in vertical well applications.  For
such problems, the effects of rheology only appear through shear-thinning
and this is responsible for the reduced resistance observed.  In recent
publications, the focus lies in deviated and horizontal wells where
eccentricities can be large.   While shear-thinning is nonetheless present, the
loss of symmetry introduces certain nonlinear convective terms to the
governing equations which modify the effective pressure gradient.  When
these terms are included in the model, post-1990s conclusions are computed
naturally, which are consistent with pre-1990s observations for concentric
annular flow.  The calculations are operationally significant in managed
pressure drilling because pipe rotation now provides additional means for
pressure control at the drillbit.  Conventionally, borehole pressures are
adjusted by changing dynamic friction using different pump rates, a
procedure that may not be safe since sudden pump transients are involved;
altering mud rheology and weight, a process that is slow; or simply by
adjusting the surface choke.  In our work, we demonstrate that drillstring
rotation can affect pressures significantly without the limitations indicated
above, thus providing an important tool useful in navigating narrow
pressure windows often found in ultra-deepwater drilling.

 Transient, three-dimensional, multiphase flow modeling is important to
modern drilling and completions.  The recent work of Savery, Darbe, and
Chin (2007), with laboratory validations reported in Deawwanich et al.
(2008), Nguyen et al. (2008), Savery et al. (2008) and Savery, Chin and
Babu Yerubandi (2008) describes a successful and flexible computational
scheme used to solve the fully coupled equations governing axial and
azimuthal velocities and species concentration.  The work efforts model
miscible mixing and predicts, for example, diffusion thicknesses as a
function of cross-sectional location, time scales required for different
mixing processes, plus the locations of nonplanar interfaces separating
multiple fluid slugs.  However, the method is extremely computation and
memory intensive.  Using boundary layer approximations, equally accurate
solutions are obtained in Chapters 8 and 9 that are orders-of-magnitude
faster and therefore suitable for job planning applications.  For managed
pressure drilling applications where the details of interfacial mixing are not
important, pressure profiles along the borehole (and, in particular, at the
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drillbit) as functions of time can be obtained in minutes.  For cementing
applications, the ability to “zoom in” in order to examine interfacial mixing
details is provided.  Unlike the 2007 model, however, computations require
only inputs associated with just two contiguous fluids, thus ensuring fast
solutions that can be easily repeated for multiple “what if” analyses.  Rapid
access to answers ensures relevance to job planning activities.

Why computational rheology?  Students accustomed to steady Newtonian
fluid mechanics are familiar with “obvious” rules of thumb.  But when
petroleum applications are encountered, these must be abandoned without
suitable or useful replacements.  We offer numerous examples.

 For Newtonian flows with stationary boundaries, doubling the pressure
gradient doubles the flow rate, while doubling the viscosity halves the
volumetric flow.  In fact, many solutions contain the simple lumped
parameter “1/ dp/dz” where  is viscosity and dp/dz is pressure gradient.
These observations are not true for non-Newtonian flows and analogous
scaling laws do not exist.

 In Newtonian fluid flow problems, barring dependencies on pressure and
temperature, viscosity is a constant throughout the entire domain.  This is
not true of non-Newtonian flows, where the “apparent viscosity” varies
throughout the cross-section and also depends on pressure gradient or
volumetric flow rate.  Thus, while intrinsic parameters like “n” and “K” can
be inferred from viscometer readings, instrument readings for viscosity are
largely irrelevant for applications, say, when the same fluid is flowing in a
real borehole annulus.

 For steady concentric Newtonian annular flows, axial and azimuthal
velocity fields completely decouple despite the nonlinearity of the Navier-
Stokes equations.  Axial velocities depend on applied pressure gradient only
and not rotational rate, while azimuthal velocities depend on rotational rate
and not pressure gradient.  This is not the case for non-Newtonian flows
even in concentric applications because the apparent viscosity function
depends on both velocities.  Thus, for example, laboratory and field
observations obtained for Newtonian flows are completely inapplicable to
non-Newtonian flow and any expense incurred is wasted.

 While it is not obvious without studying the governing equations, the time
scales associated with, for instance, flowline start-up and shut-down or
time-to-steady-state in rotating pipe applications, are completely different
for Newtonian versus non-Newtonian flows.

It is clear from these examples that no simple methods exist for non-
Newtonian flow prediction except for well validated computational methods.
The present book develops a wealth of proven algorithms which, importantly,
have been integrated for convenient use within a software framework.
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Broad principles and numerical consistency.  There are “facts of life”
like “death and taxes” that remain truisms often difficult to prove.  Such truisms
are also to be found in annular flow.  For instance, for the same applied pressure
gradient and pipe and hole diameters, higher borehole eccentricities move
greater amounts of fluid whatever the rheology.  Another apparent truth is found
for concentric rotating flows – rotation reduces resistance because of shear-
thinning and increases flow rate.  And for most eccentric annular cross-sections,
rotation seems to decrease flow rates because axial pressure gradients are altered
in subtle ways.  There are most likely exceptions to these “truths” and others.
We are gratified that flow simulation results seem to be consistent with these
results.  But more importantly, predictive means are now available to provide
“numbers,” and, of course, appropriate guidance when truths are not so true.

What we’re not.  Although this book focuses on a wide range of problems,
it is important to summarize those issues not covered and technical areas the
simulators do not address with brief explanations as necessary.

 Secondary flows in pipes and annuli are not investigated, e.g., Taylor
vortices, are not studied.

 The simulators do not model gas kicks.

 Pressure and temperature effects on fluids, while important operationally,
are not addressed because they can only be determined from empirical
measurement.  We assume that rheological properties for the particular
downhole environment are available and “go” with those inputs.

 Present turbulence modeling methods are highly empirical and do not fit
within the predictive framework of the software research. Thus,
conventional models are not included, although an analogy to “small n”
rheologies is developed in some detail.

 Swab-surge effects critically affect drilling operations.  A significant
portion of our research and software development focused on accurate
modeling of yield stress fluids in complicated annular domains.  The work
addressed constant density applications.  Transient compressible effects are
also important in practice, i.e., “water hammer” effects, but these are
reserved for future investigation.

What we can solve and more.  No research or software development effort
is ever complete and ours is no exception.  Since 2010, six papers have been
presented by the author at various conferences and audiences have raised
common questions.  We repeat these together with our remarks.

 How well validated is the methodology?  Early single-phase flow checks
are reported in Borehole Flow Modeling and pipeline validations are given
in Computational Rheology.  The transient, three-dimensional, multiphase
flow references cited earlier give experimental details with photographs for
non-Newtonian, rotating, annular flows obtained at a major university.
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 Are torque and drag calculations possible?  Calculations can be performed
with simulator output, but they are not yet part of any automated post-
processing scheme.

 Can the gridding technology be extended to three dimensions in order to
model real boreholes?  “Yes,” definitely.  In fact, a large oil service
company has parametized our model by adding a third “z” direction to the
mappings.  Mappings are repeated as needed and local cross-sectional
geometries are developed with the aid of caliper logs.  The flow equations
are written to this three-dimensional grid and solved.  The resulting
software is numerically intensive and demanding of memory resources.

 How general are our transient pipe motion options?  The “canned” options
available in the “Transient 2D” and “Transient 3D multiphase” options are
very flexible although, of course, they cannot cover every possible scenario.
We do emphasize that nothing in the general algorithm and formulation
precludes the most arbitrary reciprocating and rotating pipe or casing
motions envisioned by users.  Implementation is straightforward but
requires source code access.

 Is it possible to model rheologies besides Newtonian, Power law, Bingham
plastic and Herschel-Bulkley (a.k.a. Herschel-Buckley), e.g,, fluids with
“memory” effects?  Yes, arbitrary rheologies can be modeled.  We have
selected the Herschel-Bulkley as our primary candidate only because this is
widely used.  However, other constitutive relations can be used by
modifying a short apparent viscosity update module.  This applies also to
memory fluids.  For such flows, the same update procedure is used at the
end of each time step during the integration process, with fluid strains from
previous time steps now entering current apparent viscosity definitions.

 Can rheological flow models be used to predict movements of single
cuttings chips?  Although many in the profession and software salesmen
will argue “Yes,” the answer is a definitive “No.”  The author’s background
as a Research Aerodynamicist at Boeing and Turbomachinery Manager at
Pratt & Whitney Aircraft are, in part, responsible for this negativism: it is
difficult to model inviscid flow past a single fixed airfoil let alone low
Reynolds number viscous flow past an unrestrained rock chip with
unknown geometry and origin.  Computational models can, of course, be
used for correlative purposes.  For instance, in Borehole Flow Modeling,
the author shows that high viscous stresses at the top of cuttings beds in
deviated wells are associated with good hole cleaning; obviously,
mechanical friction plays a crucial role in cuttings bed erosion and removal.
On the other hand, high axial velocities and viscosities are instrumental for
debris removal in vertical wells, a conclusion obvious from Stokes’ formula
for slow moving spheres.  As another example, low apparent viscosities are
associated with spotting fluid effectiveness in freeing stuck pipe.  Because
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correlative methods offer significant potential in explaining physical
phenomena and offering solutions, the software models reported in this
book also provide detailed solutions for apparent viscosity, shear rate and
viscous stress in addition to those for velocity.  Their availability allows
engineers to identify and explain new observations with greater ease and
hopefully make drilling and cementing safer and more economical.

Closing introductory remarks.  Before delving into the heart of annular
flow modeling and, in particular, managed pressure drilling and cementing
applications, we offer several remarks (amply illustrated) about the
mathematical approaches taken, the technical problems solved, and the overall
system and objectives addressed.

Insofar as theory is concerned, two fundamental building blocks are used.
The first employs “boundary-conforming, curvilinear grid” systems to represent
complicated geometries. An example of an interesting annulus is shown in
Figure 1-1b where the borehole wall is shaped with Texas boundaries and the
“hole” is an elliptical fracture.  One would write the governing equations to
these coordinates, and solve them with iterative methods for steady flows and
time-marching integration schemes for transient problems.  The mathematics is
developed entirely from first principles in terms of basic concepts from calculus.
The usual references to differential geometry are not necessary and not used.

Figure 1-1b.  Annulus with Texas boundaries and elliptical hole.

The conventional constitutive relations used for Newtonian, Power law,
Bingham plastic and Herschel-Bulkley fluids are illustrated in the stress and
shear rate diagrams of Figure 1-1c.  As will be explained, computations for
fluids without yield stress are straightforward in a sense, but in the case of yield
stress problems, the size, shape and location of plug zones (which move as solid
bodies within sheared flows) are unknown, rendering the computational problem
intractable.  Until the work of Chin and Zhuang (2010), calculations for
eccentric annular flow with plug zones have not been possible.  A major
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breakthrough offering fast practical solutions without compromising the
mathematics was adopted, using an “extended Herschel-Bulkley” law proposed
in Souza Mendes and Dutra (2004), which provides for continuous flow
solutions reaching across and into typical plug zones.  This approach,
generalizable to rheologies beyond those commonly used, promises to broaden
the reach of computational methods for modeling newer muds and cements now
being introduced commercially to the industry.

Figure 1-1c.  Constitutive relations for basic rheologies.

Taken together, our grid generation and plug zone methodologies,
combined with advanced numerical methods for iterative and time-marching
schemes (for application to systems of partial differential equations) allow
solutions to the most complicated annular flow problems.

 Figure 1-1d.  Eccentric annular flow model.
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The schematic in Figure 1-1d outlines the scope of the technical problem
areas that can be addressed.  These include high annular eccentricity, geometric
anomalies like washouts and cuttings beds, general axial reciprocation in time
together with arbitrary unsteady rotational pipe motions, plug zone modeling
associated with yield stress fluids, general pump schedules allowing multiple
slugs of non-Newtonian fluids, borehole axis curvature, pressure loss at the
drillbit, steady and transient flow analysis, and so on.

Pressure Psurf(t)
at surface choke

Drillbit Pbit(t)

Mud

Multi-fluid
transient pump

schedule

RCD rotating
control device

Vertical
concentric
section

Horizontal or deviated well
and eccentric annulus

Turning
section

Tripping in or outPipe rotation

Figure 1-1e.  Managed pressure system simulation.

The foregoing capabilities have been assembled to form a user-friendly
software framework with convenient color graphics to model the managed
pressure drilling requirements in Figure 1-1e.  In effect, we consider the entire
problem, from general pumping schedule, to flow down the drillpipe, through
the drillbit, and finally up a highly eccentric annulus.  Our objective is accurate
computation of borehole pressure profile (and, particularly, pressures at the bit)
as functions of time, one that is essential to job planning in drilling and
cementing ultradeep offshore wells.  Fast computing speeds and ease of use, of
course, are important to rapid decision making in environments constrained by
dangerous narrow pressure windows.  In the end, safety is the prime motivator.



12   Managed Pressure Drilling: Modeling, Strategy and Planning

Section 1-1.  Managed pressure drilling fluid flow challenges.

We have satisfactorily answered “Why study rheology?”  In petroleum
engineering, we emphasize that “rheology” here necessarily implies
“computational rheology.” Operational questions bearing important economic
implications cannot be answered without dealing with actual clogged pipeline
and annular borehole geometries that can only be conveniently studied using
simulation methods.  Before delving into our subject matter, it is useful to
review several exact closed form solutions.  These are useful because they
provide important validation points for calculated results and instructive because
they show how limiting analytical methods are.  For our purposes, we will not
list one-dimensional, planar solutions, which have limited petroleum industry
applications, but focus first on pipe and annular flows in this section.
Rectangular duct solutions will be treated later in Chapter 5.

Newtonian pipe flow.  What can be simpler than flow in a pipe?  In this
chapter, we will find that most “sophisticated” analytical solutions are available
for pipe flows only, and then, limited to just several rheological models.

r

Note, du/dr < 0

u(r) > 0

Figure 1-1f.  Axisymmetric pipe flow.

Figure 1-1f illustrates straight, axisymmetric, pipe flow, where the axial
velocity u(r) > 0 depends on the radial coordinate r > 0.  With these conventions,
the “shear rate” du/dr < 0 is negative, that is, u(r) decreases as r increases.  Very
often, the notation d/dt = - du/dr > 0 is used.  If the viscous shear stress  and
the shear rate are linearly related by

 = -  du/dr > 0 (1-1a)

where  is a constant viscosity, then two simple relationships can be derived for
pipe flow.

Let p > 0 be the (positive) pressure drop over a pipe of length L, and R be
the inner radius of the pipe.  Then, the radial velocity distribution satisfies

u(r) = [p /(4 L)] (R2 – r2) > 0   (1-1b)
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Note that u is constrained by a “no-slip” velocity condition at r = R.  If the
product of “u(r)” and the infinitesimal ring area “2r dr” is integrated over (0,R),
we obtain the volumetric flow rate expressed by

Q = R4p /(8 L) > 0 (1-1c)

Equation (1-1c) is the well-known Hagen-Poiseuille formula for flow in a
pipe.  These solutions do not include unsteadiness or compressibility.  These
results are exact relationships derived from the Navier-Stokes equations, which
govern viscous flows when the stress-strain relationships take the linear form in
Equation 1-1a.  We emphasize that the Navier-Stokes equations apply to
Newtonian flows only, and not to more general rheological models.

Note that viscous stress (and the wall value w) can be calculated from
Equation 1-1a, but the following formulas can also be used,

 (r) = r p/2L > 0 (1-2a)

w = R p/2L > 0 (1-2b)

Equations 1-2a,b apply generally to steady laminar flows in circular pipes, and
importantly, whether the rheology is Newtonian or not.  But they do not apply to
ducts with other cross-sections, or to annular flows, even concentric ones,
whatever the fluid.

Finally, for Newtonian flows, we show how the effects of pipe rotation are
easily modeled.  If we turn to the general Navier-Stokes equations in Equations
2-1-1,2,3,4 and set vr = 0, / = /t = /z = 0 and assume vanishing body
forces, the continuity equation is automatically satisfied.  The three main
equations become p/r = v

2/r, 2v/r2 + 1/r v/r – v/r
2 = 0 and 2vz/r2 +

1/r vz /r = 1/ p/z.  The azimuthal momentum equation is solved by v = r,
that is, the fluid executes solid body rotation as the pipe turns at a constant speed
 and there is no influence from axial pressure gradient.  The solution for the
axial momentum equation is just the u from Equation 1-1b and does not involve
.  In other words, the two velocities behave independently of each other.  The
radial pressure gradient is obtained from the first equation as p/r = 2r.  Note
that non-Newtonian pipe flows do not behave so simply.

Bingham plastic pipe flow.  Bingham plastics satisfy a slightly modified
constitutive relationship, usually written in the form,

 = 0 -  du/dr (1-3a)

where 0 represents the yield stress of the fluid.  In other words, fluid motion
will not initiate until stresses exceed yield; in a moving fluid, a “plug flow”
moving as a solid body is always found below a “plug radius” defined by

Rp = 20 L /p (1-3b)

The “if-then” nature of this model renders it nonlinear, despite the (misleading)
linear appearance in Equation 1-3a.  Fortunately, simple solutions are known,
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u(r) = (1 /) [{p /(4L)} (R2 – r2) – 0 (R – r)], Rp  r  R  (1-3c)

u(r) = (1 /) [{p /(4L)} (R2 – Rp
2) – 0 (R – Rp)], 0  r  Rp (1-3d)

Q/(R3) =  w /(4)] [1 – 4/3 (0 /w) + 1/3 (0 /w) 
4 ]   (1-3e)

Power law fluid pipe flow.  These fluids, without yield stress, satisfy the
Power law model in Equation 1-4a, and the rate solutions in Equations 1-4b,c.

 = K ( - du/dr) 
n    (1-4a)

u(r) = (p/2KL) 
1/n

 [n/(n+1)] ( R 
(n+1)/n - r 

(n+1)/n ) (1-4b)

Q/(R3) = [Rp/(2KL)] 
1/n

 n/(3n+1)       (1-4c)

Nonlinear “Q versus p” graphical plots are given in Chapter 4.  We emphasize
that linear behavior applies to Newtonian flows exclusively.

Newtonian, parabolic profile

Power law, n = 0.5

Power law, n >> 1

Bingham plastic, plug zone

Figure 1-1g.  Typical non-Newtonian velocity profiles.
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Herschel-Bulkley pipe flow.  This model combines Power law with yield
stress characteristics, with the result that,

 = 0 + K ( - du/dr) 
n    (1-5a)

u(r) = K 
-1/n

 (p/2L) 
-1

 {n/(n+1)} (1-5b)

[(Rp/2L  - 0) 
(n+1)/n - (rp/2L  - 0) 

(n+1)/n], Rp  r  R

u(r) = K 
-1/n

 (p/2L) 
-1

 {n/(n+1)} (1-5c)

[(Rp/2L  - 0) 
(n+1)/n - (Rpp/2L  - 0) 

(n+1)/n], 0  r  Rp

Q/(R3) = K 
-1/n

 (Rp/2L) 
-3

 (Rp/2L  - 0) 
(n+1)/n  (1-5d)

 [(Rp/2L  - 0)
2

 n /(3n+1) + 2 0 (Rp/2L - 0) n /(2n+1) + 0
2

 n/(n+1)]

where the plug radius Rp is again defined by Equation 1-3b.
Ellis fluid pipe flow.  Ellis fluids satisfy a more complicated constitutive

relationship, with the following known results,

 = - du/dr /(A + B
) (1-6a)

u(r) = A p (R2 – r2)/(4L) + B(p/2L) 
 ( R 

 - r 
)/( + 1) (1-6b)

Q/(R3) = Aw /4 + Bw


 /(+3) (1-6c)

= A(Rp/2L)  /4 + B(Rp/2L) 


 /(+3)

Other rheological models appear in the literature.  Typical qualitative features of
the main models for velocity are shown in Figure 1-1g.

Annular flow solutions.  The only known exact, closed form, analytical
solution is a classic one describing Newtonian flow in a concentric annulus.  Let
R be the outer radius, and R be the inner radius, so that 0 <  < 1.  Then,

u(r) = [R2p /(4L)]

[ 1 - (r/R)2 + (1- 2 ) loge (r/R) / loge (1/) ]   (1-7a)

Q = [R4p /(8L)] [ 1 - 4 - (1- 2 )2  / loge (1/) ] (1-7b)

noting that this solution assumes stationary walls.  Here, the slope formed by Q
versus p/L is determined once and for all by the geometry and the value of
viscosity.  In fact, Q is inversely proportional to , varies directly with p/L and
depends only on the lumped quantity 1/ p/L.  The net proportionality constant
above can be determined by experiment if desired.

Note that for non-Newtonian flows, even for concentric geometries,
numerical procedures are required, e.g., see Fredrickson and Bird (1958),
Skelland (1967) or Bird, Stewart and Lightfoot (2002).  The limited number of
exact non-rotating solutions unfortunately summarizes the state-of-the-art, and
for this reason, recourse must be made to computational rheology for the great
majority of practical problems.  We will, however, derive an exact analytical
solution for Herschel-Bulkley yield stress fluids in concentric annuli without
pipe movement in Chapter 5.
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Section 1-2.  MPD Flow Simulator –
Steady, two-dimensional, single-phase flow.

Our “MPD Flow Simulator” system consists of three distinctive
capabilities hosted by three different but linked menu interfaces.  These are
“Steady 2D,” “Transient 2D,” and “Transient 3D multiphase.”  All of the
modules residing in each of the interfaces satisfy rigorous mathematical
formulations that are described in detail in this book.  Moreover, they are hosted
by fast and numerically stable algorithms, and are tightly integrated with
automated two and three-dimensional color graphics displays, that together
provide detailed solutions within minutes if not seconds.

While substantial research into fluid mechanics formulations and their
computational solutions supports the totality of our efforts, only those models
that operate quickly and stably are offered for general public use.  We
emphasize that all of our models have been validated, many with detailed field
and laboratory data, and importantly, that all are consistent with each other to
within 2-3 percent in their areas of common overlap.  The work builds upon the
author’s books Borehole Flow Modeling in Horizontal, Deviated and Vertical
Wells (Chin, 1992) and Computational Rheology for Pipeline and Annular Flow
(Chin, 2001), which dealt with steady, two-dimensional, single-phase flows.
These models are available to petroleum organizations, as are recent extensions
to transient, two and three-dimensional, single and multiphase applications,
which, however, have seen only limited publication until now.

Figure 1-2a.  “Steady 2D” main menu.
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We describe our overall capabilities in this introductory chapter to give a
flavor of the final product, in particular, what particular software models do and
how they deliver their results.  In this manner, we “personalize” our partial
differential methods and render them less intimidating.  While great care is
taken to explain our formulations, especially in the context of conventional
models, the software product is designed so that no user expertise in theoretical
fluid mechanics, mathematics, computer modeling or numerical analysis is
required.  Aside from an appreciation of basic annular flow problems and
applications, and the practical implications behind yield stress rheologies,
nothing is required except the ability to “point and click,” all the time attempting
to understand the consequences of the calculations.

The main “Steady 2D” interface appears in Figure 1-2a.  The left-most
“Start” menu, expanded in Figure 1-2b, provides access to introductory, self-
explanatory functions.  “QuikStart” provides enough information for the user to
perform his first simulations the very first minute.  The “Install graphics”
function needs to be executed only once from any of the graphics menus in
Sections 1-2, 1-3 or 1-4.  “User manual” allows direct access to an integrated
“pdf” document.  “Examples” loads stored data for instructive simulations that
can be run by simply clicking “Simulate.”  “Transient 2D analysis” links the
present module to the “Transient 2D” simulator, while “Transient 3D
multiphase” provides access to the more complicated transient, three-
dimensional, multiphase flow simulator.  All of these modules are cross-
validated later in the book under challenging scenarios to demonstrate their
consistency and accuracy.

Figure 1-2b.  Introductory functions.

Note: for two circles with inner and outer radii Ri and Ro, and center separation , “eccentricity” is
defined as  = /(Ro – Ri).  Thus,  = 0 if concentric and 1 if in contact.  Eccentricity is not often
used in this book because annuli may be very general to include washouts and cuttings beds.
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The upper left portion of the interface in Figure 1-2c displays input boxes
for eccentric annulus geometry definition, requiring numbers for circle centers
and radii following the convention shown.  Eccentricity is calculated in the
passive text box at the bottom.  Clicking “Show Annulus” displays the eccentric
annulus assumed, together with a coarse, boundary-conforming, curvilinear grid
that might be used to host the simulation.  Although grid generation requires the
solution of a system of coupled nonlinear partial differential equations, the
process is transparent to the user and requires seconds including display time.

Note that our annuli are not restricted to eccentric circles – at run time,
inner and outer contours may be edited point-by-point at the user’s option.  In
addition, fine meshes may be selected to provide still higher resolution.  At the
lower left, text boxes for borehole axis curvature (which models centrifugal
effects) and axial drillstring or casing speed (for zero, positive or negative
constant speed movement) are available for general input.  At the present time,
our steady flow simulator does not support rotation since the numerical
algorithm is not unconditionally convergent.  However, transient rotations are
supported in our “Transient 2D” algorithm and may be used to compute steady-
state effects.  Refer to our transient flow write-ups for further discussion.

Figure 1-2c.  “Show annulus” display and grid generations capability.

Once annular geometry is defined and Herschel-Bulkley parameters are
entered at the top right, the user selects “axial pressure gradient specified” (to
compute flow rate) or “volumetric flow rate specified” (to compute pressure
gradient).  Depending on the density of the mesh selected, the iterative
calculations (used to solve the nonlinear momentum equations for the particular
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rheology written to the specified grid) may require up to several seconds of
computation.  Again, the process is completely automated.  There are two
simulation modes, namely, “QuikSim” and “Simulate.”  Both use the same
numerical engine, solving the same complete equations hosted by the mapped
equations; hydraulic radius, narrow annulus and slot flow models are never used
in our work.  “QuikSim” assumes the finest mesh permissible and does not
allow editing of inner and outer borehole wall shapes.  Also, in order to expedite
calculations, limited text output options are offered although all possible color
plots are available.  “Simulate,” on the other hand, offers detailed geometry
editing capabilities and detailed text output, tabulated results, and “numbers
overlaid on annular geometry” capabilities, where “numbers” refers to velocity,
apparent viscosity, shear rate and viscous stress results.

Figure 1-2d.  “Results” menu offers detailed color plots.

Once “QuikSim” or “Simulate” is clicked and the simulations are run to
completion, a process requiring seconds for “axial pressure gradient specified”
but possibly up to a minute for “volumetric flow rate specified,” all simulation
results are available through the “Results” menu shown.  “Text output” refers to
summaries of geometric annular attributes and rheological parameters, tabulated
results for velocity, apparent viscosity, shear rate and viscous stress, and also
detailed numbers plots that contain more information than is available through
more attractive color graphics results.  For instance, this may include ASCII
results such as the velocity display below, which plots the first two significant
digits of axial velocity (in units of inch/sec) for an eccentric annulus with a user-
supplied cuttings bed –
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COMPUTED AXIAL VELOCITY (IN/SEC):

                        0     0     0
                  0     9    15     9     0
                  9    15    19    15     9
            0      15    21  21  21    15       0
              9    2121  21  19  21  2121     9
               19    19  17  12  17  19    19
        0 9      21  12 6 6   0   6 612  21       9 0
           1521    17   0           0  17    2115
             211912   0               0  121921
      0 915       6 0                   0 6      19 9 0
           212015 6                       6151921

      01519201912 0                       01219201915 9 0

           202015 6                       6151820
      0 915       5 0                   0 5      15 9 0
               1810   0               0  101718
           1519    11   0           0  11    1915
        0 9      15   8 5 1   1   1 2 8  1515     9 0
               13   9 9   5   5   5   9 9  1513
              8   5 8   4 5   4   5 4   8 5   8
            0     0     0     0     0     0     0

Axial velocities are also available as “planar,” “static 3D” and “dynamic
3D” plots as shown in Figures 1-2e, 1-2f and 1-2g, respectively.  All may be
copied to the Windows clipboard and saved, and inserted into Windows
documents, worksheets and presentation software.  Figure 1-2f illustrates
contour plotting capabilities while Figure 1-2g provides the ability to rotate
about any (and all) of three axes, plus “zoom” and “move” functions.

Figure 1-2e.  Planar velocity plot.
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Figure 1-2f.  “Static 3D” display with contour plot generation.

Figure 1-2g.  “Dynamic 3D” display with mouse-rotatable perspective views.
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Figure 1-2h.  Detailed physical properties.

In addition to velocities, detailed field properties for apparent viscosity, x
and y component shear rate and viscous stress, dissipation function and Stokes
product, in color and ASCII text plots, are available for user viewing.  These
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properties are obtained by post-processing exact computed results for velocity
and may be useful for different correlation applications.  For instance, apparent
viscosity is used in evaluating spotting fluid effectiveness for stuck pipe
applications, while viscous stress at the surface of the cuttings bed correlates
well with cuttings transport efficiency. Velocity and apparent viscosity are
individually useful in hole cleaning applications in vertical wells.

While the menu in Figure 1-2a represents our flagship arbitrary geometry
capability under the “Steady 2D” heading, a number of simpler analysis
functions are offered in the “Utilities” menu.  These applications programs are
more restrictive, however, they can be very useful and powerful since they are
based on closed form analytical and often exact solutions.  For example, three
annular programs are offered under “Concentric steady flow.”  Specifically, as
shown in Figures 1-2i and 1-2j,

 “Newtonian, non-rotating, axial pipe motion” refers to an exact, analytical
solution of the Navier-Stokes equations for Newtonian fluids, assuming a
non-rotating inner pipe that may be stationary axially or moving at constant
speed in either direction,

 “Herschel-Bulkley, no rotation or pipe movement” refers to the first exact
solution available for non-Newtonian, yield stress fluids, assuming a
stationary pipe without rotational or axial movement, while

 “Power law, rotating, no axial pipe movement” refers to a closed form
analytical solution assuming Power law fluids for a rotating inner cylinder
without axial pipe movement.

Figure 1-2i.  “Utilities” menu functions.



24   Managed Pressure Drilling: Modeling, Strategy and Planning

Figure 1-2j.  Concentric steady flow programs.

Figure 1-2k.  Finding n and K for Power law fluids.
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The simplest non-Newtonian fluid is the Power law fluid, characterized by
a dimensionless exponent “n” and a consistency factor “K.”  This includes
Newtonian fluids (such as air and water) when n = 1 and K reduces to the
constant viscosity .  In Newtonian applications, the viscosity (aside from
changes due to pressure and temperature) is a constant throughout the flow
domain which can be separately measured in a viscometer.  For non-Newtonian
fluids, the “apparent viscosity” varies throughout, and additionally depends on
pressure gradient or flow rate – for Power law fluids, however, the intrinsic
properties n and K are instead constant and determined from separate viscometer
measurements.  To assist in their determination, two utilities, as shown in Figure
1-2k, are provided.  These parameters can be obtained from knowledge of two
Fann dial readings or from viscosity and shear rate data.  Values obtained from
these programs can be used in the rheology menu of Figure 1-2a.

Figure 1-2l.  Influx (outflux) modeling – finding total pressure drop.

Newtonian and non-Newtonian fluids differ significantly in their
dynamical properties.  We had indicated how viscosities are constant for the
former, but variable (and problem-dependent) for the latter.  Other important
differences are found.  For Newtonian flows, the pressure gradient versus flow
rate relationship is linear for a given viscosity, with a proportionality constant
that depends on geometry.  Once this constant is available, either analytically,
computationally or experimentally, the pressure gradient for a given flow rate is
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easily determined; the net pressure drop is just the product of pressure gradient
and conduit length.  For non-Newtonian fluids, the relationship between
pressure gradient and flow rate is nonlinear.  Its determination by experimental
means is inconvenient and expensive, and computational methods provide an
important and practical alternative.  The simulation implied by Figure 1-2a must
be performed for numerous values of assumed pressure gradient to obtain the
required curve.  When influx or outflux is found along the flow channel, the
total volumetric flow rate along the direction of flow changes, so that the local
axial pressure gradient likewise changes.  The total pressure drop utility in
Figure 1-2l automatically determines the requisite curve and sums all pressure
drops when a user prescribed influx schedule is available.  Thus, total pressure
loss is known for a given influx (outflux) profile, and it is implied that, if
pressure deviations from ideal values are known, then net influx rates can be
back- calculated.  The “pressure gradient versus flow rate curve” function in
Figure 1-2m provides the curve only and represents a sub-capability of Figure 1-
2l.  In both cases, the curve is displayed in “dp/dz versus Q” and “Q versus
dp/dz” formats, where dp/dz represents axial pressure gradient and Q denotes
the volumetric flow rate.

Figure 1-2m.  Pressure gradient versus flow rate relationship.

The foregoing dp/dz and Q relationships, which importantly allow axial
pipe movement, are very useful in managed pressure drilling applications.
Although its calculation may appear straightforward, e.g., specifying a set of
dp/dz’s and determining the corresponding Q’s, it is quite the contrary.
Depending on rheology inputs, the characteristic pressure gradient for any
particular problem may range from 0.00001 to 0.1 psi/ft.  Simply selecting the
smallest possible dp/dz and finely incrementing it over a wide range of values
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would literally require hours of calculations.  To reduce computation times to
one or two minutes, this strategy is employed.  A typical maximum rate of 1,500
gpm is assumed for the annular geometry and fluid rheology considered and the
“volumetric flow rate specified” option in Figure 1-2a is selected.  This uses a
rapid “half-step iteration” for determining the corresponding maximum gradient,
one where sequential guesses are altered geometrically if they do not converge.
Once the maximum gradient is available, it may be subdivided into convenient
coarser intervals for dp/dz versus Q analysis, providing the required curve.

Figure 1-2n.  Stratified flow analysis.

In the early 1990s, Mario Zamora, then with M-I Drilling Fluids, alerted
the author to some interesting fluid-dynamical phenomena he had observed in
his flow loop, one in which density stratification can be controlled along with
flow rate and deviation angle.  While one normally envisions flow moving
“simply” from regions of high to low pressure, what the author witnessed was
surprising.  Under certain conditions, flow visualizations showed that
recirculating vortex zones formed that, for all practical purposes, behaved like
solid obstacles that blocked or impeded flow.  The consequences were
unimaginable, implying high risks for drilling arising from barite sag, in the
deviated wells that were becoming commonplace.  These possibilities also came
at a time when a refinery explosion was found to have occurred after prolonged
shutdown for similar reasons.  At the time, this phenomenon could not be
explained by various modeling attempts and danger avoidance strategies could
not be developed.  It turns out that similar phenomena have been observed in
geophysical and meteorological applications, in atmospheric and oceanic flow
settings.  And fortunately, analytical solutions had been developed over the
years for weather prediction and military use.  These formulations were
researched and reinterpreted for drilling application, e.g., the Froude number
was reintroduced with a dependence on drillstring deviation angle.  The time-
tested model is accessible from the menu in Figure 1-2n, which provides fast
solutions together with integrated color graphics output and tabulated solutions.
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Figure 1-2o.  Swab-surge analysis.

Finally, we address swab-surge analysis in the context of our “Steady 2D”
modeling capabilities.  Numerous papers have addressed the subject over the
years, all assuming simple concentric annular flow and usually Newtonian or
Power law rheologies.  Investigations have included studies for open and closed
drillbits, ranging from steady flow to transient flows.  For steady flow, analytical
formulas are available from the open literature, while for transient  analysis, the
models remain proprietary.  It is important, however, to emphasize that all
transient analyses reviewed by this author do not distinguish between inertia
(that is, constant density “ u/t” momentum) effects as opposed to water
hammer effects arising from fluid compressibility.  Equations are not offered.
Thus, their merits could not be evaluated.  In our treatment of swab-surge, we
will restrict ourselves to steady-state analysis via the menu in Figure 1-2o.  This
analysis allows general eccentricity, with washouts and cuttings beds, in
addition to axial pipe movement.  Transient analysis with general combined
reciprocation and rotation is also available, as will be seen from the next
discussion, however, fluid compressibility is not considered.
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Consistency checks.  To encourage confident and diligent use of the
steady-state simulator for swab-surge and other applications, consistency checks
that validate pressure gradient and flow rate predictions (in the presence of yield
stress, pipe reciprocation, hole axis curvature, eccentricity, and so on) are
important.  In Figure 1-2p, we have defined one example in which all input text
boxes are populated with large numerical values so that all possible logic
branches in the underlying simulator source code are executed.  Some of the
numbers and results may be unrealistic in practice, but our objective in this
example is computational validation.  For the “pressure gradient specified”
option shown, in which a pressure gradient of – 0.01 psi/ft. is assumed, clicking
on “QuikSim” gives a computed flow rate of 2,823 gpm.  We next select the
“volumetric flow rate specified” option and enter “2823” in the input box.  After
approximately thirty seconds of iterations, we obtain the required pressure
gradient, namely, -0.009961 psi/ft, compared to an original –0.01 psi/ft.

In the above example, a positive tripping speed of 123 in./sec. was
assumed.  We now repeat the “pressure gradient specified” calculation with –
123 ft./sec. and – 0.01 psi/ft, with the simulation now leading to a flow rate of
850.5 gpm.  Next we revert to a “flow rate specified” mode and enter 850.5 in
the input text box.  We obtain the pressure gradient – 0.009961 psi/ft, in
agreement with the original – 0.01 psi/ft. used earlier.  These calculations used
data consistent with highly non-Newtonian fluids with yield stress, positive and
negative drillstring speeds, rapid borehole curvature and large annular
eccentricity.  All computations were stably executed.  The results show excellent
consistency whether the pipe was moving upwards or downwards in both “flow
rate” and “pressure gradient specified” simulation modes.

Figure 1-2p.  Parameters for comprehensive consistency check.
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Section 1-3.  MPD Flow Simulator –
Transient, two-dimensional, single-phase flow.

For steady non-Newtonian flows in arbitrary eccentric annuli without
rotation, the nonlinear convective (that is, acceleration) terms vanish identically
and the axial momentum equation (together with mass conservation) alone
governs the flow.  When transient effects are to be considered, the density-
dependent inertia terms “ u/t + . . . ” are important and must be included in
the analysis.  This completely changes the nature of the mathematics, so that the
nonlinear partial differential equation, originally one for a single elliptic
equation, is now controlled by parabolic or diffusive effects.  The parabolic
system can become quite complicated.  When rotation exists, an additional
coupled equation for azimuthal momentum appears, which must be solved
together with the axial equation.  This coupling, as will be explained in the
theory presentation, is responsible for modifications to effective pressure
gradient that induce changes to flow rate and cross-sectional velocity
distribution, with these being strongly eccentricity dependent.

Our transient modeling addressed subtle questions motivated by confusing
issues raised in the drilling literature.  For simplicity, the effects of borehole axis
curvature are ignored.  The older literature suggests that the effect of rotation,
when pressure gradient is fixed, is to increase flow rate.  The explanation is
shear-thinning or the reduction in apparent viscosity that accompanies pipe
rotation.  Field observations are supported by well known analytical modeling
results and the conclusions are very credible.  Recent literature, however,
suggests the contrary – that is, for a fixed pressure gradient, the effect of rotation
is to decrease flow rate.  Again, field observations are cited, understanding, of
course, that field results in either case are not well controlled – washout, cuttings
bed, pump transient and rheological uncertainties are all likely.

From this perspective, transient flow research required more than simply
introducing “ u/t + . . . ” into the governing equations and integrating.
Numerous questions arose.  Why do two conflicting observations exist and how
do we reconcile them?  And if we can, how can we devise a predictive scheme
that helps with job planning?  The required explanations were simple enough.
The older literature dealt with concentric annuli (for vertical wells) where all the
convective terms vanished identically – the only manner in which rheology
enters the physics is through viscosity reduction via shear-thinning.  The newer
literature, drawn from deviated and horizontal well applications, usually applies
to highly eccentric annuli for which the convective terms are always present.  To
assess their importance, our initial researched focused on Newtonian fluids
where viscosity is constant, so that effects related to shear-thinning were
isolated.  The rotational convective terms were shown to decrease flow rate
when the same pressure gradient is assumed, by changing the effective applied
pressure gradient, thus explaining a long-standing drilling paradox.
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In general, when non-Newtonian rheologies are allowed, shear-thinning
(which reduces apparent viscosity) and nonlinear convective terms (which will
usually produce the opposite effect) compete in a manner that strongly depends
on annular eccentricity.  General conclusions are not possible.  Fortunately, the
time required to compute flows with arbitrary time-varying pipe reciprocation
and rotation is no longer than that for stationary pipe, but it was necessary to
develop a scheme that was numerically stable for all prescribed motions.  Our
formulation solves nonlinearly coupled partial differential equations for axial
and azimuthal momentum on curvilinear mesh systems that are custom fitted to
the eccentric annulus.  To speed the computations, a coarse mesh such as that in
Figure 1-2c is hardcoded – this coarse curvilinear mesh still provides greater
physical resolution than is possible using simpler rectangular and circular
systems.  The ability to edit inner and outer circle contours is not supported, and
neither is our prior modeling of centrifugal effects arising from borehole axis
curvature.  The menu designed to access our “Transient 2D” capabilities is
shown in Figure 1-3a, which does allow circles having arbitrary eccentricity and
fluid flows with general Herschel-Bulkley yield stress rheologies.

Figure 1-3a.  “Transient 2D” menu interface.
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Figure 1-3b.  Transient 2D “Start” menu.

The “Start” menu, as seen from Figure 1-3b, for “Transient 2D” resembles
that for “Steady 2D.”  The complementary “Steady 2D” and “Transient 3D
multiphase” solvers are accessible from this drop-down menu.  The upper-left
portion of the screen, as before, is reserved for annular geometry definition with
only minor changes to coordinate conventions.  Immediately below is a simple
utility for calculating hydrostatic pressure at the drillbit using as inputs the
surface choke pressure, hole angle, drillstring length and specific gravity.

At the center left are input text boxes for Herschel-Bulkley fluid rheology,
which now include an entry for specific gravity.  We again emphasize the role of
fluid density.  For non-rotating flows and general initial conditions, the effects
of density disappear asymptotically at large times assuming, of course, that the
drillstring is not reciprocating.  In this regard, the unsteady algorithm may be
used to solve for steady flows; fast solutions, in fact, are possible the smaller the
density, since small inertia leads to rapid equilibration (e.g., small specific
gravities mean values of 0.01).  For rotating flows, density effects never
disappear.  To calculate steady rotating flows using the unsteady solver, actual
specific gravities must be used.  These rules will be apparent from theory.
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Figure 1-3c.  Transient “Results” menu.

The bottom left of the menu in Figure 1-3b supports time step control;
additional parameters, e.g., number of time steps, total time, and so on, are self-
explanatory.  Our transient simulator integrates the governing partial differential
equations in time by advancing the discretized form of the equations one time
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step t at a time; since mesh sizes associated with our curvilinear coordinates
are hardcoded, the only parameter available to the user for both accuracy and
numerical stability control is t.  The selected value is constant for the entire
duration of the simulation although, in future updates to the algorithm,
dynamically changing step sizes based on local flow gradients will be used to
optimize the integrations.  Detailed computed results are available as indicated
in Figures 1-3c and 1-3d.

Figure 1-3d.  Transient “Results” menu, more entries.

Time step selection represents the most critical decision-making part of the
simulation process undertaken by the user.  For non-rotating applications, large
time step sizes, say 0.01 - 0.05 sec., might be justifiable and useful, based on
validations of the type discussed later in this book.  When the inner pipe or
casing rotates, the numerical integrations destabilize and time steps that are
0.001 sec. or smaller may be necessary.  As noted earlier, steady solutions for
flows with rotation cannot presently be computed using the purely steady
formulation.  A limited number of papers have been published on the subject,
but without discussion on stability and computing times, and to this author’s
knowledge, none of the methods have been offered for commercial use.  Steady
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flows can be computed as the large-time limit of a transient calculation
provided, of course, that the pipe or casing moves without time-dependent
change.  Again, small t’s will generally be necessary.  To support this
application, the integration scheme is optimized for speed and minimal memory
resource requirements.  For the present software release, up to 10,000,000 time
steps are permitted.  If a time step of 0.001 sec is assumed, this simulates 10,000
sec or almost three hours of continuous rig operation.

Figure 1-3e.  Engineering variables definition.

When a transient partial differential equation is integrated in time, problem
specific boundary and initial conditions are required to constrain and start the
solution process.  With regard to boundary conditions, we assume that fluid at
the outer annular boundary adheres to it and does not move.  At the drillpipe or
casing, fluid similarly adheres to it and moves with whatever transient axial
reciprocation or azimuthal rotation motions are prescribed at the inner surface.

We permit two types of initial conditions, namely, completely quiescent
ones and steady flow conditions.  By steady conditions, we refer to steady flows
without rotation.  Thus, we can model the startup of annular flow from rest, and
also, transient reciprocation and rotation starting from non-rotating drill-ahead
flowing conditions.  Non-rotating flowing initial conditions are actually chosen
for special software development reasons.  If steady flowing conditions are
permitted, they, of course, must be first computed internally.  This process must
be both fast and stable numerically to ensure a user-friendly experience.  If the
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pipe is non-rotating, the only momentum equation that enters is the axial one,
and its steady-state solution can be quickly calculated by assuming small
specific gravities and large time steps since the final solution is independent of
fluid density.  This is the strategy taken.  If, on the other hand, rotating flow had
been allowed, the azimuthal momentum would additionally enter.  Its solution
requires actual specific gravities, which may be large; extremely small times
steps would be necessary for stability and the user experience would require
excessive intervention.  It is possible, obviously, for a rotating drillstring to slow
down or accelerate, and this possibility is permitted as discussed below.

The engineering variables menu shown in Figure 1-3e provides a high
degree of modeling flexibility.  For drillpipe or casing axial speed and rotational
rate, and for the applied pressure gradient, assumptions of the general functional
form A + Bt + C sin (2f +  ) are built into the solver, where A, B, C, f and 
are constants.  The units required are indicated next to the input formulas.
Clicking on the question mark to the right of each expression in Figure 1-3e
produces a line graph of the proposed auxiliary condition (the time scale may be
changed from the “Simulation Parameters” menu by altering time step or total
time).  Examples are shown in Figure 1-3f.  Almost all commercial drilling and
cementing hydraulics simulators, to this author’s knowledge, allow constant
pressure gradient at best, but do not support reciprocation or rotation.  The
menus shown support general transient specifications, and moreover, all three
inputs may be transient simultaneously.  General reciprocation and rotation
capabilities were incorporated by user request, since quantitative methods to
assess the effects of axial drillstring vibrations and torsional stick-slip were
deemed of interest.  Very often, one would like to specify volumetric flow rate
and compute pressure gradient.  While this is supported in our “Steady 2D”
simulator option, it is not possible here because the required transient
calculations would be very time-consuming.  However, specification of time-
dependent axial pressure gradient, say, to model pump ramp-up and ramp-down
for swab and surge applications, does to some extent provide the intuitive
feeling needed for pressure gradient and flow rate relationships.

Figure 1-3f.  Example transient reciprocation, rotation and dp/dz functions.
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Finally, we describe the importance of the “Display options” check boxes
at the bottom left of the “Control Panel” interface.  If “Interactive plots” is not
checked, the transient integrations continue at maximum speed and display a
simple status note on screen indicating elapsed time, instantaneous volumetric
flow rate and percentage completed.  If it is checked, interactive graphic results
are shown at user-defined intervals so that the simulation can be monitored in
detailed.  Results include axial and azimuthal velocity profiles at the top and
bottom of the annulus, plus “planar velocity plots” like those in Figure 1-2e.
These color plots are saved in a movie file for playback at the end of the
simulation, e.g., refer to the “Results” menu in Figures 1-3c and 1-3d.  Three
frames from a typical movie are captured in Figure 1-3g.  If the box “Movie
frames only” is checked, line graphs for velocity profile results are not displayed
but movie frames are as they become available.  One can, for instance, watch an
initially quiescent non-rotating flow evolve in time, with a spatially uniform
velocity changing into one with an axial velocity maximum at the wide part of
the annulus.  If the pipe or casing is made to rotate, this maximum then moves
azimuthally in agreement with known computational results from other
references.  When the simulation ends, a “gpm versus time” plot, as in Figure 1-
3h, is provided for user insight into volumetric flow rate and unsteady behavior.

Figure 1-3g.  Example frames from axial velocity movie.

Figure 1-3h.  Typical line plots, “gpm versus time” (left), and axial and
rotational velocity versus radial location (center and right).
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Section 1-4.  MPD Flow Simulator –
Transient, three-dimensional, multiphase flow.

In Sections 1-2 and 1-3, we introduced the “Steady 2D” and “Transient
2D” simulators for non-Newtonian, single-phase annular flow.  Aside from
obvious differences in “steady” versus “transient,” it is important to remember
that purely steady formulations for rotating flow are numerically unstable, at
least for now, and that rotating pipe or casing flows can only be treated on a
transient basis at the present time.  Steady rotating solutions are obtained by
evaluating transient runs asymptotically to large times.  Depending on rotational
rate, fluid density and viscosity, which in turn dictate time step sizes, calculation
times may take anywhere from ten seconds to several minutes.

In this section, we discuss the simulator for transient, three-dimensional,
multiphase problems.  There are two practical problems that we focus upon. The
first deals with managed pressure drilling, and in particular, the operating
scenario sketched in Figure 1-1e.  Here, a general pumping schedule of non-
Newtonian fluid flows is permitted, e.g., Fluid A pumped for time tA at a flow
rate of GPMA, followed by Fluid B pumped for time tB under a rate GPMB, and
so on.  This fluid travels down the drillpipe, through the drillbit and, finally, up
the eccentric borehole annulus.  We wish to determine the pressure profile along
the borehole, and particular, the pressure at the bit, for all instants in time.

In order to make calculations tractable, it is assumed that a typical fluid
slug length in the pipe or annulus is long compared to the pipe or annular
diameter.  If so, the locations of all fluid interfaces can be determined
kinematically on a volume basis alone without rheological considerations.  Then
at any given time tn, with the volumetric flow rate Q(tn) known, either of the
simulators “Steady 2D” and “Transient 2D,” or any of the many specialized
flow solvers available in their respective utilities menus, can be used to
determine the pressure gradient within any fluid slug.  Since the lengths of all
slugs are also available kinematically, the available set of pressure gradients can
be integrated spatially starting with the pressure value known at the surface
choke to provide the pressure distribution along the borehole at that instant in
time.  It is important to understand that this methodology applies to concentric
or eccentric annuli, to pipe or casing that may or may not be rotating, and to all
fluid rheologies with or without yield stress.  Moreover, pressure gradients
associated with contiguous fluid slugs may be very different and, in general,
may be discontinuous in their values.  It is important to realize that pressures at
the bit are important in modern ultra-deepwater applications, where drillers have
to navigate narrow pressure windows to avoid safety problems.  The calculations
just discussed support the need for “constant pressure at the bit.”  They also
provide decision options for pressure control using, for instance, changes in
pump rate or mud rheology and weight, adjustment to surface pressures at the
choke, or pressure variation by altering drillpipe rotational rate.
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A second important application is cementing.  Here it is also necessary to
determine pressure profiles, first to obtain the pressures needed for pumping.
The velocity fields and pressures at any location and any time are available
using the procedure outlined above.  Here, the details of interfacial mixing may
be important, and if they are desired, calculations may be performed at the
user’s option.  These details require solutions to the coupled velocity and species
concentration equations which model both convection and diffusion processes.
Calculations for pressure require minutes, primarily arising from problem set-
up, which has not yet been entirely automated.  More specifically, once the
underlying pressure gradients for the different fluid slugs are available from
calculations using the “building block” flow solvers, the pressure profile
calculation itself requires only seconds.  On the other hand, optional calculations
for interfacial mixing details, e.g., thickness of different diffusion zones about
the annular cross-section, time scales required in setting them up, degree of
mixing, and so, on, may require several minutes to an hour, depending on the
amount of resolution needed and the time scale of the computation.  As in
“Transient 2D,” the borehole axis here is assumed to be straight.

Figure 1-4a.  Main “Transient, 3D, multiphase” menu.

Figure 1-4b.  Start menu, with access to movies and other simulators.
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The main menu in Figure 1-4a contains “Start,” “Track (Interfaces),”
“Zoom3D” and “Utilities” submenus.  The “Start” menu in Figure 1-4b provides
access to generic functions, e.g., for graphics installation (needed only once and
for all), user manual access, movie playback, access to “Steady 2D” and
“Transient 2D” solvers, and so on.  The “Track (Interfaces)” option launches the
“Interface Tracker” shown in Figure 1-4c-1 with pump schedule and piping
system input boxes.  Clicking on “Run” leads to numerical results for all fluid
interfaces as a function of time, which can be viewed by clicking “Answer” or
“Output file” under “Track (Interfaces)” as shown in Figure 1-4c-1.

Figure 1-4c-1.  Interface tracker software (macroscopic properties).

Figure 1-4c-2.  Detailed numerical interface position results (macroscopic).
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The “Zoom3D” menu hosts calculations for interfacial mixing details.  As
shown in Figure 1-4d-1, there are two options: the first a “Newtonian mixtures
(no rotation)” simulator and the second a “Non-Newtonian mixtures, rotating”
option for general fluid rheologies with pipe or casing rotation.  The former
provides fast, automated calculations, taking advantage of mathematical
simplifications offered by Newtonian fluids, while the latter, with more general
capabilities, handles all fluid types for concentric or eccentric holes that may
contain non-rotating or rotating pipe.  While Figures 1-4c-1 and 2 deal with
“macroscopic” properties, the “Zoom3D” menu options provide “microscopic”
solutions. The “Newtonian” option highlighted in Figure 1-4d-1 launches the
solver in Figure 1-4d-2.  Execution details are offered in Chapter 9.

Figure 1-4d-1.  Newtonian mixtures, no rotation (microscopic properties).

Figure 1-4d-2.  Newtonian mixtures, no rotation (microscopic).
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The “Zoom3D” option highlighted in Figure 1-4e-1, namely, “Non-
Newtonian mixtures, rotating,” again, handles general non-Newtonian
rheologies with pipes that may be rotating.  Again, all of the applications in the
present Section 1-4 allow high annular eccentricity.  The highlighted option
launches the two executable applications shown in Figures 1-4e-2 and 1-4e-3.

Figure 1-4e-1.  Non-Newtonian mixtures, rotating (microscopic properties).

The main menu in Figure 1-4e-2 contains time integration input boxes and
the “Simulate” button.  Prior to clicking “Simulate,” the “Pump Schedule” must
be defined via Figure 1-4e-3.  This screen requires inlet and out fluid properties
and also pressure gradient inputs for the different flow rates assumed.

Figure 1-4e-2.  Non-Newtonian mixtures, rotating (microscopic, main menu).
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Figure 1-4e-3.  Non-Newtonian mixtures, rotating (pump schedule).

The pressure gradients referred to in the above paragraph are shown in
Figure 1-4f and apply accordingly as the flows are concentric, rotating,
Herschel-Bulkley, and so on.  They are quickly launched by checking the option
boxes at the bottom of the screen in Figure 1-4e-3.

Figure 1-4f.  Pressure gradient utilities.
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For completeness, the “Concentric steady flow” modules offered are listed
in Figure 1-4g-1 and the corresponding programs are shown in Figure 1-4g-2.
Their underlying math models and functions are described elsewhere in this
book.  For convenience, the “Steady 2D” and “Transient 2D” annular flow
functions are repeated in Figures 1-4h and 1-4i as reminders.  The programs in
Figure 1-4j support definitions of n and K in Power law applications.  Finally,
the model in Figure 1-4k provide access to exact Herschel-Bulkley pipe flow
problems in applications where pressure profiles in the drillpipe are required.

Figure 1-4g-1.  Concentric steady flow modules.

Figure 1-4g-2.  Three concentric steady flow programs.
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Figure 1-4h.  “Steady 2D” annular flow module.

Figure 1-4i.  “Transient 2D” annular flow module.
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Figure 1-4j.  Finding n and K, utility programs.

Figure 1-4k.  Exact Herschel-Bulkley pipe flow modules,
for both forward and inverse calculations.
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2
General Theory

and Physical Model Formulation

Well formulated mathematical models and accurate solutions invariably
require a detailed and deep understanding of the partial differential equations
underlying fluid flow.  Many formulations exist, e.g., steady, transient, single-
phase, multiphase, Newtonian, non-Newtonian, rotating versus non-rotating, and
so on, and then, in different coordinate systems, e.g., rectangular, cylindrical,
curvilinear grid, and so on.  In this chapter, we develop the general mathematical
formulations used in this book, which are to be solved using advanced numerical
techniques developed especially for the eccentric annular flows encountered in
modern drilling and cementing.  This book introduces a number of formulations
important to modern problems in drilling and cementing in deviated wells, and
emphasizes inputs and post-processed quantities important to managed pressure
drilling.  Our methodologies are “open” to the extent that our models are
described and analyzed in complete mathematical detail, subjected to detailed
testing, and then validated against one another wherever their input parameters
overlap.  While many ideas and numerical approaches have been evaluated over
the course of our research, only those that have passed our rigorous tests – and
which provide fast and stable computational results – are discussed in this book
and retained in the final software product for general dissemination.

We stress that a great deal of information can be obtained by studying the
form of the equations even without solution.  Many of the fluid flow properties
cited in this book were developed simply from visual examination of the
equations, and only then, were detailed algorithms designed to extract numerical
details.  Importantly, these properties were used to guide the development of our
algorithms and also provided good check-points to ensure programming
accuracy.  In fact, many of the properties casually mentioned in our discussions
throughout the book arose from qualitative analysis, and to provide reader with
their scientific bases, their trains of thought are documented in our carefully
written Examples 2-1 and 2-2.  Chapter 2 develops the main ideas behind our
work in annular flow, while Chapter 3 addresses numerical approaches key to
their solution.  Detailed calculated examples are given throughout.
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Example 2-1.    Newtonian flow circular cylindrical coordinates.

In this first example, we study simple Newtonian flows for which the
laminar viscosity µ is constant.  In practice, viscosity does depend on pressure
and temperature, but we restrict ourselves to simpler processes for which these
dependencies do not arise – by “constant,” we imply that viscosity is not
affected by the size or shape of the vessel, or by the applied pressure gradient or
the flow rate, and that its value can be measured unambiguously in a simple
viscometer – properties not applicable to flows of non-Newtonian fluids.  In
particular, we will explore the properties of Newtonian flows written in circular
cylindrical coordinates – and simple visual inspections of the equations do lead
to interesting and important conclusions.  The so-called Navier-Stokes equations
that apply are derived in standard textbooks, e.g., Schlichting (1968).  When “r,”
“,” and “z” are radial, azimuthal and axial coordinates; vr, v, and vz are
Eulerian velocities in these directions; Fr, F, and Fz are body forces in the same
directions; is the constant fluid density; p is pressure; and t is time, the
following general partial differential equations can be derived.

Momentum equation in r: (2-1-1)

vr /t + vr vr /r + v/r vr /- v2/r + vz vr /z} = Fr  - p/r

+ {
2vr /r2 + 1/r vr /r - vr /r

2 + 1/r2 
2vr /

2 - 2/r2 v/ + 
2vr /z

2}

Momentum equation in : (2-1-2)

v/t + vr v/r + v/r v/+ vrv/r + vz v/z} = F- 1/r p/
+ {

2v/r2 + 1/r v/r - v/r
2 + 1/r2 

2v/
2 + 2/r2 vr / + 

2v/z
2}

Momentum equation in z: (2-1-3)

vz /t + vr vz /r + v/r vz /+ vz vz /z} = Fz  - p/z

+ {
2vz /r2 + 1/r vz /r + 1/r2 

2vz /
2 + 

2vz /z
2}         

Mass continuity equation:

vr /r + vr /r + 1/r v/+ vz /z = 0 (2-1-4)

These define four equations for the four unknowns vr, v, vz, and p.
General solutions to these nonlinearly coupled partial differential equations do
not exist.  We emphasize that, while the above formulation is written in circular
cylindrical coordinates, it does apply to flows past non-circular geometries (in
principle, the flow through a star-shaped duct, for instance, can be solved,
although in practice, the solution would be extremely awkward).  Understanding
this, we ask what general conclusions can be drawn for concentric versus
eccentric annular flows.  For the remainder of this section, we will ignore the
effects of externally imposed body forces, e.g., gravity, electric charge, etc.
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Concentric, steady, two-dimensional flows without influx.  We first
address the most commonly formulated problem, namely, concentric annular
flows without azimuthal dependence, so that / = 0 (this does not require that
v = 0); flows without fluid influx or outflux, for which vr = 0; then, those for
which the problem is steady, so that /t = 0; and finally, we invoke the
restriction to purely two-dimensional flows whose properties do not vary from
one cross-section to the next, so that /z = 0.  When these conditions are
satisfied, the foregoing momentum equations reduce to Equations 2-1-5, 2-1-6
and 2-1-7, while Equation 2-1-4 for mass conservation is identically satisfied.

Momentum equation in r:
p/r = v

2/r  (2-1-5)

Momentum equation in :


2v/r2 + 1/r v/r - v/r
2 = 0 (2-1-6)

Momentum equation in z: 


2vz /r2 + 1/r vz /r = (1/)  p/z  (2-1-7)

We will provide mathematical and software solutions to these later, but for
now, we emphasize their general properties.  The linear azimuthal velocity field
v is determined by solving Equation 2-1-6 subject to constant values at the
radial boundaries.  At the inner pipe or casing surface, the speed is determined
by rotational speed and radius, while at the outer annular wall, the speed is zero.
Notice that the solution for v does not involve p/z.  In other words, the
azimuthal motion is simply one induced by “dragging” at the inner pipe surface.

Now consider the solution for axial velocity found by the solution of
Equation 2-1-7 subject to constant speeds at the radial boundaries, e.g., a zero or
non-zero translational speed at the inner surface and zero at the outer wall.  The
solution does not involve the rotational speed, and includes  and the applied
pressure gradient p/z only to the extent that they appear in the lumped form
(1/)  p/z.  In conclusion, the azimuthal motion does not affect axial flow and
axial motion does not influence azimuthal flow: the two are dynamically
independent.  Only when v is available is Equation 2-1-5 used, and then, only
in computing a radial pressure gradient that arises from centrifugal effects.  It is
remarkable that such general properties can be derived simply by visual
inspection without any knowledge of partial differential equations.

Eccentric, steady, two-dimensional flow.  Now let us repeat this analysis
without the assumption calling for concentric flow, that is, we no longer assume
that / = 0.  In doing so, we may deal with cross-sections that contain
eccentric circles, but the eccentric annuli may well contain asymmetric washouts
at the outer contour and arbitrary cuttings beds at the bottom contour.  We will
again assume that /t =  /z = 0, but no longer require vr = 0.  Then, we have
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Momentum equation in r: (2-1-8)
 vr vr /r + v/r vr /- v2/r } =- p/r

+ {
2vr /r2 + 1/r vr /r - vr /r

2 + 1/r2 
2vr /

2 - 2/r2 v/}

Momentum equation in : (2-1-9)
vr v/r + v/r v/+ vrv/r } = - 1/r p/

+ {
2v/r2 + 1/r v/r - v/r

2 + 1/r2 
2v/

2 + 2/r2 vr /}

Momentum equation in z: (2-1-10)
vr vz /r + v/r vz /} = - p/z

+ {
2vz /r2 + 1/r vz /r + 1/r2 

2vz /
2 }         

Mass continuity equation:
vr /r + vr /r + 1/r v/ = 0 (2-1-11)

These remain four coupled partial differential equations in four unknowns
whereas Equations 2-1-6 and 2-1-7 are uncoupled, linear, ordinary differential
equations.  Hence, the solutions are difficult to obtain.  Now, we have not yet
specified an annular geometry, nor have we defined the r- coordinate system
that applies to the problem.  Nonetheless, we can assume in a dimensionless
sense that v >> vr so that vr can be ignored in a first approximation.  Our main
focus is the resulting momentum equation in z, which now takes the form


2vz /r2 + 1/r vz /r + 1/r2 

2vz /
2  (2-1-12)

 (1/) p/z + (/)(v/r) vz /
This should be compared with the earlier result in Equation 2-1-7, that is,


2vz /r2 + 1/r vz /r = (1/)  p/z .  The left-side now includes an additional

term “1/r2 
2vz /

2.”  In fact, the left-hand operator can be written in the more
familiar form “

2vz /x2 + 
2vz /y2 ” using rectangular coordinates, from which

we recognize the standard Laplace operator.  However, it is the right-side that is
extremely interesting.  No longer is the effective pressure gradient simply given
by the constant value (1/) p/z.  Instead, this term is modified by the
correction (/)(v/r) vz /, which we emphasize is proportional to the fluid
density and the inner pipe rotational rate and is inversely proportional to
viscosity.

What are the physical consequence of this modification?  In the concentric
problem, the total volumetric flow rate could be determined by integrating the
product of vz (from Equation 2-1-7) and “2r dr” over the annular domain.  The
result is proportional to (1/) p/z, with the constant of proportionality
depending only on geometry.  The flow rate does not depend on rotational
speed.  When eccentricity is permitted, however, the effects of pipe rotation are
coupled nonlinearly.  In addition, the correction to (1/) p/z now depends on
the lumped parameter “mud weight  rpm / viscosity” in a nontrivial manner.
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The correction importantly depends on the spatial coordinates r and  as well as
the yet-to-be-determined solution vz(r,): it is spatially variable and volumetric
flow rate will no longer depend on (1/) p/z alone.  Thus, the effective
pressure gradient changes from what we have in the concentric case.  The flow
rate will generally be different, and computations show that, for the same ,
p/z and rpm, the effect of eccentricity is a strong reduction in flow.  Note that
this conclusion is obtained for a Newtonian fluid having constant viscosity.
When non-Newtonian effects are considered, the competing effects of shear-
thinning will enter and these will be discussed separately in Example 2-2.

x

y y

x



v(0)/v(0)/

Axial velocity
v(0) maximum

Figure 2-1-1.  Location of axial velocity maximum in non-rotating flow.

Furthermore, because the correction also depends on vvz /, we expect
that the location of the maximum in axial velocity (in an eccentric annulus with
left-right symmetry) found at the wide side along the vertical line of symmetry,
e.g., as shown at the left of Figure 2-1-1, will displace azimuthally, and it does,
as our later explanation and all of our subsequent calculations will show.

It suffices to emphasize that eccentricity and rotation effects even for basic
Newtonian fluids are extremely subtle.  However, simple mathematical
constructs can be devised to explore some of these subtleties and to facilitate
fast numerical solutions.  We explain an important one in the context of
Equation 2-1-12 for vz which we rewrite without the subscript “z” for clarity.  In
mixed coordinates, we have the representation


2v/x2 + 

2v /y
2  (1/) p/z + (/)(v/r) v / (2-1-13)

Now, we separate “eccentric, non-rotating” from “eccentric, rotating”
effects by isolating the inertia-dependent (/)(v/r) v /.  In the language of
mathematics, we introduce a “regular perturbation expansion” such that v = v(0)

+ v(1) + … in which the zeroth solution represents leading order concentric non-
rotating effects and the first perturbation to it includes all others.  Mathematical
books that introduce this subject include the well known research monographs
by Van Dyke (1964), Cole (1968) and Nayfeh (1973).  If we next assume that


2v(0) /x2 + 

2v(0) /y
2 = (1/) p/z (2-1-14)

then subtraction of Equation 2-1-14 from Equation 2-1-13 with the series
substitution leads to
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
2v(1) /x2 + 

2v(1)  /y
2   (/)(v/r) v(0)

 / (2-1-15)

Now, the concentric solution to Equation 2-1-14, or Equation 2-1-7, is just
the classical Poiseuille pipe flow formula given elsewhere in this book and
available in the general literature, e.g., Schlichting (1968).  However, Equation
2-1-14 applies to eccentric problems too, and its exact numerical solution for
arbitrary geometries is a subject of this book and one of the simulators.

But we do not need to solve it to understand its implications.  We have
shown an eccentric annulus at the left of Figure 2-1-1 with left-right symmetry.
We can imagine that we now have obtained a straight, non-rotating, “out of the
page” axial flow solution v(0) applicable to the left diagram.  The location of
maximum axial speed is shown at the gray dot.  With the  convention
highlighted, it is clear that v(0)

 / increases at the right of the line of symmetry
while it decreases at the left.  Next, observe that the sign of the azimuthal
velocity v in Equation 2-1-15 cannot change.  Thus,  (/)(v/r) v(0)

 /, which
functions as an effective pressure gradient for the disturbance axial flow v(1), is
antisymmetric with respect to the vertical line of symmetry: it subtracts flow on
one side and adds at the other.  This effective pressure gradient is variable
throughout the annular cross-section.  This driver, which depends on the
solution to the azimuthal problem, affects total flow rate in a nontrivial way,
although for small values of “mud weight  rpm / viscosity,” it is clear that the
solution is proportional to it with the v(1) field again being antisymmetric.  This
antisymmetry means that “mud weight  rpm / viscosity” does not significantly
affect total flow rate if it is small.  However, when it is large, our symmetry and
antisymmetry ideas may break down.  It is also clear how, in the presence of
unsteady effects, arguments like those offered above are not possible.

We note that, while we have provided useful discussions on rotation and
eccentricity, the numerical solution for steady rotating flows in eccentric
domains, even under the assumption of simplified Newtonian flow, has proven
to be challenging.  A limited number of papers on the subject have been
published by several authors, but these have offered few formulation and
numerical details, and have declined to discuss computing times and numerical
stability properties.  The author, in fact, has written a steady, rotating flow
solver for non-Newtonian eccentric annular flows, which converges for vz under
restrictive conditions. The controlling “mud weight  rpm / viscosity” parameter,
for the larger values characteristic of those parameters used in practical drilling
and cementing, always leads to numerical instability.  On the other hand, the
perturbation problem for vz

(1) could be solved with unconditional stability;
however, the linearization used clearly does not apply physically to high values
of “mud weight  rpm / viscosity.”  In this book, however, steady-state flows
with rotation are successfully solved by integrating the transient equations
asymptotically in time until steady conditions are reached using a fast solver.
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Example 2-2.    Shear-thinning and non-Newtonian flow effects.

In the previous example, we studied Newtonian flows for which viscosity
always remained constant to focus on the effects of rotation and eccentricity
alone.  Here we consider non-Newtonian fluids which generally exhibit shear-
thinning, but do not discuss rotation, so that we remove the convective effects of
inertia.   Whereas before, the use of circular cylindrical coordinates facilitated
our understanding of pipe rotation, we now introduce rectangular or Cartesian
coordinates to assist in our explanations of non-Newtonian viscosity effects.  We
consider here eccentric annular flows formed by general closed curves (which
need not be circular), but for simplicity, restrict ourselves to steady, two-
dimensional, single-phase flows.  These assumptions are removed later.

The equations for general fluid motions in three dimensions are available
from many excellent textbooks (Bird, Stewart, and Lightfoot, 1960; Streeter,
1961; Schlichting, 1968; and, Slattery, 1981).  We cite these without proof.  For
problems without inner pipe rotation, it turns out that their rectangular form is
most suitable in deriving curvilinear coordinate transforms – as we later show,
the relevant starting point for rotation effects is cylindrical radial coordinates.

Governing equations.  Let u, v and w denote Eulerian fluid velocities, and
Fz, Fy and Fx denote body forces, in the z, y and x directions, respectively,

where (z,y,x) are Cartesian coordinates.  Also, let  be the constant fluid density
and p be the pressure; we denote by Szz, Syy, Sxx, Szy,  Syz, Sxz, Szx, Syx, and

Sxy the nine elements of the general extra stress tensor S.  If t is time and ’s

represent partial derivatives, the complete equations of motion obtained from
Newton’s law and mass conservation are,

Momentum equation in z:

 (u/t + u u/z + v u/y + w u/x)  =
            = Fz - p/z + Szz/z + Szy/y + Szx/x                (2-2-1)

Momentum equation in y:

 (v/t + u v/z + v v/y + w v/x)  =
            = Fy - p/y + Syz/z + Syy/y + Syx/x                (2-2-2)

Momentum equation in x:

 (w/t + u w/z + v w/y + w w/x)  =
            = Fx - p/x + Sxz/z + Sxy/y + Sxx/x                (2-2-3)

Mass continuity equation:

u/z + v/y + w/x = 0                                          (2-2-4)

Simple rheological models.  These equations apply to all Newtonian and
non-Newtonian fluids.  In continuum mechanics, the most common class of
empirical models for incompressible, isotropic fluids assumes that S can be
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related to the rate of deformation tensor D by a relationship of the form

S = 2 N() D                                                       (2-2-5)

where the elements of D are

Dzz =  u/z                                               (2-2-6)

Dyy =  v/y                                                       (2-2-7)

Dxx =  w/x                                                      (2-2-8)

Dzy = Dyz = (u/y + v/z)/2                                      (2-2-9)

Dzx = Dxz = (u/x + w/z)/2                                     (2-2-10)

Dyx = Dxy = (v/x + w/y)/2                                     (2-2-11)

In Equation 2-2-5, N() is the “apparent viscosity” satisfying

N()  >  0                                                        (2-2-12)
(z,y,x) being a scalar functional of u, v and w defined by the tensor operation

 = { 2 trace (DD) }1/2                                         (2-2-13)

Unlike the constant laminar viscosity  in classical Newtonian flow, we
will demonstrate that the apparent viscosity depends on the details of the
particular problem being considered, e.g., the rheological model used, the exact
annular geometry occupied by the fluid, the applied pressure gradient or the net
volumetric flow rate.  Also, it varies with the position (z,y,x) in the annular
domain.  Thus, single measurements obtained from viscometers are usually not
meaningful in practice.  In fact, inferences can be very misleading.

Examples.  To fix ideas, consider the simple but important Ostwald-de
Waele model for two-parameter “Power law” fluids, for which

N() = K n-1                                                    (2-2-14a)

where the “consistency factor” K and the “fluid exponent” n are constants.  Such
Power law fluids are “pseudoplastic” when 0 < n < 1, Newtonian when n = 1,
and “dilatant” when n > 1.  Most drilling fluids are pseudoplastic.  In the limit (n
= 1, K = µ), Equation 2-2-14a reduces to the Newtonian model with N() = µ,
where µ is the constant laminar viscosity; in this classical limit, stress is directly
proportional to the rate of strain.  Only for Newtonian flows is volumetric flow
rate a linear function of applied pressure gradient and inversely proportional to
.

Power law and Newtonian fluids respond instantaneously to applied
pressure and stress.  But if the fluid behaves as a rigid solid until the net applied
stresses have exceeded some known critical yield value, say Syield, then

Equation 2-2-14a can be generalized by writing

N()  = K n-1 + Syield/ if {1/2 trace (SS)}1/2  > Syield
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D = 0 if {1/2 trace (SS)}1/2  < Syield                          (2-2-14b)

In this form, Equation 2-2-14b rigorously describes the Herschel-Bulkley fluid.
When the limit (n=1, K = µ) is taken, the first equation becomes

N()  = µ  + Syield/ if {1/2 trace (SS)}1/2  > Syield          (2-2-14c)

This is the Bingham plastic model, where µ is now the “plastic viscosity.”  For
Herschel-Bulkley and Bingham plastic flows in circular pipes, exact analytical
solutions can be developed for velocity distribution, plug zone radius, and total
flow rate (these limits include Newtonian and Power law fluids).  Analogous
solutions are available for flows between parallel plates.  Exact solutions for
concentric annuli are not presently available, but are derived in closed analytical
form elsewhere in this book and used to validate numerical flow models.

Illustration 1.  For tutorial purposes, we examine a limit of two-
dimensional Power law flows, where the axial velocity u(y,x) does not depend
on the axial coordinate z.  In the absence of rotation, the velocities v and w in
the cross-plane satisfy v = w = 0, so that the functional  or shear rate in
Equation 2-2-14a takes the form

 = [ (u/y)2 + (u/x)2 ]1/2                                    (2-2-15)

and Equation 2-2-14a becomes

N() = K [ (u/y)2 + (u/x)2 ](n-1)/2                           (2-2-16)

The apparent viscosity reduces to the conventional N() = K (u/y)(n-1)

formula for one-dimensional, parallel plate and “slot flow” flows considered in
the drilling and cementing literature.

When both independent variables y and x for the cross-section are present,
as in the case for eccentric annular flow, significant mathematical difficulty
arises.  For one, the ordinary differential equation for annular velocity in simple
concentric geometries becomes a partial differential equation.  And whereas the
former requires boundary conditions at two points, the partial differential
equation requires no-slip boundary conditions imposed along two arbitrarily
closed curves.  The nonlinearity of the governing equation and the irregular
annular geometry only compound these difficulties.  Despite these complexities,
the resulting problem is simple in a sense.  The momentum equations for v and
w vanish identically and that for mass conservation implies that u = u(y,x) only.
The single remaining equation is

Szy/y  + Szx/x  = P/z = constant                            (2-2-17)

where the constant pressure gradient P/z is prescribed.  This is to be compared
to the simpler Equation 2-1-7.  Since S = 2ND, Equation 2-2-17 reduces to

 (N u/y)/y  +  (N u/x)/x  = P/z                           (2-2-18)
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Substitution of Equation 2-2-16 shows that Equation 2-2-18 can be written as a
nonlinear Poisson equation, that is, as Equation 2-1-19, in the form

2u/y2 + 2u/x2 = [P/z + (1-n)N()(uy
2uyy

                  +2uyuxuyx +ux
2uxx)/(uy

2 + ux
2)] / N()             (2-2-19)

which is to be compared with Equation 2-1-14.  This equation, together with
extensions for rotation and complicated rheological effects, is solved exactly in
our software models.  Our only purpose in writing down explicitly here is to
provide a “live” example showing why nonlinear effects are complicated.

The Newtonian limit with n = 1 reduces Equation 2-2-19 to the classical

Poisson equation 2u/y2 + 2u/x2 = (1/) P/z with several important
properties.  For example, doubling pressure gradient while doubling the
viscosity leaves u(y,x) unchanged: only the lumped driver (1/) P/z appears.
And, for instance, doubling P/z with  constant will double u everywhere, a
property obvious from simple rescaling.  Also,  is just the quantity measured in
a viscometer, and its value remains unchanged for all pressure gradients and
flow cross-sections.

However, when n is not unity, the complicated terms at the right of
Equation 2-2-19 remain.  Casual observation leads us to conclude, for example,
that doubling the pressure gradient will do something unclear, but what, is
uncertain.  Because the divisor of P/z is not just a constant “,” but a
complicated function which, because it depends on the as-yet unknown solution
u(y,x), the so-called “apparent viscosity” is unknown.  In fact, it will vary from
case to case, and it will depend on the applied pressure gradient, plus the size
and shape of the vessel, and it will be variable throughout the flow cross-section.
Hence, we have the origin of the terms “shear-thickening” and “shear-thinning.”
Shear-thickening and shear-thinning fluids are non-Newtonian, as their
viscosities increase or decrease, respectively, as the applied shearing stress
increases.  “Silly Putty” is shear-thickening, while ketchup is shear-thinning.

Illustration 2.  As a second tutorial example, consider the case of steady
helical flow with /z = 0 along the hole axis, e.g., refer to the discussion in
Bird, Stewart and Lightfoot (2002).  In this case, the shear rate satisfies the
formula  = d/dt = {(r d(v/r)/dr)2 + (dvz/dr)2}1/2 = {(r d/dr)2 + (dvz/dr)2}1/2

where the usual rotational rate is defined by  = v/r.  An extension of this
expression is used in the foregoing reference to study non-Newtonian pipe flows
with combined axial and azimuthal flow where both velocity fields are coupled.
It is also used in Equation 5-6-16 of this book where the effects of rotation in
concentric annuli with Power law fluids are considered.

Note on mass density.  It is important to note, from Equation 2-2-17, that
fluid density  completely disappears in this steady flow without rotation.
However, it is important that, from Example 2-1, density remains important
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when the flow rotates because the nonlinear convective terms do not vanish.  It
also goes without saying that density effects are all-important in transient
analysis because inertia is important.  We will demonstrate later that steady
flows can be computed from unsteady algorithms using small densities for rapid
convergence – but, this strategy is applicable only when there is no underlying
pipe rotation.

 Only n and K (and not “”) are “absolutes” for Power law flow modeling
which can be obtained from viscometer measurements.  The foregoing
difficulties apply not just to Power law fluids, but to all non-Newtonian fluids,
with or without yield stress.  When yield stresses are present, other
complications arise, e.g., the inability to identify a priori the size and shape of
the plug zone means that such problems cannot be solved for practical annular
geometries.  We do, fortunately, offer a rigorous solution to this problem later.

In summary, we offer several general principles from the discussions of
Examples 2-1 and 2-2.  In particular,

 In Newtonian flow, the viscosity is a constant of the motion (barring
changes due to pressure and temperature) which is unambiguously
determined from viscometer measurement.

 In non-rotating Newtonian flow, the lumped quantity (1/) p/z controls
the dynamics, and changes to it will proportionally change u(y,z)
everywhere – thus, faster testing with inexpensive fluids, together with
simple arithmetic extrapolation, can be used in engineering design.

 For concentric annuli in steady Newtonian rotating flow, azimuthal
velocities do not depend on pressure gradient, and axial flows are
unaffected by rotation: the two are dynamically uncoupled.

 Annular eccentricity introduces changes to the applied pressure gradient
that are variable throughout the flow domain (the velocity likewise scales
differently at different cross-sectional locations) when rotation is allowed.
Their magnitudes are proportional to the product “density  rpm /
viscosity.”  This effect generally decreases the flow rate (as rotational speed
increases) for a fixed pressure gradient – this nontrivial modification applies
even to simple Newtonian fluids without shear-thinning.

 Non-Newtonian fluids (even without rotation and three-dimensionality)
exhibit shear-thickening and shear-thinning properties.  In a concentric
annulus with a rotating inner pipe, drilling fluid viscosity will decrease due
to azimuthal motion so that net flow rate increases relative to the non-
rotating case assuming that pressure gradient is fixed.  Complications arise
when this is countered by the effects of eccentricity – computational
methods are required to determine the exact balances between the two.
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 Non-Newtonian flows in eccentric borehole annuli with rotation will exhibit
shear-dependent changes to viscosity, plus changes to applied pressure
gradient that depend on rotational speed, fluid density and viscosity (the
“apparent viscosity” now varies throughout the flow domain).  Simple
rescaling arguments cannot be used to deduce flow properties for u(y,z)
because the governing equations are extremely complicated in form.

 For non-Newtonian flows, laboratory testing and extrapolation is not
possible because of the foregoing complications – hence, the only recourse
for prediction and job planning is full-scale testing with actual nonlinear
fluids or, alternatively, detailed computational fluid-dynamics analysis.

Field and laboratory examples.   Figures 2-2-1 and 2-2-2, together with
the related discussions, are obtained from correspondence with John Lofton,
Chevron, to whom the author is grateful.  Figure 2-2-1 provides a “pressure-
while-drilling” (or, PWD) log from a field run.  PWD logs provide real-time
pressures as are conveyed to the surface with Measurement-While-Drilling tools
and are essential to drilling safety.  Such logs can monitor downhole conditions
accurately and supply updates to calibrate software models used for planning.

Figure 2-2-1.  A “pressure-while-drilling” (PWD) log.
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Lofton writes, “Look at 1600 hrs on 25 April 02.  After the connection at
1693’ (red arrow), the pump is on (green curve) and the rotary is abruptly
increased up to 100 RPM (red curve).  The stand pipe pressure (blue curve)
spikes – increased pump pressure. The ECD (red and black curves on the far
right) both increase. The rotation has increased the pump pressure and the
annular friction for the same pump rate. This response seems consistent
throughout the PWD log. This is a directional well from a platform with an
angle of less than 45 degrees and is using a low density water based mud.”

Figure 2-2-2.  A laboratory example for 40o well.

“I have also looked at broader industry applications – some of which I do
not have first-hand, on-location experience. There was a study done at the
University of Tulsa on the effects of rotation in inclined wellbores. I think it is
excellent, honest work: no products to sell, no bias on the outcome. The effects
of rotation were investigated at 40, 65, and 90 degrees of inclination. The
annular pressure was monitored with rotation at each of these inclinations. The
results at 40 degrees were similar to those of the PWD log above and reflect my
experience in the field, especially at the lower end of the flow-rates – 300 gpm
and 350 gpm.”  (Results for 65o and 90o were more erratic, with some resulting
in reduced pressure gradients – possibly because of hole geometry changes due
to unflushed cuttings.)  The last comment on pronounced rotation effects at
lower volumetric flow rates is especially significant.  Lower flow rates point
toward higher values of the dimensionless azimuthal-to-axial velocity ratio,
which is a good indicator of rotation coupling to the overall flow.  Many drillers
have also indicated cuttings transport problems in larger diameter holes – large
diameters are precisely the ones with smaller annular velocities.   These two
observations support the use of rotating pipe models in planning drilling jobs.
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Example 2-3.    Curvilinear grid formulation for highly eccentric
annular flows with general non-Newtonian fluids without rotation.

Here, we consider eccentric annular flows formed by general closed curves
(which need not be circular) in order to introduce the methodology.  For
simplicity, we restrict ourselves to steady, two-dimensional, single-phase flows
of non-Newtonian without rotary pipe movement although constant speed axial
translation is permitted.  The effects of pipe or casing rotation require a different
formalism that is developed in Example 2-4, one which builds upon the present
introductory work.  Two-phase, three-dimensional flows extensions are covered
later in this book.  There is some redundancy between Example 2-2 and the
following exposition, however, this is retained for completeness and clarity.
The equations for general fluid motions in three spatial dimensions are available
from many excellent textbooks (Bird, Stewart, and Lightfoot, 1960; Streeter,
1961; Schlichting, 1968; and, Slattery, 1981) and we cite these without proof.

Governing equations.  Let u, v and w denote Eulerian fluid velocities, and
Fz, Fy and Fx denote body forces, in the z, y and x directions, respectively,

where (z,y,x) are Cartesian coordinates.  Also, let  be the constant fluid density
and p be the pressure; we denote by Szz, Syy, Sxx, Szy,  Syz, Sxz, Szx, Syx, and

Sxy the nine elements of the general extra stress tensor S.  If t is time and ’s

represent partial derivatives, the complete transient equations of motion obtained
from Newton’s law and mass conservation are,

Momentum equation in z:

 (u/t + u u/z + v u/y + w u/x)  =
            = Fz - p/z + Szz/z + Szy/y + Szx/x                (2-3-1)

Momentum equation in y:

 (v/t + u v/z + v v/y + w v/x)  =
            = Fy - p/y + Syz/z + Syy/y + Syx/x                (2-3-2)

Momentum equation in x:

 (w/t + u w/z + v w/y + w w/x)  =
            = Fx - p/x + Sxz/z + Sxy/y + Sxx/x                (2-3-3)

Mass continuity equation:

u/z + v/y + w/x = 0                                          (2-3-4)

Rheological flow models.  The above applies to all Newtonian and non-
Newtonian fluids.  In continuum mechanics, the most common class of
empirical models for incompressible, isotropic fluids assumes that S can be
related to the rate of deformation tensor D by an expression of the form
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S = 2 N() D                                                       (2-3-5)

where the elements of D are

Dzz =  u/z                                               (2-3-6)

Dyy =  v/y                                                       (2-3-7)

Dxx =  w/x                                                      (2-3-8)

Dzy = Dyz = (u/y + v/z)/2                                      (2-3-9)

Dzx = Dxz = (u/x + w/z)/2                                     (2-3-10)

Dyx = Dxy = (v/x + w/y)/2                                     (2-3-11)

In Equation 2-3-5, N() is the “apparent viscosity” satisfying

N()  >  0                                                        (2-3-12)

(z,y,x) being a scalar functional of u, v and w defined by the tensor operation

 = { 2 trace (DD) }1/2                                         (2-3-13)

Unlike the constant laminar viscosity in classical Newtonian flow, the
apparent viscosity depends on the details of the particular problem being
considered, e.g., the rheological model used, the exact annular geometry
occupied by the fluid, the applied pressure gradient or the net volumetric flow
rate.  Also, it varies with the position (z,y,x) in the annular domain.  Thus, single
measurements obtained from viscometers may not be meaningful in practice.

Power law fluids.  An as model to fix ideas, we will focus briefly on one
practical but important simplification.  Our discussion later applies to general
fluids with yield stresses.  For now, the Ostwald-de Waele model for two-
parameter “Power law” fluids assumes

N() = K n-1                                                    (2-3-14a)

where the “consistency factor” K and the dimensionless “fluid exponent” n are
constants.  Such Power law fluids are “pseudoplastic” when 0 < n < 1,
Newtonian when n = 1, and “dilatant” when n > 1.  Most drilling fluids are
pseudoplastic.  In the limit (n = 1, K = µ), Equation 2-3-14a reduces to the
Newtonian model with N() = µ, where µ is the constant laminar viscosity; in
this limit, stress is directly proportional to the rate of strain.  Only for Newtonian
flows is total volumetric flow rate a linear function of applied pressure gradient.

Hershel-Bulkley yield stress fluids.  Power law and Newtonian fluids
respond instantaneously to applied pressure and stress.  But if the fluid behaves
as a rigid solid until the net applied stresses have exceeded some known critical
yield value, say Syield, then Equation 2-3-14a can be generalized by writing

N()  = K n-1 + Syield/ if {1/2 trace (SS)}1/2  > Syield

D = 0 if {1/2 trace (SS)}1/2  < Syield                          (2-3-14b)



62   Managed Pressure Drilling: Modeling, Strategy and Planning

In this form, Equation 2-3-14b rigorously describes the general Herschel-
Bulkley fluid.  When the limit (n = 1, K = µ) is taken, the first equation becomes

N()  = µ  + Syield/ if {1/2 trace (SS)}1/2  > Syield          (2-3-14c)

This is the Bingham plastic model, where µ is now the “plastic viscosity.”  For
Herschel-Bulkley and Bingham plastic flows in circular pipes, exact analytical
solutions can be developed for velocity distribution, plug zone radius, and total
flow rate (these limits include Newtonian and Power law fluids), and are given
elsewhere in this book.  Analogous solutions are available for flows between
parallel plates.  Exact solutions for concentric annuli do not appear to be
available, but are derived in closed analytical form later in this book; these are
used to validate various numerical eccentric flow models.

Conventionally, until now, eccentric annular flows containing fluids with
nonzero yield stresses are more difficult to analyze, both mathematically and
numerically, than those marked by zero yield.  This is so because there co-exist
“dead” (or “plug”) and “shear” flow regimes with distinct internal boundaries
that must be determined as part of the solution.  This “plug versus no-plug”
transition introduces a type of nonlinearity in the formulation, which exists even
for “n = 1” Bingham plastics; Herschel-Bulkley nonlinearities associated with
fractional n’s make matters worse.  Fluids with yield stresses complicate the grid
generation problem because distinct but unknown internal boundaries exist.  In
particular, even if a plug zone’s size and shape were known, the transition
contour itself defines a coordinate curve: radial-like lines approaching from
either side and crossing it will have slope discontinuities at intersections and the
underlying conservation laws would have to be re-derived with such properties
in mind.  In dealing with yield stress fluids, the existence of a second isolated
domain has long impeded flow modeling efforts, and solutions for complicated
annular domains have been impossible.  Fortunately, this problem has been
addressed and solved from a different perspective using new but mathematically
rigorous methods.  The approach, described at the end of this example, applies
to all fluids with and without yield stresses.

Borehole configuration.   Our configuration is shown in Figure 2-3-1.  A
drillpipe (or casing) and borehole combination is inclined at an angle  relative

to the ground, with  = 0o for horizontal and  = 90o for vertical wells.  Here
“z” denotes any point within the annular fluid; Section “AA” is a cut taken
normal to the local z axis.  Figure 2-3-2 resolves the vertical body force due to
gravity at “z” into components parallel and perpendicular to the axis, while
Figure 2-3-3 provides a detailed picture of the cross-section at Section “AA.”

Now specialize the above equations to downhole flows.  In Figures 2-3-1,
2-3-2, and 2-3-3, we have aligned z, which increases downward, with the axis of

the borehole.  The axis may be inclined, varying from  = 0o for horizontal to

90o for vertical holes.  The plane of the variables (y,x) is perpendicular to the z-
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axis, and (z,y,x) are mutually orthogonal Cartesian coordinates.  The body
forces due to the gravitational acceleration g can be resolved into components

Fz  =   g sin  (2-3-15)

Fx  = -  g cos  (2-3-16)

Fy  =  0                                                          (2-3-17)

If we now assume that the drillpipe does not rotate, the resulting flow can
only move in a direction parallel to the borehole axis.  This requires that the
velocities v and w vanish.  Axial translation is still permissible.  Therefore,

v = w = 0                                                         (2-3-18)

Since the analysis applies to constant density flows, we obtain

/t = 0                                                         (2-3-19)

Equations 2-3-4, 2-3-18, and 2-3-19 together imply that the axial velocity
u(y,x,t) does not depend on z.  And, if we further confine ourselves to steady
laminar flow, that is, to flows driven by axial pressure gradients that do not vary
in time, we find that

u = u(y,x)                                                        (2-3-20)

depends at most on two independent variables, namely the cross-sectional
coordinates y and x.

For a concentric drillpipe and borehole, it is more convenient to collapse y

and x into a radial coordinate r = (x2 + y2)1/2 for which we later provide a
complete analysis.  For general eccentric flows, the lack of similar algebraic
transformations drives the use of grid generation methods.  Substitution of
Equations 2-3-18 and 2-3-20 into Equations 2-3-1, 2-3-2 and 2-3-3 leads to

0 =  g sin   - p/z  + Szy/y  + Szx/x                       (2-3-21)

0 = - p/y                                                       (2-3-22)

0 = - g cos  - p/x                                             (2-3-23)

If we introduce, without loss of generality, the pressure separation of variables

P = P(z,x) = p - zg sin  + xg cos                             (2-3-24)

we can replace Equations 2-3-21, 2-3-22 and 2-3-23 by the single equation

Szy/y  + Szx/x  = P/z = constant                            (2-3-25)

where the constant pressure gradient P/z is prescribed.  Recall the definitions
of the deformation tensor elements given in Equations 2-3-6 to 2-3-11 and the
fact that S = 2ND to rewrite Equation 2-3-25 as

 (N u/y)/y  +  (N u/x)/x  = P/z                           (2-3-26)
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Figure 2-3-1.  Borehole configuration.
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Figure 2-3-2.  Gravity vector components.
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Figure 2-3-3.  Gravity vector components.
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Early approach, viscosity derivatives omitted.  The general “after 2010”
method available at the end of this example applies to fluid flows with and
without yield stresses.  In the next few paragraphs, though, we summarize for
completeness the approach used during 1990 – 2010, since a number of
algorithms developed and distributed during that time frame required the
simplifications discussed here.  We will explain their need, the reasons for their
deficiencies, and provide the needed fixes.

Now, for two-dimensional, flows whose velocities do not depend on the
axial coordinate z, and which further satisfy the non-rotating flow assumption,
we have v = w = 0.  The functional  in Equation 2-3-14a takes the simple form

 = [ (u/y)2 + (u/x)2 ]1/2                                    (2-3-27)

so that Equation 2-3-14b becomes

N()  = K n-1 + Syield/ if {1/2 trace (SS)}1/2  > Syield

 = [ (u/y)2 + (u/x)2 ]1/2

D = 0 if {1/2 trace (SS)}1/2  < Syield                          (2-3-28)

The apparent viscosity reduces to the conventional N() = K (u/y)(n-1)

formula for one-dimensional, parallel plate and “slot flow” flows considered in
the literature in the Power law limit.  When both independent variables y and x
for the cross-section are present, as for eccentric annular flow, significant
mathematical difficulty arises.  For one, the ordinary differential equation for
annular velocity in simple concentric geometries becomes a partial differential
equation.  And whereas the former requires boundary conditions at two points,
the partial differential equation requires no-slip boundary conditions imposed
along two arbitrarily closed curves.  The nonlinearity of the governing equation
and the irregular annular geometry only compound these difficulties.

We illustrate the decades-old problem by returning to our Power law
example, for which the apparent viscosity function N() is given exactly by the
nonlinear equation

N() = K [ (u/y)2 + (u/x)2 ](n-1)/2                           (2-3-29)

Note that Equation 2-3-26, that is,  (N u/y)/y  +  (N u/x)/x  = P/z,
and Equation 2-3-29, comprise the entire system to be solved along with general
no-slip velocity boundary conditions at drillpipe and borehole surfaces.  This
formulation also allows constant velocity axial pipe movement.

It is important, for the purposes of numerical analysis, to recognize how
the net result can be written as a nonlinear Poisson equation, that is,

2u/y2 + 2u/x2 = [P/z + (1-n)N()(uy
2uyy

                  +2uyuxuyx +ux
2uxx)/(uy

2 + ux
2)] / N()             (2-3-30)
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In this form, conventional solution techniques for elliptic equations were at first
employed.  These include iterative techniques as well as direct inversion
methods.  The nonlinear terms in the square brackets, for example, were
evaluated using latest values in a successive approximations scheme.

Also various algebraic simplifications were used at different times.  For
some values of n, particularly those near unity, these nonlinear terms
represented negligible higher-order effects if the “1-n” terms are small in a
dimensionless sense compared with pressure gradient effects.  For small n, the
second derivative terms on the right side may be unimportant since such flows
contain flat velocity profiles.  In most of the early work, the principal effects of
nonlinearity were modeled using the simpler and more stable Poisson model in
Equation 2-3-31, one that is not unlike the classical equation for Newtonian
flow.  The apparent viscosity that acts in concert with the driving pressure
gradient was still variable, nonlinear, and dependent on both geometry and rate.

2u/y2 + 2u/x2   N()-1 P/z                                 (2-3-31)

This approximation was used because the additional terms in Equation 2-3-
30 were numerically unstable.  This is not a constant viscosity model because N
is still nonlinear and variable throughout the flow cross-section; only its spatial
derivatives were ignored.  The model, which appeared to be unconditionally
stable, importantly retained the strong influence of local geometry on annular
velocity (e.g., low bottom speeds in eccentric holes regardless of rheology or
flow rate) and extensive comparisons with detailed numerical models and
laboratory data suggested that the results were reasonable. Recent extensions,
however, now allow us to keep Equation 2-3-26 in its entirety, enabling fast and
stable calculations even for problems with yield stress.  Mathematical and
numerical details are offered later in this chapter.

Additional post-processing formulas.  Once the solution for the velocity
field is available, additional formulas are evaluated to provide useful physical
information.  Borehole temperature is sometimes important in drilling and
cementing.  Our momentum model then requires a coupled solution to a
temperature partial differential equation with convective and conductive terms.
In the general case, a source term will account for heat generation by internal
friction and heat may flow to and from formation boundaries.  External and
internal sources of heat may affect local fluid viscosity, since n and K will
depend on temperature.  For problems that are not isothermal, the existence of a
steady flow is not guaranteed.  The estimation of heat source strength from
velocity gradients, while most likely unimportant, is nonetheless discussed here
because the cumulative effects of distributed sources over large time scales may
have a pronounced effect on the flow if this frictional heat is not dissipated into
the boundary.  For completeness, we therefore give the expression for the
“dissipation function,” that is, the distributed heat source term which depends on
local velocity gradients.
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We noted that when the temperature T(z,y,x,t) is important, a partial
differential equation with conductive and convective terms will couple to our
momentum equations.  This energy equation will contain a positive definite
quantity called the “dissipation function” that represents the distributed
source term responsible for local heat generation.  In general, it takes the form

 (z,y,x)  =  Szzu/z  + Syyv/y  + Sxxw/x

               + Szy(u/y + v/z) + Szx(u/x + w/z)

               + Syx(v/x + w/y)                                  (2-3-32)

Applying assumptions consistent with the foregoing analysis, we obtain

 = N() {(u/y)2 + (u/x)2} > 0                                (2-3-33)

where, as before, we use Equation 2-3-29 for the apparent viscosity in its
entirety.  Equation 2-3-33 shows that velocity gradients, not magnitudes,
contribute to temperature increases.

In other computations, we provide values of local viscous stresses and their
corresponding shear rates.  These stresses are the rectangular components

Szy  =  N() u/y                                                (2-3-34)

Szx  =  N() u/x                                                (2-3-35)

The shear rates in Equations 2-3-34 and 2-3-35 are u/y and u/x
respectively.  These quantities are useful for several reasons.  They are
physically important in estimating the efficiency with which fluids in deviated
wells remove cuttings beds having specified mechanical properties.  From the
numerical analysis point of view, they allow checking of computed solutions for
physical consistency (e.g., high values at solid surfaces, zeros within plug flows)
and required symmetries.  We next discuss mathematical issues regarding
computational grid generation and numerical solution.  These ideas are
highlighted because we solve the complete boundary value problem, satisfying
no-slip velocity conditions exactly, without simplifying the annular geometry.

Boundary-conforming, curvilinear grid generation.  In many
engineering problems, a judicious choice of coordinate systems simplifies
calculations and brings out the salient physical features more transparently than
otherwise.  For example, the use of cylindrical coordinates for single well
problems in petroleum engineering leads to elegant “radial flow” results that are
useful in well testing.  Cartesian grids, on the other hand, are preferred in
simulating oil and gas flows from rectangular fields.

The annular geometry modeling considered here is aimed at eccentric
flows with cuttings beds, arbitrary borehole wall deformations, and
unconventional drill collar or casing-centralizer cross-sections.  Obviously,
simple coordinate transforms are not readily available to handle arbitrary
domains of flow.  Without resorting to crude techniques, for instance, applying
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boundary conditions along mean circles and squares, or invoking “slot flow”
assumptions, there has been no real flow modeling alternative until the first
publication of Borehole Flow Modeling.

Fortunately, results from differential geometry allow us to construct
“boundary-conforming, curvilinear coordinates” which are natural for physical
modeling and computation.  These general techniques extend classical ideas on
conformal mapping.  They have accelerated progress in simulating aerospace
flows past airfoils and cascades, and are only beginning to be applied in the
petroleum industry.  Thompson, Warsi, and Mastin (1985) provides an excellent
introduction to the subject.

To those familiar with conventional analysis, it may seem that the choice
of (y,x) coordinates in Equation 2-3-31 is “unnatural.”  After all, in the limit of a
concentric annulus, the equation does not reduce to a radial “r-only”
formulation.  But our use of such coordinates was motivated by the new
gridding methods which, like classical conformal mapping, are founded on
Cartesian coordinates.  The approach, developed in detail in Example 3-1, in
essence requires us to solve first a set of nonlinearly coupled, second-order
partial differential equations.  In particular,

(y2 + x2) y - 2(yy + xx) y  + (y2 + x2) y = 0       (2-3-36)

(y2 + x2) x - 2(yy + xx) x  + (y2 + x2) x = 0       (2-3-37)

are considered with special mapping conditions related to the annular geometry.
These are no simpler than the original flow equations, and arguably worse, since
there are now two more equations, but they importantly introduce a first step
that does not require solution on complicated domains.

External curve C1

Internal curve C2

B
1

B
2

Figure 2-3-4a.  Irregular physical (y,x) plane.
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Figure 2-3-4b.  Rectangular computational plane.

Equations 2-3-36 and 2-3-37 are importantly solved on simple rectangular
() grids.  Once the solution is obtained, the results for x() and y() are
used to generate the metric transformations needed to reformulate the physical
equations for u in () coordinates.  The flow problem is then solved in these
rectangular computational coordinates using standard numerical methods.
These new coordinates implicitly contain all the details of the input geometry,
providing fine resolution in tight spaces as needed.  To see why, we now briefly
describe the boundary conditions used in the mapping.  Figures 2-3-4a and 2-3-
4b indicate how a general annular region would map into a rectangular
computational space under the proposed scheme.

Again the idea rests with special computational coordinates ().  A
discrete set of “user-selected” physical coordinates (y,x) along curve C1 in

Figure 2-3-4a is specified along the straight line  = 0 in Figure 2-3-4b.
Similarly, (y,x) values obtained from curve C2 in Figure 2-3-4a are specified

along  = max in Figure 2-3-4b.  Values for (y,x) chosen along “branch cuts”

B1,2 in Figure 2-3-4a are required to be single-valued along edges  = 0 and  =

max in Figure 2-3-4b.

With (y,x) prescribed along the rectangle of Figure 2-3-4b, Equations 2-3-
36 and 2-3-37 for y() and x() can be numerically solved.  Once the
solution is obtained, the one-to-one correspondences between all physical points
(y,x) and computational points () are known.  The latter is the domain chosen
for numerical computation for annular velocity.  Finite difference
representations of the no-slip conditions “u = 0” that apply along C1 and C2 of

Figure 2-3-4a are very easily implemented in the rectangle of Figure 2-3-4b.  At
the same time, the required modifications to the governing equation for u(y,x)
are modest.  For example, the simplified Equation 2-3-31 becomes

(y2 + x2) u - 2(yy + xx) u
           + (y2 + x2) u = (yx - yx)2 P/z /N()              (2-3-38)
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whereas the result for the Equation 2-3-30 requires additional terms.  For
Equation 2-3-38 and its exact counterpart, the velocity terms in the apparent
viscosity N() of Equation 2-3-29 transform according to

uy = (xu - xu)/(yx - yx)                                    (2-3-39)

ux = (yu - yu)/(yx - yx)                                    (2-3-40)

These relationships are also used to evaluate the dissipation function.  Again, we
emphasize that in our solution for velocity, Equation 2-3-38 is importantly
solved in rectangular computational coordinates ().  We leave the details to
be developed in Chapter 3, and for now, continue with our development of
broad and basic concepts.

Exact viscosity model after 2010.  The grid generation approach
discussed is general and rigorous, and fast methods have been developed to
solve coupled Equations 2-3-36 and 2-3-37.  We have transformed the
computational problem for the annular speed u from an awkward one in the
physical plane (y,x) to a simpler one in () coordinates, where the irregular
domain becomes rectangular.  In doing so, we introduced the intermediate
problem dictated by Equations 2-3-36 and 2-3-37.  When solutions for y()
and x() and their corresponding metrics are available, Equation 2-3-38,
which is slightly more complicated than the original Equation 2-3-31, can be
solved conveniently using existing “rectangle-based” methods without
compromising the annular geometry.  Although complicated, containing more
algebraic terms in the host equation for velocity, the resulting system does allow
faster computing because fewer equations are actually used in the iteration
process. For iterative methods, fewer equations means much faster convergence.

The assumptions behind Equation 2-3-31, used in earlier work and
introduced purely for numerical stability, are unacceptable physically for
problems where apparent viscosity varies significantly within the flow domain.   
The solution ultimately developed, allowing us to retain all apparent viscosity
derivatives that led to almost unconditional stability, was simple.  In particular,
recall that the complete equation in rectangular coordinates

 (N u/y)/y  +  (N u/x)/x  = P/z                           (2-3-26)

can be expanded in the form

2u/y2 + 2u/x2 + Ny/N u/y + Nx/N u/x = 1/N P/z (2-3-41)

so that 2u/y2 + 2u/x2 = 1/N P/z - Ny/N u/y - Nx/N u/x.  For practical
reasons, in the past it was simplest to modify the old solution algorithm by
replacing “1/N P/z”  by “1/N P/z - Ny/N u/y - Nx/N u/x.”  The new
terms were evaluated using latest available solutions for u in an iterative semi-
explicit scheme, or by solving a fully implicit scheme in which the new terms
are determined at the same time as those in 2u/y2 + 2u/x2.  Both of these
approaches often led to unstable or non-convergent results.
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It can be shown, after detailed numerical testing, that the “obvious” central
differencing used in our prior numerical approach, that is,

(1/N N/x)i  1/Ni (Ni+1 – Ni-1)/(xi+1 – xi-1)  (2-3-42)

is numerically unstable, while the less obvious approach utilizing

(1/N N/x) i = {(ln N) /x} i 
{(ln N)i+1 – (ln N)i-1} /(xi+1 – xi-1) (2-3-43)

is very stable.  This stable discretization is used and the new terms are all
retained in curvilinear coordinate form.  Since Equation 2-3-26 is nonlinear, von
Neumann analyses are impossible, but hundreds of practical simulations have
demonstrated the value of the logarithmic representation.  Equation 2-3-26,
together with the finite-differencing in Equation 2-3-43, represents the new
methodology used in this book for fluids with and without yield stress.

Equations 2-3-36 and 2-3-37 were solved by rewriting them as a single
vector equation for x + iy , employing simplifications from complex variables,
and discretizing the end equation using second-order accurate formulas.  The
finite difference equations are then reordered so that the coefficient matrix is
sparse, banded, and computationally efficient.  Finally, the “Successive Line
Over Relaxation” (SLOR) method was used to obtain the solution in an implicit
and iterative manner.  The SLOR scheme is unconditionally stable on a
linearized von Neumann basis and is quickly performed.  Mesh generation
requires 1-2 seconds of computing time on typical computers.  Once the
transformations for y() and x() are available for a given annular geometry,
Equation 2-3-26 can be solved any number of times for different applied
pressure gradients, volumetric flow rate constraints, or fluid rheology models,
without recomputing the mapping.  Because Equation 2-3-26 is similar to
Equations 2-3-36 and 2-3-37, the same procedure is used for its solution.  These
iterations converge quickly and stably because the meshes used were smooth.
When solutions for the velocity field u() are available, these also requiring
just seconds, simple inverse mapping relates each computed “u” with its unique
image in the physical (y,x) plane.  With u(y,x) and its spatial derivatives known,
post-processed quantities like N(), Szy, Szx, their shear rates and apparent

viscosities are easily calculated and displayed in physical (y,x) coordinates.
Drilling and production engineers recognize that flow properties in

eccentric annuli correlate to some extent with annular position (e.g., low bottom
speeds regardless of rheology).  Our text based graphical display software
projects u(y,x) and all post-processed quantities on the annular geometry.  This
helps visual correlation of computed physical properties or inferred
characteristics (e.g., “cuttings transport efficiency” and “stuck pipe probability”)
with annular geometry quickly and efficiently.  These highly visual outputs, plus
sophisticated color graphics, together with the speed and stability of the scheme,
promote an understanding of annular flow in an interactive, real-time manner.
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Extensions for yield stress fluids.   We return now to fluids with non-zero
yield stresses.  In general, there exist internal boundaries separating “dead” (or
“plug”) and flowing “shear” regimes.  These unknown boundaries must be
obtained as part of the solution.  Previously we indicated that these boundaries
must be found as part of the complete solution process.  But even if they were
known explicitly, numerical solutions would be no easier: slope discontinuities
or “kinks” would affect coordinate lines crossing the fluid interface and special
methods must be developed to model sudden changes in slope (the standard
finite difference formulas used in numerical analysis require a function and its
derivatives to be continuous).

The basic problem actually arises from the method devised by
mathematicians to “simplify” representatively combined plug and shear flows
using Equation 2-3-14b.  The resulting “if-then” model is responsible for
creating two unnatural domains that must be related by additional auxiliary
conditions.  We remedy the problem as follows. In reality, flows do not
suddenly change from flowing to non-flowing or vice-versa: a steep but
continuous transition prevails.  Consider, for example, the conventional
Herschel-Bulkley viscoplastic model, which includes Bingham plastics as a
special limit when the model exponent “n” is unity.  As in Equation 2-3-14b,
this requires that

 = 0 + K(d/dt) n, if  > 0        (2-3-44a)

d/dt = 0, otherwise (2-3-44b)

where  is the shear stress, 0 is the yield stress, K is the consistency factor, n is
the exponent, and d/dt is the shear rate.  This model is far from perfect.  Both
Herschel-Bulkley and Bingham plastic models, for instance, predict infinite
viscosities in the limit of vanishing shear rate, a fact that often leads to
numerical instabilities.  In addition, the behavior is not compatible with the
conservation laws that govern many complex flows.

Figure 2-3-5.  Extended Herschel-Bulkley law.
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An alternative to Equations 2-3-44a,b is the continuous function suggested
by Souza Mendez and Dutra (2004), that is,

 = {1 – exp(-0 d/dt /0)}{0 + K (d/dt) n}  (2-3-45)

which would apply everywhere in the problem domain.  The corresponding
apparent viscosity is

 = /(d/dt)  (2-3-46)

= {1 – exp(-0 d/dt /0)}{0/(d/dt) + K (d/dt) n-1} (2-3-47)

Sketches for Equations 2-3-46 and 2-3-47 are given in Figure 2-3-5.  We
describe this as the “extended Herschel-Bulkley” model [our terminology].  For
infinite shear rates, one would recover  = 0 + K (d/dt) n.  For low shear rates,
a simple Taylor expansion leads to

  {0(d/dt) /0}{0/(d/dt) + K (d/dt) n-1}  (2-3-48a)

 0   (2-3-48b)

where it is clear now that the parameter 0 represents a very high plug zone
viscosity.  The use of Equations 2-3-45, 2-3-46 and 2-3-47 in numerical
algorithms simplifies both formulation and coding since internal boundaries and
plug domains do not need to be determined as part of the solution.  A single
constitutive law (as opposed to the use of both Equations 2-3-14a,b) applies
everywhere; moreover, the continuous function assumed also possesses
continuous derivatives and automatically provides rapid transitions across
boundaries separating plug and sheared flows.

Also, the use of Equation 2-3-47 integrates naturally with the method
behind Equation 2-3-43.  Essentially, the apparent viscosity N is stored in a
Fortran function statement that is called and updated as needed.  We emphasize

that N() = K [ (u/y)2 + (u/x)2 ](n-1)/2, as given in Equation 2-3-29,
applies to unidirectional flows without changes in the z direction (this too must
be re-expressed in curvilinear coordinates).

From the programming and software perspective, there is no distinction
between zero-yield and yield stress fluids.  In a practical computer program, the
plug zone viscosity might be assumed, for example, anywhere from 100 cp to
1,000 cp.  In fact, we choose high values of 0 which would additionally
stabilize the numerical integration schemes use.  This strategy is applied
throughout our work, both to our iterative relaxation schemes for steady-state
problems and to our transient integration schemes for more complicated
managed pressure drilling formulations.  Finally, our “extended” model is not
the “generalized Herschel-Bulkley” relation in Becker et al. (2003). That model
merely provides one additional curve-fitting parameter via (/ref)

m = (0/ref)
m +

( d/dt/ref)
n.  While useful, the “GHB” model does not address plug zone size

and shape issues.  Thus, the model is not used or considered in this book.
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Example 2-4.    Curvilinear grid formulation for eccentric annular
flows with general non-Newtonian fluids with rotation.

In the previous example, we introduced three strategies relevant to
modeling non-Newtonian flows in highly eccentric annuli, namely, (a) stable
numerical modeling of variable apparent viscosities and their spatial derivatives,
(b) extended representations for Herschel-Bulkley yield stress fluids to compute
internal boundaries naturally, and (c) curvilinear grid generation to
accommodate irregular geometric details such as hole eccentricity, cuttings beds
and washouts.  Implementation details are reserved for Chapter 3.  In this
example, we further develop the formalism to address problems with inner pipe
or casing rotation, which arise frequently in managed pressure drilling and
effective cementing and completions.  The problem is all-the-more important
because drillstring rotation can be used to actively control downhole pressure in
modern managed pressure applications, thus providing another option for well
management besides mud rheology, pump rate and surface choke adjustment.

We have seen from the foregoing example how the use of rectangular or
Cartesian coordinates provides a natural starting point for detailed geometric
modeling of highly eccentric holes.  This technique was first discussed in the
author’s Borehole Flow Modeling (1992) and Computational Rheology (2001)
books but in the context of non-rotating flows.  When pipe rotation is permitted,
cylindrical coordinates provide obvious first advantages in describing inner
circle steady or transient movements, but ultimately, the resulting description
must be rewritten to rectangular coordinates for transfer to curvilinear grid
representation using the method of Example 2-3.  Thus, rotation problems
involve levels of algebraic manipulations in three successive coordinate systems,
namely, cylindrical, rectangular and curvilinear.  Actually, two more “hidden”
coordinate transforms apply, that are related to computer screen displays;
however, these represent issues outside of fluid-dynamics and are not discussed.

Again, we start with circular cylindrical coordinates so that steady or
transient rotational rates can be easily prescribed at the circular pipe or casing
surface.  The general non-Newtonian rheological equations for unsteady single-
phase flow with and without yield stress are given in previous references cited
and are listed below without proof.   The momentum equations in the “r,” “”
and “z” directions are, respectively,

(vr /t + vr vr /r + v/r vr /  – v
/r + vz vr /z) = (2-4-1)

= Fr – P/r + 1/r (r Srr)/r + 1/r Sr / – 1/r S + Srz/z

(v /t + vr v /r + v/r v /  + vrv/r + vz v /z) = (2-4-2)
= F – 1/r P/ + 1/r (r Sr)/r + 1/r S / + Sz/z

(vz /t + vr vz /r + v/r vz /  + vz vz /z) = (2-4-3)
= Fz – P/z + 1/r (r Szr)/r + 1/r Sz / + Szz /z
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where F denotes body forces, while the equation for mass conservation takes the
form

vr /r + vr/r + 1/r v/ + vz /z = 0  (2-4-4)

In the above, vr, v and vz are radial, azimuthal and axial velocity components,
respectively.  Again, we have

S = 2 N() D  (2-4-5)

denoting the deviatoric stress tensor, N() the apparent viscosity function,  the
shear rate, and now, the deformation tensor D whose elements are defined by

Drr = vr /r  (2-4-6a)

D = 1/r v/ + vr/r  (2-4-6b)

Dzz = vz /z  (2-4-6c)

Dr = Dr = ½ [r (v/r)/r + 1/r vr /]  (2-4-6d)

Dz = Dz = ½ (v /z + 1/r vz /)  (2-4-6e)

Drz = Dzr = ½ (vr /z + vz /r)  (2-4-6f)

These equations are later solved analytically in Example 5-6 for steady
concentric rotation with axial flow for Power law fluids, and also, other limits
are addressed in this book.  For the purposes of modeling eccentric flow with
inner pipe rotation, with our ultimate objective being the use of transformed
curvilinear coordinates, we compare Equations 2-3-26 and 2-4-3 to obtain the
composite but exact axial flow model

(u /t + vr u /r + v/r u /  + u u /z) = 

= Fz – P/z  +  (N u/y)/y  +  (N u/x)/x (2-4-7)

We introduce a coordinate system centered with the circular pipe or casing
throughout this book.  Then, for steady flows, we have /t = 0, while the two-
dimensional flow assumption states that /z = 0.  If we further assume that
radial velocities are small compared with those in the axial and azimuthal
directions, a premise that is valid so long as massive fluid influxes or out fluxes
are ruled out, we have in the absence of body forces

v/r u /  – P/z +  (N u/y)/y  +  (N u/x)/x (2-4-8)

where we have used the notation u = vz to be consistent with Example 2-3.
This is just the extension of Equation 2-1-13 to handle non-Newtonian

rheologies.  The simpler model was previously developed in the context of
Newtonian, rotating, eccentric annular flows.  Here we rewrite the left-side to x
and y coordinates using “x = r cos  and y = r sin ,” and the re-expressed
azimuthal derivative in rectangular coordinates according to the chain rule
results / = – y /x + x /y and /r = (x/r) /x + (y/r) /y.  The resulting
x-y equation is then transformed to curvilinear coordinates as explained in
Example 2-3 and the same x-y methods for steady and transient flow apply.
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Equation 2-4-8 still contains a velocity v that plays the role of a variable
coefficient.  As we had indicated previously in Example 2-1, its magnitude is
proportional to fluid density and to azimuthal speed, and here, also inversely
proportional to apparent viscosity.  In the most general case, the nonlinearly
coupled system formed by Equations 2-4-2 and 2-4-8 must be solved.  However,
for rotating annular flows, simplifications are possible.  We first reconsider
Equation 2-4-2 in the form

(v /t + vr v /r + v/r v /  + vrv/r + vz v /z) = (2-4-9)

= – 1/r P/ + 1/r (r Sr)/r + 1/r S / + Sz/z

 – 1/r p/ 
(v /r+ 1/r v /r – v /r 

 + 1/r2 v /+ 2/r 
 vr/ + v /z)

Applying the assumptions used for Equation 2-4-8, plus the fact that the
azimuthal flow is primarily “dragged” by the inner surface in the sense shown in
Example 2-1, so that / at the left-side and the induced pressure gradient at
the right are both small compared to axial effects, we have an approximate linear
partial differential equation without explicit pressure dependence obtained as

v /r+ 1/r v /r + 1/r2 v / – v /r 
   0 (2-4-10)

which must be solved subject to v  = 0 at the outer wall and v  = R at the
circular pipe surface where R is the pipe radius and  is the rotational rate (for
transient flows, the v /t term is retained).  Equation 2-4-10, we emphasize,
must be solved in curvilinear coordinates consistently with the x-y form of
Equation 2-4-8.  The required form is straightforwardly obtained.  For this
purpose, we note that x = r cos  and y = r sin  imply that r = (x2 + y2)1/2 and
v /r+ 1/r v /r + 1/r2 v / = v /x+ 1/r2 v /y so that we have a
simpler v /x+ 1/r2 v /y – v /(x2 + y2) = 0.

In summary, the steady, rotating flow formulation valid for non-Newtonian
fluids with or without yield stress solves the coupled system

 (N u/y)/y  +  (N u/x)/x  P/z + v/r u / (2-4-11)

v /x+ 1/r2 v /y – v /(x2 + y2) = 0 (2-4-12)

subject to u = u0 (a constant positive, zero or negative axial pipe movement
speed) and v = R at the inner pipe, plus u = v = 0 at the outer annular
boundary.  Note that the apparent viscosity function depends on both u and v
and embodies shear-thinning and shear-thickening effects, so that the two are
coupled nonlinearly.  Again, Equations 2-4-11 and 2-4-12 are written in x-y
coordinates but are transformed to boundary-conforming, curvilinear
coordinates for solution.  A controlling parameter in numerical stability is /
where  is proportional to the average apparent viscosity.  The required details
related to geometric transformations are explained in Chapter 3.
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3
Numerical Analysis and

Algorithm Development Strategies

In Chapter 1, we provided an overview of all the simulation functions
addressed by the new annular flow technologies, while in Chapter 2, the overall
theoretical framework for boundary-conforming, curvilinear grid approaches to
the modeling of non-Newtonian fluids (with and without yield stress) with drill
pipe or casing that may be stationary or rotating was given.  This framework
applies to both the single-phase flows treated in Chapters 1-7 and their
multiphase extensions in Chapters 8 and 9.

In the present chapter, mathematical details required in implementing
curvilinear grids are described without the usual recourse to differential
geometry, an abstract subject area covered in specialized graduate level courses.
Importantly, in Example 3-1, these advanced ideas are developed using basic
calculus, so that they are understandable to practicing engineers and extendable
by software practitioners without much difficulty.  We show how arbitrary
annular flow “donut” regimes are converted to simple rectangular domains for
fast computation.  Then we also demonstrate how the nonlinear mesh generation
equations, whose numerical solutions are often slow and unstable, can be rapidly
computed using an unconditionally stable algorithm.  Example 3-2 outlines how
the same methods can be used to model non-circular (non-annular) ducts, an
application that is important to studying hole enlargement in drilling engineering
and pipeline clogging in underwater applications.  Practical applications to
solids deposition modeling are addressed in Example 3-3, and numerous
calculated results are offered for both Newtonian and non-Newtonian flow.
Finally, Example 3-4 introduces the subject of finite difference analysis using
with a solution for classical Hagen-Poiseuille pipe flow in circular pipes and
rapidly progresses to state-of-the-art curvilinear grid based methods for non-
Newtonian fluids where velocities and apparent viscosities are found iteratively.
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Example 3-1.    Grid generation for eccentric annular flow.

We introduce abstract (but useful and important) ideas in coordinate
transformations, typically presented from a differential geometry perspective,
but here reworked using only elementary calculus to convey the ideas clearly.
Suppose we wish to express a function f(x,y) in terms of convenient independent
variables  and .  If the transformations x = x(,) and y = y(,) are available,
direct substitution allows us to rewrite f(x,y) in the form

f(x,y) = F(,)                                                                           (3-1-1)

In Equation 3-1-1, the functional relation F(,) between  and is generally
different from the relation f(x,y) connecting x and y.  Derivatives of f(x,y) with
respect to x and y are easily related to derivatives of F(,) taken with respect to
 and .  By applying the chain rule of calculus, we have

F = f
x

x + f
y 

y                                                                      (3-1-2)

F = f
x

x + f
y 

y                                                                     (3-1-3)

where subscripts, along with ’s, will be used to indicate partial derivatives.
Equations 3-1-2 and 3-1-3 can be algebraically solved for f

x
 and f

y
 to yield

f
x

= (yF - yF) / J                                                                   (3-1-4)

f
y
 = (xF  - xF) / J                                                                   (3-1-5)

where

J(,) = xy - xy                                                                   (3-1-6)

is known as the Jacobian of the transformation.  For reasons that will be
apparent later, we will refer to this Jacobian as “big jay.”

Most boundary value problems occurring in mathematical physics involve
second-order partial differential equations.  To express such equations in (,)
coordinates, transformations similar to those in Equations 3-1-4 and 3-1-5 are
therefore needed for fxx, fxy, and fyy.  Throughout this presentation, f and F are
considered to be sufficiently smooth, so that it is possible to interchange the
order of differentiation between any two independent variables.  By “smooth,”
we mean that sudden discontinuities are not expected in physical solutions.  This
is assured, for instance, if kinks do not appear in the cross-sectional geometry.
Application of the chain rule to Equations 3-1-2 and 3-1-3 leads to

F = f
x

x  + x(fxx
x + f

xy 
y) + f

y 
y  + y(fyx

x  + f
yy

y )

          = xfx
 + yfy

 + x
2 f

xx
 + y

2 f
yy

 + 2xyfxy
                    (3-1-7)

Similarly,

F= xfx
 + yfy

 + x
2 f

xx
 + y

2f
yy

 + 2xyfxy
                 (3-1-8)
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and
F = xfx

 + yfy
 + xxfxx

 + yyfyy
 + (xy + xy) fxy

   (3-1-9)

Now, let us rewrite Equations 3-1-7, 3-1-8 and 3-1-9, treating the functions
f
xx

, f
xy

 and f
yy

 as algebraic unknowns on the left-hand side of a three-by-three

system.  That is, we write the foregoing equations as

x
2 fxx + 2xy fxy +   y

2 fyy = F - x fx - y fy (3-1-10)

x
2 fxx + 2xy fxy + y

2 fyy = F - x fx - y fy (3-1-11)                  

xx fxx +  (xy + xy) fxy + yy fyy = F - x fx - y fy (3-1-12)

In this form, the solutions for fxx
 

, fxy and fyy can be easily obtained using
determinants.  However, we need not write down individual solutions, since we
will not need to use them in our applications.  But we will make use of the
rectangular Laplace operator fxx + fyy which, in curvilinear coordinates, takes the
form

fxx + fyy = ( F - 2F + F) /J
2                                  (3-1-13)

                      + [(x - 2x + x)(yF - yF)
                      +  (y - 2y + y)(xF - xF)]/J

3

where the Greek letter coefficients represent the nonlinear functions

 = x
2 + y

2                                                                    (3-1-14)

 = xx + yy                                                                     (3-1-15)

 = x
2 + y

2                                                                         (3-1-16)

Thompson’s mapping.  So far, we have not imposed any constraints on
the functions x = x(,) and y = y(,), or their inverses  = (x,y) and  =
(x,y).  One well-known transformation is Thompson’s mapping, originally
developed to solve the Navier-Stokes equations for viscous flows past planar
airfoils in aerospace applications, e.g., Thompson (1984), Thompson, Warsi, and
Mastin (1985), and Tamamidis and Assanis (1991) .  This method was modified
for use in Chin (1992, 2001) to study steady non-Newtonian flows in eccentric
annuli and noncircular pipes.  In this approach, (x,y) and (x,y) are defined as
solutions to the elliptic equations


xx

 + 
yy

 = P
*
(,)                                                               (3-1-17)


xx

 + 
yy

= Q
*

(,)                                                              (3-1-18)

where P
*
 and Q

*
 are functions chosen (by ingenious guess work) to control

local grid density.
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We will explain the exact motivation behind the Thompson approach later.
For now, however, we ask, “What equations govern x = x(,) and y = y(,)
given Equations 3-1-17 and 3-1-18?”  At this point, it is helpful to understand
that Equation 3-1-13 holds for any function f.  That is, for any prescribed set of
transformations, Equation 3-1-13 can be viewed as a source of useful identities.
Let us take f(x,y) = (x,y), in which case F(,) = ; then, F = 0, and all second
derivatives of F with respect to and  vanish.  Substitution in Equation 3-1-13
and replacement of the resulting Laplacian of  with respect to x and y using
Equation 3-1-17 lead to

-y (x - 2x + x) + x (y - 2y + y) = P
*

J
3

 (3-1-19)

Similarly, consider f(x,y) = (x,y), so that F(,) = .  It follows that F = 0, and
that all second derivatives of F with respect to  and  vanish.  Substitution in
Equation 3-1-13 and replacement of the Laplacian of  with respect to x and y
using Equation 3-1-18 lead to

+y (x –2x + x) - x (y – 2y + y) = Q
*
J
3

  (3-1-20)

If we now regard (x – 2x + x) and (y –2y + y) as algebraic
unknowns in a simple two-by-two system, Equations 3-1-19 and 3-1-20 can be
solved, thus yielding Thompson’s well-known elliptic equations

x – 2x + x + J
2

(P
*

x + Q
*

x) = 0                               (3-1-21)

y – 2y + y + J
2

(P
*

y + Q
*

y) = 0                                (3-1-22)

Interestingly, we have derived these relationships using basic calculus,
without recourse to more esoteric notions from differential geometry.  Equations
3-1-21 and 3-1-22 are nonlinearly coupled because the coefficients ,  and  in
Equations 3-1-14 to 3-1-16 depend on both x(,) and y(,).

Some reciprocity relations.  For practical reasons, we will need to convert
results between physical x-y and computational -planes.  Thus, reciprocity
relationships are needed.  Let us return to general considerations and for now
refrain from invoking Thompson’s assumptions.  In particular, we examine the
general transformations

x = x(,)                                                                               (3-1-23)

y = y(,)                                                                               (3-1-24)

From elementary calculus, the total differentials dx and dy are given by

xd + xd = dx                                                                    (3-1-25)

yd + yd = dy                                                                    (3-1-26)

Equations 3-1-25 and 3-1-26 can be solved in terms of dand d, thus leading
to the relationships



Numerical Analysis and Algorithm Development   81

d = - ydx/J + xdy/J                                                               (3-1-27)

d = + ydx/J - xdy/J                                                                (3-1-28)

where the “big jay” Jacobian is given by Equation 3-1-6.  Now, we can similarly
consider the inverse transformation.  If we write

=(x,y)                                                                              (3-1-29)

 = (x,y)                                                                               (3-1-30)

it follows that

d = 
x
dx + 

y
dy                                                                    (3-1-31)

d = 
x

dx + 
y
dy                                                                     (3-1-32)

Comparison of Equation 3-1-27 with Equation 3-1-31, and Equation 3-1-28 with
Equation 3-1-32, leads to


x

= - y / J                                                                              (3-1-33)


y

=   x / J                                                                              (3-1-34)


x

=   y / J                                                                              (3-1-35)


y

= - x / J                                                                              (3-1-36)

On the other hand, we might have proceeded from the definitions for the total
differentials dand d, and reconsidered Equations 3-1-31 and 3-1-32 as


x
dx+ 

y
dy = d                                                                    (3-1-37)


x

dx + 
y
dy = d                                                                     (3-1-38)

Equations 3-1-37 and 3-1-38 can be solved algebraically for dx and dy to give

dx = - 
y
d / j + 

y
d / j                                               (3-1-39)

dy = +
x
d / j - 

x
d / j                                               (3-1-40)

where the “little jay” Jacobian satisfies

j(x,y) = 
x


y
 - 

y


x
                                                                (3-1-41)

Comparison of Equation 3-1-25 with Equation 3-1-39, and Equation 3-1-26 with
Equation 3-1-40, leads to

x = - 
y
/ j                                                                              (3-1-42)

x =   
y
/ j                                                                              (3-1-43)

y =   
x

/ j                                                                              (3-1-44)

y = - 
x

/j                                                                              (3-1-45)
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Finally, comparison of Equation 3-1-33 and Equation 3-1-45, Equation 3-1-34
and Equation 3-1-43, Equation 3-1-35 and Equation 3-1-44, and lastly, Equation
3-1-36 and Equation 3-1-42, leads to

J(,) j(x,y) = 1                                                                       (3-1-46)
or

(xy - xy) (x


y
 - 

y


x
) = 1                                                 (3-1-47)

It is important to understand that the equations obtained in this section are
generally valid, regardless of Thompson’s or any other transformations.  They
allow us to move conveniently between quantities expressed in the physical
(x,y) and computational (,) planes.

Conformal mapping limits.  Conformal mapping is a powerful technique
used to transform simple harmonic solutions into those applicable to more
complicated shapes.  Here, we explore its general properties, and attempt to
understand conformal mapping from a mathematical viewpoint.  Usually,
methods from complex variables analysis are used to introduce the concepts
below, but as in our above treatment for coordinate transformations, the basic
results can be developed using only elementary calculus.  We now formally
reintroduce the Cauchy-Riemann conditions, that is,


x

=   
y
                                                                                (3-1-48)


x

= - 
y
                                                                                (3-1-49)

Let us differentiate Equation 3-1-48 with respect to x and Equation 3-1-49 with
respect to y; elimination of the cross-derivative term between the two results
leads to Equation 3-1-50.  A similar procedure yields Equation 3-1-51.

 x x +   yy = 0                                                                         (3-1-50)

 x x +  yy = 0                                                                        (3-1-51)

Equations 3-1-50 and 3-1-51 are both elliptic; they are, in fact, exactly
Thompson’s Equations 3-1-17 and 3-1-18, however, with P* = Q* = 0.  Since
(x,y) and (x,y) satisfy Laplace’s equation, they are said to be harmonic.  And
because harmonic functions are generally obtained as real and imaginary parts
of complex analytical functions, Equations 3-1-50 and 3-1-51 are usually
derived more elegantly using complex variables methods.  The latter are also
used to derive “free” solutions to equations like “( ) x x + ( ) yy = 0.”  That is, if
solutions for xx + yy = 0 are known, solutions to a related xx + yy = 0 can be
deduced.  In reservoir engineering,  might represent Darcy pressure, in which
case  would describe streamlines.  Of course, in real-world problems that
satisfy more complicated partial differential equations, conformal mapping
methods cannot be used – in fact, none of the flow models used in annular flow
modeling satisfy Laplace’s equation.
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We therefore address the use of curvilinear coordinate transformations for
general boundary value problems.  To understand the implications of Equations
3-1-48 and 3-1-49 in transformed coordinates, we turn to our reciprocity
relations.  If the  x and  y in Equation 3-1-48 are replaced by their equivalents
using our Equations 3-1-43 and 3-1-44, and if  x and  y in Equation 3-1-49 are
replaced by their equivalents using Equations 3-1-42 and 3-1-45, we obtain

y =  x                                                                                 (3-1-52)

y = -x                                                                                 (3-1-53)

which imply, using the same procedure we have described, that

x+ x = 0                                                                       (3-1-54)

y+ y = 0                                                                       (3-1-55)

Thus, x(,) and y(,) are likewise harmonic, but in the variables  and .
Equations 3-1-54 and 3-1-55 are simpler than Equations 3-1-21 and 3-1-22, with
P* = Q* = 0.  Reciprocity shows that there exists a duality between physical and
mapped planes, and vice versa, for conformal transformations; that is, Equations
3-1-50 and 3-1-51 are mirror images of Equations 3-1-54 and 3-1-55.  One
might have anticipated this type of reversibility, but it is not directly evident
from Equations 3-1-21 and 3-1-22.  Equations 3-1-54 and 3-1-55 are consistent
with Thompson’s original Equations 3-1-21 and 3-1-22.  Use of the Cauchy-
Riemann conditions in the transformed plane, i.e., Equations 3-1-52 and 3-1-53,
in Equations 3-1-14 to 3-1-16, leads to =  and  = 0.  In this presentation, our
grid generation discussions include derivations for results of broad theoretical
interest.  However, due to resource limitations in ongoing research work, our
applications will be restricted to P* = Q* = 0.  We stress that Equations 3-1-54
and 3-1-55 are linear, unlike Equations 3-1-21 and 3-1-22.  However, they do
not generally uncouple for true conformal mappings, as they might superficially
suggest, since x and y cannot be arbitrarily specified along boundaries: to be
conformal, x and y must satisfy Equations 3-1-52 and 3-1-53 everywhere.

Solutions to mesh generation equations.  We show how our geometrical
transforms are useful in solving boundary value problems. To explain the issues
clearly, we consider an elementary reservoir flow application.  Commercial
simulators calculate pressures, velocities, and other properties on rectangular
grids.  Again, their x-y coordinate lines do not conform to the irregular curves
defining actual boundaries; also, high grid densities imposed near wells imply
similarly high densities far away, where such resolution is unnecessary.  This
results in large, inefficient computing domains containing dead flow and large
matrices.  Sometimes, coarse meshes are used everywhere, together with high-
density “corner point” modeling to provide grid refinement close to wells.
However, many refrain from their usage because cross-derivative terms in the
transformed flow equations, which increase computing time, are incorrectly
ignored in the matrix inversion for numerical expediency.
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Figure 3-1-1.  Irregular domain with inefficient rectangular meshes
(application for reservoir flow into a fractured well from Chin (2002)).
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Figure 3-1-2.  Irregular domain mapped to rectangular -computational space.
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Figure 3-1-3.  Physical domain in boundary-conforming coordinates.
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Boundary conditions.  Although the industry focuses on Cartesian
meshes, more effective boundary-conforming, curvilinear grids can be
generated, adapting to both far-field and near-field boundaries. We now reiterate
the basic ideas because they are essential to understanding the method, but here
focus on the boundary conditions needed to supplement Thompson’s equations.
Suppose that a transform = (x,y), = (x,y) exists which maps the irregular,
doubly-connected domain defined by the general well and farfield reservoir
boundaries of Figure 3-1-1 into the singly-connected rectangle of Figure 3-1-2.

Physically insignificant branch cuts B 1 and B 2 have been introduced, which
will be discussed.  Such a mapping effectively allows calculations to be
performed on more desirable high-resolution grids like the one in Figure 3-1-3.
It is clear that more meaningful flow models can be formulated using “, ”
coordinates; improved flow description is possible, with fewer grids and less
matrix inversion.  Now, it is known from complex variables that conformal
transformations satisfy linear Laplace equations in x and y, but classical
methods unfortunately do not explain how the mappings are obtained.

Thompson, again,  developed a novel approach.  Rather than dealing with
= (x,y) and = (x,y) directly, the method equivalently considers inverse
functions x = x(,) and y = y(,) satisfying two nonlinearly coupled
equations, namely, Equations 3-1-21 and 3-1-22,

(x2 + y2) x -2 (xx + yy) x  + (x2 + y2) x  = 0 (3-1-56)

(x2 + y2) y -2 (xx + yy) y  + (x2 + y2) y  = 0 (3-1-57)

where  and  are independent variables.  How are these used to create
mappings?  Suppose that contour CW in Figure 3-1-1 is to map into = 0 of
Figure 3-1-2.  The user first discretizes CW in Figure 3-1-1 by penciling along it
a sequence of dots chosen to represent the curve.  If these are selected in an
orderly, say, clockwise fashion, they define the direction in which  increases.
Along = 0, values of x and y are known (e.g., from measurement on graph
paper) as functions of .  Similarly, x and y values along Cr are known as
functions of  on = 1 of Figure 3-1-2.  These provide the boundary conditions
for Equations 3-1-56 and 3-1-57, which are augmented by single-valuedness
constraints at arbitrarily chosen branch cuts B1 and B2.

In Thompson’s and similar approaches, Equations 3-1-56 and 3-1-57 are
discretized by finite differences and solved by point or line relaxation, starting
with guesses for the dependent variables x and y.  The problem is linearized by
approximating all nonlinear coefficients using values from earlier iterations.
Typically, several updates to Equation 3-1-56 are taken, followed by updates to
Equation 3-1-57, with this cycling process, often unstable, repeated until
convergence.  Variations of the approach are known, with 100 100 mesh
systems in the - plane requiring minutes of computing time on typical
personal computers.  Once x = x(,) and y = y(,) are solved and tabulated as
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functions of  and , physical coordinates are generated.  First,  is fixed; for
each node  along this , computed values of (x,y) pairs are successively plotted
in the x-y plane to produce the required closed contour.  This procedure is
repeated for all values of  until the entire family of closed curves is obtained,
with limit values  = 0 and = 1 again describing Cw and Cr.  Orthogonals are
constructed by repeating the procedure, with and  roles reversed.

This process provides the mapping only.  The partial differential equation
governing the physical problem must be transformed into (,) coordinates and
solved.  For instance, in reservoir simulation, Darcy’s pressure equation must be
expressed in terms of , and solved; in aerodynamics, the Navier-Stokes
equations are solved.  Thompson’s simplification lies not in the transformed host
equation, which may contain mixed derivatives and variable coefficients, but in
the computational domain itself, because it takes on a rectangular form
amenable to simple numerical solution.  While the transformed equation is more
complicated, fewer equations are actually needed to represent the complete flow,
thus leading to rapid convergence and much faster solutions.

Fast iterative solutions.  This section describes the solution of the
mapping equations – solutions to the transformed momentum equations,
discussed elsewhere in this book, depend on the engineering model under
consideration.  Existing solution methods solving x(,) and y(,) stagger the
solutions for Equations 3-1-56 and 3-1-57.  For example, crude solutions are
used to initialize the coefficients of Equation 3-1-56, and improvements to
x(,) are obtained.  These are used to evaluate the coefficients of Equation 3-1-
57, in order to obtain an improved y(,); then, attention turns to Equation 3-1-
56 again, and so on, until convergence is achieved.  Various means are used to
implement these iterations, e.g., point SOR, line SLOR, line SOR with explicit
damping, alternating-direction-implicit and multigrid, with varying degrees of
success.  Often these schemes diverge computationally.  In any event, this
staggering introduces different artificial time levels while iterating.  However,
classic numerical analysis suggests that faster convergence and improved
stability are possible by reducing their number.

A new approach to rapidly solve the mesh equations was developed by this
author using a simple idea.  This has since been validated and extended.
Consider z + z = 0, for which zi,j  (zi-1,j + zi+1,j + zi,j-1 + zi,j+1)/4 holds

on constant grid systems.  This well-known averaging law motivates the

recursion formula zi,j
n = (zi-1,j

n-1 + zi+1,j
n-1 + zi,j-1

n-1 + zi,j+1
n-1)/4 often

used to illustrate and develop multilevel iterative solutions; an approximate, and
even trivial solution, can be used to initialize the calculations, and correct
nonzero solutions are always produced from nonzero boundary conditions.

But the well-known Gauss-Seidel method is fastest: as soon as a new value
of zi,j is calculated, its previous value is discarded and overwritten by the new

value.  This speed is accompanied by low memory requirements, since there is



Numerical Analysis and Algorithm Development   87

no need to store both n and n-1 level solutions: only a single array, zi,j itself, is

required in programming.  Our approach to Equations 3-1-56 and 3-1-57 was
motivated by the following idea.  Rather than solving for x(,) and y(,) in a
staggered, leap-frog manner, is it possible to simultaneously update x and y in a
similar “once only” manner?  Are convergence rates significantly increased?
What formalism permits us to solve in Gauss-Seidel fashion?  What are the
programming implications?

Complex variables are used in harmonic analysis problems; for example,
the real and imaginary parts of an analytical function f(z), where z = x + i y,
provide solutions satisfying Laplace’s equation.  Here we use complex analysis
differently.  We define a dependent variable z by z(,) = x(,) + i y(,), and
then add Equation 3-1-56 plus i times Equation 3-1-57, in order to obtain the
result (x

2 + y
2) z - 2 (xx + yy) z + (x

2 + y
2) z = 0.  Now, the

complex conjugate of z is z*(,) = x(,) - i y(,), from which we find that x

= (z + z*)/2 and y = - i (z - z*)/2.  Substitution produces the simple and
equivalent one equation result

(z z*) z - (zz* + z*z ) z + (z z*) z  = 0 (3-1-58)

This form yields significant advantages.  First, when z is declared as a complex
variable in a Fortran program, Equation 3-1-58 represents, for all practical
purposes, a single equation in z(,).  There is no need to leap-frog between x
and y solutions now, since a single formula analogous to the classical model zi,j
= (zi-1,j + zi+1,j + zi,j-1 + zi,j+1)/4 is easily written for the zi,j related to

Equation 3-1-58 using second-order central differences.  Because both x and y
are simultaneously resident in computer memory, the extra time level present in
staggered schemes is eliminated, as in the Gauss-Seidel method.  In thousands of
test simulations conducted using point and line relaxation, convergence times
are shorter by factors of two to three, with convergence rates far exceeding those
obtained for cyclic solutions between x(,) and y(,).  Convergence appears
to be unconditional, monotonic and stable.  Because Equation 3-1-58 is
nonlinear, von Neumann tests for exponential stability and traditional estimates
for convergence rate do not apply, but the evidence for stability and
convergence, while empirical, remains very strong and convincing.

On Laplacian transformations.  We have introduced expedient ways to
solve Equations 3-1-56 and 3-1-57 computationally for x(,) and y(,).
These mappings are not generally conformal.  The fast solution method for
Equation 3-1-58 is important because the properties afforded by conformal
transformations are not useful for physical problems governed by models other
than Laplace’s equation.  As noted earlier, even the simplest engineering
rheology problems satisfy (usually nonlinear) inhomogeneous equations that are
far more complicated in structure.
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For example, under conformal transformation, it is possible to show that
the x-y Laplacian satisfies fxx + fyy = (F + F ) / J(,).   In physical problems
where “fxx + fyy  = 0,” it follows similarly that “F + F = 0” since J is never
zero – this invariance maps simple solutions into more difficult ones for
complicated shapes, providing, in effect, “free” mathematical solutions.  In the
problems addressed in this book, the governing partial differential equations are
not as elementary; for instance, the equation “ u/t = - p/z +  (2u/x2 +
2u/y2 )” is needed to describe the simplest transient Newtonian flows, with
non-Newtonian motions satisfying even more complicated models.  This means
that any advantages inherent in conformal mapping are lost by virtue of the
more involved physics.  Thus, Equations 3-1-56 and 3-1-57 are entirely
adequate for solving such problems provided the Laplacian fxx + fyy is replaced
by its appropriately transformed value.  In fact, if Equations 3-1-56 and 3-1-57
are used to simplify Equation 3-1-13, we obtain the remarkable result that

fxx + fyy = (F - 2F + F) /J
2                                  (3-1-59)

As an example, the steady, isotropic reservoir flow problem for liquids
solving pxx + pyy = 0 for the Darcy pressure amounts to P - 2P + P = 0
in transformed coordinates.  But since p = pwell at the inner borehole contour and
p = p at the farfield boundary are constants, noting that the well may contain
fractures and other geometric anomalies and that the farfield may be highly
irregular, derivatives with respect to   must vanish, leaving as the governing
equation a simplified P = 0 whose general analytical solution takes the form
P() = (p – pwell )  + pwell.  This means that the solution to a superset of
pressure problems can be expressed in terms of a single geometric mapping!
The solution of the grid generation problem thus provides the general solution to
the steady reservoir flow problem a very elegant manner.  This fact is used in the
reservoir engineering book of Chin (2002) to develop numerical solutions for
flows in reservoirs with very complicated geometries, e.g., say a reservoir
having the shape of Texas, e.g., see Figure 1-1b.

When the governing partial differential equation is more complicated than
pxx + pyy = 0, then, of course, more specialized techniques are required.  This
book develops the required methods for non-Newtonian eccentric annular flows
with general fluid properties under steady and transient conditions.  In three-
dimensional problems with constant cross-sections, the same geometric mapping
applies in all cross-sections and J is independent of z.  Then, the general
Laplacian transforms according to

fxx + fyy + fzz = (F - 2F + F) /J
2 + Fzz           (3-1-60)

This result will prove extremely useful later in this book when we address
transient multiphase flow in three-dimensions.  But mappings can be developed
that are much more general.  For instance, a very long borehole with geometric
anomalies and variations in the axial direction (that are measurable by caliper
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logs) can be modeled by creating mappings at periodic axial distances resulting
in a Jacobian with z dependence.  The corresponding flow equations likewise
contain the modified J, and needless to say, the numerical solution was far more
complicated.

The more general models developed for the applications treated in this
book will be shown to reduce to simpler ones for steady and transient, two-
dimensional, single phase flows, and will also be shown to be numerically
consistent, as computed asymptotic results taken for large times and axial
distances reduce to known results obtained in earlier chapters.  The
extraordinary degree of cross-checking undertaken for the model development
reported in this book ensures that our formulations are consistent and correct in
areas where assumptions overlap.  This provides a degree of user confidence
needed for job planning in real-world field applications.

Example 3-2.    Mappings for flows in singly-connected ducts.

In our annular flow discussions, where the domain of interest lies between
the pipe and the borehole wall, we deal with, in a mathematical sense, “donuts”
as further suggested in Figure 3-1-3, which shows a fractured well in a
petroleum reservoir (that’s “donuts,” as in “coffee and donuts” ).  Domains with
“holes” such as these are known as “doubly-connected” regions; two holes, for
example, leads to those which are “triply-connected.” A wealth of material on
connectivity is available in mathematical topology.  In our more mundane work,
we also deal with “singly-connect” domains such as those in Figure 3-2-1.
These are important to modeling flows in complicated ducts, which, in
petroleum engineering, include pipeline cross-sections with clogging debris,
boreholes with substantial clogging where the bottom completely fills with
cuttings and the hole is no longer annular, and so on.  To generalize the idea of
single-connectivity, the possibilities in Figure 3-2-1 are available for thought.

In Figure 3-1-1, we introduced “branch cuts” (across which special
conditions were invoked for single-valuedness) to transform a doubly-connected
region into one that is singly-connected.  The transforms for problems such as
those in Figure 3-2-1 are more easily obtained because branch cuts are
unnecessary.  Once x-y point values at A, B, C, D and all intermediate points are
assigned, e.g., by interpolating from graph paper sketches, they can be directly
imposed as boundary conditions at the edges of the rectangle in Figure 3-2-2.
Then, the previous solution process for “z” applies.  The resulting generalized
duct flow computer model was easily developed from the annular flow work for
a pipeline application.  In this case, we wished to dynamically couple a debris
growth model that ultimately clogs the flow cross-section, in order to study wax
and hydrate buildup in cold subsea environments.  We discuss the solids
deposition modeling strategy before providing example computed results.
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Figure 3-2-1.  Singly-connected “pipe flow” domains.

Figure 3-2-2.  Mapped computational domain.

Example 3-3.    Solids deposition modeling and applications.

What is “solids deposition modeling” and what is its role in pipe or annular
flow dynamics?  Although numerous studies have been directed, for instance, at
wax deposition and hydrate formation, none have addressed the dynamic
interaction between the solids deposition process and the velocity field imparted
by the flowing non-Newtonian fluid.  The latter serves dual functions: it assists
with solid particle placement, but at the same time, the viscous stress field
associated with it tends to remove particles that have adhered to solid surfaces.

Until now, determining the velocity field alone has proven difficult, if not
impossible: nonlinear flow equations must be solved for geometric domains that
are far from ideal in shape.  However, the methods developed in this book for
annular and general duct flow permit fast and robust solutions, and also,
efficient post-processing and visual display for quantities like apparent viscosity,
shear rate, and viscous stress.  In this sense, “half” of the problem has been
resolved, and in this chapter, we address the remaining half.
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In order to understand the overall philosophy, it is useful to return to the
problem of mudcake formation and erosion, and of cuttings transport,
considered in detail in Chapter 5.  As we will find, the plugging or cleaning of a
borehole annulus can be a dynamic, time-dependent process.  For example, the
inability of the low side flow to remove cuttings results in debris bed formation,
when cuttings combine with mudcake to form mechanical structures.  Forced
filtration of drilling mud into the formation compacts these beds, and individual
particle identities are lost: the resulting beds, characterized by well-defined yield
stresses, alter the shape of the borehole annulus and the properties of the flow.

But the bed can be eroded or removed, provided the viscous stress
imparted by the flowing mud in the modified annulus exceeds the yield value.  If
this is not possible, plugging will result and stuck pipe is possible.  On the other
hand, alternative remedial actions are possible.  The driller can change the
composition of the mud to promote more effective cleaning, increase the
volumetric flow rate, or both.  Successfully doing so erodes cuttings
accumulations, and ideally, promotes dynamic “self-cleaning” of the hole.

In a sense, developing a new “constitutive relation,” e.g., postulating
Newtonian or Power law properties and deriving complementary flow equations
is simpler than designing solids deposition models.  The mathematical process
needed to “place” stress-strain relations in momentum differential equation form
is more straightforward than the cognitive process required to understand every
step of a new physical phenomenon, e.g., wax deposition or hydrate formation.
In this section, we introduce a philosophy behind modeling solids deposition,
and as a first step, develop a simple model for mudcake and cuttings bed buildup
over porous rock.  We emphasize that there are no simple answers: each
problem is unique, and the developmental process is very iterative.

Mudcake buildup on porous rock.  Borehole annuli are lined with slowly
thickening mudcake that, over large time scales, will reduce cross-sectional size.
However, dynamic equilibrium is usually achieved because erosive forces in the
flow stream limit such thickening.  As a first step in understanding this process,
growth in the absence of erosion must be characterized, but even this requires a
detailed picture of the physics.  The reader should carefully consider the steps
needed in designing deposition models, taking this example as a model.

Since the permeability of the formation greatly exceeds that of mudcake,
and the thickness of mudcake is small compared with the borehole radius, we
can model cake growth in the idealized lineal flow test setup in Figure 3-3-1.
We consider a one-dimensional experiment where mud, in essence a suspension
of clay particles in water, is allowed to flow through filter paper.  Initially, the
flow rate is rapid.  But as time progresses, solid particles (typically 6-40 percent
by volume for light to heavy muds) such as barite are deposited onto the surface
of the paper, forming a mudcake that, in turn, retards the passage of mud filtrate
by virtue of the resistance to flow that the cake provides.



92   Managed Pressure Drilling: Modeling, Strategy and Planning

Mud

Mudcake
Filter paper

Filtrate

Flow direction

Figure 3-3-1.  Simple laboratory mudcake buildup experiment.

We therefore expect filtrate volumetric flow rate and cake growth rate to
decrease with time, while filtrate volume and cake thickness continue to
increase, but ever more slowly.  These qualitative ideas can be formulated
precisely because the problem is based on well-defined physical processes.  For
one, the composition of the homogeneous mud during this filtration does not
change: its solid fraction is always constant.  Secondly, the flow within the
mudcake is a Darcy flow, and is therefore governed by the equations used by
reservoir engineers.  The only problem, though, is the presence of a moving
boundary, namely, the position interface separating the mudcake from the mud
that ultimately passes through it, and which continually adds to its thickness.
The physical problem, therefore, is a transient process that requires somewhat
different mathematics than that taught in fundamental partial differential
equations courses.

Mudcakes in reality may be compressible, that is, their mechanical
properties may vary with applied pressure differential.  We will be able to draw
upon reservoir engineering methods developed for subsidence and formation
compaction later.  For now, a simple constitutive model for incompressible
mudcake buildup, that is, the filtration of a fluid suspension of solid particles by
a porous but rigid mudcake, can be constructed from first principles.  First, let
xc(t) > 0 represent cake thickness as a function of the time, where xc = 0

indicates zero initial thickness.  Also, let Vs and Vl denote the volumes of solids

and liquids in the mud suspension, and let fs denote the solid fraction defined by

fs = Vs/(Vs + Vl).  Since this does not change throughout the filtration, its time

derivative must vanish.  If we set dfs/dt = (Vs + Vl)
-1 dVs/dt - Vs (Vs + Vl)

-2
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(dVs/dt + dVl/dt) = 0, we can show that dVs = (Vs/Vl) dVl.  But since,

separately, Vs/Vl = fs/(1- fs), it follows that dVs = {fs/(1- fs)} dVl.  This is,

essentially, a conservation of species law for the solid particles making up the
mud suspension, and does not as yet embody any assumptions related to
mudcake buildup.  Frequently, we might note, the drilling fluid is thickened or
thinned in the process of making hole; if so, the equations derived here should
be reworked with fs = fs(t) and its corresponding time-dependent pressure drop.

In order to introduce the mudcake dynamics, we observe that the total
volume of solids dVs deposited on an elemental area dA of filter paper during an

infinitesimal time dt is dVs = (1 - c) dA dxc where c is the mudcake porosity.

During this time, the volume of filtrate flowing through our filter paper screen is
dVl = |vn| dA dt where |vn| is the Darcy velocity of the filtrate through the cake

and past the paper.  We now set our two expressions for dVs equal, in order to

form {fs/(1- fs)} dVl = (1 - c) dA dxc, and replace dVl with |vn| dA dt, so that

we obtain {fs/(1- fs)} |vn| dA dt = (1 -c) dA dxc.

Now, it is seen that the dA’s cancel, and we are led to a generic equation
governing mudcake growth.  In particular, the cake thickness xc(t) satisfies the

ordinary differential equation

dxc(t)/dt = {fs/{(1- fs)(1 -c)}} |vn| (3-3-1a)

At this point, we assume a one-dimensional, constant density, single liquid
flow.  For such flows, the constant Darcy velocity is (k/)(p/L), where p > 0
is the usual “delta p” pressure drop through the core of length L, assuming that a
Newtonian approximation applies.  The corresponding velocity for the present
problem is |vn|  = (k/)(p/xc) where k is the mudcake permeability, and is a

mean filtrate viscosity.  Substitution in Equation 3-3-1a leads to

dxc(t)/dt = {kfsp/{(1- fs)(1 -c)}}/xc    (3-3-1b)

If the mudcake thickness is infinitesimally thin at t = 0, with xc(0) = 0, Equation

3-3-1b can be integrated, with the result that

xc(t) = [{2kfsp/{(1- fs)(1 -c)}} t] > 0     (3-3-1c)

This demonstrates that cake thickness in a lineal flow grows with time like t.
However, it grows ever more slowly, because increasing thickness means
increasing resistance to filtrate through-flow, the source of the solid particulates
required for mudcake buildup; consequently, filtrate buildup also slows.
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To obtain the filtrate production volume, we combine dVl = |vn|  dA dt and

|vn|  = (k/)(p/xc) to form dVl = (kpdA/) xc
-1dt.  Using Equation 3-3-1c,

we find dVl = (kpdA/)[{2kfsp/{(1-fs)(1-c)}}]-1/2(t)-1/2 dt.  Direct

integration, assuming zero filtrate initially, yields

Vl(t) = 2(kpdA/) [{2kfsp/{(1- fs)(1 -c)}}]-1/2( t)1/2 (3-3-1d)

= {2kp(1- fs)(1 - c)/(fs)} t  dA

This correctly reproduces the common observation that filtrate volume increases
in time like “t.”  The mudcake deposition model in Equation 3-3-1c, at this
point, is credible, and is significant in that it explicitly highlights the roles of the
individual parameters k, fs, p, , and c.

Now, along the walls of general boreholes that are not necessarily circular,
containing drillpipes that need not be concentric, the “xc(t)” in Equation 3-3-1c

would apply at each location; of course, “xc(t)” must be measured in a direction

perpendicular to the local surface area.  This thickness increases with time by
the same amount everywhere; consequently, the hole area decreases and the
annular geometry changes, with more pronounced curvature.  At the same time,
drilling fluid is flowing parallel to the borehole axis.  This flow, generally non-
Newtonian, must be calculated using the methods developed in this book.  The
mechanical yield stress  y of the formed cake, which must be separately
determined in the laboratory, is an important physical constant of the system.  If
the stress  imparted by the fluid is less than  y, a very simple deposition model
might allow Equation 3-3-1c to proceed “as is.”  However, if  >  y applies
locally, one might postulate that, instead of Equation 3-3-1c, an “erosion model”

dxc(t)/dt = f( …) (3-3-2)

where the function “f < 0” might depend on net flow rate, gel level, weighting
material characteristics, and the magnitude of the difference “ -  y.”  In
unconsolidated sands penetrated by deviated wells, “f” may vary azimuthally,
since gravity effects at the top of the hole differ from those at the bottom.  And
in highly eccentric annuli, mudcake at the low side may be thicker than high
side cake, because lower viscous stress levels are less effective in cake removal.

Again, the mudcake buildup and removal process is time-dependent, and
very dynamic, at least computationally.  In the present example, we conceptually
initialize calculations with a given eccentric annulus, possibly contaminated by
cake, and calculate the non-Newtonian flow characteristics associated with this
initial state.  Equations 3-3-1c and 3-3-2 are applied at the next time step, to
determine modifications to the initial shape.  Then, flow calculations are
repeated, with the entire process continuing until some clear indicator of hole
equilibrium is achieved.  The hole may tend to plug, in which case remedial
planning is suggested, or it may tend to remain open.
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In any event, the development of deposition and erosion models such as
those in Equations 3-3-1c and 3-3-2 requires a detailed understanding of the
physics, and consequently, calls for supporting laboratory experiments.  As this
example for mudcake deposition shows, it is possible to formulate
phenomenological models analytically when the “pieces of the puzzle” are well
understood, as we have for the “t ” model governing mudcake growth.

By the same token, it should be clear that in other areas of solids
deposition modeling, for example, accumulation of produced fines, wax buildup,
and hydrate plug formation in pipelines, “simple answers” are not yet available.
More than likely, the particular models used will depend on the reservoir in
question, and will probably change throughout the life of the reservoir.  For this
reason, the present chapter focuses on generic questions, and attempts to build a
sound research approach and modeling philosophy for workers entering the
field.  At the present time, much of the published research on wax deposition
and hydrate formation focuses on fundamental processes like crystal growth and
thermodynamics. An experimental database providing even qualitative
information is not yet available for detailed model development.  Nonetheless,
we can speculate on how typical models may appear, and comment on the
mathematical forms in which they can be expressed.

Depositional mechanics.  In this section, we introduce the reader to basic
ideas in different areas of solids deposition and transport by fluid flow, if only to
highlight common physical processes and mathematical methods.  By far, the
most comprehensive literature is found in sedimentary transport and slurry
movement, specialties that are well developed in civil engineering over decades
of research.  The following survey articles provide an excellent introduction to
established techniques:

 Anderson, A.G., “Sedimentation,” Handbook of Fluid Mechanics, V.L.
Streeter, Editor, McGraw-Hill, New York, 1961.

 Kapfer, W.H., “Flow of Sludges and Slurries,” Piping Handbook, R. King,
Editor, McGraw-Hill, New York, 1973.

These references, in fact, motivated the cuttings transport research in Chapter 5.
Concepts and results from these and related works are covered next.

Sedimentary transport.  Sediment transport is important to river,
shoreline, and harbor projects.  The distinction between “cohesive” and
“noncohesive” sediments is usually made.  For example, clays are cohesive,
while sand and gravel in stream beds consist of discrete particles.  In cohesive
sediments, the resistance to erosion depends primarily on the strength of the
cohesive bond between the particles.  Variables affecting particle lift-off include
parameters like bed shear stress, fluid viscosity, and particle size, shape, and
mass density, and number density distribution.  Different forces are involved in
holding grains down and entraining them into the flow.  These include gravity,
frictional resistance along grain contacts, “cohesiveness” or “stickiness” of clays
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due to electrochemical attraction, and forces parallel to the bed such as shear
stress.  The “sediment transporting capacity” of a moving fluid is the maximum
rate at which moving fluid can transport a particular sediment aggregation.

Lift forces are perpendicular to the flow direction, and depend on the
shapes of individual particles.  For example, a stationary spherical grain in a
uniform stream experiences no lift, since upper and lower flow fields are
symmetric; however, a spinning or “tumbling” spherical grain will do so.  On
the other hand, flat grains oriented at nonzero angles with respect to the uniform
flow do experience lift, whose existence is apparent from asymmetry.  Of
course, oncoming flows need not be uniform.  It turns out that small heavy
particles that have settled in a lighter viscous fluid can re-suspend if the mixture
is exposed to a shear field. This interaction between gravity and shear-induced
fluxes strongly depends on particle size and shape.  Note that the above force
differs from the lift for airplane wings: small grains “see” low Reynolds number
flows, while much larger bodies operate at high Reynolds numbers.  Thus,
formulas obtained in different fluid specialties must be carefully evaluated
before they are used in deposition modeling.  In either case, mathematical
analysis is very difficult.

Once lifted into the flow stream, overall movement is dictated by the
vertical “settling velocity” of the particle, and the velocity in the main flow.
Settling velocity is determined by balancing buoyancy and laminar drag forces,
with the latter strongly dependent on fluid rheology.  For Newtonian flows, the
classic Stokes solution applies; for non-Newtonian flows, analytical solutions
are not available.  Different motions are possible.  Finer silts and clays will more
or less float within a moving fluid.  On the other hand, sand and gravel are likely
to travel close to bed; those that “roll and drag” along the bottom move by
traction, while those that “hop, skip, and jump” move by the process of saltation.

In general, modeling non-Newtonian flow past single stationary particles
represents a difficult endeavor, even for the most accomplished mathematicians.
Flows past unconstrained bodies are even more challenging.  Finally, modeling
flows past aggregates of particles is likely to be impossible, without additional
simplifying statistical assumptions.  For these reasons, useful and practical
deposition and transport models are likely to be empirical, so that scalable
laboratory experiments are highly encouraged.  Simpler “ideal” flow setups that
shed physical insight on key parameters are likely to be more useful than
“practical, engineering” examples that include too many interacting variables.

Slurry transport.   A large body of literature exists for slurry transport,
e.g., coal slurries, slurries in mining applications, slurries in process plants, and
so on.  A comprehensive review is neither possible nor necessary, since water is
the carrier fluid in the majority of references.  But many fundamental ideas and
approaches apply.  Early references provide discussions on sewage sludge
removal, emphasizing prevalent non-Newtonian behavior, while acknowledging
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that computations are not practical.  They also discuss settling phenomena in
slurries, e.g., the influence of particle size, particle density, and fluid viscosity.

“Minimum velocity” formulas are available that, under the assumptions
cited, are useful in ensuring clean ducts when the carrier fluid is water.  The
notion of “critical tractive force,” i.e., the value of shear stress at which bed
movement initiates, is introduced; this concept was important in our discussions
of cutting transport.  Both “velocity” and “stress” criteria are used later in this
chapter to construct illustrative numerical models of eroding flows.  Also, the
distinction between transport in closed conduits and open channels is made.

The literature additionally addresses the effects of channel obstructions and
the formation of sediment waves; again, restrictions to water as the carrier fluid,
are required.  Numerous empirical formulas for volumetric flow rate which
would give clean conduits are available in the literature; however, their
applicability to oilfield debris, waxes, and hydrates is uncertain.  While we
carefully distinguish between velocity and stress as distinctly different erosion
mechanisms, we note that in some flow the distinction is less clear.  At times,
for example, the decrease in bed shear stress is primarily a function of
decreasing flow velocity.

Waxes and paraffins, basic ideas.  As hot crude flows from reservoirs
into cold pipelines, with low temperatures typical under deep subsea conditions,
wax crystals may form along solid surfaces when wall temperatures drop below
the “cloud point” or “wax appearance temperature.”  Crystals may grow in size
until the wall is fully covered, with the possibility of encapsulating oil in the
wax layers.  Wax deposition can grow preferentially on one side of the pipe due
to gravity segregation.  As wax thickness builds, the pressure drop along the
pipe must be increased to maintain constant flow rate, and power requirements
increase.  Constant pressure processes would yield decreasing flow rates.

Paraffin deposition can be controlled through various means.  Insulation
and direct pipe heating will reduce exposure to the cold environment.
Mechanical pigging is possible. Chemical inhibitors can also becused.  For
example, surfactants or dispersants alter the ability of wax particles to adhere to
each other or to pipe wall surfaces; in the language of sedimentary transport,
they become less cohesive, and behave more like discrete entities.  Biochemical
methods, for instance, use of bacteria to control wax growth.

In this book, we will address the effect of nonlinear fluid rheology and
noncircular duct flow in facilitating wax erosion.  The “critical tractive force”
ideas developed in slurry transport, extended in Chapter 5 to cuttings removal,
again apply to bed-like deposits.  Recent authors, for example, introduce
“critical wax tension” analogously, defined as the critical shear force required to
remove a unit thickness of wax deposit; the exact magnitude depends on oil
composition, wax content, temperature, buildup history, and aging.
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More complications.  Paraffin deposition involves thermodynamics, but
other operational consequences arise that draw from all physical disciplines.

 Electro-kinetic effects may be important with heavy organic constituents.
Potential differences along the conduit may develop due to the motion of
charged particles; these induce alterations in colloidal particle charges
downstream which promote deposition.  That is, electrical charges in the
crude may encourage migration of separated waxes to the pipe wall.

 In low flow rate pipelines, certain waxes sink because of gravity, and form
sludge layers at the low side.  Also, density segregation can also lead to
recirculating flows of the type modeled in Chapter 5.

 For lighter waxes, buoyancy can cause precipitated wax to collect at the top
of the pipe (In the simulations performed in this chapter, no distinction is
made between “top” and “bottom,” since our “snapshots” can be turned
“upside-down.”).

 Deposited wax will increase wall roughness and therefore increase friction,
thus reducing pipeline flow capacity.

 Suspended particulates such as asphaltenes, formation fines, corrosion
products, silt, and sand, for instance, may encourage wax precipitation,
acting as nuclei for wax separation and accumulation.  Wax particles so
separated may not necessarily deposit along walls; they may remain in
suspension, altering the rheology of the carrier fluid, affecting its ability to
“throw” particles against pipe walls or to remove wax deposits by erosion.

 Although significant deposition is unlikely under isothermal conditions, that
is, when pipeline crude and ocean temperatures are in equilibrium, wall
deposits may nonetheless form.  Pipe roughness, for instance, can initiate
stacking, leading to local accumulations that may further grow.

Wax precipitation in detail.  Waxy crude may contain a variety of light
and intermediate hydrocarbons, e.g., paraffins, aromatics, naphthenic, wax,
heavy organic compounds, and low amount of resins, asphaltenes, organo-
metallics.  Wax in crudes consists of paraffin (C18-C36) and naphthenic (C30-
C60) hydrocarbons.  These wax components exist in various states, that is, gas,
liquid, or solid, depending on temperature and pressure. When wax freezes,
crystals are formed.  Those formed from paraffin wax are known as
“macrocrystalline wax,” while those originating from naphtenes are
“microcrystalline.”

When the temperature of waxy crude is decreased, the heavier fractions in
wax content appear first.  The “cloud point” or “wax appearance temperature” is
the temperature below which the oil is saturated with wax.  Deposition occurs
when the temperature of the crude falls below cloud point.  Paraffin will
precipitate under slight changes in equilibrium conditions, causing loss of
solubility of the wax in the crude. Wax nucleation and growth may occur along
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the pipe surface and within the bulk fluid. Precipitation within the fluid causes
its viscosity to increase and alters the non-Newtonian characteristics of the
carrier fluid.  Increases in frictional drag may initiate pumping problems and
higher overall pipe pressures.  Note that the carrier fluid is rarely a single-phase
flow.  More often than not, wax deposition occurs in three-phase oil, water, and
gas flow, over a range of gas-oil ratios, water cuts, and flow patterns, which can
vary significantly with pipe inclination angle.

Wax deposition control.  The most direct means of control, though not
necessarily the least inexpensive, target wall temperature by insulation or
heating, possibly through internally heated pipes.  But the environment is far
from certain.  Some deposits do not disappear on heating and are not fully
removed by pigging.  Crudes may contain heavy organics like asphaltenes and
resin, which may not crystallize upon cooling and may not have definite
freezing points; these interact with wax differently, and may prevent wax crystal
formation or enhance it.  Solvents provide a different alternative.  However,
those containing benzene, ethyl benzene, toluene, and so on, are encountering
increased opposition from regulatory and environmental concerns.  The
problems are acute for offshore applications; inexpensive and environmentally
friendly control approaches with minimal operational impact are desired.

Wax growth on solid surfaces, under static conditions, is believed to occur
by molecular diffusion.  Behind most deposition descriptions are liquid phase
models and equations of state, with the exact composition of the wax phase
determined by the model and the physical properties of the petroleum fractions.
We do not attempt to understand the detailed processes behind wax precipitation
and deposition in this section.  Instead, we focus on fluid-dynamical modeling
issues, demonstrating how non-Newtonian flows can be calculated for difficult
“real world” duct geometries that are less than ideal.  The “mere” determination
of the flow field itself is significant, since it provides information to evaluate
different modes of deposition and to address important remediation issues.

For example, in sediment transport, flow nonuniformities play dual roles:
they may “throw” particles onto surfaces, where they adhere, or they can remove
buildups by viscous shear.  Both effects must be studied using experiment
considering the background velocity and stress fields that analysis provides.
Modeling approaches hope to establish the hydrodynamic backbone that makes
accurate modeling of these phenomena possible.  Is it possible to design a fluid
that keeps particles suspended, or perhaps, to understand the conditions under
which the flow self-cleans?  What are rheological effects of chemical solvents?
Wax can cause crude oil to gel and deposit on tubular surfaces.  What shear
stresses are required to remove them?  Waxy crude oil may gel after a period of
shutdown.  What levels of pressure are required to initiate start-up of flow?
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Modeling dynamic wax deposition.  In principle, modeling the dynamic,
time-dependent interaction between waxy deposits attempting to grow, and duct
flows attempting to erode them, is similar to, although slightly more
complicated than, the mudcake model developed earlier.  The deposition, or
growth model, shown conceptually in Figure 3-3-2a, consists of two parts,
namely, a thermal component in which buildup is driven by temperature
gradients, and a mechanical component in which velocity “throws” additional
particles that have precipitated in the bulk fluid into the wax-lined pipe surface.

Deposition Model

Velocity Effects Thermal Gradients

Figure 3-3-2a.  Conceptual deposition model.

At each wall point, compare
fluid stress with yield stress

If no changes,
equilibrium known

If fluid stress > wax yield
stress, d(thickness)/dt = f

If fluid stress < wax yield
stress, d(thickness)/dt = g

If fluid stress = wax yield
stress, d(thickness)/dt = 0

Deposition Model

If changes, recompute
duct flow properties

Define initial duct size and
shape, wax yield stress at walls.

Increment time, T = T + T

Non-Newtonian Solver

Solve for flow, calculate
viscous wall shear stresses

Figure 3-3-2b.  Fluid flow and solids deposition model interaction.
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This velocity may be coupled to the temperature environment.  Various
solids convection models are available in the fluids literature, and, in general,
different deposition models are needed in different production scenarios.  The
competing erosive model is schematically shown in Figure 3-3-2b, in which we
emphasize the role of non-Newtonian fluid stress at the walls; it is similar to our
model for cuttings transport removal from stiff beds.  Wax yield stress may be
determined in the laboratory or inferred from mechanical pigging data, e.g., see
Souza Mendes et al. (1999) or related pipeline literature.

Hydrate control.   Natural gas production from deep waters can be
operationally hampered by pipeline plugging due to gas hydrates. Predicting the
effects of pipe hydraulics on hydrate behavior is necessary to achieve optimal
hydrate control. As exploration moves offshore, the need to minimize
production facility construction and maintenance costs becomes important.
Producers are seeking options that permit the transport of unprocessed fluids
miles from wellheads or subsea production templates to central processing
facilities located in shallower water.  Deep-water, multiphase flow lines can
offer cost saving benefits to operators and, consequently, basic and applied
research related to hydrate control is an active area of interest.

Hydrate crystallization takes place when natural gas and water come into
contact at low temperature and high pressure. Hydrates are “ice-like” solids that
form when sufficient amounts of water are available, a “hydrate former” is
present, and the proper combinations of temperatures and pressures are
conducive.  Gas hydrates are crystalline compounds that form whenever water
contacts the constituents found in natural gas, gas condensates, and oils, at the
hydrate formation equilibrium temperatures and pressures, as Figure 3-3-3
shows.  Hydrate crystals can be thought of as integrated networks of hydrogen-
bonded, “soccer ball”-shaped ice cages with gas constituents trapped within.
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Figure 3-3-3.  Hydrate dependence on “P” and “T.”
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Low seabed temperatures and high pressures can significantly impact the
commercial risk of deepwater projects.  Hydrates can cause plugging, an
unacceptable condition, given the inaccessibility of deep subsea pipelines.
Hydrate plugging is not new, and early on, profoundly affected onshore
production and flow.  But these problems became less severe as hydrate phase
equilibrium data became available; these data provided the basis for modern
engineering and chemical inhibition procedures using methanol and glycol. Such
treatments can be costly in deep water, though, given the quantities of inhibitor
required, not to mention expensive storage facilities; but these approaches
remain attractive, as recent research has led the way to more effective, low
toxicity compounds as useful alternatives to methanol or glycol. Field and
laboratory studies have had some success, but problems remain that must be
solved before the industry gains advantages in utilizing these inhibitors.

Operational considerations are also important to hydrate mitigation.
Proper amounts of chemicals must arrive at target flowline locations at the
required time to control the rate of crystal formation, growth, agglomeration,
and deposition. This combined chemical and hydrodynamic control strategy in
general multiphase pipeline environments must be effective over extended shut-
in periods to accommodate a range of potential offshore operating scenarios.

Understanding the effects of chemicals on rheology and flow represents
one aspect of the mitigation problem.  In pipeline plugging, we are concerned, as
noted above, with the effects of obstructions on pressure drops and flow rates.
On the other hand, natural hydrates represent a potentially important source of
natural gas, although they can potentially clog pipelines.  One possible delivery
solution is to convert associated gases into frozen hydrates, which are then
mixed with refrigerated crude oil, to form slurries, which are in turn pumped
through pipelines and into shuttle tankers for transport to shore.  By blending
ground hydrates with suitable carrier fluids, transportable slurry can be formed
that efficiently delivers “gas” to market.

Several questions are immediately apparent.  How finely should hydrates
be ground?  What is the ideal “solids in fluid” concentration?  Fineness, of
course, influences rheology; the solids that remain affect plugging, and the
combination controls delivery economics.  And what happens as hydrates
convect into higher pressure pipeline regimes?  In any event, we are concerned
with the ability to pump the slurry, and also, the ability of the slurry to erode
hydrate plugs that have formed in the flow path.  These considerations require a
model that is able to simulate flows in duct geometries that are far from circular.
With it, we can simulate worst case conditions and optimize operations.

In this section, we will not focus on the physics and chemistry of hydrate
formation, the kinetics of formation and agglomeration, or the physiochemical
characterization of the solid constituents.  Instead, we will study flows past
“hydrate plugs.”  Wax buildup is “predictable” to the extent that depositions can
be found at top and low sides, and all too often, azimuthally about the entire
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circumference.  Hydrates, in contrast, may appear “randomly.”  For example,
they can form as layers separating gas on the top side and water on the low side.
In terms of size, hydrate particles may vary from finely dispersed solid particles
to big lumps that stick to the walls of pipelines. Hydrate particle size is
nonuniform and follows wide distribution densities.  But, in general, large plugs
can be found almost anywhere, a situation that challenges non-Newtonian flow
modeling in arbitrary ducts.  Simulation is important in defining start-up
procedures, because large plugs are associated with extremely large pressure
drops that may be difficult to achieve in practice.

Pipe inclination may play a significant role for denser fluids.  Ibraheem et
al. (1998) observe that, for their horizontal and 45o positions, predictions may be
optimistic since lift forces, virtual mass effects, and so on, are not incorporated,
and that a two-dimensional model will be necessary.  This caution is well
justified.  In Chapter 5, we show that density stratification can lead to
recirculation vortices that plug the pipeline.

Recapitulation.  Very subtle questions are possible.  Can hydrate pipeline
blockages lead to increased flowline pressures that facilitate additional hydrate
growth?  Can viscous shear stresses developed within a carrier fluid, or perhaps
a hydrate slurry, that support “self-cleaning,” which in turn eliminates isolated
plugs that form?  Again, the formalism developed in Figure 3-3-2b for wax
removal applies, but now with Figure 3-3-2a replaced by one applicable to
hydrate formation.  We will show that numerical simulations can be
conveniently performed for large, asymmetrically shaped plugs, that is, our grid
generation and velocity solvers are truly “robust” in the numerical sense.  Thus,
it is clear that the simulation methodology also applies to other types of
conduits, valves, and fittings that can potentially support hydrate formation.

Modeling concepts and integration.  Our mathematical description of
time-dependent mudcake buildup, without erosive effects, is relevant to wax
buildup under nonisothermal conditions.  Recall that once cake starts building,
incremental growth of cake retards further buildup, since additional resistance
impedes fluid filtration.  Thus, the rate of cake growth should vary inversely
with cake thickness; in fact, we had shown

dxc(t)/dt = {kfsp/{(1- fs)(1 -c)}}/xc    (3-3-1b)

Direct integration of “xc dxc = ..” leads “½ xc
2 = ..t,” that is, the “ t law,”

xc(t) = [{2kfsp/{(1- fs)(1 -c)}} t] > 0     (3-3-1c)

In this section, we introduce some elementary, but preliminary ideas, with the
hope of stimulating further research.  These following illustrative examples were
designed to be simple, to show how mathematics and physics go hand in hand.

Wax buildup due to temperature differences.  Paraphrasing the above,
“once wax starts building, incremental growth of wax retards further buildup,
since additional insulation impedes heat transfer.”  Let Rpipe denote the inner
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radius of the pipe, which is constant, and let R(t) < Rpipe denote the time-varying
radius of the wax-to-fluid interface.  In cake buildup, growth rate is proportional
to the pressure gradient; here, it is proportional to the heat transfer rate, or
temperature gradient (T -Tpipe)/(R – Rpipe) by virtue of Fourier’s law of
conduction, with T being the fluid temperature.  We therefore write, analogously
to Equation 3-3-1b,

dR/dt =  (T -Tpipe)/(R – Rpipe) (3-3-3)
where  > 0 is an empirically determined constant.  Cross-multiplying leads to
(R – Rpipe) dR =  (T -Tpipe) dt where T -Tpipe > 0.  Direct integration yields

½ (R – Rpipe)
2 =  (T -Tpipe) t > 0 (3-3-4)

where we have used the initial condition R(0) = Rpipe when t = 0.
Hence, according to this simple model, the thickness of the wax will vary

as t under static conditions.  Of course, in reality,  may depend weakly on T,
crystalline structure, and other factors, and deviations from “t” behavior are not
unexpected.  Furthermore, it is not completely clear that Equation 3-3-3 in its
present form is correct; for example, dR/dt might be replaced by dRn/dt, but in
any event, guidance from experimental data is necessary.  This buildup model
treats wax deposition due to thermal gradients, but obviously, other modes exist.
For general problems in arbitrarily shaped ducts, wax particles, debris, and fines
convected with the fluid may impinge against pipe walls at rates proportional to
local velocity gradients; or, they may deposit at low or high sides by way of
gravity segregation, either because they are heavy or they are buoyant.

Simulating erosion.  Again, any model is necessarily motivated by
empirical observation, so our arguments are only plausible.  For non-Newtonian
flow in circular pipes, it is generally true that

 (r) = r p/2L > 0 (1-2a)

w = R p/2L > 0 (1-2b)

These equations are interesting because they show how shear stress  must
decrease as R decreases: thus, any wax buildup must be accompanied by lower
levels of stress, and hence, decreases in the ability to self-clean or erode the
wax.  The most simplistic erosion model might take the form

dR/dt =  ( - y) > 0 (3-3-5)

where  > 0 is an empirical constant,  - y > 0, and y is the yield stress of the
wax coating.  Thus, R increases with time, i.e., the cross-section “opens up.”
The uncertainties again remain, e.g., R can be replaced by R2.  Note that
Equations 1-2a and 1-2b do not apply to annular flows.

Deposition and flow field interaction.  Our solution of the nonlinear
rheology equations on curvilinear meshes is “straightforward” because the
problem is at least well defined and tractable numerically.  But the same cannot
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be said for wax or hydrate deposition modeling, since each individual
application must be treated on a customized basis.  As we have suggested in the
above discussions, numerous variables enter, even in the simplest problems.  For
example, these include particle size, shape and distribution, cohesiveness,
buoyancy, heat transfer, multiphase fluid flow, dissolved wax type, debris
content, fluid rheology, pipeline characteristics, surface roughness, insulation,
centrifugal force due to bends, volumetric flow rate, and so on.

Nonetheless, when a particular engineering problem is well understood, the
dominant interactions can be identified, and integrated fluid flow and wax or
hydrate deposition models can be constructed.  The following simulations
demonstrate different types of integrated models that have been designed to
simulate flows in clogging and self-cleaning pipelines.  These examples
illustrate the broad range of applications that are possible, where the
computational “engines” developed for curvilinear grid based methods have
proven invaluable in simulating operational reality.

Detailed calculated examples.  In this section, six simulation examples
are discussed in detail.  These demonstrate how the general duct model can be
used to host different types of solids deposition mechanisms.  However, the
exact “constitutive relations” used are proprietary to the funding companies and
cannot be listed here.

Simulation 1 – Wax deposition with Newtonian flow in circular duct.
In this first simulation set, we consider a unit centipoise Newtonian fluid,
flowing in an initially circular duct; in particular, we assume a 6-inch radius, so
that the cross-sectional area is 113.1 square inches.  A family of “smile-shaped”
surfaces is selected for the solids buildup boundary family of curves, since wax
surfaces are expected to be more curved than flat.  This buildup increases with
time, and for convenience, the final duct cross-section is assumed to be an exact
semi-circle, whose area is 113.1/2 or 56.55 square inches.  A deposition model
is invoked, and intermediate “cross-sectional area versus volumetric flow rate”
results, assuming an axial pressure gradient of 0.001 psi/ft, at selected time
intervals, are given in Figure 3-3-4 below.

Area (in2 )  Rate (gpm )
.1129E+03 .7503E+05 (full circle)
.1082E+03 .6931E+05
.1035E+03 .6266E+05
.9882E+02 .5670E+05
.9411E+02 .5090E+05
.8941E+02 .4531E+05
.8470E+02 .3994E+05
.8000E+02 .3483E+05
.7529E+02 .3000E+05
.7059E+02 .2549E+05
.6588E+02 .2132E+05
.6117E+02 .1752E+05
.5647E+02 .1411E+05 (semi-circle)

Figure 3-3-4.  Flow rate versus duct area, with dp/dz fixed.



106   Managed Pressure Drilling: Modeling, Strategy and Planning

How do we know that computed results are accurate?  We selected
Newtonian flow for this validation because the Hagen-Poiseuille volumetric
flow rate formula (e.g., see Chapter 1) for circular pipes can be used to check
our numbers.  This classic solution, assuming dp/dz = 0.001 psi/ft, R = 6 inches,
and  = 1 cp, shows that the flow rate is exactly 0.755E+05, as  compared to our
0.750E+05 gpm.  The ratio 755/750 is 1.007, thus yielding 0.7 percent accuracy.

Another indicator of accuracy is found in our computation of area.
Obviously, the formula “R2” applies to our starting shape, which again yields
113.1 square inches.  However, we have indicated 112.9 in Figure 3-3-4, for a
0.2 percent error.  Why an error at all?  This appears because our general
topological analysis never utilizes “R2.”  The formulation is expressed in terms
of metrics of the transformations x() and y().  Therefore, if computed
circle areas agree with “R2” and volumetric flow rates are consistent with
classical Hagen-Poiseuille flow results, our mathematical boundary value
problems, numerical analysis, and programming are likely to be correct. The last
entry in Figure 3-3-4 gives our area for the semi-circle, which is to be compared
with an exact 113.1/2 or 56.55 square inches.  From the ratio 56.55/56.47 =
1.001, our “error” of 0.1 percent suggests that the accompanying 0.1411E+05
gpm rate is also likely to be correct.

Interestingly, from the top and bottom lines of Figure 3-3-4, it is seen that
a 50 percent reduction in flow area, from “fully circular” to “semi-circular,” is
responsible for a five-fold decrease in volume throughput.  This demonstrates
the severe consequence of even partial blockage.  Because the flow is
Newtonian and linear in this example, the italicized conclusion is “scalable” and
applicable to all Newtonian flows.  That is, it applies to pipes of all radii R, to all
pressure gradients dp/dz, and to all viscosities .

Why is “scalability” a property of Newtonian flows?  To see that this is
true, we return to the governing equation “(2/x2 + 2/y2) u(x,y) = 1/ dp/dz”
in the duct coordinates (x,y).  Suppose that a solution u(x,y) for a given value of
the “1/ dp/dz” is available.  If we replace this by “C/ dp/dz,” where C is a
constant, it is clear that Cu must solve the modified problem.  Similarly, if Q and
  represent total volumetric flow rate and shear stress in the original problem,
the corresponding rescaled values are CQ and C.  This would not be true if, for
example, if  were a nonlinear function of u/x and u/y, as in the case of
non-Newtonian fluids; and if it were, it is now obvious that , or “N(),” in the
non-Newtonian flow notation, it must now vary with x and y because  depends
on u/x and u/y.  Interestingly, we have deduced these important properties
even without “solving” the differential equation!

Unfortunately, in the case of non-Newtonian fluids, generalizations such as
these cannot be made, and each problem must be considered individually.  The
extrapolations available to linear mathematical analysis are just not available.  It
is instructive to examine in detail, the velocity, apparent viscosity, shear rate,
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viscous shear stress distributions, and so on, for the similar sequence of
simulations for non-Newtonian flows.  Because generalizations cannot be
offered, we do not need to quote the exact parameters assumed.  Figures 3-3-4a
to 3-3-4h provide “time lapse” results for a Power law fluid simulation; note, for
example, how apparent viscosities are not constant, but, in fact, vary throughout
the cross-sectional area of the duct.

Our methodology and software allow us to plot all quantities of physical
interest at each time step.  Again, these quantities are needed to interpret solids
deposition data obtained in research flow loop experiments, because deposition
mechanisms are not very well understood.  Due to space limitations, only the
first and last “snapshots,” plus an intermediate one, are shown; in the final time
step, our initially circular duct has become purely semi-circular.  The varied
“snapshots” shown are also instructive because, to the author’s knowledge,
similar detailed results have never before appeared in the literature.

Figure 3-3-4a.  Time Lapse Sequence:  Axial Velocity “U.”
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Figure 3-3-4b.  Time Lapse Sequence:  Apparent Viscosity “N().”

Figure 3-3-4c.  Time Lapse Sequence: Viscous Stress  “N() U/x.”
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Figure 3-3-4d.  Time Lapse Sequence: Viscous Stress “N() U/y.”

Figure 3-3-4e.  Time Lapse Sequence:  Shear Rate “U/x.”
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Figure 3-3-4f.  Time Lapse Sequence:  Shear Rate “U/y.”

Figure 3-3-4g.  Time Lapse Sequence:  Stokes’ Product “N()U.”
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Figure 3-3-4h.  Time Lapse Sequence:  Dissipation Function “”

Simulation 2 – Hydrate plug with Newtonian flow in circular duct
(velocity field).  In this simulation, consider the flow about an isolated but
growing “hydrate plug.”  This model does not offer any geometric symmetry,
because, in reality, such blockages can form randomly within the duct.  Thus,
our curvilinear grid algorithms are useful in modeling real flows and
determining pressure drops associated with plugs having different shapes.  For
now, we assume Newtonian flow so that our results are scalable in the sense of
the previous example.  This is not a limitation of the solver, which handles very
nonlinear, non-Newtonian fluids.  A Newtonian flow is assumed here only to
provide results that can be generalized dimensionlessly and therefore may be of
greater utility, e.g., refer to the italicized conclusion in the earlier example.

To demonstrate the wealth of physical quantities that can be predicted, we
have duplicated typical high-level summaries; detailed area distributions of all
quantities are also available.  The assumed pressure gradient of “1 psi/ft” was
taken for convenience and leads to flow rates that are large.  However, because
the flow is Newtonian, a thousand-fold reduction in pressure gradient will lead
to a thousand-fold decrease in flow rate.   Shear rates and viscous stresses scale
similarly.  This ability to rescale results makes our tabulated quantities useful in
obtaining preliminary engineering estimates.  In the following pages, example
results of six time steps are selected for display.  Detailed numerical results, for
example, showing “typical” shear rates and viscous stresses, whose magnitudes
must be rescaled in accordance with the above paragraph, are given first.  Then,
“snapshots” of the axial velocity field are given, in the same time sequence.
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First run, initial full circle, without hydrate plug:

NEWTONIAN FLOW OPTION SELECTED.
Newtonian flow, constant viscosity = 1.00000 cp
Axial pressure gradient assumed as .1000E+01 psi/ft.
Total volume flow rate  = .7503E+08 gal/min
Cross-sectional area = .1129E+03 sq inch

TABULATION OF CALCULATED AVERAGE QUANTITIES:
Area weighted means for absolute values taken
over entire pipe (x,y) cross-sectional area
O  Axial flow velocity = .2266E+07 in/sec
O  Apparent viscosity = .1465E-06 lbf sec/sq in
O  Viscous stress, AppVis x dU/dx, = .1029E+00 psi
O  Viscous stress, AppVis x dU/dy, = .1230E+00 psi
O  Dissipation function = .2415E+06 lbf/(sec sq in)
O  Shear rate dU/dx = .7022E+06 1/sec
O  Shear rate dU/dy = .8394E+06 1/sec
O  Stokes product = .3321E+00 lbf/in

Second run:

NEWTONIAN FLOW OPTION SELECTED.
Newtonian flow, constant viscosity = 1.00000 cp
Axial pressure gradient assumed as .1000E+01 psi/ft.
Total volume flow rate  = .6925E+08 gal/min
Cross-sectional area = .1088E+03 sq inch
TABULATION OF CALCULATED AVERAGE QUANTITIES:
Area weighted means for absolute values taken
over entire pipe (x,y) cross-sectional area
O  Axial flow velocity = .2159E+07 in/sec
O  Apparent viscosity = .1465E-06 lbf sec/sq in
O  Viscous stress, AppVis x dU/dx, = .1050E+00 psi
O  Viscous stress, AppVis x dU/dy, = .1176E+00 psi
O  Dissipation function = .2350E+06 lbf/(sec sq in)
O  Shear rate dU/dx = .7168E+06 1/sec
O  Shear rate dU/dy = .8026E+06 1/sec
O  Stokes product = .3163E+00 lbf/in

Third run:

NEWTONIAN FLOW OPTION SELECTED.
Newtonian flow, constant viscosity = 1.00000 cp
Axial pressure gradient assumed as .1000E+01 psi/ft.
Total volume flow rate  = .6032E+08 gal/min
Cross-sectional area = .1047E+03 sq inch

TABULATION OF CALCULATED AVERAGE QUANTITIES:
Area weighted means for absolute values taken
over entire pipe (x,y) cross-sectional area
O  Axial flow velocity = .1974E+07 in/sec
O  Apparent viscosity = .1465E-06 lbf sec/sq in
O  Viscous stress, AppVis x dU/dx, = .1021E+00 psi
O  Viscous stress, AppVis x dU/dy, = .1066E+00 psi
O  Dissipation function = .2102E+06 lbf/(sec sq in)
O  Shear rate dU/dx = .6969E+06 1/sec
O  Shear rate dU/dy = .7275E+06 1/sec
O  Stokes product = .2893E+00 lbf/in
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Fourth run:

NEWTONIAN FLOW OPTION SELECTED.
Newtonian flow, constant viscosity = 1.00000 cp
Axial pressure gradient assumed as .1000E+01 psi/ft.
Total volume flow rate  = .4253E+08 gal/min
Cross-sectional area = .9642E+02 sq inch

TABULATION OF CALCULATED AVERAGE QUANTITIES:
Area weighted means for absolute values taken
over entire pipe (x,y) cross-sectional area
O  Axial flow velocity = .1538E+07 in/sec
O  Apparent viscosity = .1465E-06 lbf sec/sq in
O  Viscous stress, AppVis x dU/dx, = .9147E-01 psi
O  Viscous stress, AppVis x dU/dy, = .8822E-01 psi
O  Dissipation function = .1638E+06 lbf/(sec sq in)
O  Shear rate dU/dx = .6243E+06 1/sec
O  Shear rate dU/dy = .6021E+06 1/sec
O  Stokes product = .2254E+00 lbf/in

Fifth run:

NEWTONIAN FLOW OPTION SELECTED.
Newtonian flow, constant viscosity = 1.00000 cp
Axial pressure gradient assumed as .1000E+01 psi/ft.
Total volume flow rate  = .3417E+08 gal/min
Cross-sectional area = .9229E+02 sq inch

TABULATION OF CALCULATED AVERAGE QUANTITIES:
Area weighted means for absolute values taken
over entire pipe (x,y) cross-sectional area
O  Axial flow velocity = .1300E+07 in/sec
O  Apparent viscosity = .1465E-06 lbf sec/sq in
O  Viscous stress, AppVis x dU/dx, = .8285E-01 psi
O  Viscous stress, AppVis x dU/dy, = .7919E-01 psi
O  Dissipation function = .1363E+06 lbf/(sec sq in)
O  Shear rate dU/dx = .5654E+06 1/sec
O  Shear rate dU/dy = .5405E+06 1/sec
O  Stokes product = .1905E+00 lbf/in

Sixth, final run, with large blockage:

NEWTONIAN FLOW OPTION SELECTED.
Newtonian flow, constant viscosity = 1.00000 cp
Axial pressure gradient assumed as .1000E+01 psi/ft.
Total volume flow rate  = .2711E+08 gal/min
Cross-sectional area = .8816E+02 sq inch

TABULATION OF CALCULATED AVERAGE QUANTITIES:
Area weighted means for absolute values taken
over entire pipe (x,y) cross-sectional area
O  Axial flow velocity = .1070E+07 in/sec
O  Apparent viscosity = .1465E-06 lbf sec/sq in
O  Viscous stress, AppVis x dU/dx, = .7323E-01 psi
O  Viscous stress, AppVis x dU/dy, = .7136E-01 psi
O  Dissipation function = .1115E+06 lbf/(sec sq in)
O  Shear rate dU/dx = .4997E+06 1/sec
O  Shear rate dU/dy = .4870E+06 1/sec
O  Stokes product = .1568E+00 lbf/in

In Figures 3-3-5a to 3-3-5f, sequential “snapshots” of the axial velocity
field associated with a growing plug are shown.  The reader should refer to the
foregoing listings for the corresponding duct areas, volumetric flow rates,
average shear rates and stresses, and so on.  How is “scalability” applied?
Consider, for example, that “1 psi/ft” implies a shear rate component of
“0.4997E+06 1/sec” in the last printout.  A more practical “0.001 psi/ft” would
be associated with a shear rate of  “0.4997E+03 1/sec.”
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It is also interesting to compare the first and final runs.  Initially, the full
circle has an area of 112.9 square inches, and a volumetric flow rate of
0.7503E+08 gpm.  In the last simulation, these numbers reduce to 88.16 and
0.2711E+08.  Thus, a 22 percent reduction in flow area is responsible for a 64
percent decrease in flow rate!  It is clear that even “minor” flowline blockages
are not tolerable.  Following these velocity diagrams, some discussion of the
stress fields associated with the worst case blockage is given.

Simulation 3 – Hydrate plug with Newtonian flow in circular duct
(viscous stress field).  In this example, we continue with Simulation 2 above,
but focus on the largest blockage obtained in the final “snapshot.”  In particular,
we consider the likelihood that the plug-like structure will remain in the form
shown, given the erosive environment imparted by viscous shear stresses.  To
facilitate our discussion, we refer to Figure 3-3-6, which defines boundary
points A, B, C, D and E, and also, interior point F.  Figure 3-3-7a displays the
“Stokes product,” proportional to the product of apparent viscosity and velocity,
which measures how well individual particles are convected with the flow.  The
maximum is located at F, where “in stream” debris are likely to be found.

Figures 3-3-5a,b,c.  Velocity field, hydrate plug formation.
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Figures 3-3-5d,e,f.  Velocity field, hydrate plug formation.

A

B C

D

E

(F)

Figure 3-3-6.  Generic plug diagram.

Figures 3-3-7b and 3-3-7c display both rectangular components of the
viscous stress.  The stresses N() u/x and N() u/y are strong, respectively,
along BC and AB.  Figure 3-3-7d shows the spatial distribution of the
“dissipation function,” which measures local heat generation due to internal
friction, likely to be insignificant.  However, the same function is also an
indicator of total stress, which acts to erode surfaces that can yield.  This figure
suggests that “B” is most likely to erode.  At the same time, stresses about our
“hydrate plug” are lowest at “D,” suggesting that additional local growth is
possible.
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Figure 3-3-7a.  Stokes product.

Figure 3-3-7b.  Viscous stress, N() u/x.

Figure 3-3-7c.  Viscous stress, N() u/y.

Figure 3-3-7d.  Dissipation function.

Simulation 4 – Hydrate plug with Power law flow in circular duct.  In
this example, we study the flow of a non-Newtonian Power law fluid past the
worst case blockage in Simulation 3.  In particular, we examine the “total
volumetric flow rate versus axial pressure gradient,” or “Q versus dp/dz”
signature of the flow.  Before proceeding, it is instructive to reconsider the exact
solution for Power law flow in a circular pipe, namely,

Q/(R3) = [Rp/(2KL)] 
1/n

 n/(3n+1)       (1-4c)
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Figure 3-3-8.  “Q versus dp/dz” for various “n.”

Results for “Q versus dp/dz” are plotted in Figure 3-3-8 for different values
of “n,” assuming a 6-inch-radius pipe and a fixed ‘K” value that would
correspond to 100,000 cp if n = 1.  In the Newtonian flow limit of n = 1,
linearity is clearly seen; however, this exact solution shows that pronounced
curvature is obtained as “n” decreases from unity.  For any fixed value of dp/dz,
it is also seen that Q is strongly dependent on the Power law index.

Figure 3-3-9.  Typical Power law velocity profile.

We are interested in the corresponding results for Power law flow past the
large blockage in the previous simulation.  A number of runs were performed,
holding fluid properties and geometry fixed, while “dp/dz” was varied.  The
particular values were selected because they gave “practical” volumetric flow
rates.  When dp/dz = 0.01 psi/ft, a flow rate of 651 gpm is obtained; at 0.10
psi/ft, the volumetric flow rate is not “6,510” but 11,570 gpm, clearly
demonstrating the effects of nonlinearity.  Values for dp/dz are shown in bold
font, in the tabulated results reproduced below, and “Q versus dp/dz” is plotted
in Figure 3-3-10.
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First run:

POWER LAW FLOW OPTION SELECTED.
Power law fluid assumed, with exponent "n" equal
to .8000E+00 and consistency factor of .1000E-03
lbf sec^n/sq in.

Axial pressure gradient assumed as .1000E-01 psi/ft.
Total volume flow rate  = .6508E+03 gal/min
Cross-sectional area = .8816E+02 sq inch

TABULATION OF CALCULATED AVERAGE QUANTITIES:
Area weighted means for absolute values taken
over entire pipe (x,y) cross-sectional area

O  Axial flow velocity = .2565E+02 in/sec
O  Apparent viscosity = .5867E-04 lbf sec/sq in
O  Viscous stress, AppVis x dU/dx, = .6413E-03 psi
O  Viscous stress, AppVis x dU/dy, = .6308E-03 psi
O  Dissipation function = .2344E-01 lbf/(sec sq in)
O  Shear rate dU/dx = .1191E+02 1/sec
O  Shear rate dU/dy = .1162E+02 1/sec
O  Stokes product = .1604E-02 lbf/in

Second run:

POWER LAW FLOW OPTION SELECTED.
Power law fluid assumed, with exponent "n" equal
to .8000E+00 and consistency factor of .1000E-03
lbf sec^n/sq in.

Axial pressure gradient assumed as .3000E-01 psi/ft.
Total volume flow rate  = .2569E+04 gal/min
Cross-sectional area = .8816E+02 sq inch

TABULATION OF CALCULATED AVERAGE QUANTITIES:
Area weighted means for absolute values taken
over entire pipe (x,y) cross-sectional area

O  Axial flow velocity = .1013E+03 in/sec
O  Apparent viscosity = .4458E-04 lbf sec/sq in
O  Viscous stress, AppVis x dU/dx, = .1924E-02 psi
O  Viscous stress, AppVis x dU/dy, = .1892E-02 psi
O  Dissipation function = .2776E+00 lbf/(sec sq in)
O  Shear rate dU/dx = .4701E+02 1/sec
O  Shear rate dU/dy = .4587E+02 1/sec
O  Stokes product = .4813E-02 lbf/in

Third run:

POWER LAW FLOW OPTION SELECTED.
Power law fluid assumed, with exponent "n" equal
to .8000E+00 and consistency factor of .1000E-03
lbf sec^n/sq in.

Axial pressure gradient assumed as .5000E-01 psi/ft.
Total volume flow rate  = .4866E+04 gal/min
Cross-sectional area = .8816E+02 sq inch

TABULATION OF CALCULATED AVERAGE QUANTITIES:
Area weighted means for absolute values taken
over entire pipe (x,y) cross-sectional area

O  Axial flow velocity = .1918E+03 in/sec
O  Apparent viscosity = .3923E-04 lbf sec/sq in
O  Viscous stress, AppVis x dU/dx, = .3206E-02 psi
O  Viscous stress, AppVis x dU/dy, = .3154E-02 psi
O  Dissipation function = .8761E+00 lbf/(sec sq in)
O  Shear rate dU/dx = .8901E+02 1/sec
O  Shear rate dU/dy = .8686E+02 1/sec
O  Stokes product = .8022E-02 lbf/in
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Fourth run:

POWER LAW FLOW OPTION SELECTED.
Power law fluid assumed, with exponent "n" equal
to .8000E+00 and consistency factor of .1000E-03
lbf sec^n/sq in.

Axial pressure gradient assumed as .1000E+00 psi/ft.
Total volume flow rate  = .1157E+05 gal/min
Cross-sectional area = .8816E+02 sq inch

TABULATION OF CALCULATED AVERAGE QUANTITIES:
Area weighted means for absolute values taken
over entire pipe (x,y) cross-sectional area

O  Axial flow velocity = .4561E+03 in/sec
O  Apparent viscosity = .3299E-04 lbf sec/sq in
O  Viscous stress, AppVis x dU/dx, = .6413E-02 psi
O  Viscous stress, AppVis x dU/dy, = .6308E-02 psi
O  Dissipation function = .4167E+01 lbf/(sec sq in)
O  Shear rate dU/dx = .2117E+03 1/sec
O  Shear rate dU/dy = .2066E+03 1/sec
O  Stokes product = .1604E-01 lbf/in
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Figure 3-3-10.  “Q versus dp/dz” nonlinear behavior.

Simulation 5 – Hydrate plug, Herschel-Bulkley flow in circular duct.
In this set of runs, the “large blockage” example in Simulation 4 is reconsidered,
with identical parameters, except that a nonzero yield stress of 0.005 psi is
allowed.  Thus, our “Power law” fluid model becomes a “Herschel-Bulkley”
fluid.  Whereas smooth velocity distributions are typical of Power law flows,
e.g., Figure 3-3-9, the velocity field in flows with nonzero yield stress may
contain “plugs” that move as solid bodies.  For this simulation set, the plug flow
velocity profiles obtained are typified by Figure 3-3-11.
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Figure 3-3-11.  Plug flow in Herschel-Bulkley fluid.

At 0.01 psi/ft, our flow rate is now obtained as 95.1 gpm, and at 0.10 psi/ft,
we have 1,001 gpm.  These flow rates are an order-of-magnitude below those
calculated above; interestingly, the “Q versus dp/dz” response in this example is
almost linear, although this is not generally true for Herschel-Bulkley fluids.  As
before, we provide “typical numbers” in the tabulated results below, and also
plot “Q versus dp/dz” for what is an “exceptional” data set in Figure 3-3-12.

First run:

HERSCHEL-BULKLEY FLOW OPTION SELECTED.
Power law curve assumed with exponent "n" equal
to .8000E+00 and consistency factor "k" of .1000E-03
lbf sec^n/sq in.

Yield stress of .5000E-02 psi taken throughout.

Axial pressure gradient assumed as .1000E-01 psi/ft.
Total volume flow rate  = .9513E+02 gal/min
Cross-sectional area = .8816E+02 sq inch

Apparent viscosity and Stokes product set to
zero in plug regime for tabulation and display.

TABULATION OF CALCULATED AVERAGE QUANTITIES:
Area weighted means for absolute values taken
over entire pipe (x,y) cross-sectional area

O  Axial flow velocity = .3932E+01 in/sec
O  Viscous stress, AppVis x dU/dx, = .2042E-03 psi
O  Viscous stress, AppVis x dU/dy, = .1984E-03 psi
O  Dissipation function = .1446E-02 lbf/(sec sq in)
O  Shear rate dU/dx = .1180E+01 1/sec
O  Shear rate dU/dy = .1070E+01 1/sec

Second run:

HERSCHEL-BULKLEY FLOW OPTION SELECTED.
Power law curve assumed with exponent "n" equal
to .8000E+00 and consistency factor "k" of .1000E-03
lbf sec^n/sq in.

Yield stress of .5000E-02 psi taken throughout.

Axial pressure gradient assumed as .3000E-01 psi/ft.
Total volume flow rate  = .2854E+03 gal/min
Cross-sectional area = .8816E+02 sq inch

Apparent viscosity and Stokes product set to
zero in plug regime for tabulation and display.
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TABULATION OF CALCULATED AVERAGE QUANTITIES:
Area weighted means for absolute values taken
over entire pipe (x,y) cross-sectional area

O  Axial flow velocity = .1180E+02 in/sec
O  Viscous stress, AppVis x dU/dx, = .6126E-03 psi
O  Viscous stress, AppVis x dU/dy, = .5951E-03 psi
O  Dissipation function = .1302E-01 lbf/(sec sq in)
O  Shear rate dU/dx = .3539E+01 1/sec
O  Shear rate dU/dy = .3211E+01 1/sec

Third run:

HERSCHEL-BULKLEY FLOW OPTION SELECTED.
Power law curve assumed with exponent "n" equal
to .8000E+00 and consistency factor "k" of .1000E-03
lbf sec^n/sq in.

Yield stress of .5000E-02 psi taken throughout.

Axial pressure gradient assumed as .5000E-01 psi/ft.
Total volume flow rate  = .4757E+03 gal/min
Cross-sectional area = .8816E+02 sq inch

Apparent viscosity and Stokes product set to
zero in plug regime for tabulation and display.

TABULATION OF CALCULATED AVERAGE QUANTITIES:
Area weighted means for absolute values taken
over entire pipe (x,y) cross-sectional area

O  Axial flow velocity = .1966E+02 in/sec
O  Viscous stress, AppVis x dU/dx, = .1021E-02 psi
O  Viscous stress, AppVis x dU/dy, = .9918E-03 psi
O  Dissipation function = .3616E-01 lbf/(sec sq in)
O  Shear rate dU/dx = .5899E+01 1/sec
O  Shear rate dU/dy = .5351E+01 1/sec

Fourth run:

HERSCHEL-BULKLEY FLOW OPTION SELECTED.
Power law curve assumed with exponent "n" equal
to .8000E+00 and consistency factor "k" of .1000E-03
lbf sec^n/sq in.

Yield stress of .5000E-02 psi taken throughout.

Axial pressure gradient assumed as .1000E+00 psi/ft.
Total volume flow rate  = .1001E+04 gal/min
Cross-sectional area = .8816E+02 sq inch

Apparent viscosity and Stokes product set to
zero in plug regime for tabulation and display.

TABULATION OF CALCULATED AVERAGE QUANTITIES:
Area weighted means for absolute values taken
over entire pipe (x,y) cross-sectional area

O  Axial flow velocity = .4085E+02 in/sec
O  Viscous stress, AppVis x dU/dx, = .2478E-02 psi
O  Viscous stress, AppVis x dU/dy, = .2463E-02 psi
O  Dissipation function = .2386E+00 lbf/(sec sq in)
O  Shear rate dU/dx = .1606E+02 1/sec
O  Shear rate dU/dy = .1637E+02 1/sec
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Figure 3-3-12.  Near-linear behavior for “exceptional” data set.

Simulation 6 – Eroding a clogged bed.  Here, we start with a clogged
pipe annulus where the inner pipe rests on the bottom, with sand almost filled to
the top.  We postulate a simple erosion model, where light particles are washed
away at speeds greater than a given critical velocity.  In the runs shown below,
this value is always exceeded, so that the sand bed will always erode.  In this
final simulation set, the hole completely opens up, providing a successful
conclusion to this section!

To provide general results, we again consider a Newtonian flow, so that the
specific results in the tabulations can be rescaled and recast more generally in
the graph shown in Figure 3-3-14.  While “Q versus dp/dz” is linear in
Newtonian fluids, note that “Q versus N%” is not (see Figure 3-3-13).  For that
matter, even when a flow is Newtonian, the variation of Q versus any geometric
parameter is typically nonlinear and computational modeling will be required.

N %

100%

Figure 3-3-13.  Clogged pipe simulation setup.
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Figure 3-3-14.  Generalized flow rate versus dimensionless “fill-up.”

In the following results, a unit cp Newtonian fluid is assumed, and a
pressure gradient of 0.001 psi/ft. is fixed throughout.  A 6.4-inch diameter is
taken for the outer circle, with “y = 0” referring to its center elevation; a
“yheight” of -3.2 inches implies “no clogging,” while + 2.0 is almost completely
clogged.  An inner 4.0-inch O.D. pipe rests at the very bottom of the annulus.

First run:

Enter YHEIGHT:  -3.2
Total volume flow rate  = .9340E+03 gal/min
Cross-sectional area = .2041E+02 sq inch

Area weighted means for absolute values taken
over entire pipe (x,y) cross-sectional area
O  Axial flow velocity = .1026E+03 in/sec
O  Apparent viscosity = .1465E-06 lbf sec/sq in
O  Viscous stress, AppVis x dU/dx, = .1951E-04 psi
O  Viscous stress, AppVis x dU/dy, = .2123E-04 psi
O  Dissipation function = .1226E-01 lbf/(sec sq in)
O  Shear rate dU/dx = .1331E+03 1/sec
O  Shear rate dU/dy = .1449E+03 1/sec
O  Stokes product = .1503E-04 lbf/in

Second run:

Enter YHEIGHT:  -2.2
Total volume flow rate  = .9383E+03 gal/min
Cross-sectional area = .1966E+02 sq inch

Area weighted means for absolute values taken
over entire pipe (x,y) cross-sectional area
O  Axial flow velocity = .1351E+03 in/sec
O  Apparent viscosity = .1465E-06 lbf sec/sq in
O  Viscous stress, AppVis x dU/dx, = .2453E-04 psi
O  Viscous stress, AppVis x dU/dy, = .2755E-04 psi
O  Dissipation function = .1635E-01 lbf/(sec sq in)
O  Shear rate dU/dx = .1674E+03 1/sec
O  Shear rate dU/dy = .1880E+03 1/sec
O  Stokes product = .1979E-04 lbf/in
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Third run:

Enter YHEIGHT:  -1.2
Total volume flow rate  = .9157E+03 gal/min
Cross-sectional area = .1805E+02 sq inch

Area weighted means for absolute values taken
over entire pipe (x,y) cross-sectional area
O  Axial flow velocity = .1586E+03 in/sec
O  Apparent viscosity = .1465E-06 lbf sec/sq in
O  Viscous stress, AppVis x dU/dx, = .2506E-04 psi
O  Viscous stress, AppVis x dU/dy, = .3397E-04 psi
O  Dissipation function = .1947E-01 lbf/(sec sq in)
O  Shear rate dU/dx = .1710E+03 1/sec
O  Shear rate dU/dy = .2318E+03 1/sec
O  Stokes product = .2324E-04 lbf/in

Fourth run:

Enter YHEIGHT:  0.
Total volume flow rate  = .7837E+03 gal/min
Cross-sectional area = .1492E+02 sq inch

Area weighted means for absolute values taken
over entire pipe (x,y) cross-sectional area
O  Axial flow velocity = .1769E+03 in/sec
O  Apparent viscosity = .1465E-06 lbf sec/sq in
O  Viscous stress, AppVis x dU/dx, = .1963E-04 psi
O  Viscous stress, AppVis x dU/dy, = .4324E-04 psi
O  Dissipation function = .2234E-01 lbf/(sec sq in)
O  Shear rate dU/dx = .1340E+03 1/sec
O  Shear rate dU/dy = .2951E+03 1/sec
O  Stokes product = .2592E-04 lbf/in

Fifth run:

Enter YHEIGHT:  0.6
Total volume flow rate  = .6089E+03 gal/min
Cross-sectional area = .1253E+02 sq inch

Area weighted means for absolute values taken
over entire pipe (x,y) cross-sectional area
O  Axial flow velocity = .1714E+03 in/sec
O  Apparent viscosity = .1465E-06 lbf sec/sq in
O  Viscous stress, AppVis x dU/dx, = .1259E-04 psi
O  Viscous stress, AppVis x dU/dy, = .4737E-04 psi
O  Dissipation function = .2291E-01 lbf/(sec sq in)
O  Shear rate dU/dx = .8593E+02 1/sec
O  Shear rate dU/dy = .3233E+03 1/sec
O  Stokes product = .2511E-04 lbf/in
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Sixth run:
Enter YHEIGHT:  1.2
Total volume flow rate  = .2823E+03 gal/min
Cross-sectional area = .8952E+01 sq inch

Area weighted means for absolute values taken
over entire pipe (x,y) cross-sectional area
O  Axial flow velocity = .1133E+03 in/sec
O  Apparent viscosity = .1465E-06 lbf sec/sq in
O  Viscous stress, AppVis x dU/dx, = .8603E-05 psi
O  Viscous stress, AppVis x dU/dy, = .3692E-04 psi
O  Dissipation function = .1379E-01 lbf/(sec sq in)
O  Shear rate dU/dx = .5871E+02 1/sec
O  Shear rate dU/dy = .2520E+03 1/sec
O  Stokes product = .1660E-04 lbf/in

Seventh run:
Enter YHEIGHT:  2.0
Total volume flow rate  = .5476E+02 gal/min
Cross-sectional area = .4458E+01 sq inch

Area weighted means for absolute values taken
over entire pipe (x,y) cross-sectional area
O  Axial flow velocity = .4484E+02 in/sec
O  Apparent viscosity = .1465E-06 lbf sec/sq in
O  Viscous stress, AppVis x dU/dx, = .4532E-05 psi
O  Viscous stress, AppVis x dU/dy, = .2281E-04 psi
O  Dissipation function = .5185E-02 lbf/(sec sq in)
O  Shear rate dU/dx = .3093E+02 1/sec
O  Shear rate dU/dy = .1557E+03 1/sec
O  Stokes product = .6570E-05 lbf/in

Eighth run:
Enter YHEIGHT:  2.5
Total volume flow rate  = .9648E+01 gal/min
Cross-sectional area = .2126E+01 sq inch

Area weighted means for absolute values taken
over entire pipe (x,y) cross-sectional area
O  Axial flow velocity = .1624E+02 in/sec
O  Apparent viscosity = .1465E-06 lbf sec/sq in
O  Viscous stress, AppVis x dU/dx, = .2321E-05 psi
O  Viscous stress, AppVis x dU/dy, = .1360E-04 psi
O  Dissipation function = .1832E-02 lbf/(sec sq in)
O  Shear rate dU/dx = .1584E+02 1/sec
O  Shear rate dU/dy = .9282E+02 1/sec
O  Stokes product = .2380E-05 lbf/in

Velocity field “snapshots” at different stages of the unclogging process are
given in Figures 3-3-15a to 3-3-15f.  Although we have described the problem in
terms of debris removal for eccentric annuli in horizontal drilling, it is clear that
the computations are also relevant to wax removal in a simple bundled pipeline,
where wax has formed at the top, when heat has been removed temporarily (the
plots shown should then be turned upside-down).
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Figure 3-3-15a.  Clogged annulus, “yheight” = 2.0 inches.

Figure 3-3-15b.  Clogged annulus, “yheight” = 1.2 inches.

Figure 3-3-15c.  Clogged annulus, “yheight” = 0.6 inches.

Figure 3-3-15d.  Clogged annulus, “yheight” = 0.0 inches.

Figure 3-3-15e.  Clogged annulus, “yheight” = -1.2 inches.
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Figure 3-3-15f.  Unclogged annulus, “yheight” = -2.2 inches.

The basic ideas on solids deposition and integrated non-Newtonian duct
flow modeling have been developed in this chapter, and examples have been
given that clearly demonstrate the dangers of even partial blockage.  In
summary, minor blockage can significantly decrease flow rate in a constant
pressure gradient scenario.  This also implies that minor blockages will require
high start-up pressures when a pipeline system is recovering from stoppage.
Here the problem can be severe, since temporary shutdowns generally allow
blockages to solidify and adhere more securely.  The “self-cleaning” ability of a
flow is degraded under the circumstances..
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Example 3-4.    Finite difference details for annular flow problems.

Reservoir engineers and structural dynamicists, for example, routinely use
advanced finite difference and finite element methods in design calculations.
But drillers have traditionally relied upon simpler handbook formulas and tables
that are convenient at the rig site.  Simulation methods are powerful, to be sure,
but they have their limitations.  This section explains the pitfalls and the
philosophy one must adopt in order to bring state-of-the-art techniques to the
field.  Importantly, we emphasize that numerical methods do not always yield
exact answers.  But more often than not, they produce excellent trend
information that is useful in practical application.

Concentric Newtonian flow.  For our purposes, consider first the steady,
concentric annular flow of a Newtonian fluid, e.g.,  Bird et al. (2002).  The
governing equations are

d2u(r)/dr2  + r-1 du/dr = (1/µ) p/z (3-4-1a)

u(Ri) = u(Ro) = 0                                                 (3-4-1b)

In Equations 3-4-1a,b, u(r) is the annular speed satisfying no-slip conditions at
the inner and outer radii, Ri and Ro.  The viscosity µ and the applied pressure

gradient dp/dz are known constants.  The exact solution was given earlier.
Let us examine a simple numerical solution.  A “second-order accurate”

scheme is derived by “central differencing” Equation 3-4-1a as follows,

(uj-1 -2uj +uj+1) /(r)2  + (uj+1 -uj-1)/2rjr = (1/µ) p/z (3-4-2a)

where uj refers to u(r) at the jth node at the rj location, j being an ordering index.

Equation 3-4-2a can be evaluated at any number of interior nodes for the mesh
length r.  The resulting “implicit” difference equations, when augmented by

u1 = ujmax = 0                                                    (3-4-2b,c)

using Equation 3-4-1b, form a tridiagonal system of jmax unknowns that lends

itself to simple solution for uj and its total volumetric flow rate.  For our first

run, we assumed Ri = 4 inch, Ro = 5 inch, p/z = - 0.0005 psi/in. and µ = 2 cp.

Computed flow rates as functions of mesh density are given in Table 3-4-1.

                       # Meshes    GPM   % Error
                           2       783     25
                           3       929     11
                           4       980      6
                           5      1003      4
                          10      1035      1
                          20      1042      0
                          30      1044      0
                         100      1045      0

Table 3-4-1.  Volumetric flow rate versus mesh number.
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Note how the “100 mesh” solution is almost exact; but the “10 mesh”
solution for flow rate, which is ten times faster to compute, is satisfactory for
engineering purposes.  Now let us double the viscosity µ and recompute the
solution.  The gpm’s so obtained decrease exactly by a factor of two, and the
dependence on viscosity is certainly brought out very clearly.  However, the
trend information relating changes in gpm to those in µ are accurately captured
even for coarse meshes.  So, sometimes fine meshes are unnecessary.  Similar
comments apply to the pressure gradient dp/dz.

It is clear that the exact value of u(r) is mesh dependent; the finer the mesh,
the better the answer.  In some applications, it may be essential to find, through
trial and error, a mesh distribution that leads to the exact solution or that is
consistent with real data in some engineering sense.  From that point on, “what
if” analyses may be performed accurately with greater confidence.  This
rationale is used in reservoir engineering, where history matching with
production data plays a crucial role in estimating reserves.  For other
applications, the exact numbers may not be as important as qualitative trends of
different physical parameters.  For example, how does hole eccentricity affect
volumetric flow rate for a prescribed pressure gradient?  For a given annular
geometry, how does a decrease in the Power law exponent affect velocity profile
curvature?

In structural engineering, it is well known that uncalibrated finite element
analyses can accurately pinpoint where cracks are likely to form even though the
computed stresses may not be correct.  For such qualitative objectives, the
results of a numerical analysis may be acceptable “as is” provided the calculated
numbers are not literally interpreted.  Agreement with exact solutions, of course,
is important; but often it is the very lack of such analytical solutions itself that
motivates numerical alternatives.  Thus, while consistency with exact solutions
is desirable, in practice it is through the use of comparative solutions that
computational methods offer their greatest value.

For annular flows and pipe flows in ducts having general cross-sectional
geometries, this philosophy is appropriate because there are no analytical
solutions or detailed laboratory measurements with which to establish standards
for comparison.  One should be satisfied as long as the solutions agree roughly
with field data; the real objective, remember, aims at establishing trends with
respect to changes in parameters like fluid rheology, flow rate, and hole
eccentricity.  We will show through extensive computations and correlation with
empirical data that the models developed with our difference methods are
correct and useful in this engineering sense.  The ultimate acid test lies in
validations with field applications and these are addressed in Chapter 5.

We emphasize that steady eccentric flows are by no means as simple as the
above example might suggest.  In Equation 3-4-1a, the unknown speed u(r)
depends on a single variable “r” only.  For general annular flow problems, the
velocity depends on two cross-sectional coordinates x and y, leading to a partial
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differential equation that is typically nonlinear for oilfield rheologies.  The “two-
point” boundary conditions in Equation 3-4-1b are replaced by no-slip velocity
conditions enforced along two general arbitrary closed curves representing the
borehole and pipe contours.  To implement these no-slip conditions accurately,
“boundary conforming meshes” must be used that provide high resolution in
tight spaces.  To be numerically efficient, these meshes must be variable with
respect to all coordinate directions.  The difference equations solved on such
host meshes must be solved iteratively; for unlike Equations 3-4-2a,b,c, which
apply to Newtonian flows with constant viscosities, the Power law, Bingham
plastic, and Herschel-Bulkley fluids considered in this book satisfy nonlinear
equations with problem-dependent apparent viscosities.  The algorithms must be
fast, stable, and robust; they must produce solutions without straining
computing resources.  Finally, computed solutions must be physically correct;
this is the final arbiter that challenges all numerical simulations.

Eccentric flow details.  The above solution is straightforward because
“concentric flow” implies ordinary differential equations, while “Newtonian
fluid” means constant viscosities .  For eccentric non-Newtonian flows, partial
differential equations must be solved with variable viscosities N.  We consider
steady flows here.  Moreover, it is impossible to select a simple grid as we had,
say, in setting r constant; a curvilinear grid must be created numerically from
the equations for general mappings.  Once the mappings are available, using the
procedure for Equation 3-1-58 described above, the axial momentum equation
for u must be transformed to the new coordinates and solved iteratively.  In
general, a transformed equation with B(1) and B(2) variable coefficients takes the
form

(u – 2u + u + B(1)u + B(2)u )/J
2 = (1/N) P/z (3-4-3a)

If central differences are used for  and  derivatives, and the usual four-
point molecule is used for the mixed derivative, then assuming constant grids 
and  , we can write the resulting equation in the form

(/2 – B(1)/(2)) ui,j-1 – 2 (/2 + /2) ui,j + (/2 + B(1)/(2)) ui,j+1 =

– (/2) (ui-1,j + ui+1,j) – B(2)/(2) (ui+1,j – ui-1,j) + (J2/N) p/z

+ 2 (ui+1,j+1 – ui-1,j+1 – ui+1,j-1 + ui-1,j-1)/(4 ) (3-4-3b)

The first line takes the form ( ) ui,j-1  + ( ) ui,j   + (  ) ui,j+1 = ( ) where we note that
the parentheses contain different expressions.  Equation 3-4-3b is the recursion
relation used for iterative solutions of the steady flow formulation.

The procedure is straightforward.  We define the rectangular computational
domain by the indexes i = 1, 2, 3, …, imax and j = 1, 2, 3, …, jmax and initialize
the solution to a stored approximation or simply “0” if none are available.  First
we consider the line i = 2.  Equation 3-4-3b is written for j = 2, 3, …, jmax-1,
yielding jmax-2 equations.  In order to obtain solutions, no-slip boundary
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conditions are used to define the “j = 1” and “j = jmax” equations.  The resulting
system is linear and can be solved using a tridiagonal equation solver.  This
process is repeated for i = 3, i = 4, …,  imax-1 until the entire i-j plane has been
solved.  At this point, u values along i = 1 and i = imax are updated using
boundary conditions.  Then, the apparent viscosity function N(i,j), which
depends on the rheological model assumed, is updated using latest available
values for u.  The equation-solving process just described must be repeated until
convergence is achieved.

Once the velocity field is available, physical quantities like apparent
viscosity, shear rate, and viscous stress are obtained from their mathematical
definitions in terms of velocity derivatives, e.g., ux = (yu – yu)/J and uy =
(xu – xu)/J, where J = (xy – xy).  All physical quantities are then
displayed in color and overlaid on the projection of the annulus in the
computational plane.  It is important to note that while  and  are constant in
computational (,) space, they efficiently represent variable grids (with high
densities in tight annular spaces) in the physical plane.  Constant values of 
and  allow further speed increases because more complicated difference
formulas need not be used.  Equation 3-4-3a applies to boreholes with straight
axes only.  When this axis is curved, e.g., the radius of curvature, R, enters the
formulation and introduces centrifugal effects that modify the effective pressure
gradient.  These are important in the drilling of deviated and horizontal wells.
Such effects are studied in Model 5-5 in this book.  There, we demonstrate that
the pressure gradient (1/N()) P/z in Equation 3-4-3a is to be replaced by
(1/N) P/z – (1/R) u/x + (1/R2) u so that

(u – 2u + u + B(1)u + B(2)u )/J
2 = (3-4-3c)

= (1/N) P/z – (1/R) u/x + (1/R2) u

where “x” is perpendicular to the borehole axis.  The iterative process described
above now applies to the modified equation, where u/x is evaluated using the
formula ux = (yu – yu)/J.  We emphasize that an “implicit” iterative scheme
has been used since coupled algebraic equations are involved.  “Point-by-point”
iterative methods, known as “explicit” methods, are simpler to program but may
be numerically unstable.  For further background development, the reader is
referred to the book by Press et al. (1992).  Chapter 7 of Chin (2002) provides
simple examples together with Fortran source code illustrating key differences
between explicit and implicit schemes.  For presentation purposes, the host
model considered there is Laplace’s equation for pressure taken in a simple
rectangular domain.
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4
Steady, Two-Dimensional, non-Newtonian,

Single-Phase, Eccentric Annular Flow

This chapter describes detailed applications  for steady, two-dimensional,
non-Newtonian, single-phase, eccentric annular flow.  We discuss general
issues, e.g., Newtonian versus non-Newtonian effects, properties of “pressure
gradient versus volumetric flow rate” curves for different fluid rheologies, the
role of influx and outflux in affecting these curves, modeling of washouts, and
so on, topics which are amply illustrated with computation.

A particularly important application, that of swab-surge in drilling, is
treated, with respect to the new modeling capabilities offered in this book: high
eccentricity, continuous mud circulation, pipe rotation, axial pipe movement,
and so on (the effects of yield stress and its effect on plug zone determination in
eccentric annuli, with and without pipe movement, are deferred to Chapter 5).
We also take this opportunity to introduce the use of transient solvers in steady
swab-surge calculations., and also, develop more general definitions for
equivalent density calculations.

Some comments on swab-surge analysis are relevant to usage of
commercial software.  The subject itself is as old as drilling, but unfortunately,
little progress has been offered during the past decades.  The usual concentric
flow models are available, mostly limited to non-yield fluids; recent publications
address yield stress effects but are restricted to slot flow models without any
pipe movement.  High eccentricity, general rheologies, pipe axial movement and
rotational capabilities, introduced here, are completely new.  In recent years,
certain oil service companies have offered “advanced” compressible flow
models claiming to reproduce field results with high accuracy.  A cursory
examination of the math reveals surprises – the equations contain a single “z”
coordinate only, so that cross-sectional effects cannot possibly be modeled.  In
other words, eccentricity and fluid rheology influences are absent.  Users should
exercise caution in applying such models and question assumptions as needed.
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Example 4-1.    Newtonian flow eccentric annulus applications.

We introduce our steady, non-rotating, two-dimensional, single-phase,
eccentric annular flow capabilities with the Windows user interface shown in
Figure 4-1a.  Geometric properties are defined at the left, that is, inner and outer
circle center coordinates and radii, borehole axis curvature, and constant
(positive, zero or negative) drillpipe or casing speed.  Fluid rheology is defined
by Herschel-Bulkley parameters at the upper right, which also encompass
Newtonian, Power law and Bingham plastic flows.  The entries shown apply to a
Newtonian fluid, for which the Power n is unity, the yield stress vanishes, and
the consistency factor K corresponds to a 100 cp viscosity (note that 1 cp =
0.0000001465 lbf sec/in2 ).

The algorithm solves the steady axial momentum equation written to
boundary-conforming curvilinear coordinates when the pressure gradient is
specified (and volumetric flow rate is to be determined) or when flow rate is
given (and pressure gradient is the objective).  Note the “plain English” design
in Figure 4-1a.  Pre- and post-processing analyses, grid generation setup, host
equation development and numerical solution, plus color graphical displays (to
be discussed) are completely automated.  No expertise on the part of the user in
numerical analysis or fluid mechanics is anticipated.

Figure 4-1a.  Steady, non-rotating flow interface.

Convenient utilities are built into the user interface.  For example, the
passive (shaded) text box at the bottom center calculates eccentricities as circle
properties are changed.  Also, clicking on “Show Annulus” automatically
displays annular layout together with a hypothetical 25 11 curvilinear grid,
e.g., as shown in Figure 4-1b,  that may be refined or changed at run-time.
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Figure 4-1b.  Coarse curvilinear grid, fine by conventional standards.

Extremely fast “no frills” simulation results are available by clicking
“QuikSim.”  For the inputs in Figure 4-1a, the axial velocity solution on a fine
61 41 mesh, as given in Figure 4-1c, appears in typically 2-3 seconds, together
with its convergence history, calculated flow rate and computed cross-sectional
area.  The iterative relaxation method used for steady-state flow analysis is very
stable and fast, and will, most of the time, provide accurate solutions in seconds.
Sometimes, of course, solutions are not possible.  For instance, when yield stress
fluids are considered under very low pressure gradient conditions, sought
solutions will not be found because they do not physically exist.  In that case,
iteration errors do not monotonically decrease to zero and “red zones” depicting
high velocities at the wide part of the annulus will not be found (refer to inset of
Figure 4-1c for an example of an unconverged simulation) – however, solution
divergence is easily corrected by using a stronger pressure gradient.  Physically,
the stronger value found computationally is the one needed to move the fluid.
The cross-sectional area, incidentally, is not computed from (Router

2 – Rinner
2 )

although its value will be extremely close.  Instead, totals are calculated by
summing quadrilateral areas.  This approach applies generally when our circles
have been edited to model washouts, cuttings beds and stabilizers.

Figure 4-1c.   Fast simulations (unconvergent result, top right).
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Concentric annulus Newtonian flow validations.  How can we be
assured that calculated results are correct?  After all, exact eccentric annular
solutions even for simple Newtonian fluids do not exist.  Concentric validations
are reassuring.  For the geometry in Figure 4-1d, clicking “QuikSim” yields a
flow rate of 736.2 gpm.  The auxiliary calculator shown, based on an exact
Newtonian flow solution discussed later and available from the “Utilities” menu,
gives an exact value of 740.8 gpm, for an error of less than 1 percent.

Figure 4-1d.  Concentric annulus comparison.

The results just quoted assume stationary drillpipe or casing.  However,
both software screens in Figure 4-1d support constant inner pipe speeds that may
be positive, zero or negative.  For the sign convention used in our mathematical
model, a negative pressure gradient (indicating pressure decrease along the flow
direction) yields a positive gpm flow rate.  A positive pipe or casing speed,
defining movement in the flow direction, will increase flow rate.  For instance,
when “50 in./sec” is entered into the screen at the lower left of Figure 4-1d, our
previous 740.8 gpm increases to an exact 1,045 gpm.  When the same “50” is
assumed for the eccentric finite difference model, the result, requiring identical
computation time as before, is 1,047 gpm, again offering extremely high
accuracy.  If, alternatively, “–50 in./sec” is instead used to model pipe
movement in a direction opposite to the main flow, the exact and approximate
flow rates are, respectively, 436.5 gpm and 425.0 gpm, with an error of 2.7
percent.

More powerful modeling options, available through the “Simulate” button,
permit mesh refinement and redefinition for problems where higher accuracy is
required and will be discussed later.  The foregoing results for concentric annuli
are reassuring and indicate, at least for the examples considered, that calculated
velocities and flow rates are accurate.  Of course, the numerical model hosted by
Figure 4-1a is powerful because pipe movement is also easily considered for
highly eccentric annuli.  Figure 4-1c for the eccentric parameters of Figure 4-1a
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gave a flow rate of 1,162 gpm for stationary pipe (higher than the 736.2 gpm
found for concentric flow above).  If “50 in./sec” is assumed, the result is 1,448
gpm, whereas the assumption “–50 in./sec” yields a reduced 975.9 gpm.  Now, a
note on graphics.  In Figure 4-1c, the red zone at the wide part of the annulus
indicates that maximum speeds are found there; if we had assumed a speed of
500 in./sec,  the red zone would move toward and merge with the pipe
boundary, because both high speeds are comparable, as shown in Figure 4-1e.

Figure 4-1e.  Fast pipe movement in the direction of the flow.

Velocity displays such as that in Figure 4-1c are important physically.
While it is obvious that the fastest flow should be found at the widest location,
the addition of steady pipe rotation, for instance, moves this maximum
azimuthally, and in the transient case, propagates the entire zone in the
azimuthal direction, a fact that may be useful in cuttings transport studies.
Finally, we return to Figure 4-1c, where we found a flow rate of 1,162 gpm.
Here, “QuikSim” assumed a large borehole radius curvature of 123 ft.  As an
extreme case, we reduce this to 1.23 ft. to find a rate decrease to 1,149 gpm.  It
is well known that decreasing radius of curvature, for a fixed pressure gradient,
decreases flow rate because of centrifugal effects; for the Newtonian fluid acting
in this annulus, calculated results indicate that the effects are minimal.

In the above discussions, we specified a (constant negative) pressure
gradient dp/dz and calculated positive total volumetric flow rate.  In many
managed pressure drilling applications, it is often the pressure gradient that is
desired when flow rate is specified.  Then, the pressure at the drillbit is known
from “Psurface – dp/dz L” where Psurface is the atmospheric or surface choke
pressure and L is the borehole length.  The simulator in Figure 4-1c supports this
important calculation mode.  Recall that the pressure gradient – 0.01 psi/ft. in
Figure 4-1c gave 1,162 gpm.  If “Volumetric flow rate” is instead selected in the
“Specify” window and “1162” is entered in the input box, clicking “QuikSim”
launches a sequence of automated inverse calculations.  Here, iterations on
dp/dz are performed using a half-step routine in which guesses are successively
refined starting with a value applicable to drilling and cementing applications.
After one minute of computing time, in which the complete boundary value
problem is solved thirteen times, the required value of – 0.009961 psi/ft. is
obtained together with a color velocity plot.  That is,
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SIMULATION STARTS ...
Iterating on pressure gradient to match flow rate ...

Iteration  100, Error = .00000000
Iteration  200, Error = .00000011
Iteration  300, Error = .00000000
Iteration  400, Error = .00000000
Iteration  500, Error = .00000000
Iteration  600, Error = .00000000
Iteration  700, Error = .00000011
Iteration  800, Error = .00000000
Iteration  900, Error = .00000000
Iteration 1000, Error = .00000000

O  Axial pressure gradient of -.1000E+00 psi/ft
   yields volume flow rate of 0.1162E+05 gal/min.
   Iterations continuing ...

Flow rate target error is, .8997E+03 %

Iteration  100, Error = .00000000
Iteration  200, Error = .00000011
Iteration  300, Error = .00000000
Iteration  400, Error = .00000000
Iteration  500, Error = .00000000
Iteration  600, Error = .00000000
Iteration  700, Error = .00000011
Iteration  800, Error = .00000000
Iteration  900, Error = .00000000
Iteration 1000, Error = .00000000

O  Axial pressure gradient of -.5000E-01 psi/ft
   yields volume flow rate of 0.5808E+04 gal/min.
   Iterations continuing ...

Flow rate target error is, .3998E+03 %

.

.

.

Iteration  100, Error = .00000000
Iteration  200, Error = .00000000
Iteration  300, Error = .00000007
Iteration  400, Error = .00000007
Iteration  500, Error = .00000007
Iteration  600, Error = .00000000
Iteration  700, Error = .00000007
Iteration  800, Error = .00000007
Iteration  900, Error = .00000007
Iteration 1000, Error = .00000000

O  Axial pressure gradient of -.9961E-02 psi/ft
   yields volume flow rate of 0.1157E+04 gal/min.
   Iterations continuing ...

Pressure gradient found iteratively, -.9961E-02 psi/ft,
to yield 0.1157E+04 gal/min vs target 0.1162E+04 gal/min.
Note:  Iterations terminate within 1% of target rate.
Refine result by manually changing pressure gradient.
Annular flow rate ...... 0.1157E+04 gal/min
Cross-sectional area ... 0.6586E+02 sq inch

Figure 4-1f.  Iterative calculation for dp/dz, with flow rate specified.
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Example 4-2.    Power law flow in eccentric annuli.

In Example 4-1, we focused on Newtonian flows because an exact solution
for concentric annuli allowing pipe movement was available for validation
purposes.  We introduced our “QuikSim” option which allows users to obtain
fast “no frills” (but very accurate) solutions.  Again, modeling parameters
include borehole curvature and pipe movement in eccentric boreholes.  Here, we
extend our study to nonlinear Power law flows – yield stress effects, which
involve some subtlety, will be treated separately.  We additionally explore more
comprehensive options under the “Simulate” button and provide more details
under the “Results” menu.

We first introduce a baseline geometry and its QuikSim solution in Figure
4-2a.  This is a concentric annulus, and for the parameters shown, the computed
flow rate from the finite difference analysis is 1,494 gpm.  An exact analytical
solution for Herschel-Bulkley fluids with yield stress is available for concentric
annuli and accessible from the “Utilities” menu, however, a stationary pipe is
required (this is discussed elsewhere in this book).  The exact solution (with zero
yield stress here) gives 1,518 gpm, so our solution incurs an error less than 2
percent.

Figure 4-2a.  Power law flow in concentric annulus.

Having established the accuracy of our non-Newtonian method, we explore
the effects of borehole anomalies, in particular, the consequences of real-world
eccentricities.  For example, how do cuttings beds (which reduce flow area) and
washouts (which increase area) affect flow properties?  When flow rate is
specified, what are the effects on pressure drops for managed pressure drilling?
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To address these questions, we click “Simulate,” which offers more
comprehensive modeling options.  These provide greater meshing flexibility and
convenience.  We emphasize that in numerical analysis, different meshes lead to
solutions of varying accuracy.  But very often, coarser systems are used to
perform numerous fast runs for comparative purposes.  In the QuikSim mode, a
fine 61 41 mesh is hardcoded for high accuracy.  Here we will use a 25 11
grid to demonstrate mesh sensitivities in gpm prediction, but mainly, as will be
evident, for presentation clarity and space limitations.  When run in pure
concentric mode, the 1,494 gpm obtained previously is now replaced by 1,388
gpm for a 7.6 percent change.  This new number is the basis for several
comparisons.  We first assess the effect of cuttings beds.  Clicking “Simulate”
launches a DOS screen in which x-y conventions and coordinates are displayed,
that is,

Pipe radius .2000E+01, centered at X = 0.000E+00, Y = 0.000E+00.
Hole radius .4000E+01, centered at X = 0.000E+00, Y = 0.000E+00.
All distances and coordinates in inches.

                   POSITIONS (INCHES):
Node:  Xinner      Yinner      Xouter      Youter
  1  0.2000E+01  0.0000E+00  0.4000E+01  0.0000E+00
  2  0.1932E+01 -0.5176E+00  0.3864E+01 -0.1035E+01
  3  0.1732E+01 -0.1000E+01  0.3464E+01 -0.2000E+01
  4  0.1414E+01 -0.1414E+01  0.2828E+01 -0.2828E+01
.
.
.

 12 -0.1932E+01 -0.5176E+00 -0.3864E+01 -0.1035E+01
 13 -0.2000E+01 -0.3020E-06 -0.4000E+01 -0.6040E-06
 14 -0.1932E+01  0.5176E+00 -0.3864E+01  0.1035E+01
 15 -0.1732E+01  0.1000E+01 -0.3464E+01  0.2000E+01
 16 -0.1414E+01  0.1414E+01 -0.2828E+01  0.2828E+01
 17 -0.1000E+01  0.1732E+01 -0.2000E+01  0.3464E+01
 18 -0.5176E+00  0.1932E+01 -0.1035E+01  0.3864E+01

The user is reminded that

You may modify (x,y) coordinates  point-by-point to
include cuttings bed, borehole swelling and erosion,
and also, noncircular drill collar effects ...

Points are individually queried in clockwise manner
starting from bottom of pipe/annulus at P .... again:

X/Y orientation:
o----> Y
|
|
P
|
V  X

Then, the option to modify borehole wall shape and inner circular contour is
offered.  In this first example, only the former is changed.  For instance, we have
simple queries as shown below, with responses given in bold font.
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Modify borehole wall shape?  Y/N:  y

Point  1:   X =   4.0000, Y =   0.0000
Modify above coordinates?  Y/N:  y
O  Enter new X value:  2.828
O  Enter new Y value:  0.

Point  2:   X =   3.8637, Y =  -1.0353
Modify above coordinates?  Y/N:  y
O  Enter new X value:  2.828
O  Enter new Y value:  -1.0353
.
.

A list of twenty four points is presented and we alter five points.  From the
“Results – Text output” menu, the run summary lists the original coordinates as

                    POSITIONS (INCHES):
 Node:  Xinner      Yinner      Xouter      Youter
   1  0.2000E+01  0.0000E+00  0.4000E+01  0.0000E+00
   2  0.1932E+01 -0.5176E+00  0.3864E+01 -0.1035E+01
   3  0.1732E+01 -0.1000E+01  0.3464E+01 -0.2000E+01
   4  0.1414E+01 -0.1414E+01  0.2828E+01 -0.2828E+01
   5  0.1000E+01 -0.1732E+01  0.2000E+01 -0.3464E+01
   6  0.5176E+00 -0.1932E+01  0.1035E+01 -0.3864E+01
   7  0.1510E-06 -0.2000E+01  0.3020E-06 -0.4000E+01
   8 -0.5176E+00 -0.1932E+01 -0.1035E+01 -0.3864E+01
   9 -0.1000E+01 -0.1732E+01 -0.2000E+01 -0.3464E+01
  10 -0.1414E+01 -0.1414E+01 -0.2828E+01 -0.2828E+01
  11 -0.1732E+01 -0.1000E+01 -0.3464E+01 -0.2000E+01
  12 -0.1932E+01 -0.5176E+00 -0.3864E+01 -0.1035E+01
  13 -0.2000E+01 -0.3020E-06 -0.4000E+01 -0.6040E-06
  14 -0.1932E+01  0.5176E+00 -0.3864E+01  0.1035E+01
  15 -0.1732E+01  0.1000E+01 -0.3464E+01  0.2000E+01
  16 -0.1414E+01  0.1414E+01 -0.2828E+01  0.2828E+01
  17 -0.1000E+01  0.1732E+01 -0.2000E+01  0.3464E+01
  18 -0.5176E+00  0.1932E+01 -0.1035E+01  0.3864E+01
  19  0.2385E-07  0.2000E+01  0.4770E-07  0.4000E+01
  20  0.5176E+00  0.1932E+01  0.1035E+01  0.3864E+01
  21  0.1000E+01  0.1732E+01  0.2000E+01  0.3464E+01
  22  0.1414E+01  0.1414E+01  0.2828E+01  0.2828E+01
  23  0.1732E+01  0.1000E+01  0.3464E+01  0.2000E+01
  24  0.1932E+01  0.5176E+00  0.3864E+01  0.1035E+01

Note that the starting circles need not be concentric; any eccentricity is
permissible.  The modified points are also listed; in particular, we show only
those lines containing the (bold) cuttings bed we introduced.

 FINAL (POSSIBLY MODIFIED) PIPE/HOLE COORDINATES:

                      POSITIONS (INCHES):
 Node:   Xinner      Yinner      Xouter      Youter
   1  0.2000E+01  0.0000E+00  0.2828E+01  0.0000E+00
   2  0.1932E+01 -0.5176E+00  0.2828E+01 -0.1035E+01
   3  0.1732E+01 -0.1000E+01  0.2828E+01 -0.2000E+01
   4  0.1414E+01 -0.1414E+01  0.2828E+01 -0.2828E+01
.
.
.

  22  0.1414E+01  0.1414E+01  0.2828E+01  0.2828E+01
  23  0.1732E+01  0.1000E+01  0.2828E+01  0.2000E+01
  24  0.1932E+01  0.5176E+00  0.2828E+01  0.1035E+01
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Our interactive screens and text output summary provide more numerical
detail than is possible with color plots.  For instance, quantitative information
about the curvilinear grid generated is offered, as shown in Figure 4-2b.  Then,
simulation commences, and as the results below show, stable and rapid
convergence is achieved.  Screen output shows that the annular flow rate is
1,086 gpm as opposed to 1,388 gpm, for a 28 percent reduction.  The new cross-
sectional area is reduced to 32.88 in2 from (42 – 22) or 37.70 in2.  The complete
solution, from grid generation to solution, requires only seconds on typical
computers.

COMPUTED MESH SYSTEM:

                       11    11    11
                 11    10     9    10    11
                 10     9     8     9    10
           11       9     7   7   7     9      11
             10     7 6   6   5   6   6 7    10
                8     5   4   3   4   5     8
       1110       6   3 2 2   1   2 2 3   6      1011
            9 7     4   1           1   4     7 9
              6 5 3   1               1   3 5 6
     1110 9       2 1                   1 2       81011
            7 6 4 2                       2 4 5 7

     11 9 8 7 5 3 1                       1 3 5 7 8 91011

            7 6 4 2                       2 4 5 7
     1110 9       2 1                   1 2       91011
                6 3   1               1   3 5 6
            9 7     4   1           1   4     7 9
       1110       7   5 3 2   2   2 2 5   6 7    1011
                9   8 7   6   6   6   6 8   8 9
             10  10 9   9 8   9   7 9   910  10
           11    11    11    11    11    11    11

Figure 4-2b.  Curvilinear grid (the reader should “connect the dots”).

 SIMULATION STARTS ...

 Power law fluid assumed with exponent "n" equal
 to .8000E+00 and consistency factor of .1375E-04
 lbf sec^n/sq in.
 A yield stress of .0000E+00 psi, is taken.
 Axial pressure gradient assumed as -.2388E-01 psi/ft.

 Iteration  100, Error = .00000020
 Iteration  200, Error = .00000013
.
.
 Iteration  800, Error = .00000000
 Iteration  900, Error = .00000007
 Iteration 1000, Error = .00000007

Also provided but not shown are detailed numerical tabulations for all
physical properties at all coordinate points, in addition to the following
numerical text displays overlaid on annular shape for all relevant physical
properties (in each case, the first two significant digits are printed for
convenience).  These can be very informative.  In Figure 4-2c, for example, we
find that maximum velocities at the top (i.e., 21 in./sec) are five times those at
the bottom.  These numbers may be useful in hole cleaning applications.
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COMPUTED AXIAL VELOCITY (IN/SEC):

                        0     0     0
                  0     9    15     9     0
                  9    15    19    15     9
            0      15    21  21  21    15       0
              9    2121  21  19  21  2121     9
               19    19  17  12  17  19    19
        0 9      21  12 6 6   0   6 612  21       9 0
           1521    17   0           0  17    2115
             211912   0               0  121921
      0 915       6 0                   0 6      19 9 0
           212015 6                       6151921

      01519201912 0                       01219201915 9 0

           202015 6                       6151820
      0 915       5 0                   0 5      15 9 0
               1810   0               0  101718
           1519    11   0           0  11    1915
        0 9      15   8 5 1   1   1 2 8  1515     9 0
               13   9 9   5   5   5   9 9  1513
              8   5 8   4 5   4   5 4   8 5   8
            0     0     0     0     0     0     0

Figure 4-2c.  Axial velocity U.

No claim is made to model the enormous difficulties associated with
turbulence, but a simple tool is provided for user convenience.  At run-time,
queries are made for fluid specific gravity and critical Reynolds number, here
taken as 1.5 and 2,100 respectively.  Then, a flow stability map like that in
Figure 4-2d is provided as a flow analysis guide to the engineer.  Average
Reynolds numbers for the bottom half and for the entire annulus are also given.

                       L     L     L
                 L     T     T     T     L
                 T     T     T     T     T
           L       T     T   T   T     T       L
             T     T T   T   T   T   T T     T
               T     T   T   T   T   T     T
       L T       T   T T T   L   T T T   T       T L
           T T     T   L           L   T     T T
             T T T   L               L   T T T
     L T T       T L                   L T       T T L
           T T T T                       T T T T

     L T T T T T L                       L T T T T T T L

           T T T T                       T T T T
     L T T       T L                   L T       T T L
               T T   L               L   T T T
           T T     T   L           L   T     T T
       L T       T   T T T   T   T T T   T T     T L
               T   T T   T   T   T   T T   T T
             T   T T   T T   T   T T   T T   T
           L     L     L     L     L     L     L

Figure 4-2d.  Laminar-turbulent (L-T) stability map.

In Newtonian flows, the viscosity is constant throughout the flow domain
(assuming that there are no temperature or pressure dependencies).  However, in
non-Newtonian flows, the apparent viscosity varies within the cross-section and
will depend on pressure gradient or flow rate.  It also depends on the size and
shape of the vessel.  Figure 4-2e shows the apparent viscosity distribution
obtained for our cuttings bed example.  Components of shear rate and viscous
stress in the x and y directions, useful in hole-cleaning applications, are book-
kept separately since components parallel and perpendicular to the cuttings bed
play different bed removal functions.  Also provided in the following pages are
numerical diagrams for both dissipation function and Stokes product.
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COMPUTED APPARENT VISCOSITY (LBF SEC/SQ IN):

                       40    40    40
                 40    43    46    43    40
                 43    46    53    46    43
           40      46    69  69  69    46      40
             43    6968  68  53  68  6869    43
               53    53  46  43  46  53    53
       4043      68  434141  38  414143  68      4340
           4769    46  38          38  46    6947
             685343  38              38  435368
     404347      4138                  3841      534340
           70684641                      41465370

     40475470534339                      3943537054474340

           71664741                      41475371
     404447      4139                  3941      474440
               6143  40              40  435261
           4868    47  42          42  47    6848
       4044      59  544747  49  474554  5659    4440
               50  5256  69  80  69  5752  5550
             47  4548  5156  53  6451  4845  47
           43    42    44    47    44    42    43

Figure 4-2e.  Apparent viscosity .

PLOT OF STRESS "AppVisc x dU(x,y)/dx" VS (X,Y):
COMPUTED (ABSOLUTE VALUE OF) VISCOUS STRESSES (PSI):

                       15    15    15
                 14    13    10    13    14
                 11     9     5     9    11
           11       8     2   2   2     8      11
              9     1 1   2   6   2   1 1     9
                4     5   9  14   9   5     4
        8 6       1  121515  20  151512   1       6 8
            5 0     7  17          17   7     0 5
              1 3 7  14              14   7 3 1
      4 3 2       810                  10 8       1 3 4
            0 0 2 4                       4 2 1 0

      0 0 0 0 0 0 0                       0 0 0 0 0 0 0 0

            1 0 2 4                       4 2 0 1
      4 3 2       7 9                   9 7       2 3 4
                0 5  11              11   5 1 0
            5 2     4  11          11   4     2 5
        7 6       2   2 7 9   8   9 9 2   0 2     6 7
                7   6 3   0   1   0   0 6   5 7
              9  11 9   7 4   5   2 7   911   9
           10    14    11     7    11    14    10

Figure 4-2f.  Viscous stress  U/x.

PLOT OF STRESS "AppVisc x dU(x,y)/dy" VS (X,Y):
COMPUTED (ABSOLUTE VALUE OF) VISCOUS STRESSES (PSI):

                        4     0     4
                  8     3     0     3     8
                  6     2     0     2     6
           11       5     0   0   0     5      11
              9     1 1   0   0   0   1 1     9
                4     2   2   0   2   2     4
       1411       1   7 8 4   0   4 8 7   1      1114
            8 1     7  10          10   7     1 8
              1 512  14              14  12 5 1
     1513 9      1517                  1715       51315
            2 2 915                      15 9 5 2

     15 9 5 1 61419                      1914 6 1 5 91315

            1 2 915                      15 9 6 1
     1512 9      1415                  1514       91215
                312  11              11  12 6 3
            6 0     8   6           6   8     0 6
       1210       2   5 6 2   2   2 6 5   4 2    1012
                1   2 3   2   1   2   4 2   0 1
              3   0 1   0 1   0   1 0   1 0   3
            5     0     0     0     0     0     5

Figure 4-2g.  Viscous stress  U/y.
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COMPUTED DISSIPATION FUNCTION (LBF/(SEC X SQ IN)):

                        6     6     6
                  6     4     2     4     6
                  4     2     0     2     4
            6       2     0   0   0     2       6
              4     0 0   0   0   0   0 0     4
                0     0   2   4   2   0     0
        6 4       0   4 7 7  10   7 7 4   0       4 6
            2 0     2  10          10   2     0 2
              0 0 4  10              10   4 0 0
      6 4 2       710                  10 7       0 4 6
            0 0 2 7                       7 2 0 0

      6 2 0 0 0 410                      10 4 0 0 0 2 4 6

            0 0 2 6                       6 2 0 0
      6 3 1       6 8                   8 6       1 3 6
                0 4   6               6   4 0 0
            1 0     1   4           4   1     0 1
        5 3       0   0 2 1   1   1 3 0   0 0     3 5
                1   0 0   0   0   0   0 0   0 1
              2   3 1   1 0   0   0 1   1 3   2
            3     4     2     1     2     4     3

Figure 4-2h.  Dissipation function.

PLOT OF SHEAR RATE "dU(x,y)/dx" VS (X,Y):
COMPUTED (ABSOLUTE VALUE OF) SHEAR RATES (1/SEC):

                       39    40    39
                 35    30    21    30    35
                 26    20    11    20    26
           28      18     2   3   2    18      28
             21     2 2   3  11   3   2 2    21
                7     9  20  33  20   9     7
       2015       2  283640  51  403628   2      1520
           10 1    15  44          44  15     110
              1 515  36              36  15 5 1
     10 7 5      2125                  2521       2 710
            0 1 510                      10 5 3 0

      0 0 0 0 0 0 0                       0 0 0 0 0 0 0 0

            1 0 410                      10 4 1 1
     10 8 5      1823                  2318       5 810
                013  29              29  13 3 0
           10 3    10  27          27  10     310
       1814       4   41519  17  1921 4   0 4    1418
               14  11 5   0   1   0   011   914
             19  2618  14 8   9   314  1826  19
           24    33    25    15    25    33    24

Figure 4-2i.  Shear rate U/x.

PLOT OF SHEAR RATE "dU(x,y)/dy" VS (X,Y):
COMPUTED (ABSOLUTE VALUE OF) SHEAR RATES (1/SEC):

                       10     0    10
                 20     8     0     8    20
                 15     5     0     5    15
           28      10     0   0   0    10      28
             21     1 1   0   0   0   1 1    21
                7     5   5   0   5   5     7
       3526       2  152110   0  102115   2      2635
           18 2    15  25          25  15     218
              2 928  36              36  28 9 2
     392920      3644                  4436      102939
            2 32040                      402010 2

     402010 2113250                      503211 210203040

            1 32039                      392011 1
     382819      3440                  4034      192838
                527  29              29  2711 5
           13 0    15  15          15  15     013
       3122       4   913 4   4   414 9   8 4    2231
                3   4 6   3   1   3   7 4   1 3
              8   0 2   1 1   0   2 1   2 0   8
           13     0     0     0     0     0    13

 Figure 4-2j.  Shear rate U/y.
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PLOT OF "STOKES PRODUCT" OR "VELOCITY X APPARENT VISCOSITY" VS (X,Y):
COMPUTED STOKES PRODUCT(LBF/IN):

                        0     0     0
                  0     4     7     4     0
                  4     7    10     7     4
            0       7    14  14  14     7       0
              4    1414  14  10  14  1414     4
               10    10   7   5   7  10    10
        0 4      14   5 2 2   0   2 2 5  14       4 0
            714     7   0           0   7    14 7
             1410 5   0               0   51014
      0 4 7       2 0                   0 2      10 4 0
           1414 7 2                       2 71014

      0 7101410 5 0                       0 5101410 7 4 0

           1413 7 2                       2 71014
      0 4 7       2 0                   0 2       7 4 0
               11 4   0               0   4 911
            713     5   0           0   5    13 7
        0 4       9   4 2 0   0   0 1 4   8 9     4 0
                6   5 5   3   4   3   5 5   8 6
              4   2 3   2 2   2   3 2   3 2   4
            0     0     0     0     0     0     0

Figure 4-2k.  Stokes product U.

 In many engineering problems averages provide important tools for
correlation purposes.  For example, the average viscous stress at the bottom of
the annulus is a good indicator of cuttings transport efficiency, because it is
mechanical stress that removes debris.  Averages for various physical quantities
are computed for the entire annulus and for the bottom half, thus providing the
engineer with “ballpark” numbers for potential correlation applications.  In
addition, simple line plots together with tabulated values are given for all
physical quantities at the top of the hole and just next to the hole bottom, as
shown on the next two pages.

 TABULATION OF CALCULATED AVERAGE QUANTITIES, I:
 Area weighted means of absolute values taken over
 BOTTOM HALF of annular cross-section ...
 O  Axial annular velocity  (inches/sec):  .8940E+02
 O  Apparent viscosity (lbf sec / sq in):  .5089E-05
 O  Viscous stress, AppVis x dU/dx (psi):  .4739E-03
 O  Viscous stress, AppVis x dU/dy (psi):  .6356E-03
 O  Dissipation fnction (lbf/(sec sqin)):  .2425E+00
 O  Shear rate dU/dx (Recip sec, 1 /sec):  .1013E+03
 O  Shear rate dU/dy (Recip sec, 1 /sec):  .1407E+03
 O  Stokes product Vel x AppVis (lbf/in):  .4854E-03

 TABULATION OF CALCULATED AVERAGE QUANTITIES, II:
 Area weighted means of absolute values taken over
 ENTIRE annular (x,y) cross-section ...
 O  Axial annular velocity  (inches/sec):  .1082E+03
 O  Apparent viscosity (lbf sec / sq in):  .5033E-05
 O  Viscous stress, AppVis x dU/dx (psi):  .5967E-03
 O  Viscous stress, AppVis x dU/dy (psi):  .6388E-03
 O  Dissipation fnction (lbf/(sec sqin)):  .2941E+00
 O  Shear rate dU/dx (Recip sec, 1 /sec):  .1327E+03
 O  Shear rate dU/dy (Recip sec, 1 /sec):  .1436E+03
 O  Stokes product Vel x AppVis (lbf/in):  .5886E-03

Figure 4-2l.  Average quantities for half and entire domains.
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                     VERTICAL SYMMETRY PLANE ABOVE DRILL PIPE

 Axial velocity distribution (in/sec):
        X                     0
                              ______________________________
      1.00     0.0000E+00     |
      1.27     0.9453E+02     |           *
      1.52     0.1616E+03     |                    *
      1.75     0.1985E+03     |                          *
      1.97     0.2116E+03     |                            *
      2.17     0.2112E+03     |                           *
      2.36     0.1989E+03     |                          *
      2.54     0.1702E+03     |                      *
      2.70     0.1253E+03     |               *
      2.86     0.6528E+02     |       *
      3.00     0.0000E+00     |

 VERTICAL SYMMETRY PLANE BELOW DRILL PIPE
 Axial velocity distribution (in/sec):
        X                     0
                              ______________________________
      6.93     0.0000E+00     |
      7.02     0.1758E+02     |       *
      7.11     0.3267E+02     |               *
      7.20     0.4390E+02     |                      *
      7.29     0.5110E+02     |                          *
      7.38     0.5450E+02     |                           *
      7.47     0.5458E+02     |                            *
      7.56     0.5047E+02     |                         *
      7.65     0.4067E+02     |                    *
      7.74     0.2390E+02     |           *
      7.83     0.0000E+00     |

 VERTICAL SYMMETRY PLANE ABOVE DRILL PIPE
 Apparent viscosity distribution (lbf sec/sq in):
        X                     0
                              ______________________________
      1.00     0.4028E-05     |               *
      1.27     0.4364E-05     |                *
      1.52     0.4699E-05     |                  *
      1.75     0.5365E-05     |                     *
      1.97     0.6955E-05     |                            *
      2.17     0.6857E-05     |                           *
      2.36     0.5349E-05     |                     *
      2.54     0.4692E-05     |                  *
      2.70     0.4309E-05     |                *
      2.86     0.4101E-05     |               *
      3.00     0.3893E-05     |              *

 VERTICAL SYMMETRY PLANE BELOW DRILL PIPE
 Apparent viscosity distribution (lbf sec/sq in):
        X                     0
                              ______________________________
      6.93     0.4672E-05     |               *
      7.02     0.4998E-05     |                *
      7.11     0.5324E-05     |                 *
      7.20     0.5863E-05     |                   *
      7.29     0.6808E-05     |                       *
      7.38     0.8066E-05     |                            *
      7.47     0.7193E-05     |                        *
      7.56     0.6010E-05     |                    *
      7.65     0.5389E-05     |                  *
      7.74     0.5051E-05     |                *
      7.83     0.4714E-05     |               *

 VERTICAL SYMMETRY PLANE ABOVE DRILL PIPE
 Viscous stress, AppVis x dU/dx  (psi):
        X                                   0
                              ______________________________
      1.00     0.1639E-02                   |           *
      1.27     0.1356E-02                   |         *
      1.52     0.1008E-02                   |      *
      1.75     0.5934E-03                   |   *
      1.97     0.2100E-03                   |*
      2.17    -0.2224E-03                 * |
      2.36    -0.6002E-03              *    |
      2.54    -0.1014E-02           *       |
      2.70    -0.1425E-02        *          |
      2.86    -0.1738E-02      *            |
      3.00    -0.2012E-02                   |

Figure 4-2m.  Line graphs and tabulations.
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 VERTICAL SYMMETRY PLANE BELOW DRILL PIPE
 Viscous stress, AppVis x dU/dx  (psi):
        X                                   0
                              ______________________________
      6.93     0.1010E-02                   |              *
      7.02     0.8670E-03                   |           *
      7.11     0.6961E-03                   |         *
      7.20     0.5103E-03                   |      *
      7.29     0.3216E-03                   |   *
      7.38     0.1258E-03                   |*
      7.47    -0.1078E-03                 * |
      7.56    -0.3222E-03              *    |
      7.65    -0.5112E-03           *       |
      7.74    -0.6577E-03         *         |
      7.83    -0.7803E-03       *           |

 VERTICAL SYMMETRY PLANE ABOVE DRILL PIPE
 Dissipation function (lbf/(sec x sq in)):
        X                     0
                              ______________________________
      1.00     0.6666E+00     |                 *
      1.27     0.4212E+00     |          *
      1.52     0.2163E+00     |    *
      1.75     0.6564E-01     *
      1.97     0.6344E-02     |
      2.17     0.7212E-02     |
      2.36     0.6735E-01     *
      2.54     0.2190E+00     |    *
      2.70     0.4715E+00     |           *
      2.86     0.7365E+00     |                   *
      3.00     0.1040E+01     |                            *

 VERTICAL SYMMETRY PLANE BELOW DRILL PIPE
 Dissipation function (lbf/(sec x sq in)):
        X                     0
                              ______________________________
      6.93     0.2331E+00     |                            *
      7.02     0.1615E+00     |                  *
      7.11     0.9869E-01     |          *
      7.20     0.4940E-01     |    *
      7.29     0.1851E-01     |*
      7.38     0.3882E-02     |
      7.47     0.2246E-02     |
      7.56     0.1737E-01     |*
      7.65     0.4851E-01     |    *
      7.74     0.8571E-01     |         *
      7.83     0.1292E+00     |              *

 VERTICAL SYMMETRY PLANE ABOVE DRILL PIPE
 Shear rate dU/dx  (1/sec):
        X                                   0
                              ______________________________
      1.00     0.4068E+03                   |          *
      1.27     0.3107E+03                   |        *
      1.52     0.2146E+03                   |     *
      1.75     0.1106E+03                   |  *
      1.97     0.3020E+02                   |
      2.17    -0.3243E+02                  *|
      2.36    -0.1122E+03               *   |
      2.54    -0.2160E+03            *      |
      2.70    -0.3308E+03         *         |
      2.86    -0.4238E+03      *            |
      3.00    -0.5168E+03                   |

 VERTICAL SYMMETRY PLANE BELOW DRILL PIPE
 Shear rate dU/dx  (1/sec):
        X                                   0
                              ______________________________
      6.93     0.2162E+03                   |              *
      7.02     0.1735E+03                   |           *
      7.11     0.1307E+03                   |        *
      7.20     0.8704E+02                   |     *
      7.29     0.4724E+02                   |  *
      7.38     0.1559E+02                   |*
      7.47    -0.1499E+02                 * |
      7.56    -0.5361E+02               *   |
      7.65    -0.9486E+02            *      |
      7.74    -0.1302E+03         *         |
      7.83    -0.1655E+03       *           |

Figure 4-2m.  Line graphs and tabulations (cont’d).
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 VERTICAL SYMMETRY PLANE ABOVE DRILL PIPE
 Stokes product (lbf/in):
        X                     0
                              ______________________________
      1.00     0.0000E+00     |
      1.27     0.4125E-03     |      *
      1.52     0.7596E-03     |             *
      1.75     0.1065E-02     |                   *
      1.97     0.1472E-02     |                            *
      2.17     0.1448E-02     |                           *
      2.36     0.1064E-02     |                   *
      2.54     0.7988E-03     |              *
      2.70     0.5401E-03     |         *
      2.86     0.2677E-03     |   *
      3.00     0.0000E+00     |

 VERTICAL SYMMETRY PLANE BELOW DRILL PIPE
 Stokes product (lbf/in):
        X                     0
                              ______________________________
      6.93     0.0000E+00     |
      7.02     0.8786E-04     |   *
      7.11     0.1739E-03     |         *
      7.20     0.2574E-03     |               *
      7.29     0.3478E-03     |                     *
      7.38     0.4396E-03     |                            *
      7.47     0.3926E-03     |                        *
      7.56     0.3034E-03     |                  *
      7.65     0.2192E-03     |            *
      7.74     0.1207E-03     |      *
      7.83     0.0000E+00     |

Figure 4-2m.  Line graphs and tabulations (cont’d).

Again, in this example, we have shown how we can edit the borehole outer
contour and easily introduce a flat cuttings bed.  Other bed inclination effects are
also easily incorporated.  In Figure 4-2n, the velocity distribution for the original
concentric baseline annulus is shown; that associated with the cuttings bed
modification is given at the center, while to the far right, we have introduced an
asymmetric washout plus stabilizers.

Figure 4-2n.  Pressure gradient, - 0.02388 psi/ft. throughout
(flow rates, from left to right, 1,388 gpm, 1,086 gpm, and 1,040 gpm).

The flows obtained for the three calculations above are complicated, hardly
similar and qualitatively quite different.  Despite the differences, we emphasize
that all three required identical computation times, the main difference being the
degree of labor required to enter coordinate changes.  User interface
improvements are planned.  Again, the simulator allows us to quantify the
effects of fluid nonlinearities and geometric anomalies, both of which are
important to managed pressure drilling.
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As a final calculation, we ask, “What pressure gradient is required to
obtain the original flow rate of 1,388 gpm (obtained for the concentric annulus)
for the cuttings-bed configuration at the center of Figure 4-2n is assumed?  This
is easily answered by entering parameters as shown in Figure 4-2o and re-
entering the coordinate modifications used above.

Figure 4-2o.  “Volumetric flow rate” specified mode.

For our coarse mesh, twelve iterations, each involving completely
converged solutions of the velocity problem were required, taking about thirty
seconds of computing time.  In fact, the final screen output shows that

Iterating on pressure gradient to match flow rate ...

O  Axial pressure gradient of -.2930E-01 psi/ft
   yields volume flow rate of 0.1384E+04 gal/min.
   Iterations continuing ...

Pressure gradient found iteratively, -.2930E-01 psi/ft,
to yield 0.1384E+04 gal/min vs target 0.1388E+04 gal/min.
Note:  Iterations terminate within 1% of target rate.
Refine result by manually changing pressure gradient.

Our results show that the blockage introduced by the cuttings bed
worsened the pressure gradient from – 0.02388 psi/ft. to – 0.02930 psi/ft, a
consequence which may prove unacceptable for drilling safety (This represents a
23 percent increase in equivalent circulating density.).  We emphasize that our
coarse mesh was used only to reduce page output for this book.  In real
applications, the finer meshes supported by this simulator should be used.  The
focus of Examples 4-1 and 4-2 has been on problems where validations with
exact solutions are available, and in particular, convey a sense of the “numbers”
describing physical properties in the annulus.  For the remainder of this book,
we turn to improved graphical displays, analysis tools and menu options;
detailed tabulated results are, of course, always available at the user’s option.
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Example 4-3.  Turbulence modeling and Power law flow analogy.

The classic paper “Turbulent Flow of Non-Newtonian Systems” by Dodge
and Metzner (1959) derived a general form of the logarithmic friction factor and
Reynolds number correlation relationship using dimensional arguments.  It is
considered the standard for non-Newtonian turbulent pipe flow over the past
fifty years and remains the most trusted for predictions of turbulent losses in
Power law fluids.  The work, for Power law fluids, has spawned numerous
scholarly extensions to more complicated rheologies and geometries.  It is not
possible, given project constraints, to review these; however, some key ideas
may be applicable to the subject of eccentric annular flow modeling.

Laminar Turbulent

Figure 4-3a.  Laminar versus turbulent velocity profiles in a circular pipe.

Figure 4-3a for Newtonian flow, from Schlichting (1968), shows laminar
and turbulent velocity profiles in a circular pipe.  For the same flow rate, the
latter profile is significantly flatter than the paraboloidal shape at the left.
Dodge and Metzner (1959) observed that, in a Power law fluid, as ‘n’ decreases
toward zero, the laminar profile becomes progressively flatter and perfectly flat
in the limit of zero n.  Now, on passing from laminar to turbulent flow, the
laminar velocity profile is flattened by turbulent momentum transfer from high
to low-velocity areas.  Hence, turbulence has the same effect on velocity profile
as does a decreasing value of n.  In the case when n = 0, again with the laminar
profile flat, there is no distinction between laminar and turbulent profile shape
so the two friction-factor-Reynolds-number relationships become identical.

Of course, for general eccentric annular flows, the Dodge-Metzner
correlation cannot be used because it applies only to circular pipes.  But the
authors’ comments motivate us to explore the possibility of modeling turbulent
velocity profiles and pressure drops using very low values of the Power law
exponent.  In Figures 4-3b and 4-3c, we show computed velocity profiles and
volumetric flow rates for a highly eccentric annulus assuming, respectively, 0.1
and 0.03 values for n.  Both velocity profiles display the required flatness.  Here
n and K may be related to effective turbulent eddy as opposed to laminar
viscosities.  Their values may be related to wall roughness or inlet disturbance
levels, but practically, might be viewed as history matching parameters.
Numerical computations in QuikSim mode require about five seconds, no more
than any other eccentric flow simulations, and are extremely stable.
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Figure 4-3b.  Low n = 0.1 simulation (302.7 gpm).

Figure 4-3c.  Very low n = 0.03 simulation (787.6 gpm).
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Example 4-4.  Pressure gradient versus flow rate curve
computation for non-Newtonian eccentric annuli.

The formulas for stress  = {1 – exp(-0 d/dt /0)}{0 + K (d/dt) n} and
apparent viscosity  = /(d/dt) = {1 – exp(-0 d/dt /0)}{0/(d/dt) + K (d/dt) n-1}
are extended Herschel-Bulkley constitutive relationships that apply to intrinsic
fluid properties only (these theoretical representations are explained in detail
elsewhere in this book).  The constants n, K, 0 and 0 are determined from
laboratory measurements using viscometers with simple geometries whose data
can be interpreted exactly.  These relationships apply only to microscopic
properties.  These equations are used in flow simulators such as ours to
determine pressure gradients, flow rates and detailed macroscopic properties
throughout the annular cross-section when complicated geometries are specified.
In steady flow applications, the “pressure gradient versus volumetric flow rate”
curve is one important analysis objective (refer to the menu in Figure 1-2m).  It
describes macroscopic behavior and depends on annular geometry, drillpipe or
casing axial speed, pressure gradient or flow rate, and rotational speed.  Unlike,
say, Newtonian flow in concentric annuli (e.g., see Equation 5-1f) where flow
rate varies linearly with pressure gradient and inversely with viscosity in the
stationary case, the relationships for non-Newtonian flow are complicated by
nonlinearity and a variable apparent viscosity dependent on geometry and rate.

Eccentricity effects.  To demonstrate the subtleties of nonlinearity, we
consider inner and outer radii of 3 and 6 inches, respectively, and apply the
steady solver in Figure 4-4a to a Power law fluid with n = 0.415 and K =
0.0000568 lbf secn/in.2 (for which the yield stress is zero).  The dp/dz versus
flow rate curve in Figure 4-4a corresponds to an eccentricity of 0.333, while that
in Figure 4-4b corresponds to one of 0.667.  Note the differences found between
the two results.  Also note that our plotting utility will give both “dp/dz versus
gpm” and “gpm versus dp/dz” results depending on user preference.

Figure 4-4a.  Flow rate versus dp/dz (0.333 eccentricity).
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Figure 4-4b.  Flow rate versus dp/dz (0.667 eccentricity).

Effect of axial pipe movement.  In the next examples, we illustrate the
effects of axial pipe or casing movement for our 0.667 eccentricity geometry.
We assume a high speed of +100 in./sec. to emphasize key ideas.  Even when
the pressure gradient vanishes, there is net positive flow because the drillpipe is
dragging fluid in the positive direction (for dp/dz = 0 psi/ft. and Upipe = +100
in./sec, we have + 669.0 gpm).  The bottom part of Figure 4-4c shows that if
pressure increases in the direction of flow, thus opposing motion, positive flow
rate is nonetheless achieved due to dragging.  In Figure 4-4d, we consider a high
negative speed of – 100 in./sec.  The line graph indicates that a strong pressure
gradient is needed just to maintain a small positive flow rate because the
drillpipe is dragging fluid to the left.  In both figures, the pressure gradient
versus flow rate relationship is almost linear.  Solutions for very negative flow
rate, which are physically possible, are not calculated or plotted here.

We might note that “dp/dz versus gpm” curve calculations are not as
straightforward as they appear.  Since pressure gradients found in practice may
range anywhere from 0.0001 psi/ft. to 0.1 psi/ft, performing complete annular
flow computations at, say, 0.0001 psi/ft. increments, may lead to hour-long
computing times.  The strategy employed is simple.  We assume a maximum
flow rate of 1,500 gpm and use our steady solver in “flow rate specified” mode
to determine the pressure gradient characteristic of the annular geometry and
rheology.  This number is then divided by a reasonable number, say twenty, and
then twenty “dp/dz specified” runs are performed to determine the
corresponding gpm’s.  Example calculated results appear in Figures 4-4a,b,c,d.
Our “dp/dz versus gpm” curve generation option is accessed directly from the
menu in Figure 1-2m and is completely automated.  No other software interfaces
are called by the high level menu.
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Figure 4-4c.  Positive drillpipe or casing speed.

Figure 4-4d.  Negative drillpipe or casing speed.



Steady Eccentric Annular Flow     155

Example 4-5.  Effects of influx-outflux along borehole
path for non-Newtonian eccentric annuli without rotation.

Our steady non-Newtonian flow solver is exact two-dimensionally,
providing accurate flow rates and field properties when annular geometries with
impermeable walls are specified.  In many drilling applications, fluid influxes
and out fluxes will be found along the path of the borehole, so that the
volumetric flow rates at any particular location will differ from that at another.
A simple utility was developed to provide approximate solutions for total
pressure drop when local fluid gains or losses can be estimated.  This is accessed
from the Utilities menu by calling “Influx (outflux) . . . total pressure drop.”
The action produces a “Influx (outflux) interval data” form, as shown in Figure
4-5a, which is completed by the user, allowing up to ten different borehole
intervals with different lengths and net flow rates.

Figure 4-5a.  Creating influx (outflux) interval data.
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The large variations shown in Figure 4-5a are assumed for illustrative
purposes only so that the reader can follow the interpolation process (described
below) visually by eye.  Once “Saved” is selected in Figure 4-5a and “Total
pressure drop” is clicked, the software algorithm automatically constructs the
required “dp/dz versus gpm” curve as explained in Example 4-4.  Then, the
pressure drop calculations corresponding to those in the user’s influx table are
obtained by interpolation from the general curve and summed.  Results are
summarized as shown in Figure 4-5b.  This option can also be used for inverse
applications.  For instance, if the total drop in pressure for an interval can be
estimated or is known from a logging measurement, repeated application of the
method can be used to predict net fluid influx or outflux.

Figure 4-5b.  Total pressure drop computed.

We emphasize that the modeling option in Figure 4-5a assumes a non-
rotating drillpipe.  Depending on rotational rate and annular eccentricity, the
total pressure drop along the borehole path may be higher or lower than the
value determined on a stationary basis.   We discuss rotational effects in Chapter
7 and, in particular, how they can be computed using the “Transient 2D”
simulator.
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Example 4-6.  Steady-state swab-surge in eccentric annuli
for Power law fluids with and without circulation (no rotation).

In this example, we discuss applications of our steady-state, non-
Newtonian flow simulator to swab and surge analysis for eccentric annuli with
and without mud circulation.  This problem is important and complementary to
new hardware capabilities in managed pressure drilling that allow continuous
mud circulation while tripping in and out of the hole.  We focus implicitly on
long deviated and horizontal wells for which hole eccentricity is very important.
Existing models are either concentric, which are inapplicable, or one-
dimensional, in which case any details of the annular cross-section are
impossible to model.  Therefore, our work describes completely new methods
that support accurate prediction of pressure distributions in the hole.

z

z = 0z =  L

P = Psurf
P = Psurf  L P/z

L

z

z = 0z =  L

P = Psurf
P = Psurf  L P/z

L

Figure 4-6a.  Coordinate system and conventions.
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Basic concepts.  Our simulator predicts the constant pressure gradient
P/z needed to induce a specified volumetric flow rate Q for any Herschel-
Bulkley fluid in an eccentric annulus.  By convention, when Q is positive or
“flowing to the right,” the pressure P falls in the direction of increasing z.
Analogously, when Q is negative or “flowing to the left,” P increases with
increasing z.  Let us first consider flows without mud circulation.  In the top
diagram of Figure 4-6a, the drillpipe and bit are shown moving toward the
bottom of the hole and displacing fluid as it moves to the left.  This fluid must
then flow to the right as shown and will produce a positive Q.  Now, the
equation for pressure is simply P = z P/z + constant.  If z = 0 represents the
surface where P = Psurf is fixed by the driller and z = – L is the bit location with
L being the borehole length, then the pressure at the bit is just Pbit = – L P/z +
Psurf.  Since P/z < 0, we have Pbit >> Psurf, which formally shows that in a
“surge” situation the bottomhole pressure greatly exceeds that at the surface.
Next, consider the bottom diagram in Figure 4-6a.  Here we “swab” the
drillstring, pulling it out of the hole.  To fill the void left by the drillbit, the flow,
Q, must travel towards the left, for which we have P/z > 0.  Then, Pbit = – L
P/z + Psurf implies that Pbit << Psurf which formally shows that pressure is
greatly reduced at the bit.  Increased pressures at the bit are associated with
formation invasion and the possibility of fracturing the rock, while decreased
pressures may increase the likelihood of blowouts.

The main simulation objective is accurate prediction of Pbit as a function of
annular geometry, fluid rheology and (positive or negative) tripping speed in the
presence of mud circulation at any pump rate.  In order to produce meaningful
results, the simulator must be able to model general eccentricities, arbitrary
Herschel-Bulkley parameters, plus non-zero drillpipe speeds for any pump rate,
as the steady-state flow simulator described here will in an exact manner.  There
are several scenarios that must be considered in addressing this problem which
are outlined in Figure 4-6b.  Surge situations, as shown in diagrams (a) and (b),
are straightforward to model.  In (a) without mud flow, the net flow Q > 0
simply flows to the right.  When mud is pumped down the drillstring, as shown
in (b), the flow rate Q is simply increased, as shown by the exaggerated velocity
profile.  Swab scenarios are slightly more subtle.  In (c) without mud flow,
pulling the drillstring out of the hole induces a negative flow Q < 0 to the left.
In (d), mud is pumped down the drillstring at a low pump rate.  If the rate is low
enough, Q will still be negative.  On the other hand, if the pump rate is high, as
suggested in (e), the net flow will come out of the hole, with Q > 0 now being
positive.  In this limit, pulling the drillstring out of the hole is consistent with
pressures at the bit that exceed those at the surface.
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(a)

(b)

(c)

(e)

Mud

Mud

(d) Mud

Figure 4-6b.  Five scenarios in continuous flow managed pressure drilling.

The foregoing five scenarios are obvious in retrospect, and we have
summarized them only because they do not arise in more conventional studies
where mud does not circulate.  Note that the equation “Pbit = – L P/z + Psurf ”
is all that is necessary to calculate pressure at the bit.  Again, L is the hole or
drillstring length, Psurf is the known pressure at the surface choke, and P/z
represents output produced by the simulator.
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Macroscopic rheological properties.  Unlike Newtonian flows where the
viscosity is a constant once and for all (assuming no pressure or temperature
dependencies), the apparent viscosity in a non-Newtonian flow varies
throughout the cross-section, and depends on geometrical details plus flow rate
or pressure gradient.  This is not to say that it is unimportant: it is a useful
correlator for cuttings transport and hole cleaning efficiency and may be
significant in stuck pipe assessment.  Apparent viscosity, we emphasize, is not a
property intrinsic to the fluid; however, for Herschel-Bulkley fluids, “n,” “K”
and “yield” are.  These “microscopic” properties are inputted into the simulator
to created an all-important “pressure gradient versus flow rate curve” that
describes “macroscopic” properties for the overall flow.  This curve is important
to swab and surge analysis: once the combined flow rate due to surface pumping
plus tripping is known, it gives the pressure gradient required for use in the
equation “Pbit = – L P/z + Psurf .”  We will give examples of different curves
obtained for different fluid types and annular geometries next.  We will
introduce the basic analysis concepts by way of software modules that have been
developed to host our calculations.

Newtonian fluids.  The three Herschel-Bulkley parameters noted above can
be determined from viscometer measurements using any number of regression
techniques available in the literature (For zero-yield flows of Newtonian and
Power law fluids, n, and K can be determined using the built-in utilities shown
in Figure 1-2k.).  Once these are available, they are entered into the top right text
boxes of the simulator interface in Figure 4-6c-1 where, for the present example,
we have assumed the properties of water at 1 cp.    For the concentric geometry
indicated, clicking on “QuikSim” leads to a flow rate of 943.5 gpm.  Next, in
Figure 4-6c-2, we increase the eccentricity, , from 0.0 to 0.667 for the same
input parameters, and obtain the greatly increased flow rate of 1,521 gpm (It is
well known that increases in eccentricity generally lead to increases in flow rate
under the same assumed pressure gradient.).   Figures 4-6c-1 and 4-6c-2
represent the results of “single analysis mode” simulations when detailed results
like those in Figures 1-2e,f,g,h are required.  Much quicker results are obtained
when the option in Figure 4-6c-3 is selected.  This option ignores the “pressure
gradient specified” or “flow rate specified” prescriptions, and leads, within a
minute or two, to the results in Figure 4-6c-4, here for our eccentric annulus.  It
is important to observe two features characteristic of Newtonian flows.  First,
the “pressure gradient versus flow rate curve” passes through the origin; second,
the curve is a straight line whose slope depends only on the geometry of the
annulus.  Once this slope is determined for a specific eccentric annulus at any
given pressure gradient, either computationally or experimentally, the same
applies to all pressure gradients.  In this sense, Newtonian flows represent an
exception to general nonlinear fluid rheologies, where every case must be
treated on an individual basis.  The straight line nature of the curve means that
changes in flow rate lead to proportional changes in pressure gradient.
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Figure 4-6c-1.  Newtonian concentric ( = 0.0) flow.

Figure 4-6c-2.  Newtonian eccentric ( = 0.667) flow
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Figure 4-6c-3.  Newtonian dp/dz versus flow rate calculation ( = 0.667).

Figure 4-6c-4.  Newtonian dp/dz versus flow rate behavior ( = 0.667).

Finally, we note that for the “pressure gradient versus flow rate curve”
option in Figure 4-6c-3, we had fixed the pipe or casing speed to zero for our
calculations.  In general, this can be a positive or negative constant, making the
resulting curve useful in swab-surge applications when tripping at rapid speeds
(compared to a nominal speed in the annulus).  We will give example
calculations later in this example.
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Power law fluids.  Next we reconsider the above concentric and eccentric
geometries for zero-yield power fluids with n = 0.415 and K = 0.0000944 lbf
secn/in.2 (this unweighted mud was used in a recent laboratory study).  The
significant departure of ‘n’ from unity implies large nonlinearities.  This is
reflected in the highly curved lines in Figures 4-6d-1 and 4-6d-2, showing that
incremental changes in flow rate to not lead to proportional changes to pressure
gradient – the exact changes are rate dependent.  Also note the significant
differences going from concentric (vertical well) to eccentric (deviated or
horizontal well) applications.  These results serve as a warning that models
based on over-simplified geometric assumptions can lead to operational hazards.

Figure 4-6d-1.  Power law concentric flow ( = 0.0).

Figure 4-6d-2.  Power law eccentric flow ( = 0.667).
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Swab and surge examples.  Now we consider an application for “tripping
with pumps off” and also “with continuous circulation” which demonstrates the
subtleties of flow nonlinearity.    If we invoke the “Swab-surge (steady)” option
from the main interface in Figure 1-2o, we obtain the Swab-Surge Worksheet in
Figure 4-6e-1 (The embedded calculations conservatively assume that the
drillbit completely blocks the annulus and that fluid does not pass through the
nozzles.).  We at first turn off the mud pump while assuming a hole radius of 4
in and a “tripping in” speed of 5,000 ft./hr.  The Worksheet indicates that,
following the convention of Figure 4-6a, we have a positive induced flow rate of
+217.6 gpm while the drillpipe speed is negative with a value of –16.67 in./sec.
(The drillbit is assumed to completely block the hole.).  The Worksheet instructs
the user to enter “217.6” and “–16.67” as we have in Figure 4-6e-2 for the
eccentric annulus and Power law fluid assumed.  Clicking on “Show Annulus”
produces the display in Figure 4-6e-3.  The required pressure gradient dp/dz is –
0.006494 psi/ft. (minus values indicate high surge pressures at the bit).

Figure 4-6e-1.  Assumptions for surge run with pumps off.

Figure 4-6e-2.  Additional assumptions for surge run with pumps off.
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Figure 4-6e-3.  Eccentric annulus and curvilinear grid assumed
(internal grid used in computations is finer).

Figure 4-6e-4.  Assumptions for surge run with pumps on.

Figure 4-6e-5.  Additional assumptions for surge run with pumps on.
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Now, consider an identical situation except that the pump is circulating at
500 gpm.   The screens analogous to Figures 4-6e-1 and 4-6e-2 are given above.
Clicking on “QuikSim” (as before) shows that the required pressure gradient
now becomes – 0.01045 psi/ft.  This pressure drop is steeper than before, as
expected, because the flow rate is higher.  It is interesting that the flow rate ratio
between the two runs above is 717.6/217.6 or 3.30.  The ratio of pressure
gradients, however, is 0.01045/0.006494 or 1.61.  In a Newtonian flow, the
“3.30” and “1.61” numbers would have been identical.  For non-Newtonian
flows, they typically are not, and general conclusions cannot be given – results
must be found by case-by-case computations.  This example points to the danger
of using Newtonian models even for crude estimates.

In the next calculation, we consider “tripping out” in a swab application
with pumps off.  Instead of “+217.6” and “-16.67” as we had before, Figure 4-
6e-6 shows that the relevant numbers are reversed, with “-217.6” and “+16.67.”
When these replace their counterparts in Figure 4-6e-2, “QuikSim” analysis
correctly shows that the axial pressure gradient is now + 0.006494 psi/ft. instead
of – 0.006494 psi/ft.  This positive sign, as discussed earlier, indicates lower
pressures relative to those at the surface.   Now let us recall the equation “Pbit =
– L P/z + Psurf  ” for pressure at the drillbit.  Suppose that Psurf = 14.7 psi is
open to the atmosphere.  Then, we can express bit pressure in psi if L is given in
feet via Pbit = 14.7 – 0.006494 L.  In this example, Pbit vanishes if L = 2,264 feet,
at which point the possibility of a blowout increases significantly.

Figure 4-6e-6.  Assumptions for swab run with pumps off.

What would be the effect if, as in Figure 4-6e-4, we ran the mud pump at 500
gpm?  The corresponding Swab-Surge Worksheet would appear as it does in
Figure 4-6e-7, showing a net flow rate of 282.4 gpm.  The calculation suggested
by Figure 4-6e-8 gives a negative pressure gradient of – 0.005811 psi/ft.  This
shows that our 500 gpm pump rate is enough to prevent overly low pressures
when tripping out at 5,000 ft./hr.  While we have focused on low pressures that
may allow blowouts, it is obvious that a similar analysis allows us to select
pump rates that will not fracture the formation when the frac gradient is known.
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Figure 4-6e-7.  Assumptions for swab run with pumps on.

Figure 4-6e-8.  Additional assumptions for swab run with pumps on.

Neutral pressure gradient operation.  Our simulator allows us to pose and
solve still another problem of interest in swabbing operations.  Suppose, as in
the above, we wish to trip out at 5,000 ft./hr or 16.67 in./sec.  We found from a
prior analysis that this action is responsible for a negative flow rate of – 217.6
gpm, with the left-bound annular fluid flow arising from the need to fill the
borehole void left by the retreating drillstring.  We ask ourselves which net flow
rate would allow us to maintain a “neutral pressure gradient” of 0.00 psi/ft, that
is, one that allows us to have a constant pressure along the annulus equal to the
surface choke pressure.  If we run the simulator with +16.67 in./sec. and 0.00
psi/ft. in “specify axial pressure gradient” mode, we obtain a net flow rate of
53.52 gpm.  This 53.52 gpm is, of course, the flow rate obtained by simply
dragging the drillstring along without an imposed pressure gradient.  In other
words, the pump must be operated at 217.6 + 53.52 or 271.1 gpm to create a
simple dragging flow and to produce the required zero pressure gradient.
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This “reverse thinking” can be verified directly.  It is easily validated by
the forward calculation in Figure 4-6e-9.  This calls for us to enter 53.52 in the
volumetric flow rate screen of Figure 4-6e-10.  Clicking “QuikSim” leads to an
extremely small – 0.00001221 psi/ft. which allows us to impress surface choke
pressure directly on the drillbit.  Pressure is constant along the borehole.  This
predictive capability is a direct result of our ability to model drillpipe movement
in a rigorous computational manner in very complicated borehole environments.
We again note that the simulator was applied to a highly nonlinear Power law
fluid with pipe movement in a very eccentric annulus.

Figure 4-6e-9.  Surface mud pump rate needed for vanishing
axial pressure gradient while tripping out.

Figure 4-6e-10.  Calculation providing zero axial pressure gradient.
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Example 4-7.  Steady-state swab-surge in concentric annuli for
Power law fluids with drillpipe rotation but small pipe movement.

The approach taken to model swab-surge effects in Example 4-6 is
straightforward.  Basically, the Swab-Surge Worksheet is used to compute a
kinematic volumetric flow rate correction to the mud pump flow rate that
accounts for changes in void space near the drillbit due to tripping out or in.
The new flow rate is then used in the annular flow analysis together with the
correctly signed drillpipe speed.  We employ this approach throughout for swab-
surge applications.  When the drillpipe rotates, a closed form analytical solution
for the complete flow field is developed in Chapter 5 that allows general steady
rotation at any rpm provided the annulus is concentric and stationary in the axial
direction.  This latter assumption is satisfactory for slow tripping speeds, as they
invariably should be in operations, given safety considerations.  The simpler
simulator is accessed as shown in Figure 4-7a.

Figure 4-7a.  Concentric, rotating, Power law flow.
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Four run-time options are shown in the above screen.   The first two
provide detailed results for single run-sets (detailed examples are developed in
Chapter 5).  The third and fourth options provide fast calculations for “GPM vs
RPM and dP/dz” and “dP/dz vs RPM and GPM,” typically requiring about
fifteen seconds of computing time, with automated three-dimensional color plots
that allow zooming and mouse rotation.  Results shown in Figures 4-7b,c clearly
illustrate the roles of rotation and pressure gradient that must be understood in
managed pressure drilling applications.

Figure 4-7b.  GPM versus RPM and dP/dz.

Figure 4-7c.  dP/dz versus RPM and GPM.
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Example 4-8.  Steady-state swab-surge in eccentric annuli for
Herschel-Bulkley fluids with drillpipe rotation and axial movement.

In Example 4-7, we addressed pressure gradient computations for general
flow rates and rotational speeds for Power law fluids in a concentric annulus
under steady conditions without axial pipe movement.  For such flows, the
convective terms in the momentum equations vanish identically.  The effect of
rotation is restricted to shear-thinning so that, for a given pressure gradient,
increases in rotation rate will reduce apparent viscosity and increase volumetric
flow.  These effects are well known in the older literature and apply mainly to
vertical wells.

Run A.  In deviated and horizontal wells, annular eccentricity is the rule.
While shear-thinning remains important, a nonlinear convective term (whose
magnitude is proportional to density and rotational speed and which is variable
throughout the cross-section) appears and modifies the local axial pressure
gradient.  For most practical geometries, this will reduce the flow relative to that
found for the eccentric non-rotating problem for the same applied pressure
gradient.  Equivalently, for the same flow rate, the pressure drop increases
significantly.  These properties are important in managed pressure drilling.

Figure 4-8a-1.  Transient 2D flow menu (no rotation).
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The direct computation of steady rotating flow in an eccentric annulus is
often an unstable numerical process.  Solutions have been published by various
authors who have all given few computational details related to convergence
properties and computing times.  Such schemes tend to destabilize at higher
specific gravities and rotational speeds, and unfortunately, in the ranges typical
of most drilling applications.  Fortunately, steady rotating flow solutions can be
computed by solving the transient formulation asymptotically for large times.  In
Figure 4-8a-1, we have set up flow simulations for a Power law fluid in an
eccentric annulus with axial pipe movement but no rotation.  The problem is
integrated in time starting with quiescent conditions.  Figure 4-8a-2 shows
computed volumetric flow rates reaching constant levels at 941.0 gpm after
about one minute of computing time (this is interestingly, but fortuitously, also
the physical time scale) with convergence to steady-state achieved very stably.
The maximum axial flow is found, as expected, at the wide side of the annulus.

Figure 4-8a-2.  Eccentric Power law results without pipe rotation.

Run B.  Repeating the foregoing simulation to allow drillstring rotation is
straightforward.  For example, we simply change the “0” in the RPM box to
“100” (as seen from Figure 4-8b-1) , and completely automated calculations lead
to a reduced flow rate of 562.2 gpm as shown in Figure 4-8b-2.  As is well
known, the location of maximum axial velocity moves azimuthally, and our
results are consistent with this observation, a fact that may be useful in cuttings
transport and hole cleaning applications.  Computed results also indicate that the
time to reach equilibrium decreases with rotation.  The results presented here,
for pipe moving both axially and azimuthally, show that pressure gradient
calculations are doable and straightforwardly performed for general Power law
fluids in highly eccentric annuli.
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Figure 4-8b-1.  Modified flow with 100 rpm drillstring rotation.

Figure 4-8b-2.  Reduced flow rate achieved in shorter time.
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Run C.  In the next calculation, we repeat that in Figure 4-8b-1, which
included axial pipe movement and nonzero rotational speed in addition to
borehole eccentricity and non-Newtonian Power law flow, but now consider the
additive effects of Herschel-Bulkley yield stress.  In Figure 4-8c-1, we modify
the previous “0” to “0.002 psi” and leave all other parameters unchanged.  As
before, the calculations require about 30 seconds and are performed stably.

Figure 4-8c-1.  Flow at 100 rpm now with 0.002 psi yield stress.

Figure 4-8c-2 shows that the volumetric flow rate is reduced from 562.2
gpm to 516.9 gpm, for a 9 percent reduction.  One might have asked what the
required pressure gradient would be for our yield stress fluid if we needed to
maintain a 562 gpm flow rate.  For our steady flow solver, direct “pressure
gradient specified” and inverse “flow rate specified” calculation modes were
available.  For mathematical reasons, this is not practical for transient
simulations.  A simple procedure requires us to manually attempt reasonable
pressure gradient guesses.  This procedure can be very efficient.  For this
example, the author determined that – 0.011 psi/ft. would yield 562 gpm after
three tries or about two minutes of desk time.  In other words, the presence of
yield stress steepened the pressure gradient by a substantial 10 percent.
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Figure 4-8c-2.  Flow at 100 rpm now with 0.002 psi yield stress.

Figure 4-8d-1.  Flow at 200 rpm with 0.002 psi yield stress.
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Run D.  Next, we re-consider the yield stress problem, in Figure 4-8c-1
and determine the consequences of increasing rotation rate from 100 to 200 rpm.
The input screen is shown in Figure 4-8d-1.  The effect of doubling rotational
speed is a decreased flow rate for the same – 0.01 psi/ft, in this case a much
smaller 443.3 gpm, as shown in Figure 4-8d-2.  And what if we had insisted on
562 gpm?  Then, some simple manual “cut and try” calculations with different
pressure gradient guesses lead to a substantially steepened – 0.0131 psi/ft, a
value that was obtained within two minutes with four different guesses.

Favorable effect of rotation on hole cleaning. The detailed effects of
rotation and yield stress have been discussed in the context of eccentric borehole
annuli with coupled axial drillstring movement.  These calculations represent
completely new industry capabilities.  It is interesting to note that, from Figure
4-8a-2 for non-rotating flow, the location of maximum axial flow speed lies
symmetrically at the top at the wide side of the eccentric annulus.  When
rotation exists, as shown in Figures 4-8b-2, 4-8c-2 and 4-8d-2, the location of
the maximum moves azimuthally as shown, consistently with other known
investigations (Note that “red” in these three diagrams denote different speeds.).
That increased relative speeds are achieved at the bottom of the annulus is
consistent with the improved hole cleaning ability of drillstrings under rotation
observed under many field conditions.  Of course, this improvement comes at
the expense of steepened pressure gradients, a crucial trade-off whose value
must be assessed by the drilling engineer.  The end decision made at the rig site
will depend on “the numbers” which can only be obtained computationally.

Figure 4-8d-2.  Flow at 200 rpm with 0.002 psi yield stress.
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Run E.   Here we study the effect of slow-down in drillstring rotational
rate.  Acceleration and deceleration are always encountered in start-up and shut-
down.  We repeat the calculation of Figure 4-8d-1, starting with 200 rpm for our
nonzero yield stress fluid.  But as shown in Figure 4-8e-1, we allow our 200 rpm
to slow down to 0, as seen from the “- 0.5” deceleration rate selected under the
RPM menu.  Clicking on “?” to the right produces a plot of the assumed RPM
versus time curve in Figure 4-8e-2 (Note that numerous time functions for axial
pipe speed, rotational rate, and pressure gradient are permissible with the
simulator.).  The calculated flow rate versus time response is shown in Figure 4-
8e-3. This flow rate increases as expected, with drillstring rotation rate
decreasing.   In this transient simulation, the location of maximum axial velocity
is not stationary, but instead propagates azimuthally about the eccentric annulus.
A “snapshot” at one instant in time is shown in Figure 4-8e-4.  Although this
example is purely transient, we have included it in our steady eccentric annular
flow chapter to highlight the importance (or, perhaps, unpredictability) of
transient effects.  The shape of the transient rate curve in Figure 4-8e-3, we
emphasize, is obtained for a simple Herschel-Bulkley fluid and not one with
“memory” effects.

Figure 4-8e-1.  Decreasing rotational rate, from 200 to 0 rpm.
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Figure 4-8e-2.  Linearly decreasing rpm, from 200 to 0.

Figure 4-8e-3.  Transient increasing flow rate with decreasing rpm.

Figure 4-8e-4.  Transient movement of maximum point as rpm decreases.
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Run F.  In this final example, we consider a complete steady swab-surge
application with high annular eccentricity, a nonlinear yield stress fluid, and
allow the drillpipe to move axially while simultaneously rotating.  This
demonstrates the capabilities in our math models and provides a complete
summary of the software menu sequences needed to perform similar
calculations.  In order to proceed, the “Swab-Surge Worksheet” must be invoked
from the main “MPD Flow Simulator (Steady 2D)” in Figure 4-8f-1.   In the
Worksheet, we consider a five-inch radius hole and a pipe trip-out speed of
5,000 ft./hr.  During this operation, we wish to pump continuously, with the
surface mud pump rate set at 856.9 gpm.  Now, as the drillpipe is withdrawn
from the hole, fluid must rush in to fill the bottomhole void.  The Worksheet
indicates that the effective annular flow rate is 516.9 gpm and that the pipe
speed is 16.67 in./sec.

Figure 4-8f-1.  Running the “Swab-Surge Worksheet”
(areas that do not affect Worksheet calculator are shown shaded)

Now, we wish to focus our study the non-Newtonian flow of a Herschel-
Bulkley fluid with n = 0.415, K = 0.0000944 lbf secn/in.2 and yield = 0.002 psi,
in an annulus formed by a 4-inch diameter pipe in a 10-inch diameter hole, with
an eccentricity of 0.3333. We will demonstrate the solution process for flows
without and with rotation.  If we wish to consider axial movement only but
without rotation, we can  run the steady flow calculation shown in Figure 4-8f-2
in “volumetric flow rate specified” mode.  Clicking on “QuikSim” produces the
screen output iteration history shown on the following page.
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 SIMULATION STARTS ...
 Herschel-Bulkley model, with exponent "n" equal
 to 0.4150E+00 and consistency factor of 0.9440E-04
 lbf sec^n/sq in.
 A yield stress of 0.2000E-02 psi is taken.
 Borehole axis radius of curvature is 0.1000E+04 ft.
 Axial speed of inner pipe is 0.1667E+02 in/sec.
 Target flow rate of 0.5169E+03 gal/min specified.

 Iterating on pressure gradient to match flow rate ...

 Iteration  100, Error = .00672962
 Iteration  200, Error = .00248959
 Iteration  300, Error = .00119476
 Iteration  400, Error = .00052236
 Iteration  500, Error = .00019270
 Iteration  600, Error = .00005923
 Iteration  700, Error = .00001814
 Iteration  800, Error = .00000521
 Iteration  900, Error = .00000171
 Iteration 1000, Error = .00000047

 O  Axial pressure gradient of -.1000E+00 psi/ft
    yields volume flow rate of 0.4076E+06 gal/min.

 Flow rate target error is 0.7876E+05 %

 Iteration  100, Error = .00371665
 Iteration  200, Error = .00067117
 Iteration  300, Error = .00014123
 Iteration  400, Error = .00002945
 Iteration  500, Error = .00000702
 Iteration  600, Error = .00000192
 Iteration  700, Error = .00000038
 Iteration  800, Error = .00000010
 Iteration  900, Error = .00000010
 Iteration 1000, Error = .00000010

 O  Axial pressure gradient of -.5000E-01 psi/ft
    yields volume flow rate of 0.4141E+05 gal/min.

 Flow rate target error is 0.7911E+04 %
.
.
.
.

 O  Axial pressure gradient of -.6250E-02 psi/ft
    yields volume flow rate of 0.6708E+03 gal/min.

 Flow rate target error is 0.2977E+02 %

 Iteration  100, Error = .00000000
 Iteration  200, Error = .00000011
 Iteration  300, Error = .00000000
 Iteration  400, Error = .00000011
 Iteration  500, Error = .00000011
 Iteration  600, Error = .00000011
 Iteration  700, Error = .00000000
 Iteration  800, Error = .00000021
 Iteration  900, Error = .00000011
 Iteration 1000, Error = .00000000

 O  Axial pressure gradient of -.4688E-02 psi/ft
    yields volume flow rate of 0.5217E+03 gal/min.

 Pressure gradient found iteratively, -.4688E-02 psi/ft,
 to yield 0.5217E+03 gal/min vs target 0.5169E+03 gal/min.

 Note:  Iterations terminate within 1% of target rate.
 Refine result by manually changing pressure gradient.
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Figure 4-8f-2.  Steady 2D solver.

Figure 4-8f-3.  Computed axial velocity (non-rotating).
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In other words, the pressure gradient associated with the non-rotating flow
is – .004688 psi/ft.  The corresponding axial velocity field is shown in Figure 4-
8f-3 in a variety of available plots.  Note that for non-rotating flows, our “Steady
2D” solver automatically computes the required pressure gradient using an
internal inverse procedure.  It has not been possible to develop a steady solver
that allows rotation which is also unconditionally numerically stable.  This does
not, fortunately, mean that steady rotating flows cannot be computed.

Figure 4-8f-4.  Transient 2D solver.

We demonstrate how by considering the effect of a 100 rpm rotational rate.
We use the “Transient 2D” solver in Figure 4-8f-4, with input boxes completed
for the same simulation parameters.  Our strategy is to solve a fully transient
problem until steady-state behavior is obtained.  Because a “flow rate specified”
mode is not available for transient calculations, one must resort to repeated
guesses for pressure gradient, but we have found that three or four will usually
lead to a flow rate within 1 to 2 percent of the target value.  Since each trial
calculation equilibrates quite rapidly, as shown in Figure 4-8f-5, the total “desk
time” required is often two minutes or less.
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For this rotating flow run, a pressure gradient of – 0.01 psi/ft. is required,
as compared to the – .004688 psi/ft. obtained in the non-rotating case.  In other
words, pressure gradients are twice as severe because of rotation.  The “Results”
menu in Figure 4-8f-4 provides numerous post-processed results in addition to
those of Figure 4-8f-5.  For example, axial and azimuthal velocity distributions
are available, as given in Figure 4-8f-6, as are detailed color plots of different
physical properties like apparent viscosity, shear rate and viscous stress.

Figure 4-8f-5.  Flow rate history and velocity distribution
(note, maximum axial velocities appear at annular bottom).

Figure 4-8f-6.  Axial and azimuthal velocities at cross-section “m = 19.”
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Example 4-9.  Transient swab-surge on a steady-state basis.

Let us recall that the axial momentum equation takes the general functional
form  (u/t + v u/y + w u/x)  = - p/z + Szy/y + Szx/x when body

forces and variations in “z” are ignored.  The resulting two-dimensional
equation applies to transient flows with rotation and axial movement as well as
to all rheological models.  In later chapters, techniques are developed to
integrate this in time and applications are also given.  If true transient effects,
i.e., those modeled by the “u/t” term, can be ignored, the resulting   (v u/y
+ w u/x)  - p/z + Szy/y + Szx/x underlies the work in this chapter.

If continuous but transient flow rate pumping is allowed during tripping,
but under quasi-steady conditions, one might ask how the downhole “pressure
response versus time” response is constructed.  The answer is available in the
illustrative procedures developed earlier.  We recapitulate the basic ideas, which
may or may not be obvious.  First, the “flow rate versus pressure gradient curve”
is constructed using, possibly, a combination of the steady-state models
described, e.g., one that might take the forms in Figure 4-6d-1 or 4-6d-2.  At any
time t = tn, we have an assumed volumetric flow rate Qn for which a pressure
gradient (P/z)n is now known.  Then, the downhole pressure at the drillbit is
simply Pn = (P/z) n L + Psurf (tn) where L is the borehole length and Psurf (tn) is
the surface choke pressure.  This Pn(tn) can be plotted against tn for display.

Example 4-10.  Equivalent circulating density calculations.

A formula is available for equivalent circulating density (ECD) calculation
whose derivation is very straightforward.  Again, we start from first principles
with  (u/t + v u/y + w u/x)  = - g - p/z + Szy/y + Szx/x where

we have now included the body force - g (where g is the acceleration due to
gravity) and assumed “z” to be vertical.  The left-side is “ma” while the right is
“F” in “F = ma.”  The first two terms on the right can be factored as – g ( + 1/g
p/z), from which it is clear that the combination 1/g  p/z has the dimensions
of the density, .  This is known as the “equivalent circulating density” because
it provides an additive correction to  for hydrostatic applications.

When the pressure gradient p/z is available from flow calculations, the
formula ECD = 1/g  p/z applies.  If the pressure gradient is expressed as N
psi/ft, where N is dimensionless, then ECD = 19.25 N lbm/gal.  For example, if
a viscous non-Newtonian pipe or annular flow is associated with a pressure
gradient of - 0.01 psi/ft, then we have ECD = 19.25 (0.01) lbm/gal or 0.1925
lbm/gal (This might be compared to the density of water, with a value of
approximately 8.33 lbm/gal.).  ECDs provide a useful way for appreciating the
magnitude of any pressure gradient, but are, in themselves, not fundamentally
important in fluid-dynamics.  They are, of course, useful in MPD job planning.   



185

5
More Steady Flow Applications

In Chapters 2, 3 and 4, we developed the theory and mathematical methods
needed to model steady, non-rotating, non-Newtonian flows in general borehole
annular cross-sections having arbitrary geometries.  These included new
topological concepts useful in creating boundary-conforming curvilinear grid
systems, derivation of momentum equations transformed to these coordinates,
plus introduction of iterative methods required for fast, robust and numerically
stable solutions.  This work extends the early models reported in the books
Borehole Flow Modeling and Computational Rheology by improving accuracy
while reducing calculation times and computer memory resources.

In the present chapter, we continue our focus on steady flows by presenting
additional math models that are useful in dealing with specific aspects of annular
flow simulation and engineering application.  These simpler models, while not
trivial in any mathematical since, were also used to validate the more
sophisticated ones in this book for fluids with general rheologies in complicated
flow domains.  Examples include, for instance, the first exact, closed form
solution for Herschel-Bulkley fluids in concentric annuli; Newtonian flow in
concentric annuli with moving walls; solutions modeling flows in the presence
of barite sag; Newtonian flows in general rectangular ducts; and so on.

Importantly, we also address field and laboratory validations for the steady
annular flows calculated using the new methods, in particular, dealing with
cuttings transport in deviated wells, evaluation of spotting fluid effectiveness in
stuck pipe removal, the effect of non-Newtonian flow pressure drops in
boreholes with bends, effects of steady rotation in concentric systems, and so on.
While the present chapter addresses steady flow validations, it is important to
emphasize that results of transient, three-dimensional, multiphase extensions of
these methods are also consistent with experiment, as will be discussed in
Chapters 8 and 9.  These represent a major thrust of our research.
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Model 5-1.  Newtonian flow in concentric annulus
with axially moving (but non-rotating) pipe or casing.

We consider Newtonian annular flow between concentric cylinders, as
shown in Figure 5-1a, in which the inner cylinder moves with a constant speed
V in either direction and an external pressure gradient dP/dz is imposed in the
axial z direction.

Ri

Ro

V

dP/dz

z

r

Figure 5-1a.  Steady, concentric, Newtonian flow with moving pipe.

Since both radial and azimuthal velocities are assumed to vanish, /t = 0 holds
for steady flow, and /z = 0 for two-dimensional problems (applicable if
cylinder lengths are sufficiently long), the Navier-Stokes equations reduce to a
single one for the axial velocity v(r), namely,

d2v/dr2 + r 
-1 dv/dr = -1 Pz    (5-1a)

The boundary conditions are

v(R) = V along inner radius (5-1b)

v(R) = 0 along outer radius (i.e., no-slip) (5-1c)

The exact solution for velocity at any position ‘r’ is

v(r) = [(Ro
2 - Ri

2) Pz /(4) + V] log e (Ro /r) /log e (Ro /Ri) + (r2 - Ro
2) Pz /(4)

(5-1d)
The volumetric flow rate is given by

Ro

Q = v(r) 2r dr (5-1e)
Ri

Q =  V [(Ro
2 - Ri

2) /(2 log e (Ro /Ri)) - Ri
2
 ]   (5-1f)

+ ( Pz /(8)) [(Ro
2 - Ri

2) 2 + (Ri
4 - Ro

4) log e (Ro /Ri)] / log e (Ro /Ri)

Note that, when the inner cylinder is stationary with V = 0, the
relationship between Q and pressure gradient is linear.  In fact, Q is directly
proportional to Pz and varies inversely with the viscosity ..  The additional
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factor seen from Equation 5-1f depends only geometrical details.  The viscous
shear stress at any position ‘r’ is simply the product between viscosity and shear
rate and is known from

(r) =  dv(r)/dr (5-1g)

=  { - [(Ro
2 - Ri

2) Pz /(4) + V] / (r loge (Ro /Ri))   + r Pz /(2) }

In particular, the shear stress at the moving cylinder r = Ri is

(R) =  dv(R)/dr (5-1h)

=  { - [(Ro
2 - Ri

2) Pz /(4) + V] / (Ri loge (Ro /Ri))   + Ri Pz /(2) }

If the axial length of the cylinder is L, the total shear force acting on the inner
cylinder is given by the product of (R i) and the surface area 2R i or

Fshear = 2Ri L (R) (5-1i)

= 2 Ri L{ - [(Ro
2 - Ri

2) Pz /(4) + V] / (Ri loge (Ro /Ri)) + Ri Pz /(2)}

The shear force per unit length is

Fshear / L = (5-1j)

= 2 Ri {- [(Ro
2 - Ri

2) Pz /(4) + V] / (Ri loge (Ro /Ri)) + Ri Pz /(2)}

Figure 5-1b.  Software user interface.

A simple implementation for volumetric flow rate only is shown in Figure 5-1b
and is accessible from the “Utilities” menu.  The results obtained with this
model are used to validate steady and transient implementations of our
curvilinear grid, finite difference based algorithms.  A more detailed version of
the software that evaluates the stress and force formulas derived here is available
upon request.



188   Managed Pressure Drilling: Modeling, Strategy and Planning

Model 5-2.  Density stratification (barite sag) and
recirculating annular vortexes that impede fluid flow.

Problems with cuttings accumulation, flow blockage, and resultant stuck
pipe in deviated wells are becoming increasingly important operational issues as
interest in horizontal drilling continues.  For small angles (ß) from the vertical,
annular flows and hole cleaning are well understood; for example, cleaning
efficiency is always improved by increasing velocity, viscosity, or both.  But
beyond 30 degrees, these issues are rife with challenging questions.  Many
unexplained, confusing, and conflicting observations are reported by different
investigators; however, it turns out that bottom viscous stress (which tends to
erode cuttings beds having well-defined mechanical yield stresses) is the
correlation parameter that explains many of these discrepancies.  The author’s
books Borehole Flow Modeling in Horizontal, Deviated and Vertical Wells
(Chin, 1992) and Computational Rheology for Pipeline and Annular Flow (Chin,
2001) address hole cleaning applications in which cuttings and other drilling
debris block mud transport.  These issues are addressed later.

Here, we will learn that flows can be blocked even when no externally
introduced debris appears in the system.  In other words, dangerous flow
blockage can arise from fluid-dynamical effects alone.  This possibility is very
real whenever there exist density gradients in a direction perpendicular to the
flow, e.g., “barite sag” in the context of drilling.  This blockage is also possible
in pipe flows of slurries, for instance, slurries carrying ground wax and hydrate
particles or other debris.  Although we have focused on rheological effects
associated with Newtonian, Power law, Bingham plastic and Herschel-Bulkley
fluids, the physical mechanisms considered in this section relate to inertial
effects and apply to all fluid models.  In work addressed elsewhere in this book,
the pressure field is assumed to be uniform across the annulus; the velocity field
is therefore unidirectional, with the fluid flowing axially from high pressure
regions to low.  These assumptions are reasonable since numerous flows do
behave in this manner.  Below we will relax these assumptions, but turn to more
general flows with density stratification.  A special class of annular and pipe
flow lends itself to strange occurrences we call “recirculating vortex flows,” to
which we now turn our attention.

What are recirculating vortex flows?  In deviated holes where
circulation has been temporarily interrupted, weighting material such as barite,
drilled cuttings or cement additives, may fall out of suspension.  Similarly,
pipelines containing slurries with wax or hydrate particles can develop vertical
density gradients when flow is temporarily slowed or halted.  This gravity
stratification has mass density increasing downwards.  And this stable
stratification, which we collectively refer to as “barite sag,” is thought to be
responsible for the trapped, self-contained “recirculation zones” or “bubbles”
observed by many experimenters.
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They contain rotating, swirling, “ferris-wheel-like” motions within their
interiors; the external fluid that flows around them “sees” these zones as
stationary obstacles that impede their axial movement up the annulus or pipe.
Excellent color video tapes showing these vortex-like motions in detail have
been produced by M-I Drilling Fluids, which were viewed by the author in its
Houston facilities prior to the initial printing of Borehole Flow Modeling.

These strange occurrences are just that; their appearances seem to be
sporadic and unpredictable, as much myth as reality.  However, once they are
formed, they remain as stable fluid-dynamical structures that are extremely
difficult to remove.  They are dangerous and undesirable because of their
tendency to entrain cuttings, block axial flow, and increase the possibility of
stuck pipe.  One might ask, “Why do these bubbles form?  What are the
controlling parameters?  How can their occurrences be prevented?”

Detailed study of M-I’s tapes suggests that the recirculating flows form
independently of viscosity and rheology to leading order, that is, they do not
depend primarily on “n” and “K.”  They appear to be inertia-dominated,
depending on density effects themselves, while nonconservative viscous terms
play only a minor role in sustaining or damping the motion.  This leaves the
component of density stratification normal to the hole axis as the primary
culprit; it alone is responsible for the highly three-dimensional pressure field
that drives local pockets of secondary flow.  It is possible, of course, to have
multiple bubbles coexisting along a long deviated hole.

Again these recirculating bubbles, observed near pipe bends, stabilizers,
and possibly marine risers and other obstructions, are important for various
practical reasons.  First, they block the streamwise axial flow, resulting in the
need for increased pressure to pass a given volumetric flow rate.  Second,
because they entrain the mud and further trap drilled cuttings, they are a likely
cause of stuck pipe.  Third, the external flow modified by these bubbles can also
affect the very process of cuttings bed formation and removal itself.

Fortunately, these bubbles can be studied, modeled, and characterized in a
rather simple manner; very instructive “snapshots” of streamline patterns
covering a range of vortex effects are given later.  This section identifies the
nondimensional channel parameter Ch responsible for vortex bubble formation
and describes the physics of these recirculating flows.  The equations of motion
are given and solved using finite difference methods for several practical flows.
The detailed bubble development process is described and illustrated in a
sequence of computer-generated pictures.

Motivating ideas and controlling variables.  The general governing
momentum equations are Euler’s equations, which describe large-amplitude,
inviscid shear flow in both stratified and unstratified media (Schlichting, 1968;
Turner, 1973).  The problem at hand can be modeled as two-dimensional
stratified flow into a sink, following Yih (1960, 1969, 1980), who initially
solved the problem for meteorological and geophysical applications.
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The general Euler equations for two-dimensional flows in inclined
boreholes simplify to the following three, for a variable density , and the
velocity components u and v.  These nonetheless remain intractable.

(uux + vuy ) = - px                                                (5-2-1)

( uvx + vvy ) = - py - g  cos                                      (5-2-2)

( u)x + ( v )y = 0                                                  (5-2-3)

In fluid mechanics, it is common to reduce the number of unknowns by
introducing a “streamfunction” by virtue of mass conservation.  Lines of
constant streamfunction can be shown to describe streamlines of the flow, across
which fluid motion is not possible.  Yih shows that, in his problems, the
formulation and solution given below apply –

  +  = F-2 ( – ) (5-2-4a)

 = 0 at  = 0 (5-2-4b)

 = 1 at  = 1 and at  = 0,  0  (5-2-4c)

 =  at  = -    (5-2-4d)


= +  (2/) n-1 exp[(n22 – F-2 ) ½ ] sin n       (5-2-4e)
n=1

-  <  0, 0   1 (5-2-4f)

Here, the sink is located at =0 and =0.  A linear density variation is assumed
far upstream, the oncoming flow is almost constant, F > 1/ is a Froude number
comparing inertia to gravity effects, and  is a normalized streamfunction.

In other words, we have assumed that the steady vortex flow is contained
in a two-dimensional rectangular box in the plane of the hole axis (x) and the
direction of density stratification (y).  This is based on experimental observation:
the vortical flows do not wrap around the drillpipe.  In the above equations, u
and v would be velocities in the x and y directions, respectively.  Subscripts
indicate partial derivatives.  In our convention,  is a fluid density that varies
linearly with y far upstream, p(x,y) is the unknown pressure field, g is the
acceleration due to gravity, and  is the angle the borehole axis makes with the
horizontal.  Equations 5-2-1 and 5-2-2 are momentum equations in the x and y
directions, while Equation 5-2-3 describes mass conservation.

Nondimensional parameters are important to understanding physical
events.  The Reynolds number, which measures the relative effects of inertia to
viscous forces, is one example.  It dictates the onset of turbulence; also, like
Reynolds numbers imply dynamically similar flow patterns. Analogous
dimensionless variables are used in different areas of physics, e.g., the mobility
ratio in reservoir engineering or the Mach number in high-speed aerodynamics.
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Close examination of Equations 5-2-1 to 5-2-3 using affine transformations
shows that the physics of bubble formation depends on a single nondimensional
variable Ch characterizing the channel flow.  It is constructed from the

combination of two simpler ones.  The first is a Froude number U2/gL cos ,
where U is the average oncoming speed and L is the channel height between the
pipe and borehole walls.  The second is a relative measure of stratification, say
d/ref (d might represent the density difference between the bottom and top of

the annulus or pipe, and ref may be taken as their arithmetic average).  The

combined parameter Ch of practical significance is

Ch = U2 ref /gL d cos                                              (5-2-5)

We now summarize our findings.  For large values of Ch, recirculation
bubbles will not form; the streamlines of motion are essentially straight and the
rheology-dominated models apply.  For small Ch’s of order unity, small
recirculation zones do form, and elongate in the streamwise dimension as Ch
decreases.  For still smaller values, that is, values below a critical value of
0.3183, solutions with wavy upstream flows are found, which may or may not
be physically realistic.  Equations 5-2-1 to 5-2-3 can be solved using “brute
force” computational methods, but they are more cleverly treated by introducing
the streamfunction used by aerodynamicists and reservoir engineers.  When the
problem is reformulated in this manner, the result is a linear Poisson equation
that can be integrated in closed analytical form as indicated above.  Streamlines
are obtained by connecting computed streamfunction elevations having like
values.  The arithmetic difference in  between any two points is proportional
to the volumetric flow rate passing through the two points. Velocity and
pressure fields can be obtained by post-processing computed solutions.

Detailed calculations.  Solutions obtained for a 20 40 mesh require less
than one second.  In Figures 5-2-1 to 5-2-6, we allow the flow to disappear into
a “mathematical sink” (in practice, the distance to this obstacle over the height L
will appear as a second ratio).  This sink simulates the presence of obstacles or
pipe elbows located further upstream.  With decreasing values of Ch, the
appearance of an elongating recirculation bubble is seen.  Streamfunction data as
well as processed contour plots are given.  The stand-alone vortexes so obtained
are stable, since they represent patches of angular momentum that physical laws
insist must be conserved.  In this sense, they are not unlike trailing aircraft tip
vortices that persist indefinitely until dissipation renders them harmless.
However, annular bubbles are worse: the channel flow itself is what drives them,
perpetuates them, and increases their ability to do harm by further entraining
solid debris in the annulus.  In the pipeline context, slurry density gradients
likewise promote flow blockage and vortex recirculation; the resulting
“sandpapering,” allowing continuous rubbing against pipe walls, can lead to
metal erosion, decreased strength, and unexpected rupture.
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0 105 105  96  98 102  99  97 101 101  98  99 101  99  98 100 100  98 100
0  53  73  82  86  89  91  93  94  95  96  96  97  97  98  98  99  99 100
0  32  54  67  74  80  83  86  89  90  92  93  94  95  96  97  98  99 100
0  23  41  55  64  71  76  80  83  86  88  90  92  93  95  96  97  98 100
0  18  33  46  56  64  70  75  78  82  85  87  89  91  93  95  96  98 100
0  14  28  40  50  58  64  69  74  78  81  84  87  89  92  94  96  98 100
0  12  24  35  44  52  59  65  70  74  78  82  85  87  90  93  95  97 100
0  11  22  32  40  48  55  61  67  71  75  79  83  86  89  92  94  97 100
0  10  20  29  37  45  52  58  63  68  73  77  81  84  87  91  94  97 100
0   9  18  27  35  42  49  55  61  66  71  75  79  83  86  90  93  96 100
0   8  17  25  33  40  46  53  58  64  69  73  77  81  85  89  93  96 100
0   8  16  23  31  38  44  51  56  62  67  72  76  80  84  88  92  96 100
0   7  15  22  29  36  43  49  55  60  65  70  75  79  83  88  92  96 100
0   7  14  21  28  35  41  47  53  59  64  69  74  78  83  87  91  95 100
0   7  14  21  27  34  40  46  52  57  63  68  73  77  82  86  91  95 100
0   6  13  20  26  33  39  45  51  56  62  67  72  77  81  86  91  95 100
0   6  13  19  26  32  38  44  50  55  61  66  71  76  81  86  90  95 100
0   6  12  19  25  31  37  43  49  55  60  65  70  75  80  85  90  95 100
0   6  12  18  25  31  37  43  48  54  59  65  70  75  80  85  90  95 100
0   6  12  18  24  30  36  42  48  53  59  64  69  75  80  85  90  95 100
0   6  12  18  24  30  36  41  47  53  58  64  69  74  79  84  89  94 100
0   6  12  18  24  29  35  41  47  52  58  63  69  74  79  84  89  94 100
0   5  11  17  23  29  35  41  46  52  57  63  68  74  79  84  89  94 100
0   5  11  17  23  29  35  40  46  52  57  63  68  73  79  84  89  94 100
0   5  11  17  23  29  34  40  46  51  57  62  68  73  78  84  89  94 100
0   5  11  17  23  28  34  40  45  51  57  62  67  73  78  84  89  94 100
0   5  11  17  23  28  34  40  45  51  56  62  67  73  78  83  89  94 100
0   5  11  17  22  28  34  39  45  51  56  62  67  73  78  83  89  94 100
0   5  11  17  22  28  34  39  45  50  56  62  67  72  78  83  89  94 100
0   5  11  17  22  28  34  39  45  50  56  61  67  72  78  83  89  94 100
0   5  11  17  22  28  33  39  45  50  56  61  67  72  78  83  89  94 100
0   5  11  16  22  28  33  39  45  50  56  61  67  72  78  83  89  94 100
0   5  11  16  22  28  33  39  44  50  56  61  67  72  78  83  89  94 100
0   5  11  16  22  28  33  39  44  50  56  61  67  72  78  83  89  94 100
0   5  11  16  22  28  33  39  44  50  55  61  67  72  78  83  89  94 100
0   5  11  16  22  28  33  39  44  50  55  61  66  72  78  83  89  94 100
0   5  11  16  22  28  33  39  44  50  55  61  66  72  77  83  88  94 100
0   5  11  16  22  27  33  39  44  50  55  61  66  72  77  83  88  94 100
0   5  11  16  22  27  33  39  44  50  55  61  66  72  77  83  88  94 100
0   5  11  16  22  27  33  39  44  50  55  61  66  72  77  83  88  94 100
0   5  11  16  22  27  33  39  44  50  55  61  66  72  77  83  88  94 100

Figure 5-2-1.  Ch = 1.0, straight streamlines without recirculation.
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0 105 105  96  98 102  99  97 101 101  98  99 101  99  98 100 100  98 100
0  54  74  83  88  91  93  94  96  96  97  98  98  98  99  99  99  99 100
0  33  55  68  77  82  86  89  91  93  94  95  96  97  98  98  99  99 100
0  24  43  57  67  74  80  84  87  89  91  93  94  96  97  97  98  99 100
0  19  35  49  59  67  74  79  83  86  88  91  92  94  95  97  98  99 100
0  15  30  43  53  61  68  74  79  82  86  88  90  92  94  96  97  98 100
0  13  26  38  48  56  64  70  75  79  83  86  88  91  93  95  96  98 100
0  12  23  34  44  52  60  66  71  76  80  83  86  89  92  94  96  98 100
0  11  21  31  41  49  56  63  68  73  77  81  85  88  90  93  95  97 100
0  10  20  29  38  46  53  60  65  71  75  79  83  86  89  92  95  97 100
0   9  18  27  36  43  51  57  63  68  73  77  81  85  88  91  94  97 100
0   8  17  26  34  41  48  55  61  66  71  76  80  83  87  90  93  97 100
0   8  16  24  32  40  46  53  59  64  69  74  78  82  86  90  93  96 100
0   8  16  23  31  38  45  51  57  63  68  73  77  81  85  89  93  96 100
0   7  15  22  30  37  43  50  56  61  66  71  76  80  84  88  92  96 100
0   7  14  22  29  36  42  48  54  60  65  70  75  79  84  88  92  96 100
0   7  14  21  28  35  41  47  53  59  64  69  74  78  83  87  91  95 100
0   7  14  20  27  34  40  46  52  58  63  68  73  78  82  87  91  95 100
0   6  13  20  26  33  39  45  51  57  62  67  72  77  82  86  91  95 100
0   6  13  19  26  32  38  44  50  56  61  67  72  76  81  86  90  95 100
0   6  13  19  25  32  38  44  50  55  61  66  71  76  81  86  90  95 100
0   6  12  19  25  31  37  43  49  55  60  65  70  75  80  85  90  95 100
0   6  12  18  25  31  37  43  48  54  59  65  70  75  80  85  90  95 100
0   6  12  18  24  30  36  42  48  53  59  64  70  75  80  85  90  95 100
0   6  12  18  24  30  36  42  47  53  58  64  69  74  79  85  90  95 100
0   6  12  18  24  30  36  41  47  53  58  63  69  74  79  84  89  94 100
0   6  12  18  23  29  35  41  47  52  58  63  69  74  79  84  89  94 100
0   5  11  17  23  29  35  41  46  52  57  63  68  74  79  84  89  94 100
0   5  11  17  23  29  35  40  46  52  57  63  68  73  79  84  89  94 100
0   5  11  17  23  29  34  40  46  51  57  62  68  73  78  84  89  94 100
0   5  11  17  23  29  34  40  46  51  57  62  68  73  78  84  89  94 100
0   5  11  17  23  28  34  40  45  51  57  62  67  73  78  84  89  94 100
0   5  11  17  23  28  34  40  45  51  56  62  67  73  78  83  89  94 100
0   5  11  17  22  28  34  39  45  51  56  62  67  73  78  83  89  94 100
0   5  11  17  22  28  34  39  45  51  56  62  67  73  78  83  89  94 100
0   5  11  17  22  28  34  39  45  50  56  61  67  72  78  83  89  94 100
0   5  11  17  22  28  34  39  45  50  56  61  67  72  78  83  89  94 100
0   5  11  17  22  28  33  39  45  50  56  61  67  72  78  83  89  94 100
0   5  11  16  22  28  33  39  45  50  56  61  67  72  78  83  89  94 100
0   5  11  16  22  28  33  39  45  50  56  61  67  72  78  83  89  94 100
0   5  11  16  22  28  33  39  44  50  56  61  67  72  78  83  89  94 100

Figure 5-2-2.  Ch = 0.5, straight streamlines without recirculation.
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0  13  26  39  50  60  68  76  82  87  91  94  96  98  99  99 100 100 100
0  12  25  37  47  57  66  73  79  85  89  92  95  96  98  99  99  99 100
0  12  23  35  45  55  63  71  77  82  87  90  93  95  97  98  99  99 100
0  11  22  33  43  53  61  68  75  80  85  89  92  94  96  97  98  99 100
0  11  21  32  42  51  59  66  73  78  83  87  90  93  95  96  98  99 100
0  10  21  31  40  49  57  64  71  77  82  86  89  92  94  96  97  98 100
0  10  20  30  39  47  55  63  69  75  80  84  88  91  93  95  97  98 100
0   9  19  29  38  46  54  61  68  73  78  83  86  90  92  94  96  98 100
0   9  19  28  36  45  53  60  66  72  77  81  85  89  91  94  96  98 100
0   9  18  27  35  44  51  58  65  70  76  80  84  88  90  93  95  97 100
0   9  17  26  35  43  50  57  63  69  74  79  83  87  90  92  95  97 100
0   8  17  26  34  42  49  56  62  68  73  78  82  86  89  92  95  97 100
0   8  17  25  33  41  48  55  61  67  72  77  81  85  88  91  94  97 100
0   8  16  24  32  40  47  54  60  66  71  76  80  84  88  91  94  97 100
0   8  16  24  32  39  46  53  59  65  70  75  79  83  87  90  94  97 100
0   8  15  23  31  38  45  52  58  64  69  74  78  83  86  90  93  96 100
0   7  15  23  30  37  44  51  57  63  68  73  78  82  86  89  93  96 100
0   7  15  22  30  37  44  50  56  62  67  72  77  81  85  89  93  96 100
0   7  15  22  29  36  43  49  55  61  67  72  76  81  85  89  92  96 100
0   7  14  22  29  36  42  49  55  60  66  71  76  80  84  88  92  96 100
0   7  14  21  28  35  42  48  54  60  65  70  75  80  84  88  92  96 100
0   7  14  21  28  35  41  47  53  59  64  70  74  79  83  88  92  96 100
0   7  14  21  27  34  41  47  53  58  64  69  74  79  83  87  91  96 100
0   7  13  20  27  34  40  46  52  58  63  69  73  78  83  87  91  95 100
0   6  13  20  27  33  40  46  52  57  63  68  73  78  82  87  91  95 100
0   6  13  20  26  33  39  45  51  57  62  68  73  77  82  87  91  95 100
0   6  13  20  26  33  39  45  51  56  62  67  72  77  82  86  91  95 100
0   6  13  19  26  32  38  44  50  56  61  67  72  77  81  86  91  95 100
0   6  13  19  26  32  38  44  50  56  61  66  71  76  81  86  90  95 100
0   6  13  19  25  32  38  44  50  55  61  66  71  76  81  86  90  95 100
0   6  12  19  25  31  37  43  49  55  60  66  71  76  81  85  90  95 100
0   6  12  19  25  31  37  43  49  54  60  65  70  76  80  85  90  95 100
0   6  12  19  25  31  37  43  49  54  60  65  70  75  80  85  90  95 100

Figure 5-2-3.  Ch = 0.35, minor recirculating vortex.
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0 105 105  96  98 102  99  97 101 101  98  99 101  99  98 100 100  98 100
0  55  77  87  93  96  99 100 102 102 103 103 103 103 102 102 101 100 100
0  36  60  75  85  92  97 100 103 104 105 106 106 105 104 103 102 101 100
0  27  50  67  79  88  95 100 103 106 107 108 108 107 106 105 103 101 100
0  23  43  60  74  84  92  98 103 106 108 109 109 109 108 106 104 102 100
0  20  39  56  70  81  90  97 102 106 109 110 110 110 109 107 105 102 100
0  18  36  52  66  78  88  96 102 106 109 111 111 111 109 108 105 102 100
0  17  34  50  64  76  86  94 101 105 109 111 111 111 110 108 105 103 100
0  16  33  48  62  74  84  93 100 105 108 111 112 111 110 108 106 103 100
0  16  32  47  60  72  83  92  99 104 108 110 112 111 110 108 106 103 100
0  15  31  45  59  71  82  90  98 103 108 110 111 111 110 108 106 103 100
0  15  30  44  58  70  80  89  97 103 107 110 111 111 110 108 106 103 100
0  15  29  44  57  69  79  88  96 102 106 109 111 111 110 108 106 103 100
0  14  29  43  56  68  78  87  95 101 106 109 110 110 110 108 106 103 100
0  14  28  42  55  67  77  87  94 100 105 108 110 110 109 108 105 103 100
0  14  28  42  54  66  77  86  93  99 104 107 109 110 109 107 105 102 100
0  14  28  41  54  65  76  85  93  99 103 107 108 109 109 107 105 102 100
0  14  27  41  53  65  75  84  92  98 103 106 108 109 108 107 105 102 100
0  13  27  40  53  64  74  83  91  97 102 105 107 108 108 106 105 102 100
0  13  27  40  52  63  74  83  90  96 101 105 107 107 107 106 104 102 100
0  13  26  39  52  63  73  82  89  96 100 104 106 107 107 106 104 102 100
0  13  26  39  51  62  72  81  89  95 100 103 105 106 106 105 104 102 100
0  13  26  39  51  62  72  80  88  94  99 103 105 106 106 105 104 102 100
0  13  26  38  50  61  71  80  87  93  98 102 104 105 105 105 103 102 100
0  13  25  38  50  60  70  79  87  93  98 101 104 105 105 104 103 101 100
0  12  25  37  49  60  70  78  86  92  97 101 103 104 105 104 103 101 100
0  12  25  37  49  59  69  78  85  91  96 100 102 104 104 104 103 101 100
0  12  25  37  48  59  69  77  85  91  96  99 102 103 104 103 102 101 100
0  12  24  36  48  58  68  76  84  90  95  99 101 103 103 103 102 101 100
0  12  24  36  47  58  67  76  83  89  94  98 101 102 103 103 102 101 100
0  12  24  36  47  57  67  75  83  89  94  97 100 102 102 102 102 101 100
0  12  24  35  47  57  66  75  82  88  93  97 100 101 102 102 102 101 100
0  12  24  35  46  56  66  74  81  88  92  96  99 101 102 102 101 101 100
0  12  23  35  46  56  65  74  81  87  92  96  99 100 101 102 101 100 100
0  11  23  35  45  55  65  73  80  86  91  95  98 100 101 101 101 100 100
0  11  23  34  45  55  64  72  80  86  91  95  98  99 101 101 101 100 100
0  11  23  34  45  55  64  72  79  85  90  94  97  99 100 101 101 100 100
0  11  23  34  44  54  63  71  78  85  90  94  97  99 100 100 100 100 100
0  11  22  33  44  54  63  71  78  84  89  93  96  98  99 100 100 100 100
0  11  22  33  44  53  62  70  77  83  88  93  96  98  99 100 100 100 100
0  11  22  33  43  53  62  70  77  83  88  92  95  97  99 100 100 100 100

Figure 5-2-4.  Ch = 0.320, large scale recirculation.
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0  19  37  53  68  80  90  97 104 108 111 112 113 112 111 109 106 103 100
0  18  35  51  65  78  88  96 103 108 111 113 114 113 111 109 106 103 100
0  17  34  49  63  76  87  95 102 108 111 113 114 113 112 110 107 103 100
0  16  33  48  62  75  85  94 102 107 111 113 114 114 112 110 107 103 100
0  16  32  47  61  73  84  94 101 107 111 113 114 114 112 110 107 103 100
0  16  31  46  60  72  83  93 100 106 110 113 114 114 112 110 107 103 100
0  15  31  45  59  72  83  92 100 106 110 113 114 114 112 110 107 103 100
0  15  30  45  58  71  82  91  99 105 110 112 114 113 112 110 107 103 100
0  15  30  44  58  70  81  91  98 105 109 112 113 113 112 110 107 103 100
0  15  30  44  57  70  81  90  98 104 109 111 113 113 112 110 107 103 100
0  15  29  44  57  69  80  89  97 103 108 111 113 113 112 109 107 103 100
0  14  29  43  56  69  79  89  97 103 108 111 112 112 111 109 106 103 100
0  14  29  43  56  68  79  88  96 102 107 110 112 112 111 109 106 103 100
0  14  29  42  56  68  78  88  96 102 107 110 111 112 111 109 106 103 100
0  14  28  42  55  67  78  87  95 101 106 109 111 111 110 109 106 103 100
0  14  28  42  55  67  77  87  94 101 105 109 110 111 110 108 106 103 100
0  14  28  42  54  66  77  86  94 100 105 108 110 111 110 108 106 103 100
0  14  28  41  54  66  76  86  93 100 104 108 110 110 109 108 106 103 100
0  14  28  41  54  65  76  85  93  99 104 107 109 110 109 108 105 103 100
0  14  27  41  53  65  75  85  92  99 103 107 109 109 109 107 105 102 100
0  14  27  41  53  65  75  84  92  98 103 106 108 109 109 107 105 102 100
0  13  27  40  53  64  75  84  91  98 102 106 108 109 108 107 105 102 100
0  13  27  40  52  64  74  83  91  97 102 105 107 108 108 107 105 102 100
0  13  27  40  52  63  74  83  90  97 102 105 107 108 108 106 105 102 100
0  13  27  40  52  63  73  82  90  96 101 104 107 107 107 106 104 102 100
0  13  26  39  51  63  73  82  89  96 101 104 106 107 107 106 104 102 100
0  13  26  39  51  62  72  81  89  95 100 104 106 107 107 106 104 102 100
0  13  26  39  51  62  72  81  89  95 100 103 105 106 106 105 104 102 100
0  13  26  39  51  62  72  81  88  94  99 103 105 106 106 105 104 102 100
0  13  26  38  50  61  71  80  88  94  99 102 105 106 106 105 104 102 100
0  13  26  38  50  61  71  80  87  93  98 102 104 105 105 105 103 102 100
0  13  25  38  50  61  70  79  87  93  98 101 104 105 105 105 103 101 100
0  13  25  38  49  60  70  79  86  93  97 101 103 105 105 104 103 101 100
0  12  25  37  49  60  70  78  86  92  97 101 103 104 105 104 103 101 100
0  12  25  37  49  60  69  78  85  92  97 100 103 104 104 104 103 101 100

Figure 5-2-5.  Ch = 0.319, major flow blockage.
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0  16  32  47  61  74  86  96 105 111 116 118 119 119 117 114 109 105 100
0  16  32  47  61  74  86  96 104 111 116 118 119 119 117 114 109 105 100
0  16  32  47  61  74  86  96 104 111 115 118 119 119 117 113 109 105 100
0  16  32  47  61  74  86  96 104 111 115 118 119 119 117 113 109 105 100
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0  16  31  46  61  74  85  95 104 110 115 118 119 118 116 113 109 104 100
0  16  31  46  61  74  85  95 104 110 115 118 119 118 116 113 109 104 100

Figure 5-2-6.  Ch = 0.3185, major flow blockage by elongated vortex structure.
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 How to avoid stagnant bubbles.  We have shown that recirculating zones
can develop from interactions between inertia and gravity forces.  These bubbles
form when density stratification, hole deviation and pump rate fulfill certain
special conditions.  These are elegantly captured in a single channel variable, the

nondimensional parameter Ch = U2ref /gLd cos .  Moreover, the resulting

flow fields can be efficiently computed and displayed, thus allowing us to
understand better their dynamical consequences.

Suppressing recirculating flows is simply accomplished: avoid small
values of the nondimensional Ch parameter.  Small values, as is evident from
Equation 5-2-5, can result from different isolated effects.  For example, it
decreases as the hole becomes more horizontal, as density differences become
more pronounced, or as pumping rates decrease.  But none of these factors alone
control the physics; it is the combination taken together that controls bubble
formation and perhaps the fate of a drilling program.

We have modeled the problem as the single phase flow of a stratified fluid,
rather than as the combined motion of dual-phase fluid and solid continuum.
This simplifies the mathematical issues without sacrificing the essential physical
details.  For practical purposes, the parameter Ch can be viewed as a “danger
indicator” signaling impending cuttings transport or stuck pipe problems.  It is
the single most important parameter whenever interrupted circulation or poor
suspension properties lead to gravity segregation and settling of weighting
materials in drilling mud.

These considerations also apply to cementing, where density segregation
due to gravity and slow velocities are both likely.  When recirculation zones
form in either the mud or the cement above or beneath the casing, the
displacement effectiveness of the cement is severely impeded.  The result is mud
left in place, an undesirable one necessitating squeeze jobs.  Similar remarks
apply to pipeline applications.  Recirculation zones are likely to be encountered
at low flow rates that promote density stratification, and immediately prior to
flow start-up, when slurry particles have been allowed to settle out.

We emphasize that the vortical bubbles considered here are not the “Taylor
vortices” studied in the classical fluid mechanics of homogeneous flows.  Taylor
vortices are “doughnuts” that would normally “wrap around,” in our case, the
drillpipe; to the author’s knowledge, these have not been observed in drilling
applications.  They can be created in the absence of density stratification, that is,
they can be found in purely homogeneous fluids.  Importantly, Taylor vortices
would owe their existence to finite drillstring length effects, and would represent
completely different physical mechanisms.

A practical example.  We have discussed the dynamical significance of
the nondimensional parameter Ch that appears in the normalized equations of
motion.  For use in practical estimates, the channel variable may be written more
clearly as a multiplicative sequence of dimensionless entities,
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Ch = U2ref /gLd cos                                             (5-2-5)

= (U2/gL)  (ref / d)  (1/cos )

Let us consider an annular flow studied in the cuttings transport examples
of Borehole Flow Modeling.  For the 2-inch and 5-inch pipe and borehole radii,

the cross-sectional area is  (52 -22) or 66 in2.
The experimental data used in Discussions 1 and 2 of Chapter 5 in

Borehole Flow Modeling assume oncoming linear velocities of 1.91, 2.86 and
3.82 ft./sec.  Since 1 ft./sec. corresponds to a volumetric flow rate of 1 ft./sec. 
66 in.2 or 205.7 gpm, the flow rates are 393, 588 and 786 gpm.  So, at the lowest
flow rate of 393 gpm (a reasonable field number), the average linear speed over
the entire annulus is approximately 2 ft./sec.  But the low-side average will be
much smaller, say 0.5 ft./sec.  And if the pipe is displaced halfway down, the
length scale L will be roughly (5-2) /2 inches or 0.13 ft.

Thus, the first factor in Equation 5-2-5 takes the value U2/gL =

(0.5)2/(32.2  0.13) = 0.06.  If we assume a 20 percent density stratification,
then ref /d = 5.0; the product of the two factors is 0.30.  For a highly deviated

well inclined 70o from the vertical axis,  = 90o - 70o = 20o and cos 20o = 0.94.
Thus, we obtain Ch = 0.30/0.94 = 0.32.  This value, as Figures 5-2-1 to 5-2-6
show, lies just at the threshold of danger.  Velocities lower than the assumed
value are even more likely to sustain recirculatory flows; higher ones, in
contrast, are safer.

Of course, the numbers used above are only estimates; a three-dimensional,
viscous solution is required to establish true length and velocity scales.  But
these approximate results show that bottomhole conditions typical of those used
in drilling and cementing are associated with low values of Ch near unity.

We emphasize that Ch is the only nondimensional parameter appearing in
Equations 5-2-1 to 5-2-3.  Another one describing the geometry of the annular
domain would normally appear through boundary conditions.  For convenience
though (and for the sake of argument only), we have replaced this requirement
with an idealized “sink.”  In any real calculation, exact geometrical effects must
be included to complete the formulation.  Also note that our recirculating flows
get worse as the borehole becomes more horizontal; that is, Ch decreases as 
becomes smaller.  This is in stark contrast to the unidirectional, homogeneous

flows usually studied, which typically perform worst near 45o, at least with
respect to cuttings transport efficiency.  The structure of Equation 5-2-5

correctly shows that in near-vertical wells with  approaching 90o, Ch tends to
infinity; thus, the effects of flow blockage due to the vortical bubbles considered
here are relegated to highly deviated wells.
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Again, flow properties such as local velocity, shear rate, and pressure can
be obtained from the computed streamfunction straightforwardly.  They may be
useful correlation parameters for cuttings transport efficiency and local bed
buildup.  Continuing research is underway, exploring similarities between this
problem and the density-dependent flows studied in dynamic meteorology and
oceanography.  Obvious extensions of our observations for annular flow apply
to the pipeline transport of wax and hydrate slurries.

Software implementation.  The stratified flow solution in this section can
be accessed from the “Utilities” menu in Figure 5-2-7a, which calls the program
in Figure 5-2-7b.  Clicking “Results” yields numerical streamfunction results,
e.g., Figure 5-2-1, and the three-dimensional color plots as in Figures 5-2-8a,b,c.

Figure 5-2-7a.  Stratified flow, user interface.

Figure 5-2-7b.  Stratified flow, user interface.
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Figure 5-2-8a.  Small recirculation zone.

Figure 5-2-8b.  Large flow blockage.

Figure 5-2-8c.  Safe flow, straight streamlines.
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Model 5-3.  Herschel-Bulkley flow in concentric annulus
with axially stationary and non-rotating drillpipe or casing.

Non-Newtonian fluids with yield stress are responsible for plug zones that
move as solid bodies within sheared flows.  Unlike circular pipe flow, the plug
in a concentric annulus is defined by two radial points where shear rates are
discontinuous.  Sudden changes in shear rate imply that the velocity derivative is
not continuous everywhere, therefore precluding simple numerical solution, e.g.,
the finite difference methods used for Power law fluids.  To date, yield stress
solutions for concentric annuli are not available, except under simple slot flow
approximations.  In our exact solution below, we do not invoke slot or thin
annulus assumptions, but require that the pipe or casing remain immobile.

Here we consider Herschel-Bulkley fluids, which encompass Newtonian,
Power law, and Bingham plastic yield flows.  An exact analytical approach is
developed that produces integral solutions in terms of a parameter “C.”  This
“C” satisfies special kinematic and dynamic constraints, and is iteratively
determined using a numerical scheme.  Once solved, the velocity field is
available and is used to calculate total volumetric flow rate.  In addition, the size
and location of the plug zone is accurately quantified.  Typically, less than one
second of computing time is required for convergence and solution display.

Mathematical formulation.  We consider the concentric annular flow of
non-Newtonian Herschel-Bulkley fluids with yield stress, assuming the
nomenclature in Figure 5-3a.  The axial pressure gradient satisfies dp/dz < 0
when the velocity U(r) > 0 flows to the right.  The radial coordinate is “r.”

r = 0

r-

r+

R o

z

R i

Figure 5-3a.  Concentric annular flow.

It is not possible to formulate finite difference models because shear rate
discontinuities at plug boundaries imply nonexistent derivatives.  Thus, we will
use less restrictive integral representations of the solution.  Fortunately, we are
able to develop an exact solution.  The detailed equations and constraints are
developed in the following discussion.
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Axial momentum balance.  Let r and z denote radial and axial coordinates
in the annulus of Figure 5-3a.  If (r) and p(z) represent viscous stress and
pressure acting on a fluid element, a simple momentum balance requires

d(r )/dr = - r dp/dz (5-3-1a)

Equation 5-3-1a can be integrated to give r (r) = - 1/2 dp/dz r2 + C, where C is
an integration constant, so that

(r)  = -1/2 dp/dz r + C/r  (5-3-1b)

In non-Newtonian flows with yield stress yield, a plug flow moving with
constant speed is found in regions where  < yield.  For circular pipe flow, we set
C = 0 because shear stresses cannot be infinite along the axis r = 0.  The circular
plug is defined by 0 r rplug where the plug radius follows on setting  = yield

with r =  rplug in (r)  = -1/2 dp/dz r.  It is clear that rplug = - 2yield / (dp/dz) > 0
always exists, a radius that separates the plug from the shearing flow.  For pipe
flows, this C = 0 requirement renders analysis straightforward.

Now, from Figure 5-3a, it is clear that two plug radii characterize annular
flows, falling between the inner and outer values R i and R o.  The argument for
vanishing C no longer applies, because r = 0 does not fall in the radial domain:
stress is never infinite.  A nonzero C now plays an important role in the analysis
and satisfies several physical constraints.

Formulas for plug radii.  Note that Equation 5-3-1b, which states that
“(r)  = -1/2 dp/dz r + C1/r,” applies to the outer annulus where dU(r)/dr < 0 and
 > 0.  Now, if we rewrite “yield = -1/2 dp/dz r + C1/r” as the quadratic equation
“1/2 dp/dz r2 + yield r - C1 = 0,” we can determine possible plug radii by solving

ra = {- yield - ( yield
2

  + 2C1 dp/dz) }/ (dp/dz) (5-3-2a)

rb = {- yield + ( yield
2

  + 2C1 dp/dz) }/ (dp/dz) (5-3-2b)

Next, consider the inner annulus, where dU(r)/dr > 0 and  < 0, and we have
now the formula “-yield = -1/2 dp/dz r + C2/r.”  This leads to the quadratic
equation “1/2 dp/dz r2 - yield r - C2 = 0,” for which possible plug radii are

rc = {+ yield - ( yield
2

  + 2C2 dp/dz) }/ (dp/dz) (5-3-2c)

rd = {+ yield + ( yield
2

  + 2C2 dp/dz) }/ (dp/dz) (5-3-2d)

In the zero yield limit yield  0, we find that ra = - (2C1 dp/dz) }/(dp/dz)
and rb = + (2C1 dp/dz) }/(dp/dz), and also, that rc = - (2C2 dp/dz) }/(dp/dz) and
rd = + (2C2 dp/dz) }/(dp/dz).  If all the ’s are positive, then on noting that
dp/dz is negative, it follows that ra > 0 and rb < 0, and rc > 0 and rd < 0.  Thus,
only the positive radii in Equations 5-3-2a and 5-3-2c are meaningful.  But these
formulas must give the same value.  This is possible by taking C1 = C2 = C,
where C is now a single unknown.  Hence, we write Equations 5-3-2a,c as
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r+ = {- yield - ( yield
2

  + 2C dp/dz) }/ (dp/dz) (5-3-2e)

r- = {+ yield - ( yield
2

  + 2C dp/dz) }/ (dp/dz) (5-3-2f)

for the required plug radii, satisfying r+ > r- as required in Figure 5-3a.
Kinematic constraints.  For physical solutions to exist, the discriminant

must be non-negative, that is, we seek yield
2
  + 2C dp/dz 0.  Since dp/dz < 0,

negative C values will be valid, but positive values are allowed if

C  yield
2

 / (2 |dp/dz | ) (5-3-3a)

which decreases as yield stress decreases.  This provides the upper bound.  A
lower bound is obtained by considering the limit in which yield  = 0 vanishes
altogether, in which case, 0 = +1/2 dp/dz rplug - C/rplug implies that the constant
satisfies C = ½ dp/dz rplug

2 < 0.  Thus, C can be negative, as noted above, but it
will be at the very least, equal to the negative value ½ dp/dz Ro

2 where Ro is the
outer annular radius.  Hence, we may write

1/2 dp/dz Ro
2  C  yield

2
 / (2 |dp/dz | ) (5-3-3b)

Furthermore, C must be chosen such that

r-(yield, dp/dz, C) > Ri (5-3-3c)

r+(yield, dp/dz, C) < Ro (5-3-3d)

u(r,yield, dp/dz, C) > 0 (5-3-3e)

Dynamic constraints.  The physical properties of the annular velocity
field are introduced through a suitable constitutive stress-strain relationship.  We
assume the classical Herschel-Bulkley model with n, K and yield values as
shown in Equation 5-3-4a.  For the outer annulus where dU/dr < 0, we write

 = yield + (- K dU/dr) n  (5-3-4a)

where “- dU/dr” and  are both positive, so that all the ( ) brackets are positive.
We substitute this into Equation 5-3-1b, that is, (r)  = -1/2 dp/dz r + C/r, to
obtain

yield  + (- K dU/dr) n =  - ½ dp/dz r + C/r  (5-3-4b)

from which

dU(r)/dr = - (1 /K) (- ½ dp/dz  r  + C/r - yield) 1/ n   (5-3-5a)

In order for solutions to exist, the quantity within the brackets must be positive,
so that

- ½ dp/dz  r  + C/r - yield
  0 (5-3-5b)

When this constraint is satisfied, Equation 5-3-5a can be integrated over (r, Ro)
to give
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Ro   

U(r) = + (1 /K)  (- ½ dp/dz  r  + C/r - yield ) 1/ n  dr (5-3-5c)
r

for r+ < r < Ro, where we have used the outer no-slip axial velocity condition
U(Ro) = 0.

For  the inner annulus, we require Equation 5-3-4a in a form suitable for
dU/dr > 0 and  < 0.  This is achieved by taking “- = yield + (K dU/dr) n ” so
that all the ( ) brackets are positive.  If we substitute “(r)  = - ½ dp/dz r + C/r,”
we obtain

dU(r)/dr = + (1 /K) ( ½ dp/dz  r  - C/r - yield ) 1/ n   (5-3-6a)

for which we require

½ dp/dz  r  - C/r - yield
  0 (5-3-6b)

If this is satisfied, we integrate over (Ri, r) and apply the no-slip axial velocity
condition U(Ri) = 0, to obtain

r   

U(r) = + (1 /K)  ( ½ dp/dz  r  - C/r - yield ) 1/ n  dr (5-3-6c)
Ri

for Ri < r < r-.  Now the plug moves with a constant speed Uplug in r- < r < r+.  Its
value from Equation 5-3-5c at r = r + must equal that using Equation 5-3-6c at
the location r = r- if there is no slippage kinematically.  In other words,

r-   

 ( ½ dp/dz  r  - C/r - yield ) 1/ n  dr
Ri

---------------------------------------------- = 1 (5-3-7)
Ro   

 (- ½ dp/dz  r  + C/r - yield ) 
1/ n  dr

r+

Numerical evaluation of constraints.  In order for a flow (corresponding
to given Ri, Ro, n, K, yield and dp/dz) to exist, C must satisfy all of the
conditions derived.  Solutions for C may not exist, for instance, when pressure
gradients cannot overcome fluid yield resistance.  For such flows, U(r) vanishes
although the viscous stress may not.  Equation 5-3-7 is very useful.  The left side
defines a dimensionless function T(Ri, Ro, n, K, yield, dp/dz; C) that increases
monotonically as C decreases, when all other parameters are fixed.  In our
iterative solution, we start with the largest C in Equation 5-3-3b, and
incrementally decrease C values by one-thousandths of the total C interval.
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Our earlier constraints are tested first to reduce computing times, since the
simple logic tests required only involve “<” and “>.”  Finally, if a value of C*
exists such that T(C*) < 1 and T(C* - C) > 1, the solution is C*.  This value is
used to evaluate Equation 5-3-5c for the outer, and Equation 5-3-6c for the inner
annular velocity.  The plug velocity is obtained by evaluating Equation 5-3-5c at
r+ or Equation 5-3-6c at r-.  Shear rates and viscous stresses are obtained by
using the equations for dU(r)/dr and (r).  With U(r) available, the total
volumetric flow rate Q can be determined from the integral

Ro

Q  = U(r) 2r dr (5-3-8)
Ri

For the integrals in Equations 5-3-5c, 5-3-6c and 5-3-8, the trapezoidal rule
is taken.  Several simple checks were used.  First, numerical solutions for Q
were validated against exact solutions available for Newtonian flow.  Second,
for a “narrow annulus,” the maximum speed is always found at the center of the
channel, with or without yield stress.  Third, with all parameters, particularly
dp/dz fixed, the flow rate Q decreases as yield increases.  We emphasize that
although we have used numerical evaluations for our integrals, our solutions are
exact from a theoretical perspective, since the integrations can be made as
accurate as desired by decreasing integration step size.

Software interface and typical results.   The model derived here is called
and executed from the interface in Figures 5-3b accessed under the “Utility”
menu in our steady flow solver.  The complete output file under the assumptions
shown is duplicated below.

Figure 5-3b.  Exact Herschel-Bulkley concentric model.
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 Herschel-Bulkley (Concentric) Annulus Model:
 Exact solution to differential equations ...

 INPUT SUMMARY
 Inner annular radius  (in):  0.2000E+01
 Outer annular radius  (in):  0.4000E+01
 Pressure gradient (psi/ft):  -.2388E-01
 Fluid exponent n (dimless):  0.8000E+00
 Fluid yield stress   (psi):  0.9028E-03
 K factor (lbf sec^n/sq in):  0.1375E-04

 Plug is between R =   2.5 and   3.4 in.

 R =  2.0 in, U = 0.0000E+00 ft/s
 R =  2.1 in, U = 0.2076E+01 ft/s
 R =  2.2 in, U = 0.3513E+01 ft/s
 R =  2.3 in, U = 0.4399E+01 ft/s
.
.
.

 R =  3.6 in, U = 0.4396E+01 ft/s
 R =  3.7 in, U = 0.3762E+01 ft/s
 R =  3.8 in, U = 0.2827E+01 ft/s
 R =  3.9 in, U = 0.1577E+01 ft/s
 R =  4.0 in, U = 0.0000E+00 ft/s

 Volume flow rate BPM: 0.1124E+02
               cuft/s: 0.1052E+01
                  GPM: 0.4719E+03

    Rad (in)  Speed  (ft/s)   0
                              _______________________
      4.00     0.0000E+00     *
      3.90     0.1577E+01     |       *
      3.80     0.2827E+01     |               *
      3.70     0.3762E+01     |                     *
      3.60     0.4396E+01     |                         *
      3.50     0.4750E+01     |                           *
      3.40     0.4863E+01     |                            *
      3.30     0.4882E+01     |                            *
      3.20     0.4882E+01     |                            *
      3.10     0.4882E+01     |                            *
      3.00     0.4882E+01     |                            *
      2.90     0.4882E+01     |                            *
      2.80     0.4882E+01     |                            *
      2.70     0.4882E+01     |                            *
      2.60     0.4882E+01     |                            *
      2.50     0.4882E+01     |                            *
      2.40     0.4822E+01     |                           *
      2.30     0.4399E+01     |                         *
      2.20     0.3513E+01     |                   *
      2.10     0.2076E+01     |          *
      2.00     0.0000E+00     *

Figure 5-3c.  Exact velocity profile result.

Limitations in the derivation.  While the Herschel-Bulkley model derived
here provides exact and accurate results for all yield stress values, extending the
classic Power law and Bingham plastic solutions of Fredrickson and Bird
(1958), the concentric flow derivation is not generalizable to eccentric annuli
because simple formulas utilizing circular symmetries are not available.  In this
section, we used exact relationships to define plug and sheared zones
unambiguously and to apply the respective velocity formulas accordingly.
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In eccentric problems, the size, shape and location of the plug zone cannot
be determined a priori and a solution to the flow problem has remained elusive.
Authors have typically resorted to slot flow or narrow annulus assumptions, but
the limitations of these models are obvious, in particular, when real-world
effects like high eccentricities, cuttings beds and washouts are important.  In the
next section, we address the limitations inherent in the standard Herschel-
Bulkley model itself, and provide a practical, comprehensive and
mathematically rigorous solution for yield stress flows in general eccentric
annuli, with or without axial pipe or casing movement, with or without inner
body rotation.  The solutions developed for yield stress fluids in this book apply
to eccentric annuli not only under steady conditions, but also when the pipe or
casing undergoes general combined transient reciprocation and rotation.

Model 5-4.  Extended Herschel-Bulkley flow in eccentric
annulus with axially moving but non-rotating drillpipe or casing.

In fluid flows where yield stresses exist, “plug zones” are to be found.
These plugs move as solid bodies within the flowing system.  For pipes with
circular cross-sections and for concentric annuli, we have derived exact
analytical solutions for plug zone size and shape assuming Herschel-Bulkley
fluids in the previous section.  For circular pipes, the cross-sectional plug is
simply a circle; for concentric annuli, the plug is a ring.

The appearance of solid plugs within moving streams results from the
rheological model used by mathematicians to idealize the physics.  Since the

shear rate is  = [ (u/y)2 + (u/x)2 ]1/2, the usual idealization takes the form

N  = k n-1 + Syield/ if {1/2 trace (SS)}1/2  > 0

D = 0 if {1/2 trace (SS)}1/2  < 0                          (5-4a)

where the general extra stress tensor is denoted by  S and the deformation tensor
is given by D.  Here, 0 is the so-called “yield stress.”  The discontinuous “if,
then” character behind Equation 5-4a, somewhat artificial, is responsible for the
sudden transition from shear flow to plug flow commonly quoted.

As noted, for flows with azimuthal symmetry, that is, circular pipes and
concentric annuli, exact, rigorous mathematical solutions are in fact possible.
For non-circular ducts and eccentric annuli, which describe a large number of
practical engineering problems, it has not been possible to characterize plug
zone size and shape, even approximately.  Thus, one of the most significant
petroleum engineering problems important to both drilling and cementing
cannot be modeled at all, let alone accurately.  In order to remedy this situation,
we observe that the discontinuity offered in Equation 5-4a is really an artificial
one, introduced by theorists for, of all reasons, “simplicity.”
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This unfortunately leads to the solution difficulties noted.  In reality,
practical engineering flows do not suddenly turn from shear to plug flow; the
transition may be rapid, but it will occur continuously over finite measurable
distances.  Moreover, ideal plugs have never, to the author’s knowledge, been
observed experimentally.  We therefore turn to more realistic rheological models
which apply continuously throughout the entire problem domain, and which, if
the underlying flow parameters permit, lead to plug zones naturally during the
computational solution process.

The conventional Herschel-Bulkley viscoplastic model, which includes
Bingham plastics as a special limit when the exponent “n” is unity, requires that
 = 0 + K(d/dt) n, if  > 0 and d/dt = 0 otherwise.  Here  is the shear stress, 0

is the yield stress, K is the consistency factor, n is the exponent, and d/dt is the
shear rate.  As explained, this model is far from perfect.  For example, both
Herschel-Bulkley and Bingham plastic models predict fictitious infinite
viscosities in the limit of vanishing shear rate, a fact that often leads to
numerical instabilities.  This same infinity also precludes numerical methods,
which typically assume that derivatives exist.  In addition, the behavior is not
compatible with conservation laws that govern many complex flows.

Figure 5-4a.  Extended Herschel-Bulkley law.

An alternative to the standard Herschel-Bulkley model is the use of
continuous functions which apply to sheared regimes, and in addition, through
and into the plug zone.  One such model is suggested by Souza, Mendez and
Dutra (2004), that is,  = {1 – exp(-0 d/dt /0)}{0 + K (d/dt) n}, which
applies everywhere in the problem domain. Its apparent viscosity function is

 = /(d/dt) = {1 – exp(-0 d/dt /0)}{0/(d/dt) + K (d/dt) n-1} (5-4b)

The “apparent viscosity versus shear stress” and “shear stress versus shear
rate” diagrams, from Souza et al. (2004), are duplicated in Figure 5-4a.  What
are the physical consequences of this model?  Equation 5-4b, in fact, represents
an “extended Herschel-Bulkley” model in this sense.  For infinite shear rates,
one would recover  = 0 + K (d/dt) n.  But for low shear rates, a simple Taylor
expansion leads to  {0(d/dt) /0}{0/(d/dt) + K (d/dt) n-1}  0 where it is
clear now that 0 represents a very high (assumed) viscosity for the plug zone.
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The use of Equation 5-4b in numerical algorithms simplifies both
formulation and coding since internal boundaries and plug domains do not need
to be determined as part of the solution.  A single constitutive law (as opposed to
the use of two relationships in Equation 5-4a) applies everywhere, thus
simplifying computational logic; moreover, the continuous function assumed
also possesses continuous derivatives everywhere and allows the use of standard
difference formulas.  Cumbersome numerical matching across internal
boundaries is completely avoided.  In a practical computer program, the plug
zone viscosity might be assumed, for example, as 1,000 cp.  In fact, we choose
high values of 0 which would additionally stabilize the numerical integration
schemes use.  This strategy is applied throughout our work, both to our iterative
relaxation schemes for steady-state problems and to our transient integration
schemes for more complicated formulations.

It is important to recognize that the standard and extended Herschel-
Bulkley models here are not identical and will not give identical results even in
the concentric case although they will be close.   Thus it is of interest to consider
typical numbers.  Yield stresses in drilling and cementing applications are often
quoted as multiples of “lbf /100 ft2 ” or 0.00006944 psi.  An order-of-magnitude
correct yield might be 0.0001 psi.  In Figure 5-4b, we compare concentric results
obtained from our exact Herschel-Bulkley solver with that produced by the
steady, curvilinear grid simulator with the generalized constitutive relation.  The
exact flow rate is 1,387 gpm while the finite difference solution gives 1,364
gpm,  incurring less than 2 percent error.  If the yield stress is increased to
0.0005 psi, then the exact flow rate is 884.7 gpm, while the approximate value is
933.0 gpm, for a 5.5 percent difference.  The difference increases as yield stress
increases.

Figure 5-4b.  Comparison for 0.0001 psi yield stress.
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Figure 5-4c.  Bingham plastic run (note large plug zone).
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In Figure 5-4c, we apply our steady, curvilinear grid, finite difference
simulator to a water-like Bingham plastic fluid and show that the volumetric
flow rate for the parameters shown is 1,632 gpm.  For this test case, the flow
rate is 8,461 gpm without yield stress.  Calculations require about one second of
computing include screen display time.  The “flat top” profiles associated with
yield stress flows appear naturally even for highly eccentric annuli.  Again, the
steady flow simulator supports constant speed drillpipe or casing movement.  In
Figure 5-4d, for instance, eccentric annular plug flow solutions are obtained for
stationary pipe (left), pipe moving opposite to the flow (middle) and pipe
moving with the flow (right).  Our use of a generalized Herschel-Bulkley fluid
applies to both steady and unsteady formulations.  Yield stress applications in
transient flow are pursued later in Chapter 7.

Figure 5-4d.  Non-Newtonian plug velocity profiles with pipe movement.

Finally, we emphasize that the term “exact” refers to exact solutions of the
discontinuous model in Equation 5-4a.  The model in Equation 5-4b, on the
other hand, describes a continuous velocity field with continuous derivatives.
The “exact” discontinuous formulation, of course, is less applicable in an
engineering sense than our continuous model, since physical properties may not
change suddenly within a flow field.  In this sense, the value of a yield stress
model used should not be judged by how well it is consistent with an unnatural
formulation, but by how well it is consistent with reality.
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Model 5-5.  Steady non-Newtonian flow in boreholes with bends.

Bends in pipelines and annuli are interesting because they are associated
with additional losses; that is, to maintain a prescribed volumetric flow rate, a
greater pressure drop is required in ducts with bends than in those without (This
book does not deal with “secondary flows,” e.g., rotating vortical eddies
attached to solid walls or corners, separated viscous flows, and so on.).  This is
true because the net fluid stresses that act along duct walls are higher.  We will
first discuss the problem analytically, in the context of Newtonian flow; in this
limit, exact solutions are derived for Poiseuille flow between curved concentric
plates, but we will also focus on the form of the new differential equation used.
The closed form expressions derived for Newtonian flow, which contain the
required centrifugal force modifications, are new.  Their derivation motivates
our methodology for non-Newtonian flows in steady, three-dimensional, curved,
closed, simple and annular ducts, which can only be analyzed computationally.
This simulation feature is built into the “Steady 2D” solver (It does not appear in
our “Transient 2D” simulator due to time and budgetary constraints.).  As shown
in the user interface of Figure 1-2a at the bottom left, only the radius of
curvature needs to be entered in the “Curvature, hole axis (ft)” text input box.
For straight ducts, a large value, say 1,000 ft, can be used.

x
y

Figure 5-5-1a.  Viscous flow in a circular pipe.

x
y

Figure 5-5-1b.  Viscous flow in a rectangular duct.

x
y

Figure 5-5-1c.  Viscous flow in general duct.
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Straight, closed ducts.  We previously derived analytical solutions for
Newtonian flows in straight circular and rectangular conduits, as shown in
Figures 5-5-1a and 5-5-1b.  We also developed a general non-Newtonian
viscous flow solver applicable to arbitrary cross-section but straight eccentric
annuli utilizing curvilinear meshes.  These solutions have been validated in
detail in a number of applications examples.   We now ask, “How are these
methodologies extended to handle finite-radius bends along borehole axes?”
These extensions, important to modeling borehole curvature in directional wells,
are motivated by the parallel plate solutions derived next.

Hagen-Poiseuille flow between planes.  Let us consider here the plane
Poiseuille flow between parallel plates shown in Figure 5-5-2a, but for
simplicity, restrict ourselves first to Newtonian fluids.

Figure 5-5-2a.  Flow between parallel plates.

Let y be the coordinate perpendicular to the flow, with y = 0 and H
representing the walls of a duct of height H.  If u(y) represents the velocity, the
Navier-Stokes equations reduce to Equation 5-5-1, that is,

d2u(y)/dy2 = 1/ dP/dz (5-5-1)

u(0) = u(H) = 0 (5-5-2)

which is solved with the no-slip conditions in Equation 5-5-2.  Again,  is the
Newtonian viscosity and dP/dz is the constant axial pressure gradient.  The
velocity solution is the well-known parabolic profile

u(y) = ½ (1/ dP/dz) y (y-H) (5-5-3)

which yields the volumetric flow rate “Q/L” (per unit length ‘L’ out of the page)

H

Q/L = u(y) dy  = - (1/ dP/dz) H3/12 (5-5-4)
0

Flow between concentric plates.  Now suppose that the upper and lower
walls are bent so that they conform to the circumferences of concentric circles
with radii “R” and “R+H,” where R is the radius of curvature of the smaller
circle.  We ask, “How are corrections to Equations 5-5-3 and 5-5-4 obtained?”

It is instructive to turn to the exact momentum law in the azimuthal “”
direction used in Section 5-6 for our analysis of rotating concentric flow, that is,
Equation 5-6-18.  There, v represents the velocity in the circumferential
direction.  We now draw upon that azimuthal equation, but apply it to the flow
between the concentric curved plates shown in Figure 5-5-2b.
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Rc

Figure 5-5-2b.  Opened duct flow between concentric curved plates.

Since there is no flow perpendicular to the page, vz = 0; also, vr = 0 because the
velocity is directed only tangentially, and F is assumed to be zero.  In these
coordinates, the flow is steady, and  and “z” variations vanish identically.
Thus, the azimuthal equation reduces to the ordinary differential equation

d
2v/dr2 + 1/r dv/dr - v/r

2 = 1/ {1/r dP/d} (5-5-5)

where the right side, containing the axial pressure gradient “1/r dP/d,” is
approximately constant.  It must be solved together with the no-slip conditions

v(R) = v(R+H) = 0 (5-5-6)

A closed form solution can be obtained as

v(r)/[1/ {1/r dP/d}] = {(R+H)3 - R3}/{R2 - (R+H)2}  (r/3)

- R2(R+H)2/{R2 - (R+H)2}  {H/(3r)} + 1/3 r2 (5-5-7)

Then, the volumetric flow rate “Q/L” per unit length (out of the page) is

R+H

Q/L = v(r) dr (5-5-8)
R

Q/L =  ( 1/18) (1/ dP/dz) (5-5-9)

{- 6R3H - 9R2H2 - 5RH3  - H4  + 6R4 ln(R+H)

+ 12HR3 ln(R+H) + 6H2R2 ln(R+H) - 6R4 ln(R)

- 12R3H ln(R) - 6R2H2 ln(R)}/(2R+H)

where we have replaced “1/r dP/d” by “dP/dz.”  Now, in the limit R >> H,
Equation 5-5-9 simplifies to

Q/L  (1/ dP/dz) {- H3/12 + H5/(180 R2) + O(1/R3 )} (5-5-10)
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The first term in Equation 5-5-10 is the result in Equation 5-5-4, that is, the
asymptotic contribution of the straight parallel plate solution.  Subsequent terms
represent corrections for finite R.  In general, Equation 5-5-9 applies to all R and
H combinations without restriction.

Typical calculations.  It is interesting to ask, “How does total volumetric
flow rate in such a curved ‘pipe’ compare with classical parallel plate theory?”
For this purpose, consider the ratio obtained by dividing Equation 5-5-9 by
Equation 5-5-4.  It is plotted in Figure 5-5-2c, where we have set H = 1 and
varied R.

Figure 5-5-2c.  Volumetric flow rate ratio, with H = 1.

This ratio tends to “1” quickly, when R > 5.  We also ask, “What is the worst

flow rate penalty possible?”  If we take R 0, it can be shown that the ratio
approaches 2/3.  Thus, for Newtonian flow between concentric plates, the
volumetric flow rate is at worst equal to 2/3 of the value obtained between
parallel plates for the same H.  This assumes that the flow is steady and laminar,
with no secondary viscous flow in the cross-sectional plane.

A

B

Figure 5-5-2d.  Particles impinging at duct walls.
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We also use the velocity solution in Equation 5-5-7 to study the viscous
stresses at the walls of our concentric channel.  Consider Figure 5-5-2d, which
shows two impinging particles lodged at A and B, which may represent wax,
hydrate, cuttings or other debris.  The likelihood that they dislodge depends on
the local viscous stress, among other factors.  In this problem, vz = vr = 0 and
//z = 0, leaving the single stress component  r(r)=  r (v/r)/r.  In
particular, we plot “Stress Ratio” = -  r(R+H)/ r(R) in Figure 5-5-2e, with H =
1 and varying R.  The “minus” is used to keep the ratio positive, since the signs
of the opposing stresses are opposite.  The result is shown in Figure 5-5-2e.

Figure 5-5-2e.  “Stress Ratio,” H = 1.

This graph shows that stresses at the outer wall are less whenever axis
curvatures are finite.  Thus, with all parameters equal, there is less likelihood
that “B” will dislodge more quickly than “A.”  The velocity and stress solutions
obtained here are also useful in determining how and where debris settle within
the duct.  Numerous factors enter, of course, among them, particle size, shape
and distribution, buoyancy effects, local velocities and gradients, and so on.
Such studies follow lines established in the sedimentary transport literature.

Flows in closed curved ducts.  Our analysis shows that corrections for
bends along the axis can be obtained by solving v(r) in cylindrical coordinates.
It is apparent that the extension of Equations 5-5-9 and 5-5-10 to cover closed
rectangular ducts (versus “opened” concentric plates) with finite radius of
curvature, e.g., Figure 5-5-1b, only requires the solution of Equation 5-5-5 with
the “

2v/z
2

 ” term in the earlier azimuthal equation, leading to


2v/r2 + 1/r v/r - v/r

2 + 
2v/z

2  = 1/  P/z axial (5-5-11)

where the notation “P/z axial” for axial pressure gradient replaces the “P/z”
used previously, noting that the “z” in the v(r,z) of Equation 5-5-11 is now
perpendicular to the page.  For the duct in Figure 5-5-1b, the no-slip conditions
are v(R,z) = v(R+H,z) = 0 and v(r,z1) = v(r,z2) = 0, where z = z1 and z2 are
end planes parallel to the page.
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With our extension to rectangular geometries clear, the passage to bent
ducts with arbitrary closed cross-sections, e.g., Figure 5-5-3, is obtained by
taking Equation 5-5-11 again, but with no-slip conditions applied along the
perimeter of the shaded duct area or annular domain.  Ducts with multiple bends
are studied by combining multiple ducts with piecewise constant radii of
curvature.  Since the total flow rate is fixed, each section will be characterized
by different axial pressure gradients.

Rc

x

y

Figure 5-5-3.  Arbitrary closed duct with curved axis.

Of course, Equation 5-5-11 is quite different from the original equation for

straight flows, that is, from “2u/y2 + 2u/x2   N()-1 P/z + . . .”  In order
to use the previous algorithm, we rewrite Equation 5-5-11 in the form


2v/r2 + 

2v/z
2  = 1/  P/z axial - 1/R v/r + v/R

2 (5-5-12)

where we have transferred the new terms to the right side, and replaced the
variable “r” coefficients by constants, assuming R >> H so that r  R.

The “r, z” in Equation 5-5-12 are just the “y, x” cross-sectional variables
used earlier.  In our iterative solution for this Newtonian flow, the right side
velocity terms of Equation 5-5-12 are evaluated using latest values, with the
relaxation method continuing until convergence.

For non-Newtonian flows, a similar procedure applies; that is,  is replaced
by the apparent viscosity N().  To demonstrate the basic ideas, consider the
general  momentum equation

 (v/t + vr v/r + v/r v/+ vvr /r + vz v/z) = (5-5-13)
= -1/r P/  + 1/r2 (r2Sr)/r + 1/r S/ + Sz/z + body forces,

If /t = / = vr = vz = 0 and body forces vanish, then

P/zaxial 1/r P/
=  1/r2 (r2Sr)/r + 1/r S/ + Sz/z (5-5-14)

If we now substitute S = 2 N() D from Equation 2-3-5, we obtain


2v/r2 + 

2v/z
2  + 1/r v/r - v/r

2 =

= 1/ N()  P/z axial + ... (5-5-15)
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where “ + ...” represents terms containing derivatives of N().  These are
completely retained in our steady flow solution process but are not written out
for brevity.  The revised partial differential equation, of course, applies whether
or not the inner pipe moves.  The constant positive, zero or negative speed is
entered at the bottom left of the “Steady 2D” user interface in Figure 1-2a.

These changes are easily implemented in software.  For example, our
straight-duct “line relaxation” Fortran source code previously included the lines,

      WW(J) = -ALPHA(I,J)*(U(I-1,J)+U(I+1,J))/DPSI2

     1        +GAKOB(I,J)*GAKOB(I,J)* PGRAD/APPVIS(I,J)

     2        +2.0*BETA(I,J)*

     3        (U(I+1,J+1)-U(I-1,J+1)-U(I+1,J-1)+U(I-1,J-1))/

     4        (4.*DPSI*DETA)

Figure 5-5-4a.   Original straight-duct Fortran source code.

which incorporate “N()-1 P/z,” where the other terms shown are related to
the Thompson mapping.  To introduce borehole curvature, the bolded term
above is simply replaced as indicated by comparing Figures 5-5-4a and 5-5-4b,

      CHANGE = PGRAD/APPVIS(I,J)

     1       -(YETA(I,J)*(U(I+1,J)-U(I-1,J))/(2.*DPSI)

     2       - YPSI(I,J)*(U(I,J+1)-U(I,J-1))/(2.*DETA))/

     3        (GAKOB(I,J)*RCURV)

     4       + U(I,J)/(RCURV**2.)
C
      WW(J) = -ALPHA(I,J)*(U(I-1,J)+U(I+1,J))/DPSI2

     1        +GAKOB(I,J)*GAKOB(I,J)*CHANGE

     2        +2.0*BETA(I,J)*

     3        (U(I+1,J+1)-U(I-1,J+1)-U(I+1,J-1)+U(I-1,J-1))/

     4        (4.*DPSI*DETA)

Figure 5-5-4b.   Modified Fortran source code.

The second and third lines of our Fortran source code for “CHANGE”
represent the “r” velocity derivative in transformed coordinates.  Newtonian
calculations similar to those performed for “concentric plate Poiseuille flow”
show that, when pressure gradient is prescribed, volumetric flow rate again
decreases as the radius of curvature Rc tends to zero.   For a circular cross-
section of radius R, the decrease is roughly 20 percent relative to Hagen-
Poiseuille flow when Rc and R are comparable.  We have focused on Newtonian
flows because exact solutions were available, and importantly, our results
applied to all viscosities and pressure gradients.  However, results will vary for
pipelines with non-circular cross-sections, non-Newtonian flow, or both; general
conclusions cannot be offered, of course, but computations can now be easily
performed with the numerically stable implementation derived above.
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Model 5-6.  Newtonian and Power law flow in concentric
annulus with rotating (but axially stationary) pipe or casing.

Analytical solutions for nonlinearly coupled axial and circumferential
velocities, their deformation, stress and pressure fields, are obtained for
concentric annular flow in an inclined borehole with a centered, rotating
drillstring or casing.  The closed form solutions are used to derive formulas for
volumetric flow rate, maximum borehole wall stress, apparent viscosity, and
other quantities as functions of “r.”  The analysis is restricted to Newtonian and
Power law fluids.  Our Newtonian results are exact solutions to the viscous
Navier-Stokes equations without geometric approximation.  For Power law
fluids, the analytical results reduce to the Newtonian solutions in the “n=1”
limit.  All solutions satisfy no-slip viscous boundary conditions at both the
rotating drillstring and the borehole wall.  Our pipe is assumed to be stationary
axially.  The formulas are explicit; they require no iteration and are easily
programmed on calculators and computers.  Extensive analytical and calculated
results are given, which elucidate the physical differences between the two fluid
types.

General governing equations.  The equations governing general fluid
motion are available from many excellent textbooks on continuum mechanics
(Schlichting, 1968; Slattery, 1981).  We will cite these equations without proof.
Let vr, v and vz denote Eulerian fluid velocities, and Fr, F and Fz the body
forces, in the r,  and z directions, respectively.  Here (r,,z) are standard
circular cylindrical coordinates.

Also, let  be the constant fluid density and p be the pressure; and denote
by Srr, Sr, S, Srz, Sr, Sz, Szr, Sz and Szz the nine elements of the general extra
stress tensor S.  If t is time, and ’s represent partial derivatives, the complete
equations obtained from Newton’s law and mass conservation are

Momentum equation in r:

 (vr /t + vrvr /r + v/r vr / - v
2/r + vz vr /z) = (5-6-1)

= Fr – p/r + 1/r (rSrr)/r + 1/r (Sr)/ + (Srz)/z – S/r

Momentum equation in :
 (v /t + vr v /r + v/r v / + vrv /r + vz v /z) = (5-6-2)

= F – 1/r p/ + 1/r2 (r2Sr)/r + 1/r (S)/ + (Sz)/z

Momentum equation in z:
 (vz /t + vr vz /r + v/r vz / + vzvz /z) = (5-6-3)

= Fz – p/z + 1/r (rSz r)/r + 1/r (Sz )/ + (Szz)/z

Mass continuity equation:

1/r (rvr)/r  + 1/r v/ + vz /z  =  0                        (5-6-4)
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These equations apply to all Newtonian and non-Newtonian fluids.  In
continuum mechanics, the most common class of empirical models for isotropic,
incompressible fluids assumes that S can be related to the rate of deformation
tensor D by a relationship of the form

S = 2 N() D                                                      (5-6-5)

where the elements of D are

Drr = vr /r                                                      (5-6-6)

D = 1/r v/  + vr/r                                          (5-6-7)

Dzz = vz/z                                                      (5-6-8)

Dr = Dr = [r (v/r)/r  + 1/r vr/] /2                       (5-6-9)

Drz = Dz r = [vr/z + vz /r] /2                                 (5-6-10)

Dz = Dz = [v/z + 1/r vz/] /2                             (5-6-11)

In Equation 5-6-5, N() is the “apparent viscosity function” satisfying

N()  >  0                                                       (5-6-12)

(r,,z) being the scalar functional of vr, v and vz defined by the tensor
operation

 = { 2 trace (DD) }1/2                                         (5-6-13)

These considerations are still very general.  Let us examine an important
and practical simplification.  The Ostwald-de Waele model for two-parameter
“Power law fluids” assumes that the apparent viscosity satisfies

N() = K n-1                                            (5-6-14)

where the exponent “n” and consistency factor “K” are constants.  Power law
fluids are “pseudoplastic” when 0 < n < 1, Newtonian when n = 1, and “dilatant”
when n > 1.  Most drilling fluids are pseudoplastic.  In the limit taking “n = 1, K
= µ,” Equation 5-6-14 reduces to a Newtonian model with N() = µ, where µ is
the laminar viscosity; here, stress is linearly proportional to shear rate.

On the other hand, when n and K take on general values, the apparent
viscosity function becomes somewhat complicated.  For isotropic, rotating flows
without velocity dependence on the azimuthal coordinate , the function  in
Equation 5-6-14 takes the form

 = [ (vz /r) 2 + r2 ({v/r}/r) 2 ] 1/2                          (5-6-15)

as we will show, so that Equation 5-6-14 becomes

N() = K [(vz /r) 2 + r2 ({v/r}/r) 2 ] (n-1)/2                  (5-6-16)
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This apparent viscosity reduces to the conventional N() = K (vz /r) (n-1)

for “axial only” flows without rotation; and, to N() = K (r {v/r}/r) (n-1) for
“rotation only” viscometer flows without axial velocity.  When both axial and
circumferential velocities are present, as in annular flows with drillstring
rotation, neither of these simplifications applies.  This leads to mathematical
difficulty.  Even though “v(max)” is known from the rotational rate, the
magnitude of the nondimensional “v (max)/vz(max)” ratio cannot be accurately
estimated because vz is highly sensitive to n, K, rotational rate and pressure
drop.  Thus, it is impossible to determine beforehand whether or not rotational
effects will be weak; simple “axial flow only” formulas cannot be used a priori.

Our result for Newtonian flow, an exact solution to the Navier-Stokes
equations, is considered first, without geometric approximation.  Then a closed
form analytical solution for pseudoplastic and dilatant Power law fluids is
developed for more general n’s; we will derive results for rotating flows using
Equation 5-6-16 in its entirety which lead to useful formulas that can be
evaluated explicitly without iteration.  Because the mathematical manipulations
are complicated, the Newtonian limit is examined first to gain insight into the
general case.  This is instructive because it allows us to highlight the physical
differences between Newtonian and Power law flows.

Figure 5-6-1a.  Borehole configuration.

The annular geometry is shown in Figure 5-6-1a.  A drillpipe (or casing)
and borehole combination is inclined at an angle  relative to the ground, with 
= 0o for horizontal and  = 90o for vertical wells.  “Z” denotes any point within
the drillpipe or annular fluid; Section “AA” is cut normal to the local z axis.
Figure 5-6-1b resolves the vertical body force at “Z” due to gravity into
components parallel and perpendicular to the axis.  Figure 5-6-1c further breaks
the latter into vectors in the radial and azimuthal directions of the cylindrical
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coordinate system at Section “AA.”  Physical assumptions about the drillstring
and borehole flow in these coordinates are developed next. Their engineering
and mathematical consistency will be evaluated, and applications formulas and
detailed calculations will be given.

Figure 5-6-1b.  Gravity vector components.

Figure 5-6-1c.   Free body diagram, gravity in (r,,z) coordinates.
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Exact Newtonian flow solution.  For Newtonian flows, the stress is
linearly proportional to shear rate; the proportionality constant is the laminar
viscosity µ.  We assume for simplicity that µ is constant (temperature or
pressure dependencies would complicate the solution by coupling additional
energy balance and material equations).  Thus, Equations 5-6-1 to 5-6-3 become

Momentum equation in r: (5-6-17)

vr /t + vr vr /r + v/r vr /- v2/r + vz vr /z} = Fr  - p/r

+ {
2vr /r2 + 1/r vr /r - vr /r

2 + 1/r2 
2vr /

2 - 2/r2 v/ + 
2vr /z

2}

Momentum equation in : (5-6-18)

v/t + vr v/r + v/r v/+ vrv/r + vz v/z} = F- 1/r p/
+ {

2v/r2 + 1/r v/r - v/r
2 + 1/r2 

2v/
2 + 2/r2 vr / + 

2v/z
2}

Momentum equation in z: (5-6-19)

vz /t + vr vz /r + v/r vz /+ vz vz /z} = Fz  - p/z

+ {
2vz /r2 + 1/r vz /r + 1/r2 

2vz /
2 + 

2vz /z
2}         

In this section, it is convenient to rewrite Equation 5-6-4 in the expanded form

Mass continuity equation:

vr /r + vr /r + 1/r v/+ vz /z = 0 (5-6-20)

Now consider the free body diagrams in Figures 5-6-1a,b,c.  Figure 5-6-1a
shows a straight borehole with a centered, rotating drillstring inclined at an
angle  relative to the ground. Figure 5-6-1b, referring to this geometry,
resolves the gravity vector g into components parallel and perpendicular to the
hole axis.  Figure 5-6-1c applies to the circular cross-section AA in Figure 5-6-

1a and introduces local cylindrical coordinates (r,).  The “low side, = - 90o”
marks the position where cuttings beds would normally form.  The force g cos
 of Figure 5-6-1b is resolved into orthogonal components g cos  sin  and 
g cos  cos .

Physical assumptions about the flow are now given.  First, it is expected
that at any section AA along the borehole axis z, the velocity fields will appear
to be the same; they are invariant, so z derivatives of vr, v and vz vanish.  Also,
since the drillpipe and borehole walls are assumed to be impermeable, vr = 0
throughout (In formation invasion modeling, this would not apply.).  While we
do have pipe rotation, the use of circular cylindrical coordinates (with constant
v at the drillstring) renders the mathematical formulation steady.  Thus, all time
derivatives vanish.  These assumptions imply that

-  v
2/r = Fr - p/r - 2/r2 v/ (5-6-21)
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 v/r v/ = F- 1/r p/ (5-6-22)

+ {
2v/r2 + 1/r v/r - v/r

2 + 1/r2 
2v/

2}

 v/r vz / = Fz - p/z (5-6-23)

+ {
2vz /r2 + 1/r vz /r + 1/r2 

2vz /
2}

 v/ = 0  (5-6-24)

Equation 5-6-24 is useful in simplifying Equations 5-6-21 to 5-6-23 further.  We
straightforwardly obtain

 v
2/r =  g cos  sin  + p/r (5-6-25)

 = - g cos  cos  - 1/r p/ (5-6-26)

+ {
2v/r2 + 1/r v/r - v/r

2}

 v/r vz / = g sin  - p/z (5-6-27)

+ {
2vz /r2 + 1/r vz /r + 1/r2 

2vz /
2}

where we have substituted the body force components of Figures 5-6-1b,c.
Now, since Equation 5-6-27 does not explicitly contain , it follows that vz is
independent of .  Since we had already shown that there is no z dependence, we
find vz = vz (r) is a function of r only.  Equation 5-6-27 therefore becomes

 = g sin  - p/z + {
2vz /r2 + 1/r vz /r} (5-6-28)

To achieve further simplicity, we resolve (without loss of generality) the

pressure p(r,,z) into its component dynamic pressures P(z) and P*(r), and its
hydrostatic contribution, through the separation of variables

p(r,,z) = P(z) + P*(r) + zg sin  - r g cos  sin              (5-6-29)

This reduces the governing Navier-Stokes equations to the simpler but
mathematically equivalent system


2vz /r2 + 1/r vz /r = 1/ dP(z)/dz = constant (5-6-30)


2v/r2 + 1/r v/r - v/r

2 = 0  (5-6-31)

 v
2/r = dP*(r)/dr (5-6-32)

The separation of variables introduced in Equation 5-6-29 and the explicit
elimination of “g” in Equations 5-6-30 to 5-6-32 do not mean that gravity is
unimportant; the effects of gravity are simply tracked in the dP(z)/dz term of

Equation 5-6-30.  The function P*(r) will depend on the velocity solution to be
obtained.  Equations 5-6-30 to 5-6-32 are also significant in another respect.
The velocity fields vz(r) and v(r) can be obtained independently of each other,
despite the nonlinearity of the Newtonian Navier-Stokes equations, because
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Equations 5-6-30 and 5-6-31 physically uncouple.  This decoupling occurs
because the nonlinear convective terms in the original momentum equations
identically vanish.  Equation 5-6-32 is only applied (after the fact) to calculate

the radial pressure field P*(r) for use in Equation 5-6-29.  This decoupling
applies only to Newtonian flows. For non-Newtonian flows, vz(r) and v(r) are
strongly coupled mathematically, and different solution strategies are needed.

This degeneracy with Newtonian flows means that their physical properties
will be completely different from those of Power law fluids.   For Newtonian
flows, changes in rotational rate will not affect properties in the axial direction,
in contrast to non-Newtonian flows.  Cuttings transport recommendations
deduced, for example, using water as the working medium, cannot be
extrapolated to general drilling fluids having fractional values of n, using any
form of dimensional analysis.  Similarly, observations for Power law fluids need
not apply to water.  This uncoupling was, apparently, first observed by Savins
and Wallick (1966), and the author is indebted to J. Savins for bringing this
earlier result to his attention.  Savins and Wallick noted that in Newtonian flows,
no coupling among the discharge rate, axial pressure gradient, relative motion
and torque through viscosity exists.  But we emphasize that the coupling
between vz and v reappears in eccentric geometries even for Newtonian flows.

Because Equations 5-6-30 and 5-6-31 are linear, it is possible to solve for
the complete flow field using exact classical methods.  We will give all required
solutions without proof, since they can be verified by direct substitution.  For the
inside of the drillpipe, the axial flow solution to Equation 5-6-30 satisfying no-
slip conditions at the pipe radius r = RP and zero shear stress at the centerline

defined by r = 0 is

vz (r) = (r2 - RP
2)/4µ  dP(z)/dz                                  (5-6-33)

Similarly, the rotating flow solution to Equation 5-6-31 satisfying bounded flow
at r = 0 and v/r =  at r = RP is

v = r                                                          (5-6-34)

This is just the expected equation for solid body rotation.  Here, “” is a
constant drillstring rotational rate.  These velocity results, again, can be linearly
superposed despite the  nonlinearity of the underlying equations.

Now, let L denote the length of the pipe, Pmp be the constant pressure at

the “mud pump” z = 0, and P- be the drillpipe pressure at z = L just upstream of
the bit nozzles.  Direct integration of Equation 5-6-32 and substitution in
Equation 5-6-29 yield the complementary solution for pressure

p(r,,z) =  Pmp + (P- - Pmp) z/L  + 2r2/2

                + g(z sin  - r cos sin ) + constant             (5-6-35)

For the annular region between the rotating drillstring and the stationary
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borehole wall, the solution of Equation 5-6-30 satisfying no-slip conditions at
the pipe radius r = RP and at the borehole radius r = RB is

vz (r) = {r2 - RP
2 + (RB

2 - RP
2) (log r/RP)/log RP/RB} 1/4µ  dP(z)/dz

                                                                     (5-6-36)
where “log” denotes the natural logarithm.  The solution of Equation 5-6-31
satisfying v = 0 at r = RB and v = r at r = RP is

v(r) = RP(RB/r - r/RB)/(RB/RP - RP/RB)                          (5-6-37)

Now let P+ be the pressure at z = L just outside of the bit nozzles, and Pex be the

surface exit pressure at z = 0.  The solution for pressure from Equation 5-6-32 is

p(r,,z) = P+ + (Pex - P+) (L - z)/L + g(z sin  - r cos  sin )

+ 2RP
2 {- ½ (RB/r)2 + ½ (r/RB)2 -2 log (r/RB) + constant}/

                           (RB/RP - RP/RB)2                          (5-6-38)

Observe that the pressure p(r,,z) depends on all three coordinates, even
though vz(r) depends only on r.  The pressure gradient p/r, for example,
throws cuttings through centrifugal force; it likewise depends on r, and z, and
also on , g and .  It may be an important correlation parameter in cuttings
transport and bed formation studies.  The additive constants in Equations 5-6-35
and 5-6-38 have no dynamical significance.  Equations 5-6-33 to 5-6-38
describe completely and exactly the internal drillpipe flow and the external
annular borehole flow.  No geometrical simplifications have been made.  The
solution applies to an inclined, centered drillstring rotating at a constant angular
rate , but it is restricted to a Newtonian fluid.  

Again, these concentric solutions show that in the Newtonian limit, the
velocities vz(r) and v(r) uncouple; this is not the case for eccentric flows.  And
this is never so with non-Newtonian drilling flows, whether concentric or
eccentric.  Thus, the analysis methods developed here must be extended to
account for the physical coupling.

Non-Newtonian Power law solution.  For general non-Newtonian flows,
the Navier-Stokes equations (see Equations 5-6-17 to 5-6-19) do not apply;
direct recourse to Equations 5-6-1 to 5-6-3 must be made.  However, many of
the physical assumptions used and justified above still hold.  If we again assume
a constant density flow, and also that velocities do not vary with z,  and t, and
that vr = 0, we again obtain our Equation 5-6-24.  This implies mass
conservation.  It leads to further simplifications in Equations 5-6-1 to 5-6-3, and
in the tensor definitions given by Equations 5-6-5 to 5-6-14.  The result is the
reduced system of equations

0 = g sin  - p/z + 1/r  (Nr vz /r)/r                       (5-6-39)
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0 = - g cos cos  - 1/r p/ + 1/r2  (Nr3  (v/r)r)/r (5-6-40)

- v2/r = - g cos sin  - p/r
                + 1/r (Nr (v/r)/r)/ + (N vz /r)/z           (5-6-41)

At this point, we introduce the same separation of variables for pressure used for
Newtonian flows, that is Equation 5-6-29, so that Equations 5-6-39 to 5-6-41
become

0 = - P/z + 1/r  (Nr vz /r)/r                                (5-6-42)

0 =  (Nr3  (v/r)/r)/r                                         (5-6-43)

- v2/r = - P*/r + 1/r  (Nr  (v/r)/r)/
+  (N vz /r)/z    (5-6-44)

Of course, the P*(r) applicable to non-Newtonian flows will follow from
the solution to Equation 5-6-44; Equations 5-6-35 and 5-6-38 for Newtonian
flows do not apply.  Since  does not explicitly appear in Equation 5-6-44, vz

and v do not depend on ; and on z either, as previously assumed.  Thus, all
partial derivatives with respect to  and z vanish.  Without approximation, the
final set of ordinary differential equations takes the form

1/r d(Nr dvz /dr)/dr = dP/dz = constant                           (5-6-45)

d(Nr3 d(v/r)dr)/dr = 0                                          (5-6-46)

dP*/dr = v2/r                                                 (5-6-47)

where N() is the complete velocity functional given in Equation 5-6-16.  The
application of Equation 5-6-16 couples our axial and azimuthal velocities, and is
the source of mathematical complication.

The solution to Equations 5-6-45 to 5-6-47 may appear to be simple.  For
example, the unknowns v and vz are governed by two second-order ordinary
differential equations, namely, Equations 5-6-45 and 5-6-46; the four constants
of integration are completely determined by four no-slip conditions at the
rotating drillstring surface and the stationary borehole wall.  And, the radial
pressure (governed by Equation 5-6-47) is obtained after the fact only, once v is
available.

In reality, the difficulty lies with the fact that Equations 5-6-45 and 5-6-46
are nonlinearly coupled through Equation 5-6-16.  It is not possible to solve for
either vz and v sequentially, as we did for the “simpler” Navier-Stokes
equations.  Because the actual physical coupling is strong at the leading order, it
is incorrect to solve for non-Newtonian effects using perturbation series
methods, say, expanded about decoupled Newtonian solutions.  The method
described here required tedious trial and error; 24 ways to implement no-slip
conditions were possible, and not all yielded equations that can be integrated.
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We successfully derived closed form, explicit, analytical solutions for the
coupled velocity fields.  However, the desire for closed form solutions required
an additional “narrow annulus” assumption.  Still, the resulting solutions are
useful since they yield explicit answers for rotating flows, thus providing key
physical insight into the role of different flow parameters.

The method devised for arbitrary n below does not apply to the Newtonian
limit where n = 1, for which solutions are already available.  But in the n  1 ±
limit of our Power law results, we will show that we recover the Navier-Stokes
solution.  Thus, the physical dependence on n is continuous, and the results
obtained in this chapter cover all values of n.  With these preliminary remarks
said and done, we proceed with the analysis.

Let us multiply Equation 5-6-45 by r throughout.  Next, we integrate the
result, and also integrate Equation 5-6-46 once with respect to r, to yield

Nr dvz /dr = r2/2 dP/dz + E1                                      (5-6-48)

Nr3 d(v/r)dr = E2                                               (5-6-49)

where E1 and E2 are integration constants.  Division of Equation 5-6-48 by

Equation 5-6-49 gives a result (independent of the apparent viscosity N())
relating vz to v/r, namely,

dvz /dr  =  (r4/2 dP/dz + E1r2)/E2  d(v/r)dr                     (5-6-50)

At this point, it is convenient to introduce the angular velocity

(r)  =  v/r                                                    (5-6-51)

Substitution of the tensor elements D in Equation 5-6-13 leads to

 = { 2 trace (DD) }1/2

      = [ (vz /r)2 + r2 ({v/r}/r)2 ]1/2                          (5-6-52)

so that the Power law apparent viscosity given by Equation 5-6-14 becomes

N() = K [(vz /r)2 + r2 ({v/r}/r)2 ](n-1)/2                  (5-6-53)

These results were stated without proof in Equations 5-6-15 and 5-6-16.  Now
we combine Equations 5-6-49 and 5-6-53 so that

K [(vz /r)2 + r2 (/r)2 ](n-1)/2 d/dr = E2/r3                (5-6-54)

If dvz/dr is eliminated using Equation 5-6-50, we obtain, after very lengthy
manipulations,

d/dr = (E2/K)1/n [r(2n+4)/(n-1)

           + r (4n+2)/(n-1) {(E1 + r2/2 dP/dz)/E2}2 ] (1-n)/2n         (5-6-55)
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Next, we integrate Equation 5-6-55 over the interval (r,RB), where RB is the

borehole radius.  If we apply the first no-slip boundary condition

(RB) = 0                                                        (5-6-56)

(There are four no-slip conditions altogether.) and invoke the Mean Value
Theorem of differential calculus, using as the appropriate mean the arithmetic
average, we obtain

 (r) = (E2/K)1/n (r-RB) [((r+RB)/2) (2n+4)/(n-1)                 (5-6-57)

          +((r+RB)/2)(4n+2)/(n-1) {(E1 + (r+RB)2/8 dP/dz)/E2}2 ] (1-n)/2n

At this point, though, we do not yet apply any of the remaining three no-slip
velocity boundary conditions.

We turn our attention to vz instead.  We can derive a differential equation

independent of  by combining Equations 5-6-50, 5-6-51 and 5-6-55 as follows,

dvz /dr =  (r4/2 dP/dz + E1r2)/E2  d/dr              (5-6-58)

            =  r2(E1 + r2/2 dP/dz)/E2    (E2/K)1/n [r (2n+4)/(n-1)

             + r (4n+2)/(n-1) {(E1 + r2/2 dP/dz)/E2}2 ] (1-n)/2n

We next integrate Equation 5-6-58 over (RP,r), where RP is the drillpipe radius,

subject to the second no-slip condition

vz (RP) = 0                                                       (5-6-59)

An integration similar to that used for Equation 5-6-55, again invoking the Mean
Value Theorem, leads to a result analogous to Equation 5-6-57, that is,

vz (r) = ((r+RP)/2)2(E1 + ((r+RP)/2)2/2 dP/dz)/E2  
           (E2/K)1/n [((r+RP)/2)(2n+4)/(n-1) + ((r+RP)/2)(4n+2)/(n-1)

            {(E1 + ((r+RP)/2)2/2 dP/dz)/E2}2 ](1-n)/2n (r -RP)       (5-6-60)

Very useful results are obtained if we now apply the third no-slip condition

vz (RB) = 0                                                       (5-6-61)

With this constraint, Equation 5-6-60 leads to a somewhat unwieldy
combination of terms, namely,

0 = ((RB+RP)/2)2(E1 + ((RB+RP)/2)2/2 dP/dz)/E2  
        (E2/K)1/n [((RB+RP)/2)(2n+4)/(n-1) + ((RB+RP)/2)(4n+2)/(n-1)

        {(E1 + ((RB+RP)/2)2/2 dP/dz)/E2}2 ] (1-n)/2n (RB -RP)    (5-6-62)
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But if we observe that the quantity contained within the square brackets “[  ]” is
positive definite, and that (RB -RP) is nonzero, it follows that the left-hand side

“0” can be obtained only if

E1  =  - (RB+RP)2/8 dP/dz                                        (5-6-63)

holds identically.  The remaining integration constant E2 is determined from the

last of the four no-slip conditions

(RP) =                                                         (5-6-64)

Equation 5-6-64 requires fluid at the pipe surface to move with the rotating
surface.  Here, without loss of generality,  < 0 is the constant drillstring
angular rotational speed.  Combination of Equations 5-6-57, 5-6-63 and 5-6-64,
after lengthy manipulations, leads to the surprisingly simple result that

E2 = K (/(RP -RB))n ((RP+RB)/2)n+2                              (5-6-65)

With all four no-slip conditions applied, the four integration constants, and
hence the analytical solution for our Power law model, are completely
determined.  We next perform validation checks before deriving applications
formulas.

Analytical validation.  Different analytical procedures were required for
Newtonian flows and Power law flows with general n’s.  This is related to the
decoupling between axial and circumferential velocities in the singular n = 1
limit.  On physical grounds, we expect that the Power law solution, if correct,
would behave “continuously” through n = 1 as the fluid passes from dilatant to
pseudoplastic states.  That is, the solution should change smoothly when n varies
from 1- to 1+ where || << 1 is a small number.  This continuous dependence
and physical consistency will be demonstrated next.  This validation also guards
against error, given the quantity of algebraic manipulations involved.

The formulas derived above for general Power law fluids will be checked
against exact Newtonian results where K = µ and n = 1.  For consistency, we
will take the narrow annulus limit of those formulas, a geometric approximation
used in the Power law derivation.  We will demonstrate that the closed form
results obtained for non-Newtonian fluids are indeed “continuous in n” through
the singular point n = 1.

We first check our results for the stresses Sr and Sr.  From Equations 5-6-
5, 5-6-9 and 5-6-57, we find that

Sr = Sr = K (/(RP - RB))n ((RP+RB)/2)n+2  r -2                 (5-6-66)

In the limit K=µ and n=1, Equation 5-6-66 for Power law fluids reduces to

Sr  =  Sr  =  µ /{(RP - RB)r2}    ((RP+RB)/2)3                (5-6-67)
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On the other hand, the definition Sr = Sr = µ d/dr inferred from Equations 5-
6-5 and 5-6-9 becomes, using Equations 5-6-37 and 5-6-51 for Newtonian flow,

Sr  =  Sr  =  µ /{(RP -RB)r2}    2(RPRB)2/(RP +RB)      (5-6-68)

Are the two second factors “((RP+RB)/2)3” and “2(RPRB)2/(RP +RB)” in

Equations 5-6-67 and 5-6-68 consistent?  If we evaluate these expressions in the

narrow annulus limit, setting RP = RB = R, we obtain R3 in both cases,

providing the required validation.  This consistency holds for all values of dP/dz.
For our second check, consider the Power law stresses Srz and Szr obtained

from Equations 5-6-5, 5-6-10 and 5-6-58, that is,

Srz = Szr = E1/r + ½ r dP/dz

              = {½ r  - (RP+RB)2/(8r)} dP/dz                          (5-6-69)

The corresponding formula in the Newtonian limit is

Srz = Szr = µ dvz /dr

              = {½ r - (RP
2 - RB

2)/(4r log RP/RB)} dP/dz               (5-6-70)

where we have used Equation 5-6-36.  Now, is “(RP+RB)2/8” consistent with

“(RP
2 -RB

2)/(4 log RP/RB)”?  As before, consider the narrow annulus limit,

setting RP = RB = R.  The first expression easily reduces to R2/2.  For the

second, we expand log RB/RP  =  log {1 + (RB-RP)/RP} = (RB-RP)/RP and

retain only the first term of the Taylor expansion.  Direct substitution yields

R2/2 again.  Therefore, Equations 5-6-69 and 5-6-70 are consistent for all
rotational rates .  Thus, from our checks on both Srz and Sr, we find good
physical consistency and consequently reliable algebraic computations.

Newtonian and Power law flow differences.  Equations 5-6-29, 5-6-51,
5-6-57, 5-6-60, 5-6-63 and 5-6-65 specify the velocity fields vz and v = r(r) as
functions of wellbore geometry, fluid rheology, pipe inclination, rotational rate,
pressure gradient and gravity.  We emphasize that Equation 5-6-47, which is to
be evaluated using the non-Newtonian solution for v, provides only a partial
solution for the complete radial pressure gradient.  The remaining part is
obtained by adding the “- g cos  sin ” contribution of Equation 5-6-29.  As
in Newtonian flows, the pressure and its spatial gradients depend on all the
coordinates r,  and z, and the parameters , g and .

There are fundamental differences between these solutions and the
Newtonian ones.  For example, in the latter, the solutions for vz and v
completely decouple despite the nonlinearity of the Navier-Stokes equations.
The governing equations become linear.  But for Power law flows, both vz and
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v remain highly coupled and nonlinear.  In this sense, Newtonian results are
singular; but the degeneracy disappears for eccentric geometries when the
convective terms reappear.  Cuttings transport experimenters working with
concentric Newtonian flows will not be able to extrapolate their findings to
practical eccentric geometries or non-Newtonian fluids.

Also, the expression for vz in the Newtonian limit is directly proportional
to dP/dz; but as Equation 5-6-60 for Power law fluids shows, the dependence of
vz (and hence, of total volumetric flow rate) on pressure gradient is a nonlinear
one.  Similarly, while Equation 5-6-37 shows that v is directly proportional to
the rotational rate , Equations 5-6-51, 5-6-57 and 5-6-65 illustrate a more
complicated nonlinear dependence for Power law fluids.  It is important to
emphasize that, for a fixed annular flow geometry in Newtonian flow, vz

depends only on dP/dz and not , and v depends only on  and not dP/dz.  But
for Power law flows, vz and v each depend on both dP/dz and .  Thus, “axial
quantities” like net annular volumetric flow rate cannot be calculated without
considering both dP/dz and .

Interestingly, though, the stresses Sr and Srz in the non-Newtonian case
preserve their “independence” as in Newtonian flows.  That is, Sr depends only
on  and not dP/dz, while Srz depends only on dP/dz and not  (see Equations
5-6-71 to 5-6-74 below).  The Power law stress values themselves, of course, are
different from the Newtonian counterparts.  And also, the “maximum stress”

(Sr
2 + Srz

2)1/2, important in borehole stability and cuttings bed erosion,
depends on both  and dP/dz, as it does in Newtonian flow.

An important question is the significance of rotation in practical
calculations.  Can “” be safely neglected in drilling and cementing
applications?  This depends on a nondimensional ratio of circumferential to
axial momentum flux.  While the “maximum v” is easily obtained as “rpm 
RP,” the same estimate for vz is difficult to obtain since axial velocity is

sensitive to both n and K, not to mention v and dP/dz.  In general, one needs to
consider the full problem without approximation.

Of course, since the analytical solution is now available, the use of
approximate “axial flow only” solutions is really a moot point.  The Power law
results and the formulas derived next are “explicit” in that they require no
iteration.  And although the software described later is written in Fortran, our
equations are just as easily programmed on calculators.  The important
dependence of annular flows on “” will be demonstrated in calculated results.

More applications formulas.  The cylindrical geometry of the present
problem renders all stress tensor components except Sr, Sr, Szr and Srz zero.
From our Power law results, the required formulas for viscous stress can be
shown to be

Sr = Sr = K (/(RP - RB))n ((RP+RB)/2)n+2  r -2                 (5-6-71)
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Srz = Szr = E1/r + ½ r dP/dz

              = {½ r  - (RP+RB)2/(8r)} dP/dz                          (5-6-72)

Their Newtonian counterparts take the form

Sr =  Sr  =  µ /{(RP -RB)r2}    2(RPRB)2/(RP +RB)      (5-6-73)

Srz = Szr = µ dvz /dr

              = {½ r - (RP
2 - RB

2)/(4r log RP/RB)} dP/dz               (5-6-74)

In studies on borehole erosion, annular velocity plays an important role,
since drilling mud carries abrasive cuttings.  The magnitude of fluid shear stress
may also be important in unconsolidated sands where tangential surface forces
assist in wall erosion.  Stress considerations also arise in cuttings bed transport
analysis in highly deviated or horizontal holes (see Chapter 5).  The individual
components can be obtained by evaluating Equations 5-6-71 and 5-6-72 at r =
RB for Power law fluids, and Equations 5-6-73 and 5-6-74 for Newtonian fluids.

And since these stresses act in orthogonal directions, the “maximum stress” can
be obtained by writing

Smax(RB)  =  {Sr
2(RB) + Srz

2(RB)}1/2                            (5-6-75)

The shear force associated with this stress acts in a direction offset from the
borehole axis by an angle

 max shear  =  arctan {Sr (RB)/Srz (RB)}                         (5-6-76)

Opposing the erosive effects of shear may be the stabilizing effects of
hydrostatic and dynamic pressure.  Explicit formulas for the pressures P(z),

P*(r) and the hydrostatic background level were given earlier.
To obtain the corresponding elements of the deformation tensor, we

rewrite Equation 5-6-5 in the form

D = S / 2N()                                                    (5-6-77)

and substitute Srz or Sr as required.  In the Newtonian case, N() = µ is the
laminar viscosity; for Power law fluids, Equation 5-6-16 applies.  Stresses are
important to transport problems; fluid deformations are useful for the kinematic
studies often of interest to rheologists.

Annular volumetric flow rate, Q, which depends on pressure gradient, is
important in determining mud pump power requirements and cuttings transport
capabilities of the drilling fluid.  It is obtained by evaluating
         RB

Q =   vz (r) 2r dr                                             (5-6-78)
         RP

In the above integrand, Equation 5-6-36 for vz (r) must be used for Newtonian
flows, while Equation 5-6-60 will apply to Power law fluids.
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Borehole temperature may play an important role in drilling.  Problem
areas include formation temperature interpretation and mud thermal stability
(e.g., the “thinning” of oil-based muds with temperature limits cuttings transport
efficiency).  Many studies do not consider the effects of heat generation by
internal friction, which may be non-negligible; in closed systems, temperature
increases over time may be significant.  Ideally, temperature effects due to fluid
type and cumulative effects related to total circulation time should be identified.

The starting point is the equation describing energy balance within the
fluid, that is, the PDE for the temperature field T(r,,z,t).  Even if the velocity
field is steady, temperature effects will typically not be, since irreversible
thermodynamic effects cause continual increases of T with time.  If temperature
increases are large enough, the changes of viscosity, consistency factor or fluid
exponent as functions of T must be considered.  Then the momentum and energy
equations will be coupled.  We will not consider this complicated situation yet,
so that the velocity fields can be obtained independently of T.  For Newtonian
flows, we have n = 1 and K = µ.  The temperature field satisfies

c (T/t + vr T/r + v/r T/ + vz T/z) = (5-6-79)

               = Kth [ 1/r  (r T/r)/r + 1/r2 2T/2 + 2T/z2 ]

               + 2µ { (vr /r)2 + [1/r (v/ +vr)]
2 +(vz /z)2 }

               + µ { (v/z + 1/r vz /)2 +  (vz /r + vr /z)2

               + [1/r vr / + r  (v/r)/r]2 }

+ Q*

where c is the heat capacity, Kth is the thermal conductivity, and Q* is an energy
transmission function.  The terms on the first line represent transient and
convective effects; the second line models heat conduction.  Those on the third
through fifth are positive definite and represent the heat generation due to
internal fluid friction.  These irreversible thermodynamic effects are referred to
collectively as the “dissipation function” or “heat generation function.”  The
dissipation function  is in effect a distributed heat source within the moving
fluid medium.  If we employ the same assumptions as used in our solution of the
Navier-Stokes equations for Newtonian flows, this expression reduces to

 = µ {(vz /r)2 + r2(/r)2} > 0                               (5-6-80)

which can be easily evaluated using Equations 5-6-36, 5-6-37 and 5-6-51.  It is
important to recognize that  depends on spatial velocity gradients only, and not
on velocity magnitudes.  In a closed system, the fact that  > 0 leads to
increases of temperature in time if the borehole walls cannot conduct heat away
quickly.  Equations 5-6-79 and 5-6-80 assume Newtonian flow.  For general
fluids, it is possible to show that the dissipation function now takes the form
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 =  Srr vr /r  + S 1/r (v/ + vr)

         + Szz vz /z + Sr [r  (v/r)/r + 1/r vr /]

         + Srz (vz /r + vr /z)  + Sz (1/r vz / + v/z)        (5-6-81)

The geometrical simplifications used earlier reduce Equation 5-6-81 to

 = K {(vz /r)2 + r2(/r)2}(n+1)/2  > 0                       (5-6-82)

In the Newtonian limit with K = µ and n = 1, Equation 5-6-82 consistently
reduces to Equation 5-6-80.  Equations 5-6-55 and 5-6-58 are used to evaluate
the expression for  above.  As before,  depends upon velocity gradients only
and not magnitudes; it largely arises from high shear at solid boundaries.

Detailed calculated results.  The Power law results derived above were
coded in a Fortran algorithm designed to provide a suite of output “utility”
solutions for any set of input data.  These may be useful in determining
operationally important quantities like volumetric flow rate and axial speed.  But
they also provide research utilities needed, for example, to correlate
experimental cuttings transport data or interpret formation temperature data.

The core code resides in 30 lines of Fortran.  It runs on a “stand alone”
basis or as an embedded subroutine for specialized applications.  The formulas
used are also programmable on calculators.  Inputs include pipe or casing outer
diameter, borehole diameter, axial pressure gradient, rotational rate, fluid
exponent n, and consistency factor K.  Outputs include tables, line plots, and
ASCII character plots versus “r” for a number of useful functions.  These are,

o Axial velocity vz (r) o Angular velocity gradient d(r)/dr

o Circumferential velocity v (r) o Radial pressure gradient

o Fluid rotational rate (r), ‘local rpm’ o Apparent viscosity versus “r”

o Total absolute speed o Local frictional heat generation

o Angle between vz (r) and v (r) o All stress tensor components

o Axial velocity gradient dvz (r)/dr o Maximum wellbore stress

o Azimuthal velocity gradient dv /dr o All deformation tensor components

We emphasize that the “radial pressure gradient” above refers to the partial
contribution in Equation 5-6-47, which depends on “r” only.  For the complete
gradient, Equation 5-6-29 shows that the term “- g cos  sin ” must be
appended to the value calculated here.  This contribution depends on , g,  and
.  In addition to the foregoing arrays, total annular volumetric flow rate and
radial averages of all of the above quantities are computed.  Before proceeding
to detailed computations, let us compare our concentric, rotating pipe, narrow
annulus results in the limit of zero rotation with an exact solution.
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Example 1.  East Greenbriar No. 2.

A mud hydraulics analysis was performed for “East Greenbriar No. 2”
using a computer program offered by a service company.  This program, which
applies to nonrotating flows only, is based on the exact Fredrickson and Bird
(1958) solution.  In this example, the drillpipe outer radius is 2.5 in, the borehole
radius is 5.0 in, the axial pressure gradient is 0.00389 psi/ft, the fluid exponent is

0.724, and the consistency factor is 0.268 lbf sec0.724 / (100 ft2)  (that is,

0.1861  10-4 lbf sec0.724 /in2 in the units employed by our program).  The
exact results computed using this data are an annular volumetric flow rate of 400
gal/min, and an average axial speed of 130.7 ft./min.  The same input data was
used in our program, with an assumed drillstring “rpm” of 0.001.  We computed
373.6 gal/min and 126.9 ft./min for this non-rotating flow, agreeing to within 7
percent for the not-so-narrow annulus.

Our model was designed, of course, to include the effects of drillstring
rotation.  We first considered an extremely large rpm of 300, with the same
pressure gradient, to evaluate qualitative effects.  The corresponding results
were 526.1 gal/min and 175.6 ft./min.  The ratio of the average circumferential
speed to the average axial speed is 1.06, indicating that rotational effects are
important.  At 150 rpm, our volumetric flow rate of 458.7 gal/min exceeds 373.6
gal/min by 23 percent.  In this case, the ratio of average circumferential speed to
axial speed is still a non-negligible 65 percent.  These results suggest that static
models tend to overestimate the pressure requirements needed by a rotating
drillstring to produce a prescribed flow rate.  Our hydraulics model indicates
that including rotational effects, for a fixed pressure gradient, is likely to
increase the volumetric flow rate over static predictions.  These considerations
may be important in planning long deviated wells where one needs to know, for
a given rpm, what maximum borehole length is possible with the pump at hand.

Example 2.  Detailed spatial properties versus “r.”

Our algorithm does more than calculate annular volumetric flow rate and
average axial speed.  This section includes the entire output file from a typical
run, in this case “East Greenbriar No. 2,” with annotated comments.  The input
menu is nearly identical to the summary in Table 5-6-1.  Because the numerical
results are based on analytical, closed form results, there are no computational
inputs; the grid reference in Table 5-6-1 is a print control parameter.  At the
present, the volumetric flow rate is the only quantity computed numerically; a
second-order scheme is applied to our vz(r)’s.  All inputs are in “plain English”
and are easily understandable.  Outputs are similarly “user friendly.”  All output
quantities are defined, along with units, in a printout that precedes tabulated and
plotted results.  This printout is duplicated in Table 5-6-2.
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Table 5-6-1

Summary of Input Parameters

O Drill pipe outer radius (inches) = 2.5000
O Borehole radius (inches) = 5.0000
O Axial pressure gradient (psi/ft) = 0.0039
O Drillstring rotation rate (rpm) = 300.0000
O Drillstring rotation rate (rad/sec) = 31.4159
O Fluid exponent "n" (nondimensional) = 0.7240

O Consistency factor (lbf secn/sq in) = 0.1861E-04

O Mass density of fluid (lbf2sec4/ft ) = 1.9000
 (e.g., about 1.9 for water)

O Number of radial "grid" positions = 18

Table 5-6-2

Analytical (Non-Iterative) Solutions
Tabulated versus “r,” Nomenclature and Units

r  Annular radial position ...........………. (in)
Vz  Velocity in axial z direction .………… (in/sec)
V  Circumferential velocity ......………….(in/sec)
d/dt or W   velocity ...................………….. …… (rad/sec)
                    (Note: 1 rad/sec = 9.5493 rpm)
dVz/dr  Velocity gradient ..............……………(1/sec)
dV/dr  Velocity gradient ..............……………(1/sec)

dW/dr  Angular speed gradient ..…………….. (1/(sec  in))
Sr  r stress component ..............…………(psi)
Srz  rz stress component ..............………… (psi)
Smax  Sqrt (Srz**2 + Sr**2) ...........………... (psi)

dP/dr  Radial pressure gradient ......………….(psi/in)
App-Vis  Apparent viscosity ....…………………(lbf sec /sq in)

Dissip  Dissipation function …………………. (lbf/(sec  sq in))
                     (indicates frictional heat produced)
Atan V/Vz  Angle between V and Vz vectors ..… (deg)
Net Spd  Sqrt (Vz**2 + V**2) ..........………… (in/sec)
Dr  r deformation tensor component …… (1/sec)
Drz  rz deformation tensor component …… (1/sec)
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Table 5-6-3
Calculated Quantities vs “r”

     r         Vz         V          W        d(Vz)/dr    d(V)/dr      dW/dr

   5.00    .601E-04    .279E-04    .559E-05   -.610E+02   -.293E+02   -.586E+01
   4.86    .848E+01    .407E+01    .837E+00   -.534E+02   -.293E+02   -.620E+01
   4.72    .164E+02    .814E+01    .172E+01   -.460E+02   -.294E+02   -.659E+01
   4.58    .237E+02    .122E+02    .266E+01   -.390E+02   -.295E+02   -.702E+01
   4.44    .304E+02    .163E+02    .366E+01   -.321E+02   -.297E+02   -.751E+01
   4.31    .365E+02    .203E+02    .472E+01   -.256E+02   -.302E+02   -.811E+01
   4.17    .418E+02    .244E+02    .585E+01   -.193E+02   -.310E+02   -.885E+01
   4.03    .462E+02    .284E+02    .705E+01   -.131E+02   -.324E+02   -.980E+01
   3.89    .497E+02    .325E+02    .835E+01   -.672E+01   -.345E+02   -.110E+02
   3.75    .521E+02    .366E+02    .975E+01    .273E-04   -.374E+02   -.126E+02
   3.61    .533E+02    .407E+02    .113E+02    .738E+01   -.412E+02   -.145E+02
   3.47    .532E+02    .449E+02    .129E+02    .157E+02   -.461E+02   -.170E+02
   3.33    .516E+02    .492E+02    .148E+02    .251E+02   -.521E+02   -.201E+02
   3.19    .483E+02    .536E+02    .168E+02    .358E+02   -.594E+02   -.239E+02
   3.06    .432E+02    .582E+02    .190E+02    .480E+02   -.682E+02   -.286E+02
   2.92    .361E+02    .630E+02    .216E+02    .619E+02   -.787E+02   -.344E+02
   2.78    .266E+02    .680E+02    .245E+02    .778E+02   -.914E+02   -.417E+02
   2.64    .147E+02    .732E+02    .277E+02    .959E+02   -.107E+03   -.510E+02
   2.50    .000E+00    .785E+02    .314E+02    .117E+03   -.126E+03   -.628E+02

Table 5-6-3
Calculated Quantities vs “r” (continued)

     r        Sr        Srz         Smax        dP/dr      App-Vis     Dissip

   5.00    .170E-03   -.355E-03    .393E-03    .143E-13    .582E-05    .266E-01
   4.86    .180E-03   -.319E-03    .366E-03    .312E-03    .598E-05    .225E-01
   4.72    .191E-03   -.283E-03    .341E-03    .128E-02    .614E-05    .190E-01
   4.58    .203E-03   -.246E-03    .318E-03    .298E-02    .630E-05    .161E-01
   4.44    .216E-03   -.208E-03    .299E-03    .545E-02    .646E-05    .139E-01
   4.31    .230E-03   -.168E-03    .285E-03    .878E-02    .658E-05    .123E-01
   4.17    .245E-03   -.128E-03    .277E-03    .131E-01    .665E-05    .115E-01
   4.03    .262E-03   -.869E-04    .277E-03    .184E-01    .665E-05    .115E-01
   3.89    .282E-03   -.442E-04    .285E-03    .248E-01    .658E-05    .124E-01
   3.75    .303E-03    .175E-09    .303E-03    .326E-01    .643E-05    .143E-01
   3.61    .327E-03    .459E-04    .330E-03    .420E-01    .622E-05    .175E-01
   3.47    .353E-03    .936E-04    .365E-03    .532E-01    .598E-05    .223E-01
   3.33    .383E-03    .144E-03    .409E-03    .665E-01    .573E-05    .292E-01
   3.19    .417E-03    .196E-03    .461E-03    .824E-01    .547E-05    .388E-01
   3.06    .456E-03    .251E-03    .520E-03    .102E+00    .523E-05    .518E-01
   2.92    .501E-03    .309E-03    .588E-03    .125E+00    .499E-05    .693E-01
   2.78    .552E-03    .370E-03    .665E-03    .152E+00    .476E-05    .928E-01
   2.64    .611E-03    .436E-03    .751E-03    .186E+00    .455E-05    .124E+00
   2.50    .681E-03    .507E-03    .849E-03    .226E+00    .434E-05    .166E+00

Table 5-6-3
Calculated Quantities vs “r” (continued)

     r        Vz         V       Atan V/Vz    Net Spd       Dr         Drz
   5.00    .601E-04    .279E-04    .249E+02    .663E-04    .146E+02   -.305E+02
   4.86    .848E+01    .407E+01    .256E+02    .940E+01    .151E+02   -.267E+02
   4.72    .164E+02    .814E+01    .264E+02    .183E+02    .155E+02   -.230E+02
   4.58    .237E+02    .122E+02    .272E+02    .267E+02    .161E+02   -.195E+02
   4.44    .304E+02    .163E+02    .281E+02    .345E+02    .167E+02   -.161E+02
   4.31    .365E+02    .203E+02    .291E+02    .417E+02    .175E+02   -.128E+02
   4.17    .418E+02    .244E+02    .303E+02    .483E+02    .184E+02   -.965E+01
   4.03    .462E+02    .284E+02    .316E+02    .542E+02    .197E+02   -.653E+01
   3.89    .497E+02    .325E+02    .332E+02    .593E+02    .214E+02   -.336E+01
   3.75    .521E+02    .366E+02    .351E+02    .636E+02    .236E+02    .137E-04
   3.61    .533E+02    .407E+02    .374E+02    .670E+02    .262E+02    .369E+01
   3.47    .532E+02    .449E+02    .402E+02    .696E+02    .295E+02    .783E+01
   3.33    .516E+02    .492E+02    .436E+02    .713E+02    .334E+02    .125E+02
   3.19    .483E+02    .536E+02    .480E+02    .722E+02    .381E+02    .179E+02
   3.06    .432E+02    .582E+02    .534E+02    .725E+02    .436E+02    .240E+02
   2.92    .361E+02    .630E+02    .602E+02    .726E+02    .502E+02    .309E+02
   2.78    .266E+02    .680E+02    .686E+02    .730E+02    .579E+02    .389E+02
   2.64    .147E+02    .732E+02    .786E+02    .746E+02    .673E+02    .480E+02
   2.50    .000E+00    .785E+02    .900E+02    .785E+02    .785E+02    .584E+02
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The defined quantities are first tabulated, as shown in Table 5-6-3, as a function
of the radial position “r.”  At this point, the total volumetric flow rate is
computed and presented in textual form, that is,

        Total volume flow rate (cubic in/sec) =  .2026E+04
                                    (gal/min) =  .5261E+03

A run-time menu prompts the user about quantities needed for display in ASCII
file plots.  The complete list of quantities was given previously.  Plots
corresponding to “East Greenbriar No. 2” are shown next with annotations.

      Axial speed Vz(r):

        r                     0
                              ______________________________
      5.00      .6014E-04     |
      4.86      .8478E+01     |  *
      4.72      .1639E+02     |       *            No-slip
      4.58      .2373E+02     |           *        conditions
      4.44      .3044E+02     |               *    enforced
      4.31      .3647E+02     |                  *
      4.17      .4175E+02     |                     *
      4.03      .4618E+02     |                       *
      3.89      .4966E+02     |                         *
      3.75      .5207E+02     |                           *
      3.61      .5329E+02     |                            *
      3.47      .5317E+02     |                           *
      3.33      .5157E+02     |                           *
      3.19      .4830E+02     |                         *
      3.06      .4320E+02     |                      *
      2.92      .3606E+02     |                  *
      2.78      .2665E+02     |             *
      2.64      .1472E+02     |      *
      2.50      .0000E+00     |

Figure 5-6-2.  Axial speed.

      Circumferential speed V(r):
        r                     0
                              ______________________________
      5.00      .2793E-04     |
      4.86      .4069E+01     *
      4.72      .8138E+01     | *
      4.58      .1220E+02     |  *
      4.44      .1626E+02     |    *
      4.31      .2031E+02     |     *
      4.17      .2436E+02     |       *
      4.03      .2841E+02     |        *    Maximum speed is
      3.89      .3247E+02     |          *  at drillstring
      3.75      .3655E+02     |           *
      3.61      .4068E+02     |             *
      3.47      .4488E+02     |               *
      3.33      .4918E+02     |                *
      3.19      .5361E+02     |                  *
      3.06      .5820E+02     |                    *
      2.92      .6298E+02     |                      *
      2.78      .6797E+02     |                       *
      2.64      .7316E+02     |                         *
      2.50      .7854E+02     |                            *

Figure 5-6-3.  Circumferential speed.
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      Angular speed W(r):
        r                     0
                              ______________________________
      5.00      .5586E-05     |
      4.86      .8370E+00     |
      4.72      .1723E+01     *
      4.58      .2662E+01     |*
      4.44      .3659E+01     | *
      4.31      .4718E+01     |  *         Maximum speed is
      4.17      .5847E+01     |   *        at drillstring
      4.03      .7053E+01     |    *
      3.89      .8349E+01     |     *
      3.75      .9748E+01     |       *
      3.61      .1127E+02     |        *
      3.47      .1293E+02     |          *
      3.33      .1475E+02     |            *
      3.19      .1678E+02     |              *
      3.06      .1905E+02     |                *
      2.92      .2159E+02     |                  *
      2.78      .2447E+02     |                     *
      2.64      .2772E+02     |                        *
      2.50      .3142E+02     |                            *

Figure 5-6-4.  Angular speed.

         Velocity gradient d(Vz)/dr (r):
        r                                   0
                              ______________________________
      5.00     -.6096E+02           *       |
      4.86     -.5339E+02            *      |
      4.72     -.4604E+02             *     |
      4.58     -.3896E+02             *     |   Consistent with
      4.44     -.3215E+02              *    |   axial velocity
      4.31     -.2561E+02               *   |   solution
      4.17     -.1930E+02                *  |
      4.03     -.1307E+02                 * |
      3.89     -.6724E+01                  *|
      3.75      .2730E-04                   |
      3.61      .7377E+01                   |
      3.47      .1566E+02                   | *
      3.33      .2505E+02                   |  *
      3.19      .3575E+02                   |   *
      3.06      .4796E+02                   |     *
      2.92      .6188E+02                   |      *
      2.78      .7776E+02                   |        *
      2.64      .9593E+02                   |           *
      2.50      .1168E+03                   |              *

Figure 5-6-5.  Velocity gradient.

      Velocity gradient d(V)/dr (r):
        r                                   0
                              ______________________________
      5.00     -.2929E+02               *   |
      4.86     -.2932E+02               *   |
      4.72     -.2938E+02               *   |
      4.58     -.2949E+02               *   |
      4.44     -.2974E+02               *   |
      4.31     -.3021E+02               *   |
      4.17     -.3104E+02               *   |
      4.03     -.3240E+02               *   |
      3.89     -.3447E+02              *    |
      3.75     -.3738E+02              *    |
      3.61     -.4123E+02              *    |
      3.47     -.4612E+02             *     |
      3.33     -.5214E+02            *      |
      3.19     -.5944E+02           *       |
      3.06     -.6821E+02          *        |
      2.92     -.7874E+02         *         |
      2.78     -.9142E+02        *          |
      2.64     -.1068E+03      *            |
      2.50     -.1257E+03                   |

Figure 5-6-6.  Velocity gradient.
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      Angular speed gradient dW/dr (r):
        r                                   0
                              ______________________________
      5.00     -.5857E+01                 * |
      4.86     -.6204E+01                 * |
      4.72     -.6586E+01                 * |
      4.58     -.7016E+01                 * |
      4.44     -.7514E+01                 * |
      4.31     -.8112E+01                 * |
      4.17     -.8853E+01                *  |
      4.03     -.9796E+01                *  |
      3.89     -.1101E+02                *  |
      3.75     -.1257E+02               *   |
      3.61     -.1454E+02               *   |
      3.47     -.1701E+02              *    |
      3.33     -.2007E+02              *    |
      3.19     -.2386E+02             *     |
      3.06     -.2856E+02            *      |
      2.92     -.3440E+02          *        |
      2.78     -.4172E+02         *         |
      2.64     -.5098E+02      *            |
      2.50     -.6283E+02                   |

Figure 5-6-7.  Angular speed gradient.

     Stress component Sr (r):
        r                     0
                              ______________________________
      5.00      .1703E-03     |     *
      4.86      .1802E-03     |     *
      4.72      .1910E-03     |      *
      4.58      .2027E-03     |      *
      4.44      .2156E-03     |       *
      4.31      .2297E-03     |        *
      4.17      .2453E-03     |        *
      4.03      .2625E-03     |         *
      3.89      .2816E-03     |          *
      3.75      .3028E-03     |           *
      3.61      .3266E-03     |            *
      3.47      .3532E-03     |             *
      3.33      .3832E-03     |              *
      3.19      .4173E-03     |                *
      3.06      .4561E-03     |                  *
      2.92      .5006E-03     |                    *
      2.78      .5519E-03     |                      *
      2.64      .6115E-03     |                        *
      2.50      .6813E-03     |                            *

Figure 5-6-8.  Viscous stress.

      Stress component Srz (r):

        r                                   0
                              ______________________________
      5.00     -.3546E-03        *          |
      4.86     -.3190E-03         *         |
      4.72     -.2827E-03          *        |
      4.58     -.2456E-03           *       |
      4.44     -.2075E-03            *      |
      4.31     -.1685E-03              *    |
      4.17     -.1283E-03               *   |
      4.03     -.8694E-04                *  |
      3.89     -.4422E-04                 * |
      3.75      .1754E-09                   |
      3.61      .4589E-04                   |*
      3.47      .9365E-04                   | *
      3.33      .1435E-03                   |   *
      3.19      .1958E-03                   |    *
      3.06      .2507E-03                   |      *
      2.92      .3087E-03                   |        *
      2.78      .3703E-03                   |         *
      2.64      .4360E-03                   |           *
      2.50      .5065E-03                   |              *

Figure 5-6-9.  Viscous stress.



More Steady Flow Applications     243
                Maximum stress Smax (r):

        r                     0
                              ______________________________
      5.00      .3933E-03     |           *
      4.86      .3664E-03     |          *
      4.72      .3412E-03     |          *   This stress is
      4.58      .3184E-03     |         *    responsible for
      4.44      .2992E-03     |        *     erosion of borehole
      4.31      .2849E-03     |        *     wall and cuttings
      4.17      .2768E-03     |       *      beds.
      4.03      .2765E-03     |       *
      3.89      .2850E-03     |        *
      3.75      .3028E-03     |        *
      3.61      .3298E-03     |         *
      3.47      .3654E-03     |          *
      3.33      .4092E-03     |            *
      3.19      .4609E-03     |              *
      3.06      .5205E-03     |                *
      2.92      .5881E-03     |                  *
      2.78      .6646E-03     |                     *
      2.64      .7510E-03     |                        *
      2.50      .8490E-03     |                            *

Figure 5-6-10.  Maximum viscous stress.

         Radial pressure gradient dP/dr (r):
        r                     0
                              ______________________________
      5.00      .1430E-13     |
      4.86      .3121E-03     |
      4.72      .1285E-02     |
      4.58      .2977E-02     |
      4.44      .5452E-02     |          Partial
      4.31      .8781E-02     *          centrifugal
      4.17      .1305E-01     *          effects,
      4.03      .1836E-01     |*         see Equation (5-6-29)
      3.89      .2484E-01     | *
      3.75      .3265E-01     |  *
      3.61      .4200E-01     |   *
      3.47      .5316E-01     |     *
      3.33      .6649E-01     |      *
      3.19      .8244E-01     |        *
      3.06      .1016E+00     |           *
      2.92      .1246E+00     |              *
      2.78      .1524E+00     |                  *
      2.64      .1858E+00     |                      *
      2.50      .2261E+00     |                            *

Figure 5-6-11.  Radial pressure gradient.

               Apparent viscosity vs "r":
        r                     0
                              ______________________________
      5.00      .5816E-05     |                        *
      4.86      .5976E-05     |                        *
      4.72      .6140E-05     |                         *
      4.58      .6304E-05     |                          *
      4.44      .6455E-05     |                           *
      4.31      .6577E-05     |                           *
      4.17      .6650E-05     |                           *
      4.03      .6652E-05     |                            *
      3.89      .6576E-05     |                           *
      3.75      .6426E-05     |                          *
      3.61      .6220E-05     |                          *
      3.47      .5982E-05     |                        *
      3.33      .5729E-05     |                       *
      3.19      .5475E-05     |                      *
      3.06      .5227E-05     |                     *
      2.92      .4989E-05     |                    *
      2.78      .4762E-05     |                   *
      2.64      .4545E-05     |                  *   Varies
      2.50      .4338E-05     |                 *   with "r"!

Figure 5-6-12.  Apparent viscosity.
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      Dissipation function vs "r":
        r                     0
                              ______________________________
      5.00      .2660E-01     |  *
      4.86      .2247E-01     |  *
      4.72      .1896E-01     | *     The greatest heat is
      4.58      .1609E-01     |*      produced near the
      4.44      .1387E-01     |*      drillstring surface.
      4.31      .1234E-01     |*
      4.17      .1152E-01     |*
      4.03      .1149E-01     |*
      3.89      .1235E-01     |*
      3.75      .1427E-01     |*
      3.61      .1748E-01     | *
      3.47      .2232E-01     |  *
      3.33      .2923E-01     |   *
      3.19      .3881E-01     |     *
      3.06      .5182E-01     |       *
      2.92      .6933E-01     |          *
      2.78      .9276E-01     |              *
      2.64      .1241E+00     |                    *
      2.50      .1662E+00     |                            *

Figure 5-6-13.  Dissipation function.

     Angle between V and Vz vectors, Atan V/Vz (r):
        r                     0
                              ______________________________
      5.00      .2491E+02     |      *
      4.86      .2564E+02     |      *
      4.72      .2640E+02     |      *    This angle measures
      4.58      .2721E+02     |       *   extent of helical
      4.44      .2811E+02     |       *   annular flow in
      4.31      .2911E+02     |       *   degrees.
      4.17      .3026E+02     |        *
      4.03      .3160E+02     |        *
      3.89      .3318E+02     |         *
      3.75      .3507E+02     |         *
      3.61      .3736E+02     |          *
      3.47      .4017E+02     |           *
      3.33      .4364E+02     |            *
      3.19      .4798E+02     |             *
      3.06      .5341E+02     |               *
      2.92      .6021E+02     |                  *
      2.78      .6859E+02     |                    *
      2.64      .7862E+02     |                        *
      2.50      .9000E+02     |                            *

Figure 5-6-14.  Velocity angle.

      Magnitude of total speed vs r:
        r                     0
                              ______________________________
      5.00      .6631E-04     |
      4.86      .9404E+01     | *
      4.72      .1830E+02     |    *
      4.58      .2668E+02     |        *
      4.44      .3451E+02     |           *
      4.31      .4175E+02     |             *
      4.17      .4834E+02     |                *
      4.03      .5422E+02     |                  *
      3.89      .5933E+02     |                    *
      3.75      .6362E+02     |                      *
      3.61      .6704E+02     |                       *
      3.47      .6958E+02     |                        *
      3.33      .7126E+02     |                         *
      3.19      .7216E+02     |                         *
      3.06      .7249E+02     |                         *
      2.92      .7257E+02     |                         *
      2.78      .7300E+02     |                         *
      2.64      .7462E+02     |                          *
      2.50      .7854E+02     |                            *

Figure 5-6-15.  Total speed.
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       Deformation tensor element Dr (r):

        r                     0
                              ______________________________
      5.00      .1464E+02     |   *
      4.86      .1508E+02     |   *
      4.72      .1555E+02     |   *
      4.58      .1608E+02     |    *
      4.44      .1670E+02     |    *
      4.31      .1746E+02     |    *
      4.17      .1844E+02     |     *
      4.03      .1973E+02     |     *
      3.89      .2141E+02     |      *
      3.75      .2356E+02     |       *
      3.61      .2625E+02     |        *
      3.47      .2952E+02     |         *
      3.33      .3345E+02     |          *
      3.19      .3811E+02     |            *
      3.06      .4363E+02     |              *
      2.92      .5016E+02     |                 *
      2.78      .5795E+02     |                    *
      2.64      .6727E+02     |                       *
      2.50      .7854E+02     |                            *

Figure 5-6-16.  Deformation tensor element.

          Deformation tensor element Drz (r):
        r                                   0
                              ______________________________
      5.00     -.3048E+02           *       |
      4.86     -.2669E+02            *      |
      4.72     -.2302E+02             *     |
      4.58     -.1948E+02             *     |
      4.44     -.1607E+02              *    |
      4.31     -.1281E+02               *   |
      4.17     -.9648E+01                *  |
      4.03     -.6535E+01                 * |
      3.89     -.3362E+01                  *|
      3.75      .1365E-04                   |
      3.61      .3689E+01                   |
      3.47      .7828E+01                   | *
      3.33      .1253E+02                   |  *
      3.19      .1788E+02                   |   *
      3.06      .2398E+02                   |     *
      2.92      .3094E+02                   |      *
      2.78      .3888E+02                   |        *
      2.64      .4796E+02                   |           *
      2.50      .5839E+02                   |              *

Figure 5-6-17.  Deformation tensor element.

Finally, the computer algorithm calculates radially averaged quantities
using the definition

RB

Favg =  F(r) dr /(RB -RP)                                       (5-6-83)
RP

and a second-order accurate integration scheme.  Note that this is not a volume
weighted average.  When properties vary rapidly over r, the linear average (or
any average) may not be meaningful as a correlation or analysis parameter.
Table 5-6-4 displays computed average results.
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Table 5-6-4

Averaged Values of Annular Quantities

Average Vz (in/sec) =  .3512E+02

                (ft/min) =  .1756E+03

Average V (in/sec) =  .3737E+02
Average W (rad/sec) =  .1160E+02
Average total speed (in/sec) =  .5379E+02

Average angle between Vz and V (deg) =  .4189E+02

Average d(Vz)/dr (1/sec) =  .0000E+00

Average d(V)/dr (1/sec) = -.5028E+02
Average dW/dr (1/(sec X in)) = -.1906E+02
Average dP/dr (psi/in) =  .5718E-01

Average Sr (psi) =  .3410E-03
Average Srz (psi) =  .2432E-04

Average Smax (psi) =  .4146E-03

Average dissipation function (lbf/(sec sq in)) =  .3753E-01
Average apparent viscosity (lbf sec/sq in) =  .5876E-05

Average Dr (1/sec) =  .3094E+02
Average Drz (1/sec) =  .4445E+01

Example 3.  More of East Greenbriar.

We repeated the calculations for “East Greenbriar No. 2” with all
parameters unchanged except for the fluid exponent, which we increased to a
near-Newtonian level of 0.9  (again, 1.0 is the Newtonian value).  In the first
run, we considered a static, nonrotating drillstring with a “rpm” of 0.001, and
obtained a volumetric flow rate of 196.2 gal/min.  This is quite different from
our earlier 373.6 gal/min, which assumed a fluid exponent of n = 0.724.  That is,
a 24 percent increase in the fluid exponent n resulted in a 47 percent decrease in
flow rate; these numbers show how sensitive results are to changes in n.  The
axial speeds, apparent viscosities, and averaged parameter values obtained are
given in Figures 5-6-18 and 5-6-19, and in Table 5-6-5.  Note how the apparent
viscosity is almost constant everywhere with respect to radial position; the well-
known localized “pinch” is found near the center of the annulus, where the axial
velocity gradient vanishes.
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      Axial speed Vz(r):
        r                     0
                              ______________________________
      5.00      .8649E-05     |
      4.86      .2948E+01     |  *
      4.72      .6058E+01     |       *
      4.58      .9010E+01     |           *
      4.44      .1171E+02     |               *
      4.31      .1410E+02     |                   *
      4.17      .1613E+02     |                      *
      4.03      .1776E+02     |                        *
      3.89      .1897E+02     |                          *
      3.75      .1972E+02     |                           *
      3.61      .1998E+02     |                            *
      3.47      .1971E+02     |                           *
      3.33      .1889E+02     |                          *
      3.19      .1747E+02     |                        *
      3.06      .1541E+02     |                     *
      2.92      .1268E+02     |                 *
      2.78      .9239E+01     |           *
      2.64      .5029E+01     |     *
      2.50      .0000E+00     |

Figure 5-6-18.  Axial speed.
      Apparent viscosity vs "r":
        r                     0
                              ______________________________
      5.00      .1341E-04     |       *
      4.86      .1357E-04     |       *
      4.72      .1375E-04     |       *
      4.58      .1397E-04     |       *
      4.44      .1424E-04     |       *
      4.31      .1457E-04     |       *
      4.17      .1502E-04     |        *
      4.03      .1568E-04     |        *
      3.89      .1690E-04     |         *
      3.75      .4468E-04     |                            *
      3.61      .1683E-04     |         *
      3.47      .1555E-04     |        *
      3.33      .1483E-04     |       *
      3.19      .1433E-04     |       *
      3.06      .1394E-04     |       *
      2.92      .1362E-04     |       *
      2.78      .1335E-04     |      *
      2.64      .1311E-04     |      *
      2.50      .1289E-04     |      *

Figure 5-6-19.  Apparent viscosity.

For our second run, we retain the foregoing parameters with the exception
of drillstring rpm, which we increase for test purposes from 0.001 to 300 (the
fluid exponent is still 0.9).  The volumetric flow rate computed was 232.9 gpm,
which is higher than the 196.2 gpm obtained above by a significant 18.7 percent.
Thus, even for “almost Newtonian” Power law fluids, the effect of rotation
allows a higher flow rate for the same pressure drop.  Thus, to produce the lower
flow rate, a pump having less pressure output “than normal” would suffice.
Computed results are shown in Figures 5-6-20 and 5-6-21 and Table 5-6-6.

Table 5-6-5
Averaged Values of Annular Quantities

       Average Vz (in/sec) =  .1305E+02

                (ft/min) =  .6523E+02

    Average V (in/sec) =  .3535E-03
    Average W (rad/sec) =  .1074E-03
    Average total speed (in/sec) =  .1305E+02
    Average angle between Vz and VÕ (deg) =  .2441E+01
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    Average d(Vz)/dr (1/sec) =  .0000E+00

    Average d(V)/dr (1/sec) = -.4288E-03
    Average dW/dr (1/(sec X in)) = -.1630E-03
    Average dP/dr (psi/in) =  .4719E-11

    Average Sr (psi) =  .7903E-08
    Average Srz (psi) =  .2432E-04

    Average Smax (psi) =  .2088E-03

    Average dissipation function (lbf/(sec sq in)) =  .4442E-02
    Average apparent viscosity (lbf sec/sq in) =  .1617E-04

    Average Dr (1/sec) =  .2681E-03
    Average Drz (1/sec) =  .9912E+00

      Axial speed Vz(r):
        r                     0
                              ______________________________
      5.00      .3053E-04     |
      4.86      .4256E+01     |   *
      4.72      .8125E+01     |        *
      4.58      .1159E+02     |             *
      4.44      .1465E+02     |                 *
      4.31      .1727E+02     |                    *
      4.17      .1943E+02     |                       *
      4.03      .2113E+02     |                         *
      3.89      .2232E+02     |                          *
      3.75      .2300E+02     |                           *
      3.61      .2312E+02     |                            *
      3.47      .2267E+02     |                           *
      3.33      .2160E+02     |                          *
      3.19      .1988E+02     |                       *
      3.06      .1748E+02     |                    *
      2.92      .1434E+02     |                *
      2.78      .1041E+02     |           *
      2.64      .5656E+01     |     *
      2.50      .0000E+00     |

Figure 5-6-20.  Axial speed.

        Apparent viscosity vs "r":
        r                     0
                              ______________________________
      5.00      .1294E-04     |                           *
      4.86      .1298E-04     |                           *
      4.72      .1300E-04     |                           *
      4.58      .1300E-04     |                            *
      4.44      .1299E-04     |                           *
      4.31      .1296E-04     |                           *
      4.17      .1291E-04     |                           *
      4.03      .1284E-04     |                           *
      3.89      .1276E-04     |                           *
      3.75      .1266E-04     |                           *
      3.61      .1255E-04     |                          *
      3.47      .1243E-04     |                          *
      3.33      .1231E-04     |                          *
      3.19      .1218E-04     |                          *
      3.06      .1205E-04     |                         *
      2.92      .1191E-04     |                         *
      2.78      .1177E-04     |                         *
      2.64      .1163E-04     |                        *
      2.50      .1148E-04     |                        *

Figure 5-6-21.  Apparent viscosity.
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Table 5-6-6
Averaged Values of Annular Quantities

    Average Vz (in/sec) =  .1539E+02

                (ft/min) =  .7693E+02

    Average V (in/sec) =  .3730E+02
    Average W (rad/sec) =  .1162E+02
    Average total speed (in/sec) =  .4150E+02
    Average angle between Vz and VÕ (deg) =  .5993E+02

    Average d(Vz)/dr (1/sec) =  .0000E+00

    Average d(V)/dr (1/sec) = -.4303E+02
    Average dW/dr (1/(sec X in)) = -.1654E+02
    Average dP/dr (psi/in) =  .5811E-01

    Average Sr (psi) =  .6717E-03
    Average Srz (psi) =  .2432E-04

    Average Smax (psi) =  .7149E-03

    Average dissipation function (lbf/(sec sq in)) =  .4851E-01
    Average apparent viscosity (lbf sec/sq in) =  .1251E-04

    Average Dr (1/sec) =  .2733E+02
    Average Drz (1/sec) =  .1350E+01

The effect of increasing drillstring rpm has increased the average borehole
maximum stress by 3.42 times; this may be of interest to wellbore stability.  The
apparent viscosity in this example, unlike the previous, is nearly constant
everywhere and does not “pinch out.”  The analytical solutions derived in this
chapter are of fundamental rheological interest.  But they are particularly useful
in drilling and production applications, insofar as the effect of rotation on
“volumetric flow rate versus pressure drop” is concerned.  They allow us to
study various operational “what if” questions quickly and efficiently.  These
solutions also provide a means to correlate experimental data nondimensionally.
We emphasize, though, that the role of rotation can induce opposite effects
depending on how eccentric or concentric the annulus is for the non-Newtonian
fluid assumed.
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Model 5-7.  Cuttings transport flow correlations in deviated wells.

Industry interest in horizontal and highly deviated wells has heightened the
importance of annular flow modeling as it relates to hole cleaning.  Cuttings
transport to the surface is generally impeded by virtue of hole orientation; this is
worsened by decreased “low-side” annular velocities due to pipe eccentricity.  In
addition, the blockage created by bed buildup decreases overall flow rate,
further reducing cleaning efficiency.  In what could possibly be a self-
sustaining, destabilizing process, stuck pipe is a likely end result.  This section
discloses new cuttings transport correlations and suggests simple predictive
measures to avoid bed buildup.  Good hole cleaning and bed removal, of course,
are important to cementing as well.

Few useful annular flow models are available despite their practical
importance.  The nonlinear equations governing Power law viscous fluids, for
example, must be solved with difficult no-slip conditions for highly eccentric
geometries.  Recent slot flow models offer some improvement over parallel
plate approaches.  Still, because they unrealistically require slow radial
variations in the circumferential direction, large errors are possible.  Even when
they apply, these models can be cumbersome; they involve “elliptic integrals,”
which are too awkward for field use.  Recently developed bipolar coordinate
models accurately simulate eccentric flows with circular pipes and boreholes;
however, they cannot be extended to real world applications containing
washouts and cuttings beds.  In this section, the eccentric flow model is used to
interpret field and laboratory results.  Because the model actually simulates
reality, it has been possible to correlate problems associated with cuttings
transport and stuck pipe to unique average mechanical properties of the
computed flow field.  These correlations are discussed next.

Water-based muds.  Detailed computations using the eccentric model are
described, assuming a Power law fluid, which correspond to the comprehensive
suite of cuttings transport experiments conducted at the University of Tulsa, i.e.,
refer to Becker, Azar and Okrajni (1989).  For a fixed inclination and oncoming
flow rate, we demonstrate that “cuttings concentration” correlates linearly with
the mean viscous shear stress averaged over the lower half of the annulus. Thus,
impending cuttings problems can be eased by first determining the existing
average stress level, and then, adjusting n, K, and gpm values to increase that
stress.  Physical arguments supporting our correlations will be given.  We
emphasize that the present approach is completely predictive and deterministic;
it does not require empirical assumptions related to the “equivalent hydraulic
radius” with questionable “pipe to annulus conversion factors.”

Detailed experimental results for cuttings concentration, a useful indicator
of transport efficiency and carrying capacity, were obtained at the University of
Tulsa’s large scale flow loop.  Fifteen bentonite-polymer, water-based muds, for
three average flow rates (1.91, 2.86, and 3.82 ft./sec.), at three borehole
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inclinations from vertical (30, 45 and 70 deg), were tested.  Table 1 of Becker et
al. (1989) summarizes all measured mud properties, along with specific Power
law exponents n and consistency factors K.  We emphasize that “water-based”
does not imply Newtonian flow; in fact, the reported values of n differ
substantially from unity.  The annular geometry consisted of a 2-inch-radius
pipe, displaced downward by 1.5 inches in a 5-inch-radius borehole; also, the
pipe rotated at 50 rpm.  Note that 50 rpm corresponds to a tangential surface
speed of about 1 ft./sec., so that values in the annulus are much lower.  Since the
ratio v/vz << 1, we will neglect rotation in the present correlation study.

With flow rate and hole inclination fixed, the authors cross-plot the
nondimensional cuttings concentration, C, versus particular rheological
properties for each mud type used.  These include apparent viscosity, plastic
viscosity (PV), yield point (YP), YP/PV, initial and ten-minute gel strength,
“effective viscosity,” K and Fann dial readings at various rpms.  Typically, the
correlations obtained were poor, with one exception to be discussed.  That good
correlations were not possible, of course, is not surprising; the “fluid properties”
in Becker et al. (1989) are rotational viscometer readings describing the test
instrument only.  That is, they have no real bearing to the actual annular
geometry and the corresponding downhole flow.

These cross-plots and tables, numbering over twenty, were nevertheless
studied in detail; using them, the entire laboratory database was reconstructed.
The steady eccentric annular model was then executed for each of the 135
experimental points; detailed results for calculated apparent viscosity, shear
rate, viscous stress and axial velocity, all of which varied spatially, were
tabulated and statistically analyzed along with the experimental data.

Numerous cross-plots were produced, examined and interpreted.  The most
meaningful correlation parameter found was the mean viscous shear stress,
obtained by averaging computed values over the bottom half of the annulus,
where cuttings in directional wells are known to form beds.  Figures 5-7-1, 5-7-
2, and 5-7-3 display cuttings concentration versus our mean shear stress for
different average flow speeds and inclination angles ß from the vertical.  Each
plotted symbol represents a distinct test mud.  Calculated correlation coefficients
averaged a high 0.91 value.  Our correlations apply to laminar flow only.

The program produces easily understood text-mode information.  Figure 5-
7-4 displays, for example, calculated areal results for viscous shear stress in the
visual format described earlier.  Tabulated results, in this case for “Mud No. 10”
at 1.91 ft./sec., show that the “24” at the bottom refers to “0.00024 psi” (thus,

the numbers in the plot, when multiplied by 10-5, give the actual psi level).  A
high value of “83” is seen on the upper pipe surface; lows are generally obtained
away from solid surfaces and at the annular floor.  The average of these
calculated values, taken over the bottom half of the annulus, supply the mean
stress points on the horizontal axes of Figures 5-7-1, 5-7-2 and 5-7-3.



252   Managed Pressure Drilling: Modeling, Strategy and Planning

Figure 5-7-1,2,3.  Cuttings transport correlation.
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Figure 5-7-4.  Viscous stress.

Becker et al. (1989) noted that the best data fit, obtained through trial and
error, was obtained with low shear rate parameters, in particular, Fann dial
(stress) readings at low rotary speeds like 6 rpm.  This corresponds to a shear
rate of 10/sec.  Our exact, computed results gave averaged rates of 7 to 9/sec. for
all the mud samples at 1.91 ft./sec.; similarly, 11 to 14/sec. at 2.86 ft./sec., and
14 to 19/sec. at 3.82 ft./sec.  Since these are in the 10/sec. range, they explain
why a 6 rpm correlation worked, at least in their particular test setup.  But in
general, the Becker “low rpm” recommendation will not apply a priori; each
nonlinear annular flow presents a unique physical problem with its own
characteristic shears.  In general, pipe-to-hole diameter ratio, as well as
eccentricity, enter the equation.  But this poses no difficulty since downhole
properties can be obtained with minimal effort with the present computer model.

Cuttings removal in near-vertical holes with ß < 10o is well understood;
cleaning efficiency is proportional to annular velocity, or more precisely, the
“Stokes product” between relative velocity and local viscosity.  This product
appears naturally in Stokes’ original low Reynolds flow solutions for flows past
spheres, forming part of the coefficient describing net viscous drag.  For inclined
wells, the usual notions regarding unimpeded settling velocities do not apply
because different processes are at work.  Cuttings travel almost immediately to
the low side of the annulus, a consequence of gravity segregation; they remain
there and form beds that may or may not slide downward.   These truss or
lattice-like structures have well defined mechanical yield stresses; the right
amount of viscous friction will erode the cuttings bed, the same way mud
circulation limits dynamic filter cake growth.  This explains our success in using
bottom-averaged viscous stress as the correlation parameter.  The straight line fit
also indicates that bed properties are linear in an elastic sense.
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These ideas are not entirely new.  Slurry pipeline designers, for example,
routinely consider “boundary shear” and “critical tractive force.”  They have
successfully modeled sediment beds as “series of superposed layers” with
distinct yield strengths (Streeter, 1961).  However, these studies are usually
restricted to Newtonian carrier fluids in circular conduits.

While viscous shear emerges as the dominant transport parameter, its role
was by no mean obvious at the outset.  Other correlation quantities tested
include vertical and lateral components of shear rates and stresses, axial
velocity, apparent viscosity and Stokes product.  These correlated somewhat
well, particularly at low inclinations, but shear stress almost always worked.
Take apparent viscosity, for example.  Whereas Figure 6 of Becker et al. (1989)
shows significant wide-band scatter, listing rotational viscometer values ranging
from 1 to 50 cp, our exact computations gave good correlations with actual
apparent viscosities ranging up to 300 cp.  Computed viscosities expectedly
showed no meaningful connection to the apparent viscosities given by the
University of Tulsa investigators, because the latter were inferred from
unrealistic Fann dial readings.  This point is illustrated quantitatively later.

We emphasize that Figures 5-7-1, 5-7-2, and 5-7-3 are based on
unweighted muds.  On a separate note, the effect of “pure changes in fluid
density” should not alter computed shear stresses, at least theoretically, since the
convective terms in the steady governing equations vanish.  In practice,
however, oilfield weighting materials are likely to alter n and K; thus, some
change in stress level might be anticipated.  The effects of buoyancy, not treated
here, will of course help without regard to changes in shear.

We have shown how cuttings concentration correlates in a satisfactory
manner with the mean viscous shear stress averaged over the lower half of the
annulus.  Thus, impending hole-cleaning problems can be alleviated by first
determining the existing average stress level, and then, adjusting n, K and gpm
values in the actual drilling fluid to increase that stress.  Once this danger zone is
past, additives can be used to reduce shear stress and hence mud pump pressure
requirements.  Simply increasing gpm may also help, although the effect of
rheology on stress is probably more significant.

Interestingly, Seeberger et al. (1989) described an important field study
where extremely high velocities together with very high yield points did not
alleviate hole cleaning problems.  They suggested that extrapolated YP values
may not be useful indicators of transport efficiency.  Also, the authors pointed to
the importance of elevated stress levels at low shear rates in cleaning large
diameter holes at high angles.  They experimentally showed how oil and water-
based muds having like rheograms, despite their obvious textural or “look and
feel” differences, will clean with like efficiencies.  This implies that a
knowledge of n and K alone suffices in characterizing real muds.
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The above procedure requires minimal change to field operations.
Standard viscometer readings still represent required input  information; but they
should be used to determine actual downhole properties through computer
analysis.  Yield point and plastic viscosity, arising from older Bingham models,
play no direct role in the present methodology although these parameters
sometimes offer useful correlations.

Cuttings transport database.  The viscometer properties and cuttings
concentrations data for the 15 muds (at all angles and flow rates), together with
exact computed results for shear rate, stress, apparent viscosity, annular speed,
and Stokes product have been assembled into a comparative database for
continuing study.  These detailed results are available from the author upon
request.  Tables 5-7-1, 5-7-2, and 5-7-3 summarize bottom-averaged results for
the eccentric hole used in the Tulsa experiments.  Computations show that the
bottom of the hole supports a low shear rate flow, ranging from 10 to 20
reciprocal seconds.  These values are consistent with the authors’ low shear rate
conclusions, established by trial and error from the experimental data.  However,
their rule of thumb is not universally correct; for example, the same muds and
flow rates gave high shear rate results for several different downhole geometries.

Shear rates can vary substantially depending on eccentricity and diameter
ratio.  Direct computational analysis is the only legitimate and final arbiter.
These tables also give calculated apparent viscosities along with values
extrapolated from rotating viscometer data (shown in parentheses).  Comparison
shows that no correlation between the two exists, a result not unexpected, since
the measurements bear little relation to the downhole flow.  On the other hand,
calculated apparent viscosities correlated well with cuttings concentration,
although not as well as did viscous stress.  This correlation was possible because
bottom-averaged shear rates did not vary appreciably from mud to mud at any
given flow speed.  This effect may be fortuitous.

Table 5-7-1
Bottom-Averaged Fluid Properties @ 1.91 ft/sec

         -----------------------------------------------------
         Mud    n         k      Shear   Shear       Apparent-

                      lbf secn   Rate    Stress      Viscosity

                        /in2     1/sec   (psi)         (cp)
         -----------------------------------------------------
          1    1.00    0.15E-6    9.1    0.13E-5       1   (1)
          2    0.74    0.72E-5    8.1    0.29E-4      27   (8)
          3    0.59    0.13E-4    7.8    0.34E-4      35   (5)
          4    0.74    0.14E-4    8.3    0.59E-4      54  (15)
          5    0.59    0.25E-4    7.6    0.67E-4      71   (9)
          6    0.42    0.57E-4    7.4    0.95E-4     116   (6)
          7    0.74    0.24E-4    8.1    0.97E-4      89  (25)
          8    0.59    0.43E-4    7.6    0.11E-3     118  (15)
          9    0.42    0.94E-4    7.5    0.16E-3     191  (10)
         10    0.74    0.38E-4    8.2    0.16E-3     143  (40)
         11    0.59    0.68E-4    7.7    0.18E-3     190  (24)
         12    0.42    0.15E-3    7.5    0.25E-3     307  (16)
         13    0.74    0.48E-4    8.0    0.19E-3     180  (50)
         14    0.59    0.85E-4    7.6    0.22E-3     237  (30)
         15    0.42    0.19E-3    7.4    0.32E-3     388  (20)
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Table 5-7-2
Bottom-Averaged Fluid Properties @ 2.86 ft/sec

         -----------------------------------------------------
         Mud    n         k      Shear   Shear       Apparent-

                      lbf secn   Rate    Stress      Viscosity

                        /in2     1/sec   (psi)         (cp)
         -----------------------------------------------------
          1    1.00    0.15E-6    14     0.20E-5       1   (1)
          2    0.74    0.72E-5    12     0.39E-4      24   (8)
          3    0.59    0.13E-4    11     0.42E-4      30   (5)
          4    0.74    0.14E-4    12     0.78E-4      49  (15)
          5    0.59    0.25E-4    11     0.84E-4      60   (9)
          6    0.42    0.57E-4    11     0.11E-3      91   (6)
          7    0.74    0.24E-4    12     0.13E-3      80  (25)
          8    0.59    0.43E-4    11     0.14E-3     100  (15)
          9    0.42    0.94E-4    11     0.19E-3     152  (10)
         10    0.74    0.38E-4    12     0.21E-3     129  (40)
         11    0.59    0.68E-4    11     0.23E-3     161  (24)
         12    0.42    0.15E-3    11     0.30E-3     242  (16)
         13    0.74    0.48E-4    12     0.26E-3     161  (50)
         14    0.59    0.85E-4    11     0.28E-3     199  (30)
         15    0.42    0.19E-3    11     0.38E-3     305  (20)

Table 5-7-3
Bottom-Averaged Fluid Properties @ 3.82 ft/sec

         -----------------------------------------------------
         Mud    n         k      Shear   Shear       Apparent-

                      lbf secn   Rate    Stress      Viscosity

                        /in2     1/sec   (psi)         (cp)
         -----------------------------------------------------
          1    1.00    0.15E-6    18     0.27E-5       1   (1)
          2    0.74    0.72E-5    16     0.49E-4      22   (8)
          3    0.59    0.13E-4    15     0.50E-4      27   (5)
          4    0.74    0.14E-4    17     0.98E-4      45  (15)
          5    0.59    0.25E-4    15     0.10E-3      53   (9)
          6    0.42    0.57E-4    15     0.13E-3      78   (6)
          7    0.74    0.24E-4    16     0.16E-3      74  (25)
          8    0.59    0.43E-4    15     0.17E-3      88  (15)
          9    0.42    0.94E-4    15     0.21E-3     128  (10)
         10    0.74    0.38E-4    16     0.26E-3     119  (40)
         11    0.59    0.68E-4    15     0.27E-3     142  (24)
         12    0.42    0.15E-3    15     0.34E-3     205  (16)
         13    0.74    0.48E-4    17     0.33E-3     148  (50)
         14    0.59    0.85E-4    15     0.33E-3     177  (30)
         15    0.42    0.19E-3    15     0.43E-3     258  (20)

Invert emulsions versus “all oil” muds.  Conoco’s early Jolliet project

successfully drilled a number of deviated wells, ranging 30o to 60o from
vertical, in the deepwater Green Canyon Block 184 using a new “all oil” mud.
Compared with wells previously drilled in the area with conventional invert
emulsion fluids, the oil mud proved vastly superior with respect to cuttings
transport and overall hole cleaning (Fraser, 1990a,b,c).  High levels of cleaning
efficiency were maintained consistently throughout the drilling program.  In this
section we explain, using the fully predictive, steady eccentric annular flow
model, why the particular oil mud employed by Conoco performed well in
comparison with the invert emulsion.

Given the success of the correlations developed in the prior discussion , it
is natural to test our “stress hypothesis” under more realistic and difficult field
conditions.  Conoco’s Green Canyon experience is ideal in this respect.  Unlike
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the unweighted, bentonite-polymer, water-based muds used in the University of
Tulsa experiments, the drilling fluids employed by Conoco were “invert
emulsion” and “all oil” muds.  Again, Seeberger et al. (1989) have demonstrated
how oil-based and water-based muds having similar rheograms, despite obvious
textural differences, will clean holes with like efficiencies.  This experimental
observation implies that a knowledge of n and K alone suffices in characterizing
the carrying capacity of water, oil-based or emulsion-based drilling fluids.
Thus, the use of a Power law annular flow model as the basis for comparison for
the two Conoco muds is completely warranted.

We assumed for simplicity a 2-inch radius drill pipe centered halfway

down a 5-inch-radius borehole.  This eccentricity is consistent with the 30o to

60o inclinations reported by Conoco.  The n and K values we required were
calculated from Figure 2 of Fraser (1990b), using Fann dial readings at 13 and
50 rpm.  For the invert emulsion, we obtained n = 0.55 and K = 0.0001 lbf

secn/sq in.; the values n = 0.21 and K = 0.00055 lbf secn/sq in. were found for
the “all oil” mud.  Our annular geometry is identical to that used in the previous
discussion and in Becker et al. (1989).  It was chosen so that the shear stress
results obtained for the Tulsa water-based muds (shown in Figures 5-7-1 to 5-7-
3) can be directly compared with those found for the weighted invert emulsion
and oil fluids considered here.

For comparative purposes, the two runs described here were fixed at 500
gpm.  To maintain this flow rate, the invert emulsion required a local axial
pressure gradient of 0.010 psi/ft; Conoco’s all oil mud, by contrast, required
0.029 psi/ft.  Figures 5-7-5a and 5-7-5b, for invert emulsion and all oil muds,
give calculated results for axial velocity in in./sec.  Again, note how all no-slip
conditions are identically satisfied.

Figures 5-7-6a and 5-7-6b display the absolute values of the vertical
component of viscous shear stress; the leading significant digits are shown,

corresponding to magnitudes that are typically O(10-3) to O(10-4) psi.  This
shear stress is obtained as the product of local apparent viscosity and shear rate,
both of which vary throughout the cross-section.  That is, the viscous stress is
obtained exactly as “apparent viscosity (x,y)  dU(x,y)/dx.”

Figure 5-7-5a shows that the invert emulsion yields maximum velocities
near 61 in./sec. on the high side of the annulus; the maximums on the low side,
approximately 5 in./sec, are less than ten times this value.  By comparison, the
"all oil" results in Figure 5-7-5b demonstrate how a smaller n tends to
redistribute velocity more uniformly; still, the contrast is high, being 47 in./sec.
to 7 in./sec.  The difference between the low side maximum velocities of 5 and 7
in./sec. is not significant, and certainly does not explain observed large
differences in cleaning efficiency.
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Figure 5-7-5a.  Annular velocity, invert emulsion.
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Figure 5-7-5b.  Annular velocity, all oil mud.

6       6     6

5       7     7     7     5

4     6     4     4   4       6     4
4     3         2         3     4

3               2         2                 3
2     1     1   1   1   1     2

3     0   1     3   3   3   1   0       3
1       1     1   3   4   4   4   3   1     1     1

0   3   4   6   8 6   4   3     0
1     2     4   7 9  10 9   7 5 4   2       1
0 1   3 4   6 810  1110 9 8 6   4 3   1 0

0       3 3   4 4 7             7 7 4   3 3         0
0 1       3   5                 5 5 3 3     1 0

2 3     3 2                   2 3   3 2
2         3 2 1                     0 2 2 3       2

2 2 3       0                   0     3 3 2 2
2 1 0 1                   1 0 2

3 3 3 3 2 0 1                 3 0 0 3 3 3 3 3
3             4 3

3 2 0 2 3         4 3 1 1 3
4 4       0   2   3 2   1 0     3 4 4

4 3     1   2   1   2 3 4
4       3     2   3       4

4 3     3     4
3

Figure 5-7-6a.  Viscous stress, invert emulsion.
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Figure 5-7-6b.  Viscous stress, all oil mud.

Our earlier results in the first discussion  provided experimental evidence
suggesting that mean viscous shear stress is the correct correlation parameter for
hole-cleaning efficiency.  This is, importantly, again the case here.  First note
how Figure 5-7-6a gives a bottom radial stress distribution of “3-2-2-3-3” for the
invert emulsion mud.  In the case of Conoco's “all oil” mud, Figure 5-7-6b
shows that these values significantly increase to “10-10-4-6-4.”  We calculated
mean shear stress values averaged over the lower half of the annulus.  These
values, for oil-based and invert-emulsion muds, respectively, were 0.00061 and
0.00027 psi. Their ratio, a sizable 2.3, substantiates the positive claims made in
Fraser (1990b).  Calculated shear stress averages for the University of Tulsa
experiments in no case exceeded 0.0004 psi.

Similarly averaged apparent viscosities also correlated well, leading to a
large ratio of 2.2 (The “apparent viscosities” in Becker et al. (1989) did not
correlate at all, because non-meaningful rotational viscometer readings were
used).  Bottom-averaged shear rates, for oil-based and invert-emulsion muds,
were calculated as 12.7 and 9.6/sec, respectively; at least in this case, we have
again justified the “6 rpm (or 10/sec) recommendation” offered by many drilling
practitioners.  In general, however, shear rates will vary widely; they can be
substantial depending on the particular geometry and drilling fluid.

The present results and the detailed findings of the first discussion,
together with the recommendations of Seeberger et al. (1989), strongly suggest
that “bottom-averaged” viscous shear stress correlates well with cuttings
carrying capacity.  Thus, as before, a driller suspecting cleaning problems
should first determine his current downhole stress level; then he should alter n,
K and gpm to increase that stress.  Once the danger is past, he can lower overall
stress levels to reduce mud pump pressure requirements.  This “stress
hypothesis” for hole cleaning, first proposed by the author in 1991 in  Borehole
Flow Modeling, has been adopted for internal use at several oil companies.
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Issues in cuttings transport.  The empirical cuttings transport literature
contains confusing observations and recommendations that, in light of the
foregoing results, can be easily resolved.  We will address several questions
commonly raised by drillers.  First and foremost is, “Which parameters control
transport efficiency?”  In vertical wells, the drag or uplift force on small isolated
chips can be obtained from lubrication theory via Stoke’s or Oseen’s low
Reynolds number equations.  This force is proportional to the product between
local viscosity and the first power of relative velocity between chip and fluid.
The so-called “Stokes product” correlates well in vertical holes.

In deviated and horizontal holes with eccentric annular geometries,
cuttings beds invariably form on the low side.  These beds consist of well-
defined mechanical structures with nonzero yield stresses; to remove or erode
them, viscous fluid stresses must be sufficiently strong to overcome their
resilience.  The stresses computed on a laminar basis are sufficient for practical
purposes, because low side, low velocity flows are almost always laminar.  In
this sense, any turbulence in the high side flow is unimportant since it plays no
direct role in bed removal (the high side flow does convect debris that are
uplifted by rotation).  This observation is reiterated by Fraser (1990c).  In his
paper, Fraser correctly points out that too much significance is often attached to
velocity criteria and fluid turbulence in deviated wells.

A second question concerns drillpipe rotation.  With rotation, centrifugal
effects throw cuttings circumferentially upwards where they are convected
uphole by the high side flow; then they fall downwards.  In the first part of this
cycle, the cuttings are subject to drag forces not unlike those found in vertical
wells.  Turbulence can be important, determining the amount of axial throw
traversed before the cuttings are redeposited into the bed.  In addition to
“throwing” estimates, the capabilities offered by the transient simulator now
permit calculations for rotation induced stress effects on cuttings bed erosion.

Other effects of rotation are subtly tied to the rheology of the background
fluid.  Conflicting observations and recommendations are often made regarding
drillpipe rotation for concentric annuli.  To resolve them, we need to reiterate
some theoretical results of Example 5-6.  There we demonstrated that axial and
circumferential speeds completely decouple for laminar Newtonian flows
despite the nonlinearity of the Navier-Stokes equations.  This is so because the
convective terms exactly vanish, allowing us to “naively” (but correctly)
superpose the two orthogonal velocity fields.

This fact was, apparently, first deduced by Savins et al. (1966), who noted
that no coupling between the discharge rate, axial pressure gradient, relative
rotation, and torque could be found through the viscosity coefficient for
Newtonian flows.  The decoupling implies that experimental findings obtained
using Newtonian drilling fluids (primarily water and air) cannot be extrapolated
to more general Power law or Bingham plastic rheologies.  Likewise, rules of
thumb deduced using real drilling muds will not be consistent with those found
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for water.  Newtonian (e.g., brines) and “real” muds behave differently in the
presence of pipe rotation.  In a Newtonian fluid, rotation will not affect the axial
flow, although “centrifugal throwing” is still important.  Note that in an initially
steady, concentric non-Newtonian flow where the mud pump is operating at
constant pressure, a momentary increase in rpm leads to a temporary surge in
flow rate and thus improved hole cleaning.

The decoupling discussed above applies to Newtonian flows in concentric
annuli only.  The coupling between axial and circumferential velocities
reappears, even for Newtonian flows, when the rotating motion occurs in an
eccentric annulus.  This is so because the nonlinear convective terms will not
identically vanish.  This coupling is amply demonstrated in our transient
calculations for flows with rotation.  In general, concentric flow loop tests using
Newtonian fluids provide little benefit or information in terms of field
usefulness.  In fact, their results will be subject to misinterpretation.

And the role of fluid rheology?  We have demonstrated how bottom-
averaged shear stress can be used as a meaningful correlation parameter for
cuttings transport in eccentric deviated holes.  This mean viscous stress can be
computed using steady methods for flows without rotation or transient models
for flows with rotation.  The arguments given in several discussions are sound
on physical grounds; in cuttings transport, rheology is a significant player by
way of its effect on fluid stress.

We have not modeled, nor do we suggest computational studies focusing
on the dynamics of single chips or ensembles of cuttings chips, for reasons cited
in Chapter 1.  As we have demonstrated, it suffices to use viscous stress as a
correlation parameter.  Modeling the dynamics of aggregates of chips involves
mathematics so complicated that it is difficult to anticipate any practical
significance, even in the long term.

Finally, we comment on the role of increasing fluid density to improve
hole cleaning.  For steady flows without rotation, fluid density completely drops
out of the governing equations, but these equations were written without body
forces.  In this sense, density is not important.  However, when more complete
equations are considered, it is clear that higher densities will always increase
buoyancy effects and that the consequent uplift is beneficial as far as helical
“throwing” is concerned and is therefore helpful in hole cleaning.
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Model 5-8.  Cuttings bed growth as an unstable flow process.

In vertical wells in which drilled cuttings move unimpeded, cuttings
transport and hole-cleaning efficiency vary directly as the product between mud
viscosity and “relative particle and annular velocity.”  For inclined wells, bed
formation introduces a new physical source for clogging.  Often, this means that
rules of thumb developed for vertical holes are not entirely applicable to
deviated wells.  For example, Seeberger et al. (1989) pointed out that substantial
increases in both yield point and annular velocity did not help in alleviating their
hole problems.  They suggested that high shear stresses at low shear rates would
be desirable, and that stress could be a useful indicator of cleaning efficiency in
deviated wells.  We have given compelling evidence for this hypothesis.

Using the steady eccentric annular flow model, we have demonstrated that
“cuttings concentration” correlates linearly with mean shear stress, that is, the
viscous stress averaged over the lower half of the annulus, for a wide range of
oncoming flow speeds and well inclinations.  Apparently, this empirical
correlation holds for invert emulsions and oil-based muds as well.

Having established that shear stress is an important parameter in bed
formation, it is natural to ask whether cuttings bed growth itself helps or hinders
further growth; that is, does bed buildup constitute a self-sustaining,
destabilizing process?   The classic “ball on top of the hill,” for instance,
continually falls once it is displaced from its equilibrium position.  In contrast,
the “ball in the valley” consistently returns to its origin, demonstrating “absolute
stability.”  In this section, we will consider the effect of cuttings bed thickness.

If cuttings bed growth itself induces further growth, the cleaning process
would be unstable in the foregoing sense.  This instability would underline, in
field applications, the importance of controlling downhole rheology so as to
increase stress levels at the onset of impending danger.  Field site flow
simulation could play an important role in operations, that is, in determining
existing stress levels with a view towards optimizing fluid rheology in order to
increase them.  In this section, calculations are described that suggest that
instability is possible.

In the non-rotating eccentric flow calculations that follow, we assume a 2-
inch-radius nonrotating drill pipe, displaced 1.5 inches downward in a 5-inch-
radius borehole.  This annular geometry is the same as the experimental setup
reported in Becker et al. (1989).   For purposes of evaluation, we arbitrarily
selected “Mud No. 10” used by the University of Tulsa team.  It has a Power law

exponent of 0.736 and a consistency factor of 0.0000383 lbf secn/sq in.  The
total annular volumetric flow rate was fixed for all of our runs, corresponding to
usual operating conditions.  The average linear speed was held to 1.91 ft./sec. or
22.9 in./sec.  In the reported experiments, this speed yielded laminar flow at all
inclination angles.
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Figure 5-8-1a.  Annular velocity, “no bed.”
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Figure 5-8-1b.  Annular velocity, “small bed.”
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Figure 5-8-1c.  Annular velocity, “medium bed.”
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Figure 5-8-1d.  Annular velocity, “large bed.”

Four case studies were performed, the first containing no cuttings bed;
then, assuming flat cuttings beds successively increasing in thickness.  The level
surfaces of the “small,” “medium,” and “large” beds were located at 0.4, 0.8,
and 1.0 inch, respectively, from the bottom of the annulus.  Required pressure
drops varied from 0.0054 to 0.0055 psi/ft.  The “Steady 2D” simulator offers
highly visual text output that directly overlays computed quantities on the cross-
sectional geometry, thus facilitating physical interpretation and correlation with
annular position.  Computed results for axial velocity in in./sec. are shown
above in Figures 5-8-1a to 5-8-1d.  All four velocity distributions satisfy the no-
slip condition exactly; the text plotter used, we note, does not always show 0’s at
solid boundaries because of character spacing issues.  The “no bed” flow given
in Figure 5-8-1a demonstrates very clearly how velocity can vary rapidly about
the annulus.  For example, it has maximums of 51 and 5 in./sec. above and
below the pipe, a ten-fold difference.  Figures 5-8-1b to 5-8-1d show that this
factor increases, that is, worsens, as the cuttings bed increases in thickness.
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Figure 5-8-2a.  Viscous stress, “no bed.”
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Figure 5-8-2b.  Viscous stress, “small bed.”
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Figure 5-8-2c.  Viscous stress, “medium bed.”
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Figure 5-8-2d.  Viscous stress, “large bed.”
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Figures 5-8-2a to 5-8-2d give computed results for the vertical component

of the shear stress, that is, “apparent viscosity (x,y)  strain rate dU/dx,” where
“x” increases downward.  Results for the stress related to “dU/dy,” not shown
because of space limitations, behaved similarly.  For clarity, only the absolute
values are displayed; the actual values, which are separately available in

tabulated form, vary from O(10-4) to O(10-3) psi.
Note how the bottom viscous stresses decrease in magnitude as the cuttings

bed builds in thickness.  This decrease, which is accompanied by decreases in
throughput area, further compounds cuttings transport problems and decreases
cleaning efficiency.  Thus, hole clogging is a self-sustaining, destabilizing
process.  Unless the mud rheology itself is changed in the direction of increasing
stress, differential sticking and stuck pipe are possible.  This decrease of viscous
stress with increasing bed thickness is also supported experimentally.  Quigley
et al. (1990) measured “unexpected” decreases in fluid (as opposed to
mechanical) friction in a carefully controlled flow loop where cuttings beds
were allowed to grow.  While concluding that “cuttings beds can reduce
friction,” the authors clearly do not recommend its application in the field, as it
increases the possibility of differential sticking.

Numerical results such as those shown in Figures 5-8-2a to 5-8-2d provide
a quantitative means for comparing cleaning capabilities between different muds
at different flow rates.  “Should I use the ‘high tech’ mud offered by Company
A when the simpler drilling fluid of Company B, run at a different speed, will
suffice?”  With numerical simulation, these and related questions are readily
answered.  The present results indicate that the smaller the throughput height,
the smaller the viscous stresses will be.

This is intuitively clear since narrow gaps impose limits upon the peak
bottom velocity and hence the maximum stress.  We caution that this result
applies only to the present calculations and may not hold in general.  The
physical importance of cuttings beds indicates that they should be modeled in
any serious well planning activity.  This necessity also limits the potential of
recently developed bipolar coordinate annular flow models.  These handle
circular eccentric annular geometries well, but they cannot be generalized to
handle more difficult holes with cuttings beds.  Computationally, though, even
when dealing with purely eccentric circles, bipolar methods demand larger
resources because many transcendental functions need to be evaluated
repeatedly.
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Model 5-9.  Spotting fluid evaluation for stuck pipe
and jarring applications.

Stuck pipe due to differential pressure between the mud column and the
formation often results in costly time delays.  The mechanics governing
differential sticking are well known, e.g., see Outmans (1958).  In the past,
diesel oil, mineral oil, and mixtures of these with surfactants, clays, and asphalts
were usually spotted to facilitate the release of the drill string.  However, the use
of these conventional spotting fluids is now stringently controlled by
government regulation; environmentally safe alternatives must be found.

Halliday and Clapper (1989) described the development of a successful,
non-toxic, water-based system.  Their spotting fluid, identified using simple
laboratory screening procedures, was used to free a thousand feet of stuck pipe

in a 39o hole, from a sand section in the Gulf of Mexico.  Since water-based
spotting fluids have seldom been studied in the literature, it is natural to ask
whether or not they really work; and, if so, how.  This section calculates, on an
exact eccentric flow basis, three important mechanical properties, namely, the
apparent viscosity, shear stress and shear rate of the drilling mud, with and
without the spot additive.  Then we provide a complete physical explanation for
the reported success.  The spotting fluid essentially works by mechanically
reducing overall apparent viscosity; this enables the resultant fluid to perform its
chemical functions better.

The eccentric borehole annular model for steady non-rotating flow was
used.  While we have successfully applied it to hole cleaning before the
occurrence of stuck pipe, it is of interest to apply it to other drilling problems,
for example, determining the effectiveness of spotting fluids in freeing stuck
pipe.  Which mechanical properties are relevant to spotted fluids?  What should
their orders of magnitude be?  We examined the water-based system described
in Halliday and Clapper (1989) because such systems are becoming increasingly
important.  Why they work is not yet thoroughly understood.  But it suffices to
explain how the water-based spotting fluid behaves, insofar as mechanical fluid
properties are concerned, on a single-phase, miscible flow basis.  Conventional
capillary pressure and multiphase considerations for “oil on aqueous filter cake”
effects do not apply here, since we are dealing with “water on water” flows.

We performed our calculations for a 7.75-inch-diameter drill collar located
eccentrically within a 12.5-inch-diameter borehole.  This corresponds to the
bottomhole assembly reported by the authors.  A small bottom annular clearance
of 0.25 inches was selected for evaluation purposes.  This almost closed gap is
consistent with the impending stuck pipe conditions characteristic of typical
deviated holes.  The authors’ Table 11 gives Fann 600 and 300 rpm dial
readings for the water-based mud used, before and after spot addition; both
fluids, incidentally, were equal in density.  In the former case, these values were
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46 and 28; in the latter, 41 and 24.  These properties were measured at 120o F.
The calculated n and K Power law coefficients are, respectively, 0.70 and

0.000025 lbf secn/sq in. for the original mud; for the spotted mud, we obtained

0.77 and 0.0000137 lbf secn/sq in.
Halliday and Clapper (1989) reported that attempts to free the pipe by

jarring down, with the original drilling fluid in place, were unsuccessful.  At that
point, the decision to spot the experimental non-oil fluid was made.  Since
jarring operations are more impulsive, rather than constant pressure drop
processes, we calculated our flow properties for a wide range of applied pressure
gradients.  Note that the unsteady, convective term in the governing momentum
equation has the same physical dimensions as pressure gradient.  It was in this
approximate engineering sense that our exact simulator was used.

The highest pressure gradients shown below correspond to volumetric flow
rates near 1,100 gpm.  Computed results for several parameters averaged over
the lower half of the annulus are shown in Tables 5-9-1 and 5-9-2.

Table 5-9-1
Fluid Properties, Original Mud

                    -----------------------------------------------------
            Pressure    Flow     Apparent-      Shear     Viscous

            Gradient    Rate     Viscosity      Rate      Stress

            (psi/ft)   (gpm)   (lbf sec/in2)   (sec-1)     (psi)
            -----------------------------------------------------
             0.0010      69      0.000036        0.4     0.000011
             0.0020     185      0.000027        1.2     0.000022
             0.0030     329      0.000022        2.1     0.000033
             0.0035     410      0.000021        2.6     0.000038
             0.0040     497      0.000020        3.2     0.000044
             0.0050     683      0.000018        4.3     0.000055
             0.0060     886      0.000017        5.6     0.000066
             0.0070    1105      0.000016        7.0     0.000077

-----------------------------------------------------

Table 5-9-2
Fluid Properties, Spotted Mud

            -----------------------------------------------------
            Pressure    Flow     Apparent-      Shear     Viscous

            Gradient    Rate     Viscosity      Rate      Stress

            (psi/ft)   (gpm)   (lbf sec/in2)   (sec-1)     (psi)
            -----------------------------------------------------
             0.0010     140      0.000014        1.0     0.000011
             0.0020     344      0.000012        2.4     0.000022
             0.0023     412      0.000011        2.8     0.000025
             0.0030     582      0.000010        4.0     0.000033
             0.0035     711      0.000010        4.9     0.000039
             0.0040     846      0.000010        5.8     0.000044
             0.0050    1130      0.000009        7.8     0.000055
            -----------------------------------------------------
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We emphasize that calculated averages are sensitive to annular geometry;
thus, the results shown in Tables 5-9-1 and 5-9-2 may not apply to other
borehole configurations.  In general, any required numerical quantities should be
recomputed with the exact downhole geometry.  The results for averaged shear
stress are “almost” Newtonian in the sense that stress increases linearly with
applied pressure gradient.  This unexpected outcome is not generally true of
non-Newtonian flows.  Both treated and untreated muds, in fact, show exactly
the same shear stress values.  However, shear rate and volumetric flow rate
results for the two muds vary differently, and certainly nonlinearly with pressure
gradient.  The most interesting results, those concerned with spotting properties,
are related to apparent viscosity.

The foregoing calculations importantly show how the apparent viscosity
for the spotted mud, which varies spatially over the annular cross-section, has a

nearly constant “bottom average” near 0.000010 lbf sec/in2 over the entire range
of flow rates.  This value is approximately 69 cp, far in excess of the viscosities
inferred from rotational viscometer readings, but still two to three times less than
those of the original untreated mud.  The importance of “low viscosity” in
spotting fluids is emphasized in several mud company publications the author is
aware of.  Whether the apparent viscosity is high or low, of course, cannot be
determined independently of hole geometry and pressure gradient.

The apparent viscosity is relevant because it is related to the lubricity
factor conventionally used to evaluate spotting fluids.  It is importantly
calculated on a true eccentric flow basis, rather than determined from (unrelated)
rotational viscometer measurements.  As in cuttings transport, viscometer
measurements are only valid to the extent that they provide accurate information
for determining n and K over a limited range of shear rates.

That the treated fluid exhibits much lower viscosities over a range of
applied pressures is consistent with its ability to penetrate the pipe and mudcake
interface.  This lubricates and separates the contact surfaces over a several-hour
period; thus, it enables the spotting to perform its chemical functions efficiently,
thereby freeing the stuck drill string.  The effectiveness of any spotting fluid, of
course, must be determined on a case by case basis.

While computed averages for apparent viscosity are almost constant over a
range of pressure gradients, we emphasize that exact cross-sectional values for
each flow property can be quite variable.  For example, consider the annular
flow for the spotted mud under a pressure gradient of 0.002 psi/ft, with a
corresponding flow rate of 344 gpm.  The velocity solutions in in./sec, using the
visual text output format discussed previously, are shown in Figure 5-9-1; note,
again, how no-slip conditions are rigorously enforced at all solid surfaces.
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Figure 5-9-1.  Annular velocity.
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Figure 5-9-2.  Apparent viscosity.

Figure 5-9-2 gives results for exact apparent viscosity, which varies with
spatial position plotted over the eccentric geometry itself.  Although the text
plotter does not provide visual resolution at the very bottom, tabulated solutions
indicates pipe surface values of “13,” increasing to “29” at the midsection,

finally decreasing to 1310-6 lbf sec/in2 at the borehole wall.  The flatness of
the cuttings bed, or the extent to which it modifies annular bottom geometry,
will also be an important factor as far as lubricity is concerned.  Any field-
oriented hydraulics simulation should also account for such bed effects.

We demonstrated earlier that modeling can be used to correlate laboratory
and field cuttings transport efficiency data against actual (computed) downhole
flow properties.  Bottom-averaged viscous shear stress importantly emerged as
the physically significant correlation parameter.  This section indicates that
annular flow modeling can also be used to evaluate spotting fluid effectiveness
in freeing stuck pipe.  The important correlation parameter is average apparent
viscosity, a fact mechanical engineers might have anticipated.  This is directly
related to the lubricity factor usually obtained in laboratory measurements.
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Model 5-10.  Newtonian flow in rectangular ducts.

In this section, we provide solutions for Newtonian flow in rectangular
ducts.  These solutions and methods were used in our research to validate more
general algorithms for non-Newtonian flow in complicated cross-sections.  Of
course, they are useful in their own right.  We will observe that, even with our
restriction to the simplest fluid, very different mathematical techniques are
needed even for a “simple” change in duct shape.  From an engineering point of
view, this is impractical: a more “robust” approach applicable to large classes of
problems is needed, and motivated, particularly by the discussion given below.

Exact analytical series solution.  Here, a closed form solution for
unidirectional, laminar, steady, Newtonian viscous flow in a rectangular duct is
obtained.  Unlike d2u(r)/dr2 + 1/r du/dr = 1/ dp/dz, which applies to Newtonian
flow in circular pipes and takes the form of an ordinary differential equation
requiring data only at two points in space, we now have the partial differential
equation

2u/x2 + 2u/y2 = (1/) dp/dz  (5-10-1)

Its solution is obtained, subject to the “no-slip” velocity boundary conditions

u(- ½ b < y < + ½ b, x = 0 ) = 0 (5-10-2a)

u(- ½ b < y < + ½ b, x = c ) = 0 (5-10-2b)

u(y = - ½ b, 0 < x < c) = 0 (5-10-2c)

u(y = +½ b, 0 < x < c) = 0 (5-10-2d)

where “b” and “c” denote the lengths of the sides of the rectangular duct shown
in Figure 5-10-1.

y

x

- b/2 + b/2

c

Figure 5-10-1.  Rectangular duct cross-section.

The solution is obtained by taking u(y,x) as the sum of “particular” and
“complementary” solutions, that is, u = up(x) + uc(y,x).  To simplify the analysis,
we allow up(x) to vanish at x = 0 and c, while satisfying d2u/dx2 = (1/) dp/dz,
where dp/dz is a prescribed constant.  Then, the particular solution is obtained as
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up(x) = dp/dz x2/(2) + C1x + C2, where the constants of integration can be
evaluated to give up(x) = - dp/dz (xc – x2)/(2).  This involves no loss of
generality since the complementary solution uc(y,x) has not yet been determined,
and will be expressed as a function of up(x).  With this choice, the partial
differential equation for uc(x) reduces to the classical Laplace equation

2uc /x2 + 2uc /y2 = 0   (5-10-3)

Now, since u = 0 and up(x) = 0 along the upper and lower edges of the rectangle
in Figure 5-10-1, it follows that uc(x) = 0 there also, since uc = u - up(x).  By
separating variables in the conventional manner, it is possible to show that
product representations of uc(y,x) involve combinations of trigonometric and
exponential functions.  In particular, we are led to the combination



uc =  An cosh (ny/c) sin (nx/c)   (5-10-4)
n=1

The factor “sin (nx/c)” allows uc(y,x) to vanish at the lower and upper
boundaries x = 0 and c.  The linear combination of exponentials “cosh (ny/c)”
is selected because the velocity distribution must be symmetric with respect to
the vertical line y = 0.  Specific products cannot be disallowed, so the infinite
summation accounts for the maximum number permitted.  The coefficient An

must be determined in such a way that side wall no-slip conditions are satisfied.
To do this, we reconstruct the complete solution as

u = up(x) + uc(y,x) = - dp/dz (xc – x2 )/(2)

+  An cosh (ny/c) sin (nx/c)   (5-10-5)

and apply the boundary conditions given by Equations 5-10-2a,b.  The
coefficients of the resulting Fourier series can be used, together with the
orthogonality properties of the trigonometric sine function, to show that

An  = dp/dz/(c) c3 [ 2- {2 cos(n) + n sin (n)}/ (5-10-6)
[(n)3cosh {nb/(2c)}]

With An defined, the solution to uc, and hence, to Equations 5-10-1 and 5-
10-2, is determined.  The shear rates u/x and u/y, and viscous stresses 
u/x and  u/y, can be obtained by differentiating Equation 5-10-5.  Again,
analytical methods suffer limitations, e.g., the superpositions in “u = up + uc”
and “” are not valid when the equation for “u” is nonlinear, as for non-
Newtonian rheologies.  Also, while there are no “log” function or “centerline”
problems, as for radial formulations, it is clear that even if “y and x” coordinates
are found for general ducts, it will not be possible to find the analogous “sin”
and “cosh” functions.  In general, for arbitrarily clogged ducts, there will be no
lines of symmetry to help in defining solution products.  Classical techniques are
labor intensive in this sense: each problem requires its own special solution
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strategy.  The Fortran code required to implement Equations 5-10-5 and 5-10-6
is shown in Figure 5-10-2.  The input units will be explained later.  Note that
large values of the summation index “n” will lead to register overflow; thus, the
apparent generality behind Equation 5-10-4 is limited by practical machine
restrictions.

C     SERIES.FOR
C     INPUTS (Observation point (Y,X) assumed)
      B  = 1.
      C  = 1.
      Y  = 0.
      X  = 0.5
      VISC = 0.0000211/144.
      PGRAD = 0.001/12.
C     SOLUTION (Consider 100 terms in series)
      PI  = 3.14159
      C2  = C**2.
      SUM = 0.
      DO 100  N=1,100
      TEMP = 2.*(C**3) - (C**3)*(2.*COS(N*PI) +N*PI*SIN(N*PI))
      TEMP = TEMP/((N**3.)*(PI**3.))
      A = PGRAD*TEMP/(VISC*C)
      A = A/COSH(N*PI*B/(2.*C))
      SUM = SUM + A*COSH(N*PI*Y/C)*SIN(N*PI*X/C)
 100  CONTINUE
      UC = SUM
      UP = -PGRAD*(C*X-X**2.)/(2.*VISC)
      U = UC + UP
      WRITE(*,200) U
 200  FORMAT(1X,' Velocity = ',E10.4,' in/sec')
      STOP
      END

Figure 5-10-2.  Fortran code, series solution for rectangular duct.

Finite difference solution.  Now, we obtain the solution for flow in a
rectangular duct by purely numerical means.  For circular ducts governed by the
ordinary differential equation d2u(r)/dr2 + 1/r du/dr = 1/ dp/dz, the complete
solution can be obtained in a single pass using a tridiagonal equation solver if
the equation is discretized implicitly using second-order central differences.  For
problems in two independent variables, iterative methods are generally required
to obtain practical solutions.  For linear problems, say, Newtonian flows, it is
possible to obtain the solution in a single pass using “direct solvers.”  However,
these are not practical for complicated geometries, because numerous meshes
are required to characterize the defining contours.  In the analysis below, we will
illustrate the use of iterative methods, since these are used in the solution of our
governing grid generation and transformed flow equations.

We now turn to Equation 5-10-1 and consider it in its entirety, without
resolving the dependent variable into particular and complementary parts.  That
is, we address 2u/x2 + 2u/y2 = (1/) dp/dz directly.  Now, from elementary
numerical analysis, it can be shown that the central difference formula
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d2u(ri )/dr2 = (ui-1 - 2ui + ui+1 )/(r)2   (5-10-7a)

holds to second-order accuracy.  Thus, we can similarly write

2u(yi )/y2 = (ui-1 - 2ui + ui+1 )/(y)2   (5-10-7b)

for second derivatives in the “y” direction.  In the present problem, we have an
additional “x” direction, as shown in Figure 5-10-3.  The grid depicted there
overlays the cross-section of Figure 5-10-1.  Since “y,x” requires two indexes,
we extend Equation 5-10-7b in the obvious manner.  For example, for a fixed j,
the second derivative

2u(yi,xj  )/y2 = (ui-1 ,j - 2ui ,j + ui+1 ,j )/(y)2   (5-10-7c)

Similarly,

2u(yi,xj  )/x2 = (ui ,j-1 - 2ui ,j + ui ,j+1 )/(x)2   (5-10-7d)

Thus, at the “observation point” (i,j), Equation 5-10-1 becomes

(ui-1 ,j - 2ui ,j + ui+1 ,j )/(y)2 (5-10-8)
+ (ui ,j-1 - 2ui ,j + ui ,j+1 )/(x)2 = 1/ dp/dz

We can proceed to develop a rectangular duct solver allowing arbitrarily
different x and y values.  However, that is not our purpose.  For simplicity,
we will therefore assume constant meshes x = y = , which allows us to
rewrite Equation 5-10-8 in the form

ui ,j = ¼ (ui-1 ,j + ui+1 ,j + ui ,j-1 + ui ,j+1  ) - 2/(4) dp/dz (5-10-9)

y

x




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j-1

j+1

(i,j)

Figure 5-10-3.  Rectangular finite difference grid.

Equation 5-10-9 is a central difference approximation to governing
Equation 5-10-1, which is second-order accurate.  Interestingly, it can be used as
a “recursion formula” that iteratively produces improved numerical solutions.
For example, suppose that some approximate solution for u(i,j) is available.
Then, an improved (left side) solution can be generated by evaluating the right
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side of Equation 5-10-9 with it.  It can be shown that, if this method converges,
it will tend to the correct physical solution whatever the starting guess.  Thus, if
an initial approximation were not available, a trivial “zero solution” for u would
be perfectly acceptable!  Such methods are known as “relaxation methods.”
Since we have calculated improvements point-by-point (e.g., as opposed to an
entire line of points at a time), the method used is a “point relaxation” method.

The Fortran source code implementing Equation 5-10-9 and the boundary
conditions in Equations 5-10-2a,b,c,d is given in Figure 5-10-4.  The units used
are identical to those of the previous example, but here, a square duct having
one-inch sides is considered.  A mesh width of 0.1 inch is assumed, so that ten
grids are taken along each side of the square.  Loop 100 initializes the “starting
guess” for U(I,J) to zero, also setting vanishing velocities along the duct walls I
= 1 and 11, and J = 1 and 11.  Loop 300 updates U(I,J) in the internal flow
domain bounded by I = 2,…, 10 and J = 2, …, 10.  One hundred iterations are
taken, which more than converges the calculation; in a more refined
implementation, suitable convergence criteria would be defined.  “Q” provides
the volumetric flow rate in gallons per minute, while “U” is calculated in inches
per second.  For the Fortran code shown, computations are completed in less
than one second on standard personal computers.

C     SQFDM.FOR (SQUARE DUCT, FINITE DIFFERENCE METHOD)
      DIMENSION U(11,11)
C     SQUARE IS 1" BY 1" AND THERE ARE 10 GRIDS
      DEL =  1./10.
      VISC = 0.0000211/144.
      PGRAD = 0.001/12.
      DO 100  I=1,11
      DO 100  J=1,11
      U(I,J) = 0.
 100  CONTINUE
      DO 300  N=1,100
      DO 200  I=2,10
      DO 200  J=2,10
      U(I,J) =  (U(I-1,J) + U(I+1,J) + U(I,J-1) + U(I,J+1))/4.
     1        -  PGRAD*(DEL**2)/(4.*VISC)
 200  CONTINUE
 300  CONTINUE
      Q = 0.
      DO 400  I=2,11
      DO 400  J=2,11
      Q = Q + U(I-1,J-1)*(DEL**2)
 400  CONTINUE
      Q = Q*0.2597
      Q = -Q
      WRITE(*,500) Q
 500  FORMAT(' Volume flow rate = ',E10.4,' gal/min')
      WRITE(*,510) U(6,6)
 510  FORMAT(' Umax = ',E10.4,' in/sec')
      STOP
      END

Figure 5-10-4.  Finite difference code, rectangular ducts.
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Example calculation.  Here, a pressure gradient with dp/dz = 0.001 psi/ft.
is assumed, and a square duct with one-inch sides is taken; also, we consider a
unit centipoise viscosity fluid, with  = 0.0000211 lbf sec/ft2.  Units of “inch,
sec, and lbf” are used in the source listing.  The program breaks each side of the
square into ten equal increments, with x = y = 0.1 inch.  This is done for
comparative purposes with radial flow results.  For the finite difference method,
the maximum velocity is found at the center of the duct, that is, y = 0 and x = 0.5
inch, and it is given by the value u(6,6) = - 0.4157E+02 in./sec.  The code in
Figure 5-10-2 gives the exact series solution at the center as -0.4190E+02, so
that the difference method incurs less than 1 percent error.  Again, this accuracy
is achieved with a coarse “1010” constant mesh.  We note in closing this
chapter that the rectangular duct solution, while not bearing directly on
petroleum applications, was developed in part to validate the singly-connected
duct flow curvilinear grid scheme used in our solids deposition and wellbore
“hole enlargement” applications.
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6
Transient, Two-Dimensional,
Single-Phase Flow Modeling

In Chapter 2, a broad foundation for annular flow problems with arbitrary
cross-sectional geometries was developed, and we showed how for non-rotating
drillpipe and casing, the initial formulation must be presented in rectangular or
Cartesian variables in order to implement the boundary-conforming, curvilinear
grid procedure.  New subtleties accompanying the treatment of inner body
rotation were discussed.  There we demonstrated how, for rotating flow
applications, it was necessary to start with a host formulation in circular
cylindrical coordinates, so that tangential surface speeds can be adequately
described, then progress to Cartesian coordinates, and only then, recast the
formulation in general curvilinear coordinates.  Of course, in software
development, the geometric transformations do not end with these mappings:
there are screen transforms and pixel mappings in addition to contend with.
However, the latter two are not discussed in this book.

With the underlying formulation issues addressed in Chapter 2, the work in
Chapter 3 focused on the details of the curvilinear grid mappings, e.g., the
manner in which branch cut boundary conditions are developed for doubly-
connected annular flow domains (and how they contrast with singly-connected
geometries), the exact relaxation or iteration schemes needed to solve the
nonlinear mesh generation equations in a fast and numerically stable manner, the
way in which velocity gradients are expressed in both physical and mapped
coordinates, and so on.  We also addressed the modeling of yield stress fluids
and explained how plug zone size, shape and location can be calculated
naturally using a new extended Herschel-Bulkley relationship. The foundation
and techniques developed in these two early chapters are now presumed to be
understood by the reader; and therefore, in the present chapter dealing with
transient, two-dimensional, single-phase flow modeling, we will only outline the
broad strategy and omit lower-level details associated with the mathematics and
computational analysis.
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Section 6-1.  Governing equations for transient flow.

The transient formulation handles, of course, axial reciprocation and
general pump schedules, e.g., ramp-up, ramp-down, changes in flow rate, and so
on.  But the added complexity inherent in our use of circular cylindrical
coordinates was basically driven by the need to model pipe or casing rotation, an
effect that cannot be modeled by steady flow formulations with absolute
numerical stability.  We emphasize that the model developed in this chapter, and
amply illustrated with calculations in Chapter 7, handles general axial
reciprocation, arbitrary pipe rotation, and pump schedules taken in any transient
form.  These unsteady actions may be constant, linearly varying in time,
sinusoidal, or any combination thereof.  While the menus in Figure 1-3e might
appear restrictive, we emphasize that very general simultaneous actions can be
modeled by modifying just several lines of Fortran source code.

As noted above, we formulate the problem first in circular cylindrical
coordinates, recognizing that these also apply (although not conveniently) to
arbitrary annular cross-sectional geometries.   The momentum equations in the
“r,” “” and “z” directions were discussed previously, and are, respectively,

(vr /t + vr vr /r + v/r vr /  – v
/r + vz vr /z) = (6-1-1)

= Fr – P/r + 1/r (r Srr)/r + 1/r Sr / – 1/r S + Srz/z

(v /t + vr v /r + v/r v /  + vrv/r + vz v /z) = (6-1-2)
= F – 1/r P/ + 1/r (r Sr)/r + 1/r S / + Sz/z

(vz /t + vr vz /r + v/r vz /  + vz vz /z) = (6-1-3)
= Fz – P/z + 1/r (r Szr)/r + 1/r Sz / + Szz /z

where F denotes body forces, while mass conservation takes the form

vr /r + vr/r + 1/r v/ + vz /z = 0  (6-1-4)

In the above, vr, v and vz are radial, azimuthal and axial velocity components,
respectively.  Again, we have

S = 2 N() D  (6-1-5)

denoting the deviatoric stress tensor, N() the apparent viscosity function,  the
shear rate, and now, the deformation tensor D whose elements are defined by

Drr = vr /r  (6-1-6a)

D = 1/r v/ + vr/r  (6-1-6b)

Dzz = vz /z  (6-1-6c)

Dr = Dr = ½ [r (v/r)/r + 1/r vr /]  (6-1-6d)

Dz = Dz = ½ (v /z + 1/r vz /)  (6-1-6e)

Drz = Dzr = ½ (vr /z + vz /r)  (6-1-6f)
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The solution process proceeds as follows and we describe the steps
qualitatively but sequentially.

 For most annular flow applications, formation influx and outflux are
permitted as described in Chapter 4, however, we will assume that local
effects are not large.  Thus, vr can be neglected in comparison to vz and v.
This simplification eliminates one partial differential equation.

 The work of Escudier et al. (2000) suggested that the azimuthal velocity
solution in problems with rotation was dominated by a “dragging”
mechanism due to pipe or casing shear.  This observation is acceptable
physically and provides the basis for a second simplification allowing us to
neglect the azimuthal pressure gradient P/ in the formulation.  What
remains is the usual P/z axial driver.

 The extended Herschel-Bulkley constitutive law introduced is now invoked
so that plug zones can be calculated naturally, with deep plug and interfacial
transition boundaries appearing as part of any numerical solution.  Thus, a
single computational domain applies and there is no need to consider
multiple flow domains.

 Next, the circular cylindrical coordinate based momentum equations are
rewritten in Cartesian coordinates and then re-expressed in terms of general
boundary-conforming curvilinear coordinates.  These coordinates and all
transformation metrics are created using the computational scheme outlined
in Chapter 3.  The mappings for steady and unsteady flows are identical.

 The resulting unsteady, nonlinear, partial differential equation system is
extremely complicated, containing variable coefficients, mixed derivatives,
first and second-order terms, and so on.  While high-order accurate
“approximate factorization” and “alternating-direction-implicit” (ADI)
schemes are available now in the literature for their solution,
implementation requires substantial research effort.  Thus, a faster explicit
time integration method, e.g., see Press et al. (1992), was used.  Consistent
with this usage is the neglect of partial derivatives of apparent viscosity,
although, of course, the basic N() function with its nonlinearity and
variability across the flow domain is retained to leading order.  This
treatment is also appropriate to the three-dimensional multiphase
calculations pursued in Chapters 8 and 9, where the use of concentration
functions to describe miscible mixing, an empirically based procedure,
introduces errors consistently of the same order of magnitude.

 Before the transient partial differential equations can be integrated in time,
initial conditions must be defined.  We offer two options.  First, we permit a
quiescent state in which the annular fluid is completely at rest.  And
secondly, we allow the borehole fluid to move at steady state under general
eccentric, non-Newtonian, non-rotating conditions.
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 Next the coupled nonlinear equations are integrated step-by-step in time,
and at the end of each time step, the apparent viscosity function is updated
with latest available velocity gradients.  Although we have dealt only with
the conventional models used in petroleum engineering, we emphasize that
“memory” fluids are easily handled by a simple Fortran subroutine change.

 Finally, when the time integration is completed, velocities are processed for
display using the color graphics tools discussed earlier.  In addition, shear
rates, apparent viscosities and viscous shear stresses are computed by post-
processing available velocity results and prepared for on-demand static
displays.  For the present transient calculations, axial velocity results are
also collected at different user-selected time intervals and assembled into a
movie available for playback after the calculations terminate.

Section 6-2.  Rotation paradox.

Developing a transient algorithm, at least for the present annular flow
research, involved much more than the “mechanical” steps outlined above.
Numerous observation inconsistencies had been reported in the literature.  Prior
to 1990, drillers observed that the effect of pipe rotation (under a constant
pressure gradient) is an increase in flow rate; equivalently, a fixed flow rate will
find a pressure gradient that is less steep. The explanation was simple: shear-
thinning of non-Newtonian fluids led to reduced viscosities that increased
throughput.  Mathematicians during this period reproduced these results
analytically and numerically.  Observation and theory were consistent.

In the 1990s and beyond, empirical observations were completely opposite:
for the same flow rate, rotation led to a steepening of axial pressure gradients.
Trends related to pressure, of course, warrant more than academic curiosity,
because of their application in ultra-deepwater drilling.  Because drillers must
navigate narrow pressure windows, errors related to pressures at the drillbit can
lead to dangerous situations that gravely affect safety.  Any transient solver
claiming to model rotation, in this practical scenario, must explain the apparent
inconsistency before its predictions can be credible.

The present research indicated that no contradictions or inconsistencies
exist.  Prior to 1990, all reported empirical observations and mathematical
models dealt with the concentric annuli encountered in vertical well drilling.
For this application, the only manner in which rheology appears in flow
formulations is through the apparent viscosity function in the viscous terms, that
is, the only physical effect is shear-thinning.  After 1990, most published works
dealt with deviated and horizontal wells, for which relevant borehole annulus
cross-sections are eccentric.  Thus, certain terms in the momentum equations
that dropped out by virtue of symmetry in concentric applications will remain.
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The work developed here shows that these new terms effectively modify the
applied pressure gradient in a manner that varies throughout the annulus.
Computations using the integrated procedure outlined above gave stable results
that were importantly consistent with both pre- and post-1990s field and
laboratory observations.  Again, the effects of eccentricity are subtle.  While
shear-thinning nonetheless exists, they typically lead to flow rate decreases (for
fixed pressure gradient) as rotation rate increases, e.g., see Figure 2-2-1 and the
accompanying explanations.

It is important to emphasize strong axial and azimuthal velocity coupling
and flow nonlinearity in general.  In our approach, both are permitted without
compromise.  Time integrations are used that minimize artificial viscosity and
lead to steady solutions that agree with known analytical solutions for concentric
annuli.  However, nonlinearity is often treated using adhoc “recipes.”  One paper
gives procedures for combining axial velocities across annular gaps (with no
rotation), tangential velocites (with no axial flow), and so on.  This represents
some type of linearization about baseline no-flow and no-rotation conditions.
Sometimes the method did not work and “modeling efforts improved
substantially when a nonlinear model for decay of shear rate across the annular
gap was used …”  These reports only emphasize the value in addressing full
nonlinearity at the outset so that empirical procedures can be avoided.

Section 6-3.  Operation consequences
for transient rotation algorithm.

Managed pressure drilling enhances the ability of the driller to control
pressures within the borehole with greater precision.  The literature describes
three different methods for active pressure control.  First, mud pump flow rates
can be changed in order to affect dynamic friction.  This is easily accomplished
although, of course, care must be exercised; flow transients induced by sudden
pumping changes by positive displacement pumps can be dangerous.  Second,
mud rheologies and weights can be altered.  This process, however, is time
consuming and will not allow rig hands to rapidly respond to dangerous
situations.  And third, changing the overall system pressure level by adjusting
the surface choke is a possibility that is simple to carry out and is effective.

A newer, fourth method is proposed in the present work.  Our research has
shown that drillstring rotation (or lack of) can affect borehole pressures
significantly, and theoretical and numerical results are consistent with field and
laboratory observation.  Thus, drillstring rotation provides an important and
rapid means for downhole pressure control.  Moreover, the effects can be
quantified by computer simulations such as those illustrated in Chapter 7.
Because the calculations can be performed quickly using inexpensive computer
resources, their role in job planning is enhanced: prior to drilling, a range of
“what if” options and responses can be prepared for different contingencies.
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Another important applications area is hole cleaning.  While we have
successfully demonstrated the application of our “stress hypothesis” to hole
cleaning using University of Tulsa data in Chapter 5, much remains in the way
of understanding the role of rotation in removing debris.  It is well known that
hole cleaning problems are heightened in large-diameter wells and that rotation
effects can be subtle.  The mathematical reasons are simple.  For the larger
diameters, axial velocities are lower.  In other words, both axial and azimuthal
velocities are comparable in magnitude, so that their nonlinear coupling is not
small.  Thus, the outcome of any drilling program or simulation, for that matter,
is not obvious.  Computer models provide tools that help to verify and refute
possible explanations for hole cleaning.  Does rotation affect the stress field
significantly and thus change bed erosion characteristics?  Or is the primary
effect an “upward throwing” of debris where cuttings chips are consequently
transported by turbulent convection in the wide side of the annulus?  These and
other questions can be answered by using computed results as correlative tools,
in much the same way that we have used them in more elementary applications
in Chapter 5.  We pursue detailed calculations designed to validate the method
against available solutions, and also, to demonstrate potential applications of the
new transient model.  Some comments on pressure gradients are offered next.

Section 6-4.  Transient pressure gradient and volume flow rate.

One of the most important relationships in non-Newtonian flow is that
between pressure gradient and volume flow rate.  For steady flows, the “Steady
2D” simulator provides an option that automatically calculates and plots the
nonlinear curve once annular geometry and borehole fluid are specified.  For
unsteady flows, an analogous relationship is desirable for modeling purposes but
typically is not available.  Integration of the axial momentum equation in time
requires an explicit P/z input value, e.g., see Equation 6-1-3.  But very often,
it is the volume flow rate Q that is specified in a practical problem and its
expression in terms of P/z is not generally possible.

However, the P/z value needed to produce a given Q(t) can be explicitly
written down for certain problems when properties for a baseline steady flow are
known, say, via calculation using “Steady 2D.”  Again we turn to fundamentals.
The axial velocity u satisfies

 u/t + { … } =  – p/z + < … > (6-4-1)

where { … } represents smaller nonlinear convection terms and rotation effects
that we will ignore or are non-existent, while < … > denotes viscous terms that
we keep in their entirety. We multiply Equation 6-4-1 by the infinitesimal area
element Jthroughout where J is the transformation Jacobian.  This leads to
the equation
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(u J ) /t =  – p/z  J + < … > J  (6-4-2)

Note that the cross-sectional annular area A and the volume flow rate Q(t)
through it satisfy

A =  J   (6-4-3)

Q(t) =  u J   (6-4-4)

Thus, we have

 Q/t =  – A p/z +  < … > J  (6-4-5)

Suppose we have a steady flow with /t = 0 and Q* specified. The
pressure gradient for this problem can be computed from the “Steady 2D” solver
in the “flow rate specified” mode and denoted as (p/z)*.  Therefore, we have
the equality < … > J = A (p/z)* for Q*.  Using this to approximate the
integral above, we find that  Q/t =  – A p/z + A (p/z)* or

p/z = (p/z)* – (/A) Q/t (6-4-6)

Equation 6-4-6 can be used to evaluate the pressure gradient input in the
“Transient 2D” solver if a baseline steady-state flow with (p/z)* and Q* is
available.  If mudpump flow rate increases so that Q/t > 0, then the axial
pressure gradient p/z will become more negative, as expected, by the amount
shown.  If flow rate is slowing so that Q/t < 0, then the pressure gradient will
be less negative.  In either case, time variations in pressure gradient are
proportional to mud weight, as would be anticipated on physical grounds.  We
emphasize that Equation 6-4-6 provides an estimate for pressure gradient only.   
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7
Transient Applications:

Drillpipe or Casing Reciprocation and Rotation

We will demonstrate how non-Newtonian flows in highly eccentric annuli
can be computed under general transient conditions with the drillstring or casing
undergoing arbitrary coupled reciprocation and rotation together with flow
changes in the mud pump.  Here the annulus can be highly eccentric, with the
drillpipe almost resting on the formation, thus risking economic losses due to
stuck pipe. Aside from its role in calculating pressure losses and velocity fields,
our simulator capability is important in jarring applications, with the effects of
flow rate ramp-up and ramp-down accounted for.

An important use of the algorithm described here does not include
unsteady flow as an end effect at all.  In Chapter 4, we noted that the steady flow
formulation with non-zero rotation cannot presently be solved on an
unconditionally stable numerical basis; in fact, the method destabilizes as
specific gravity and rpm values approach those used in field practice.  An
application developed in Chapter 5 applies the transient method to steady-state
swab-surge where pipe rotation was significant.  Because rotation significantly
affects pressure fields, the algorithm described here is extremely important, and
all-the-more so because it is the only available method serving this function.

In the examples that follow, we first design examples to validate the
integration method, in particular, by seeking agreement with known analytical
solutions.  The effects of rotation are studied for Newtonian flows (which,
because of constant viscosities, never exhibit shear-thinning) as well as non-
Newtonian fluids.  Foams as well as heavy muds are considered.  Then, the
separate effects of transient pipe reciprocation, unsteady pipe rotation and
general mud pump flow variation are considered, and finally, all three
simulation modes are permitted.  Importantly, the analytical and numerical
formulations are constructed in such a manner that the least and most
complicated applications require almost identical computing times.  More
general transient capabilities can be developed by simply modifying
modularized Fortran subroutines.
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Example 7-1.  Validation runs, three different approaches to
steady, Power law, non-rotating, concentric annular flow.

Before studying transient effects in detail, we explore the accuracy of three
different methods we have developed in the limit of steady, non-rotating,
concentric, non-Newtonian Power law flow.  Specifically, we consider an inner
radius of 2 in, an outer radius of 4 in, n = 0.8, K = 0.00001375 lbf secn/sq in. and
a pressure gradient of – 0.02388 psi/ft.  In the first case, we run the finite-
difference-based simulator based on curvilinear meshes in QuikSim fine-mesh
mode to find a flow rate of 1,494 gpm, as shown in Figure 7-1a (This simulator
does allow for pipe or casing axial movement and yield stress modeling.).

Figure 7-1a.  Finite-difference curvilinear grid simulator result.

Next, we consider the simulator used for rotating, Power law flow, noting
that it does not allow axial pipe movement.  Recall that approximations were
employed to facilitate closed form analytical solutions; the nature of the math
used does not allow “0 rpm” to be entered directly, so a value of “1” is used
instead (this simulator also will not model Newtonian flows with n = 1).  The
software produces a solution of 1,491 gpm, as shown in Figure 7-1b.  Finally,
we use the exact Herschel-Bulkley solver, which assumes a completely
immobile inner pipe, running it in the limit of vanishing yield stress; this gives a
solution of 1,523 gpm, as shown in Figure 7-1c.  The difference between the
largest and smallest predictions is about 2 percent, which is reassuring given that
the three models are derived from completely different assumptions and
methods.
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Figure 7-1b.  Rotating, Power law approximate flow result.

Figure 7-1c.  Herschel-Bulkley simulator, exact results.
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Example 7-2.  Validation run for transient, Newtonian,
non-rotating, concentric annular flow.

The excellent agreement obtained in Example 7-1 between three
completely different steady flow models should provide a strong degree of user
confidence.  In the present validation example, we consider Newtonian, non-
rotating, concentric annular flow, for which an exact, closed form, steady
solution of the Navier-Stokes equation is available using the simulator in Figure
7-2a.  Here, inner and outer radii are 3 and 6 inches, respectively, and a viscosity
of 1 cp and a pressure gradient of  - 0.0001 psi/ft. are assumed.  This simulator
also allows axial pipe movement, but we disallow it in the validation below.
Figure 7-2a shows that the flow rate is 947.1 gpm.

Figure 7-2a.  Exact, steady, Newtonian flow solution.

Now we use the finite-difference-based, curvilinear grid, transient
simulator in Figure 7-2b to show how the large-time solution of a transient
problem is consistent with the steady-state solution obtained above from an
analytical method.  We have assumed a very small specific gravity of 0.01.  As
will be seen, this allows finite difference numerical solutions to achieve steady
state rapidly, since in the non-rotating case, the dependence on density vanishes
– small densities, in fact, imply small mechanical inertias for fast equilibration.
The asymptotic flow rate is 928.4 gpm, for a small 2 percent error.  Importantly,
the unsteady model shows that the physical time scale required to achieve this
steady condition, starting from a quiescent state, is about 30 sec. (the
computation requires about fifteen seconds).  The reader should note the inputs
used.  Also, the “engineering variables” hidden by the graph are identically zero.

In Figure 7-2c, we re-run the foregoing simulation with all inputs
unchanged except that the specific gravity is increased to 2.0, corresponding to a
heavy 16.7 lbm/gal mud, and the time step is increased to 0.005 sec.  The same
asymptotic flow rate of 928.4 gpm is achieved and the time scale to attain
steady-state from quiescent conditions is about one hour (the simulation itself,
for 1,200,000 time steps, requires about four minutes of computing).  The
transient simulator illustrates the role of inertia in establishing steady conditions.
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Figure 7-2b.  Low specific gravity transient solution.

Figure 7-2c.  High specific gravity transient solution.

We have demonstrated that our transient finite difference results are
consistent with the exact analytical steady solution (We used our curvilinear grid
approach and considered both low and high specific gravity runs.).  Importantly,
if transient analysis is used to find steady flows, at least in non-rotating
problems, then low specific gravity fluids should be assumed because low
mechanical inertias lead to very rapid physical equilibration.
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Example 7-3.  Validation run for transient, Newtonian,
non-rotating, eccentric annular flow.

In this consistency check, we examine eccentric annular flows, for which
no analytical or exact solutions are available.  We assume a Newtonian fluid
with a viscosity of 10 cp, and also, that the pipe is not rotating or moving
axially.  The transient solution in Figure 7-3a requires about five seconds of
computing time, and yields an asymptotic steady-state flow rate of 107.2 gpm.

Figure 7-3a.  Transient, Newtonian, non-rotating flow solution.

The complementary steady flow computation in Figure 7-3b, using the
same 25  11 mesh, yields an identical 107.2 gpm, much better than this author
had anticipated.  This is all the more remarkable because the steady solver uses
an iterative, implicit, successive line over-relaxation (SLOR) method whereas
the transient method uses an explicit time integration procedure.  Note that the
QuikSim fine mesh solution yields 109.2 gpm, for less than a 2 percent
difference.  That the two final results for unsteady and steady flow are consistent
bodes well for our transient and steady solvers.  Again, we emphasize that the
steady flow solver handles constant axial pipe speed motion without rotation,
while the unsteady solver handles coupled axial and rotary movement, both
under general transient conditions.
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Figure 7-3b.  Steady flow computation on identical mesh.

Example 7-4.  Effect of steady rotation for laminar Power law
flows in concentric annuli.

In this example, we use our closed form analytical solution developed for
steady, rotating, Power law fluids in concentric annuli to explore pressure
gradient and flow rate relationships in a non-Newtonian application.  The user
interface is shown in Figure 7-4a where the third option is selected.  Using
automatically defined internal parameters, this simulation plots flow rate (gpm)
on the vertical axis and pressure gradient (dp/dz) and rotational rate (rpm) on the
two horizontal axes, as shown in Figure 7-4b.  It is clear from this figure that as
the (absolute value of) pressure gradient increases for fixed rpm, flow rate
increases, as would be expected.  Interestingly, as the rotational rate increases at
fixed dp/dz, the flow rate also increases.  This is explained by the reduction in
apparent viscosity induced by rotation due to shear-thinning.

This result also appears in several related and well known investigations
external to the petroleum industry.  It is, importantly, consistent with the results
of classical studies reported in the well-regarded book Dynamics of Polymeric
Liquids by Bird, Armstrong and Hassager (1987).  Their Example 4.2-5
conclusion “shows that the flow in the axial direction is enhanced because of the
imposed shearing in the tangential direction, since this additional shearing
causes the viscosity to be lowered.”  The numerical analysis by the respected
authors Savins and Wallick (1966) also supports our findings.  From their
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Abstract, “the most interesting consequence of the coupling effect is that the
axial flow resistance is lowered in a helical flow with the result, for example,
that for a given applied axial pressure gradient, the axial discharge rate in a
helical flow field is higher than in a purely annular flow field.”  In the analysis,
the authors observe that “it is seen that the effect of a helical flow produced by
impressing a relative rotation on the z directed annular flow is to increase the
axial discharge rate.  This result is not unexpected.  The preceding viscosity
profile analyses showed that the shear-dependent viscosity is lowered, hence the
axial flow resistance is lowered.”  Finally, from their Summary, “in contrast, if
the fluid were Newtonian the superimposed laminar flows would be
noninterfering in that there would be no coupling among the discharge rate,
axial pressure gradient, relative rotation, and torque through the viscosity
coefficient.”  Recall that we have proven this latter observation directly from the
governing Navier-Stokes equations.  Several subsequent theoretical and
experimental petroleum publications also support the foregoing results.

It is important to emphasize that, in all of the above works and in the
present Example 7-4, laminar, concentric annular flows are considered.  For
concentric flows, the nonlinear inertia (or convective) terms in the governing
momentum equations vanish identically and velocity coupling is possible only
through changes to apparent viscosity or shear-thinning.  Early publications
focused, fortuitously, on this limit – from the mathematical perspective, for
simplicity, and from the drilling perspective, by the vertical well applications
prior to 1990.  In the past two decades, with deviated and horizontal wells
becoming predominant in exploration, conflicting relationships between
pressure gradient and flow rate have been reported.  These conflicts arise
because of annular eccentricity.  In general non-Newtonian flows, shear-
thinning is always present; however, when eccentricity exists, the applied
pressure gradient is effectively modified by a spatially-dependent convective
term that is proportional to fluid density and rotational rate.  The complicated
interplay between flow rate, applied pressure gradient, fluid rheology, rotational
rate and annular geometry cannot be described by casual “rules of thumb;”
however, it can be obtained as the solution of coupled nonlinear partial
differential equations as described in this book and particularly in this chapter.

Let us return for now to concentric annular flow analysis.  Figure 7-4c
provides a different view of the results from that provided by Figure 7-4b.  It is
obtained by selecting the last option in Figure 7-4a.  Note that each figure uses
hundreds of solution points, and both are produced, because analytical solutions
are used, in less than one second of computing time.  Again, the increase in flow
rate (for a fixed pressure gradient) obtained when rotational rate increases is
well accepted in the older literature, but confusion and inconsistencies have
arisen in recent studies, a point we address in several examples next.
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Figure 7-4a.  Steady, rotating, Power law simulator.

Figure 7-4b.  GPM versus RPM and dp/dz.

Figure 7-4c.  dp/dz versus RPM and GPM.
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Example 7-5.  Effect of steady-state rotation for
Newtonian fluid flow in eccentric annuli.

Here we consider the effects of annular eccentricity.  To isolate rheological
effects, we assume a Newtonian fluid with constant viscosity so shear-thinning
is impossible. The eccentricity is 0.333. As a validation point, we first obtain the
flow rate under non-rotating conditions using the steady-state, curvilinear grid
flow solver in Figure 7-5a.  For the assumptions shown, the flow rate is 109.2
gpm (the parameters corresponding to the “engineering variables” not shown are
identically zero).  Next, we run the transient simulator for the same non-rotating
flow conditions, as shown in Figure 7-5b, to obtain a nearly identical flow rate
of 107.2 (the difference is less than 2 percent).  The agreement is excellent.

Now, we importantly ask, “What if the drillpipe or casing were rotated?
Does the flow rate increase or decrease, assuming the same pressure gradient?”
In Figure 7-5c, we assume a somewhat high 400 rpm to demonstrate numerical
stability, but also the fact that the asymptotic steady flow rate decreases to 99.4
gpm, a flow rate reduction of about 8 percent.  Thus, in the complementary
problem where flow rate is specified and pressure gradient is to be determined,
we can expect to see similar order-of-magnitude increases to pressure drop.
These changes are significant to drilling safety in managed pressure drilling.

The exact decrease or increase depends on rheological and geometric
parameters, and will vary from run to run.  Differences as high as 50 percent
have been observed.  But why did flow rate increase in Example 7-4 but
decrease here?  The explanation is simple.  In the previous example, the gpm
increase was due to a decrease in non-Newtonian apparent viscosity arising from
rotation; also, for concentric annuli, the inertia terms in the axial momentum
equations vanish identically.  In this example, the viscosity is constant and does
not change.  A non-vanishing “v/r U/” inertia term is new.  The azimuthal
velocity v is proportional to rpm, while U/” is related to eccentricity.  The
term acts as a spatially variable pressure gradient modifier.  These reasons are
subtle but clear when we examine the governing partial differential equations.
We chose Newtonian fluids in this example to isolate rheological effects in order
to ascertain the importance of the rotating flow inertia terms alone.

In the Control Panel of Figure 7-5b, we checked “Initialize flow to
quiescent state.”  This assumes vanishing initial flow.  We now check “steady
conditions” for our starting point.  The simulator first calculates a steady non-
rotating flow, and then at t = 0, uses this flow to initialize time integrations.
This corresponds to a non-rotating pipe with flow that is suddenly rotated.
Figure 7-5d shows how the flow rate decreases suddenly from 107.2 gpm to
99.4 gpm, highlighting the effects of rotation (computing time is about one
second).  Even for this high rotational rate, the transient algorithm for coupled
axial and azimuthal movement is fast and stable.  Our results demonstrate the
usefulness of numerical simulation in drilling safety and operations.
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Figure 7-5a.  Steady-state solution without rotation.

Figure 7-5b.  Transient Newtonian solution without rotation.
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Figure 7-5c.  Transient rotating solution from quiescent state
(the curve actually peaks at 100 and then asymptotes to 99.4 gpm).

Figure 7-5d.  Transient rotating solution from flowing state.
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Example 7-6.  Effect of steady rotation for Power law
flows in highly eccentric annuli at low densities (foams).

The annulus in Figure 7-5a, while not concentric, is not highly eccentric.
In this example, we examine a cross-section with high eccentricity and also
allow for nonlinear Power law fluid motion.  Here, the eccentricity is 0.5.
Results for a non-rotating pipe are given in Figure 7-6a, where a steady flow rate
of 1,052 gpm is indicated.  The time required to achieve steady-state is
approximately one second.  What happens if we rotate the drillpipe at 300 rpm?
Figure 7-6b shows that with rotation, the time to reach steady conditions is
reduced; also, the flow rate decreases to 905.8 gpm.  This suggests that in the
complementary problem when volumetric flow rate is fixed, the effect of
rotation is to increase (the absolute value of) pressure gradient.  Consistent with
the previous example, the decrease in flow rate occurs because of inertia effects.
We emphasize that the flow rate reduction due to rotation seen here is a sizeable
16 percent.  Finally, in Figure 7-6c, we re-run the simulation with the initial
fluid assumed to be non-rotating and flowing.  The results show an equilibration
time of one second between steady states so that flow changes are sudden and
dangerous.  The steady-state flow rate is again about 900 gpm.  There is a
“bump” in the gpm versus time curve, one seen repeatedly in many such
simulations.  Whether or not this effect is real will require laboratory
observation.  All of the calculations for this example were performed stably, as
our line graphs show, and required only 2 to 3 seconds of computing time.

Figure 7-6a.  Power law flow with non-rotating pipe.
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Figure 7-6b.  Power law flow with rotating pipe (zero starting conditions).

Figure 7-6c.  Power law flow with rotating pipe (from flowing conditions).
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It is important to point out some important software details associated with
flow initialization.  For steady flow formulations, the initial state of the flow
does not appear as a parameter because there is no variation in time (Actually, it
does in a numerically sense, since initial solution guesses are taken, although
internally to the software.).  For transient formulations, the initial state must be
specified.  If quiescent stagnant-flow conditions are selected, the box shown in
Figure 7-6d is checked and “Simulate” can be clicked immediately.

Figure 7-6d. Assuming quiescent, stagnant-flow initial conditions.

On the other hand, the fluid may be moving initially at t = 0, and then, the
transient flow specifications shown in the user interface is applied. If the initial
flow is not rotating, we know that its solution does not depend on density; we
can therefore calculate it assuming a very small value of  together with large
time steps.  If we wish to initialize to a non-rotating steady flow, the message
box in Figure 7-6e appears, reminding the user to click “Create Flow” to start
this process.  Once this is completed, the “Simulate” button can be clicked to
perform the required transient analysis.

Figure 7-6e.  Creating a non-rotating, steady initial flow.

If the starting flow is rotating, its solution does depend on density and time
steps will need to be very small to ensure convergence.  This initialization is not
supported at the present time because the solution procedure cannot be made as
robust or automatic as desired by the author, but continuing research is being
pursued in this area.
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Example 7-7.  Effect of steady rotation for Power law
flows in highly eccentric annuli at high densities (heavy muds).

We emphasized earlier that for non-rotating flows, the effects of density
vanish at large times.  Thus, in computing non-rotating steady-state flows with
the transient algorithm, it is advantageous to use as small a fluid density as
possible in order to quickly converge the calculations.  Here we wish to evaluate
the effects of mud weight under rotating conditions.  For the non-Newtonian
eccentric flow in Figure 7-7a, a very low specific gravity of 0.01 leads to a flow
rate of  898.5 gpm.  Next we wish to consider the opposite extreme, e.g., a heavy
mud or cement with a specific gravity of two.  Because the unstable convective
term never vanishes when the pipe rotates (Its magnitude is proportional to fluid
density and pipe rpm.), we decrease the time step to 0.0001 sec. and increase the
number of time steps simulated.  The resulting flow rate is a much lower 135.1
gpm.  Computation times for the two runs are five seconds and two minutes,
approximately.  Finally, we reduce the specific gravity to 1.0, i.e., an
unweighted mud.  Will the flow rate vary linearly with density, that is, fall
midway between 135.1 and 898.5 gpm?  Figure 7-7c shows that the flow rate is,
in fact, 160.1 gpm.  This unpredictability shows why computer models are
important to real-world field job planning.

Figure 7-7a.  Very low density fluid (e.g., foam) at high rpm.
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Figure 7-7b.  Very high density fluid (e.g., heavy mud or cement) at high rpm.

Figure 7-7c.  Unweighted fluid (e.g., water or brine) at high rpm.
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Example 7-8.  Effect of mud pump ramp-up and ramp-down
flow rate under non-rotating and rotating conditions.

 In Figure 7-8a, we consider a Power law fluid in an eccentric annulus
under a constant imposed pressure gradient of – 0.005 psi/ft. with the drillpipe
completely stationary.  This is seen to produce a steady-state flow rate of
1,051.8 gpm as shown.  In practice, the mud pump starts and stops, and transient
effects are associated with ramp-up and ramp-down.  We ask, “How are pressure
gradient and flow rate transient properties related?”

Figure 7-8a.  Constant pressure gradient calculation.

To answer this question, we modify several menu entries of Figure 7-8a so
that the pressure gradient is no longer constant.  The assumption shown in
Figure 7-8b allows a sinusoidal ramp-up from quiet conditions to our previous
value of – 0.005 psi/ft, followed by a full ramp-down. This is accompanied by
time mesh refinement plus the use of additional time steps.  Clicking on the “?”
to the far right of the pressure gradient menu produces the left-side diagram of
Figure 7-8c showing pressure assumptions.  The right-side diagram gives the
computed volumetric flow rate as a function of time.
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Figure 7-8b.  Mud pump ramp-up and ramp-down.

Figure 7-8c.  Assumed pressure gradient and calculated flow rate.
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Next, we determine the effect of drillstring rotation.   We simply change
the zero rotation input in Figure 7-8b to allow for a 100 rpm rotational rate as
shown in Figure 7-8d.  For the same pressure gradient variation as above, the
flow rate is now substantially reduced as shown in Figure 7-8e.

Figure 7-8d.  Increasing rotational rate to 100 rpm.

Figure 7-8e.  Significantly reduced volumetric flow rate with rotation.
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Example 7-9.  Effect of rotational and azimuthal start-up.

In this example, we study the effects of drillstring rotational start-up on the
baseline non-rotating problem defined in Figure 7-9a for a Power law fluid in an
eccentric annulus.  Figure 7-9b shows that after 100 sec, the (almost) steady
flow rate is 1,024.0 gpm.

Figure 7-9a.  Non-rotating flow.

Figure 7-9b.  Non-rotating flow.
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What happens when the drillstring is rotating at a fixed constant 100 rpm
for the duration of the start-up process?  This new flow is easily obtained by
changing the constant rpm input in Figure 7-9a to that in Figure 7-9c, to produce
the flow rate history shown in Figure 7-9d.  After 100 sec, the flow has fully
equilibrated at the reduced rate 221.1 gpm.  There is a flow rate “overshoot”
near 350 gpm early on that we have observed on all rotational flow calculations.

Figure 7-9c.  Constant 100 rpm throughout.

Figure 7-9d.  Constant 100 rpm throughout.
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We next determine the effects of rotational start-up.  In Figure 7-9e, we
now choose the “Bt” input option for RPM definition, typing “1” into that box
for the time step information assumed.  In Figure 7-9f, we show at the left how
the same 100 rpm is achieved as before, but at the end of the 100 sec. period.
The right-side diagram shows a flow rate returning to the 200 gpm range;
however, the flow rate overshoot is now near 600 gpm.

Figure 7-9e.  Linearly increasing rpm with time.

Figure 7-9f.  Linearly increasing rpm with time.
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Example 7-10.  Effect of axial drillstring movement.

In this non-rotating drillstring example, we study the effects of axial
movement on the baseline problem defined previously in Figure 7-9a for a
Power law fluid in an eccentric annulus.  Again, Figure 7-9b shows that after
100 sec, the (almost) steady flow rate is 1,024.0 gpm assuming stationary pipe.
If a constant +20 in./sec. is modeled instead, we have an increased 1,132.6 gpm,
whereas if –20 in./sec. is taken, we find a reduced 912.6 gpm.  Computer
screens for these simple constant-speed dragging calculations are not shown.

In field applications, the drillstring is often reciprocated axially to facilitate
jarring operations or cuttings removal while the mud pump acts under an almost
constant pressure gradient condition.  One might ask what the effects on flow
rate, apparent viscosity, shear rate and viscous stress are, with the answers sure
to assist the engineer in interpreting the physical consequences of his actions.
For example, increases in bottomhole stress may improve hole cleaning while
reductions in apparent viscosity may lubricate the drillstring.  In Figure 7-10a,
we alter the “Upipe” input to allow sinusoidal drillstring reciprocation with a
peak-to-peak amplitude of 20 in./sec. and a frequency of 0.1 Hz.  Clicking on
the “?” at the far right will produce the pipe displacement speed history at the
left of Figure 7-10b.  At the right is the stably computed oscillatory flow rate.

Figure 7-10a.  Sinusoidal drillstring reciprocation.
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Figure 7-10b.  Pipe displacement history and computed flow rate.

The “Results” menu in Figure 7-10c provides additional post-processed
results useful for correlation purposes.  For instance, “Color plots” provides
displays of the physical quantities appearing in the list, several of which are
shown in Figure 7-10d.  Notice in Figure 7-10a that we had elected to save
“movie frames” showing the axial velocity distribution evolving in time (The
“interactive plot” option would produce line graph results during simulation.).
Playing the “Axial velocity – Movie” option produces a movie, which can be
viewed continuously or frame-by-frame.  Typical movie frames (with time
increasing to the right) are shown in Figure 7-10e.  All of the post-processing
options described here are also available for rotating flow problems.

Figure 7-10c.  Example color output.
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Figure 7-10d.  Example color output for several physical quantities.

Figure 7-10e.  Frames from axial velocity movie (time increasing).
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Example 7-11.  Combined rotation and sinusoidal reciprocation.

In this example, again for transient, nonlinear, non-Newtonian Power law
flow in an eccentric annulus, we combine two previous calculations and
demonstrate the ease with which combined sinusoidal axially reciprocating pipe
motion and drillstring rotation can be modeled, literally by filling in input boxes
and clicking.  The assumptions are given in Figure 7-11a, assumed pipe
displacement histories are displayed in Figure 7-11b, and the computed
volumetric flow rate is provided in Figure 7-11c.  Note from this curve the
pronounced overshoots and flow rate fluctuations.  We have modeled the mud
pump as a constant pressure gradient source in our work that leads to variable
flow rate.  In reality, the pump may act more as a constant rate source that leads
to time-dependent pressure gradients.  This latter model is much more
complicated mathematically and cannot be solved within a reasonable time.
However, the percent fluctuations seen from flow rate curves such as that in
Figure 7-11c represent those for pressure gradient and can be used meaningfully
for managed pressure job planning.

Figure 7-11a.  Combined transient reciprocation and rotation.



Transient Applications: Reciprocation and Rotation     311

Figure 7-11b.  Pipe displacement history display.

Figure 7-11c.  Computed volumetric flow rate.
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Example 7-12.  Combined rotation and sinusoidal reciprocation
in presence of mud pump flow rate ramp-up for yield stress fluid.

This comprehensive example illustrates the high level of simulation
complexity offered by our math model.   Here we again consider an eccentric
annulus, however, now containing a Herschel-Bulkley yield stress fluid.  The
drillpipe is allowed to axially reciprocate sinusoidally in time, while rotational
rate increases linearly with time.  The mud pump pressure gradient is allowed to
steepen with time from start-up to describe increased pumping action.  All of
these effects are coupled nonlinearly. They can be computed quickly and stably,
and if numerical instabilities are encountered, they can be remedied by
decreasing time step size.  To accommodate this possibility, the algorithm is
efficiently coded to make optimal use of memory resources and will allow up to
10,000,000 time steps, for which calculations may require fifteen minutes or
more.  The assumptions are shown in Figure 7-12a, while detailed pipe
displacement histories, applied pressure gradients and computed volumetric
flow rate are given in Figure 7-12b.

Figure 7-12a.  Basic assumptions, comprehensive example.
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Figure 7-12b.  Additional assumptions and computed flow rate with time.

In this chapter, we have demonstrated how the most general transient
single-phase, constant density, non-Newtonian Hershel-Bulkley fluid with yield
stress can be studied as it flows through an eccentric annulus in the presence of
coupled and arbitrary drillpipe axial reciprocation, unsteady rotation and time-
varying axial pressure gradient.  The algorithm and its strengths and limitations
have been explained previously.  Because the physical problem is nonlinear,
general conclusions are not available and each problem must be treated on a
case-by-case basis.  To support this endeavor, all efforts have been made to
render the method simple to use, with all text output, report generation and color
graphics completely automated.  There is no requirement on the part of the user
for any special skills in fluid dynamics, advanced mathematics or computer
modeling.  The model is new, and certainly, as more becomes known about its
properties and the consequences of general borehole flows, we will update our
exposition accordingly.
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8
Cement and Mud Multiphase

Transient Displacements

In Chapters 1-7 we dealt with steady and transient single-phase non-
Newtonian flows in two dimensions, allowing arbitrary borehole eccentricity,
significant yield stress (with plug zone size and shape computed as part of the
solution), plus combined drillpipe or casing reciprocation and rotation in the
most general limit.  Such “single-phase” flows may in fact be two-phase, e.g.,
typical fluid-solid mixtures in which barite is the weighting agent or liquid-gas
foams used in underbalanced drilling.  However, they are single-phase in that a
set of Herschel-Bulkley parameters “n, K, and 0” can characterize the mixture
as if it were a unique homogeneous fluid.  In this and Chapter 9, we consider
two-phase flows, by which we imply displacements of one such single-phase
flow by another in a general borehole annulus.  Such problems are necessarily
transient and three-dimensional and consequently involve more computation.

These are not academic exercises but real flows arising in different
important applications.  In drilling, multiple non-Newtonian fluids are pumped
down the drillpipe according to a prescribed rate schedule, e.g., fluid A for tA

minutes at flow rate GPMA, fluid B for tB minutes at GPMB and so on.  This
transient fluid column flows downward, then through the drillbit, and finally up
the eccentric borehole annulus.  For managed pressure drilling, the simulation
objective is the pressure profile along the borehole, and particularly at the bit, as
a function time.  Drillers wish to control pressures at the drillbit, say, targeting
constant values for safety considerations.  This can be accomplished by various
means, e.g., changing pump rates to affect dynamic friction, altering mud type
and weight, directly controlling surface choke pressures or, as we have
demonstrated, varying drillstring rotational rates.  Simulation methods assist
engineers in these objectives by “assigning numbers” to these steps to quantify
their effectiveness.  In cementing, the same overall pump scenario applies.
However, flow details at the diffusing interfaces of different fluids are of
interest, e.g., the extent to which they mix at different positions in the annular
cross-section, the time needed to establish target concentration levels, the role of
rheology and diffusion in achieving displacement objectives, and so on.
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While the objectives are simple, the formulations and calculations are not.
They must be rigorous scientifically and stable numerically.  Many strategies are
available depending on the research objectives.  For instance, equations for
“microscopic” particle interactions between fluid components with adjustable
parameters are often postulated together with closure hypotheses to model
kinematic and dynamic processes.  Such models can require numerically
intensive computation.  A simpler and well known “macroscopic” method
offered by physicists is described in Landau and Lifschitz (1959) and is easily
explained.  We motivate the method in the next section and extend it for
increasing levels of flow and geometric sophistication in the sections following.

Discussion 8-1.  Unsteady three-dimensional Newtonian
flows with miscible mixing in long eccentric annular ducts.

The simplest differential equation for transient, single-phase, axial flow is
given by the two-dimensional model  u/t = - p/z +  (2u/x2 + 2u/y2

 )
where rotation is neglected.  In dealing with flows where miscible mixing is
permitted with general initial species variations, purely two-dimensional flow is
not possible since concentrations must vary in the direction of fluid convection.
Thus, an additional “2u/z2” term at the right-side is expected.  We now
interpret u(x,y,z,t) as the axial speed for an evolving heterogeneous mixture
characterized by a mass density function (C) and a Newtonian viscosity
function (C), where the local fluid concentration C(x,y,z,t) must satisfy an
isotropic convection-diffusion equation.  The functions (C) and (C) for the
two-fluid system are determined from simpler experiments, say, steady-state
concentric rheometer measurements.  Once obtained, our boundary value
problem formulations predict their effects in real physical problems with
complicated geometries acting under general boundary and initial conditions.
The general axial velocity equation now takes the form

(C) (u/t + u u/z) =
= - p/z + (C) (2u/x2 + 2u/y2 + 2u/z2)  (8-1)

The above partial differential equation arises from an intuitive adhoc
argument.  Note that the viscous terms in Equation 8-1 would actually derive
from the divergence form “Szx/x + Szy/y + Szz/z,” so that the product
terms “u/x /x+ u/y /y + u/z /z,” that is, d(C)/dC {(u/x)2 +
(u/y)2 + (u/z)2}, have been omitted in comparison to the retained ones
shown.   These nonlinear terms represent higher-order effects comparable to
those neglected by our use, owing to the complexity of the resulting equation
system, of simpler explicit time integration methods.  The important second-
derivative terms, retained here, are required to impose no-slip boundary
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conditions on solid boundary surfaces.  Equation 8-1 for the axial velocity
u(x,y,z,t) is nonlinearly coupled to the convection-diffusion equation

C/t + u C/z =  (2C/x2 + 2C/y2 + 2C/z2)  (8-2)

where (C) > 0 is an isotropic diffusion coefficient, possibly dependent on C,
determined experimentally.

Equation 8-1 is solved together with (a) u/z = 0 far upstream and
downstream, (b) no-slip velocity conditions at solid surfaces (e.g., u = uspeed (t)
on the pipe surface if the pipe moves with speed uspeed (t)), and (c) u(x,y,z,0) = 0
for the assumed initial quiescent state.  Note that the additional convective term
“u u/z” (from the more complete acceleration “u/t + u u/z”) has been
retained although it is usually negligible for ducts that are uniform in the axial
direction.

Equation 8-2 is solved with boundary conditions C(x,y,zleft,t) = Cleft and
C(x,y,zright,t) = Cright (t), plus the initial condition C(x,y,z,0) =  Cleft for z < zinterface

and C(x,y,z,0) = Cright for z > zinterface where z = zinterface is the initial position of
the flat interface separating the two fluids.  Also, the normal partial derivative of
C to a solid wall vanishes because there is no diffusion into a solid.  Other
boundary and initial conditions are, of course, possible.  For the concentration
equation, the u C/z term must be retained in comparison with all the other
since it is this term that provides the required convection.  The foregoing
formulation applies to borehole flows with arbitrary annular cross-sections.
However, the use of rectangular coordinates which do not fit inner and outer
pipe and hole contours leads to inaccuracies associated with numerical noise.

As noted earlier, the use of classical coordinate systems, e.g.,Cartesian or
cylindrical-radial, is not appropriate to the eccentric annuli domains encountered
in petroleum engineering.  Borehole contours, for instance, must also describe
non-ideal washout and cuttings bed boundaries.  The mapping method devised
in Chapter 3 is ideal for hosting transformed versions of the above equations.
When Equations 8-1 and 8-2 are combined with Equation 3-1-59, we obtain the
transformed model

(C) (u/t + u u/z) = (8-3a)
= - p/z + (C) 2u/z2 + (C) (u - 2u + u) /J2  

C/t + u C/z = (C) 2C/z2 + (C) (C - 2C + C) /J2  (8-3b)

where , ,  and J are metrics of the mapping transformations available
numerically from the solutions for x(,) and y(,).  This is the problem solved
numerically for this first illustrative example.  The above model does not allow
rotation, but it does allow transient axial reciprocation.  The general transient
three-dimensional algorithm was checked in the steady two-dimensional
concentric limit where the exact closed form velocity solution for concentric
annuli given in Chapter 1 is used.  This numerical check is extremely important
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because different discretization procedures for partial derivatives can yield
additive diffusion to those diffusive effects indicated explicitly in the equation.
This is well known in numerical modeling, e.g., see the discussions on artificial
viscosity and von Neumann analysis in Press et al. (1992).  In fact, various
methods attempted at first gave total volumetric flow rates that were noticeably
inconsistent with the exact solution.  The validation method used also served to
narrow the range of numerical fixes needed to stabilize the rotating flow version
of Equation 8-1.  In this sense, the differencing of partial differential equations
is as much an art as it is a science.

Discussion 8-2.  Transient, single-phase, two-dimensional,
non-Newtonian flow with inner pipe rotation in eccentric annuli.

Here we review a different limit of the general flow equations, namely,
steady single-phase non-Newtonian flow with inner pipe rotation in constant
eccentric annuli.  The flow is driven by an axial pressure gradient so that
rotational and axial velocities both exist.  However, because the flow is identical
in all cross-sections, the problem is two-dimensional mathematically.  This
initial discussion is necessary because it explains the detailed mathematical
strategy used to model flows with rotation in eccentric annuli and represents the
basis for extension when we address complicated multiphase flows.

In our initial mapping discussion, we started with Cartesian coordinates in
order to derive curvilinear grid transformations for the general cross-section.
This approach was suitable so long as the inner circle does not rotate.  When it
does, circular cylindrical formulations are needed at first to accommodate the
no-slip velocity condition at the pipe or casing surface.  The formulation is next
re-expressed in rectangular coordinates so that the mapping procedure explained
in Chapter 3 can be applied.  Thus, rotating flow problems require several sets of
coordinate transformations, not to mention those that project physical plane
properties to computer screen displays.

The general non-Newtonian rheological equations for unsteady single-fluid
flow with and without yield stress are given in three dimensions by

(vr /t + vr vr /r + v/r vr /  – v
/r + vz vr /z) =

= Fr – p/r + 1/r (r Srr)/r + 1/r Sr / – 1/r S + Srz/z  (8-4a)

(v /t + vr v /r + v/r v /  + vrv/r + vz v /z) =
= F – 1/r p/ + 1/r (r Sr)/r + 1/r S / + Sz/z (8-4b)

(vz /t + vr vz /r + v/r vz /  + vz vz /z) =
= Fz – p/z + 1/r (r Szr)/r + 1/r Sz / + Szz /z (8-4c)

vr /r + vr/r + 1/r v/ + vz /z = 0  (8-4d)
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where vr, v and vz are radial, azimuthal and axial velocity components,
respectively, with

S = 2 N() D  (8-4e)

denoting the deviatoric stress tensor, N() the apparent viscosity function,  the
shear rate, and D the deformation tensor whose elements are defined by

Drr = vr /r  (8-4f)

D = 1/r v/ + vr/r  (8-4g)

Dzz = vz /z  (8-4h)

Dr = Dr = ½ [r (v/r)/r + 1/r vr /]  (8-4i)

Dz = Dz = ½ (v /z + 1/r vz /) (8-4j)

Drz = Dzr = ½ (vr /z + vz /r)  (8-4k)

We ignore body forces in this discussion.  For steady-state flow (/t = 0)
under fully-developed (/z = 0) conditions, with the further assumption of
Newtonian flow, Equations 8-4a to 8-4c possess a remarkable property.
Equations 8-4a and 8-4b are independent of vz and z so that they can be solved
first (we have assumed that the azimuthal p/ driver is insignificant compared
to the dragging effect offered by the rotating surface).  Once solutions for vr and
v are available, they are used to evaluate the left-side convective terms of
Equation 8-4c for the solution of axial velocity.  This decoupling is possible
because the Newtonian assumption removes vz from Equations 8-4a and 8-4b by
rendering the apparent viscosity a simple constant.  That is, rotation affects axial
flow, but not conversely, a conclusion borne out by the more detailed
calculations of Escudier et al. (2000) for eccentric annuli comprising of off-
centered circles.  In flows without rotation, the axial velocity field is symmetric
with respect to a line passing through the centers of both circles.  These authors
showed that inner circle rotation removes this symmetry and displaces the
location of maximum axial velocity azimuthally.

The steady analysis of Escudier et al. (2000) is overly simple for our
purposes in several respects.  First, the Newtonian fluid assumption decouples
the rotating flow from the axial flow.  The resulting linear second-derivative
operators present at all right-sides of the differential equations simplify
numerical analysis but preclude any modeling of non-Newtonian shear-thinning
effects.  In general, the apparent viscosity function depends on all velocity
components and strongly couples all velocity fields.  Our transient formulation,
in contrast, is posed in terms of a general stress tensor valid for fluids with and
without yield stresses where the extended Herschel-Bulkley flow model is used.
Also, the authors use bipolar coordinate systems to model eccentered circles.
Our formulation is developed using general curvilinear coordinates whose outer
boundaries may conform to washout and cuttings beds contours.
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Again, while the above approach may be acceptable for Newtonian flows,
which allow vz to be efficiently solved once a complicated cross-flow is first
obtained, it is not practical for non-Newtonian fluids because velocities are
dynamically coupled through the apparent viscosity.  In our approach, we
invoke both physical and mathematical arguments to facilitate a fast algorithm
applicable to general fluids on arbitrary curvilinear meshes.

We begin with the flow equations in cylindrical radial coordinates, as
shown in Equations 8-4a to 8-4d, which we emphasize apply to annuli with
circular and as well as noncircular boundaries.  It is clear that, in these
coordinates, barring the possibility of strong formation influx, the radial velocity
vr is much smaller than both the azimuthal speed, v, and the axial speed, vz (the
latter two may be large and comparable).  More precisely, “vr is small” because
it vanishes at inner and outer boundaries by virtue of zero velocity slip and also
between the two boundaries because strong waviness in the contours is absent.

When these conditions are fulfilled, the rotating fluid in the cross-plane is
defined by v alone, solved together with p/  0.  Note that p/ vanishes
identically in concentric problems even when rotations are extremely rapid.  For
eccentric problems, we are justified in neglecting this azimuthal driver because
the primary source of rotating flow is the dragging effect of the boundary.  In
other words, the problem with fully coupled rotating and axial flow for non-
Newtonian fluids in eccentric annuli with washouts and cuttings beds can be
determined by just two nonlinearly coupled equations for v and vz.

In steady, concentric, two-dimensional problems, the left side of Equation
8-4b is identically zero because /t = 0, /z = 0, vr = 0 and /= 0.  Also,
p/ vanishes by virtue of symmetry and what remains is 1/r (r Sr)/r + 1/r
S / = 0.  If the fluid is Newtonian, this reduces to a simple linear ordinary
differential equation for v.  Once v is solved subject to “rpm” constraints at the
pipe and no-slip boundary conditions at the borehole wall, Equation 8-4a is used
to calculate the radial pressure gradient p/r, therefore resulting in the classical
“-v

/r” centrifugal force effect.
In our approach to transient non-Newtonian fluids with rotating-axial flow

coupling in eccentric annuli, the simple “1/r (r Sr)/r + 1/r S / = 0”
relationship is replaced by the more general azimuthal approximation

(v /t + v/r v /)  1/r (r Sr)/r + 1/r S /  0 (8-4l )

where a more general apparent viscosity function, N(), is solved together with
Equation 8-4c.  Consistently assuming /t = 0, /z = 0, and vr  0, we have

(vz /t + v/r vz /) 
 – p/z + 1/r (r Szr)/r + 1/r Sz / + Szz /z (8-4m)

When the viscous stress terms of Equations 8-4l and 8-4m are expanded,
the second-order linear partial derivative operator  =  /r+ 1/r  /r + 1/r2
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/– 1 /r 
 appears (additional nonlinear terms are present which we do not

neglect here).  In order to use the curvilinear mapping method developed in
Chapter 3, we first recognize that “ /r+ 1/r  /r + 1/r2 /” is equivalent to
“ /x+  /y” and also that “r2 = x2 + y2.”  Thus we have  =  /x+  /y–
1 /(x2 + y2).  In curvilinear coordinates, this becomes

= ( /– 2  /+  /) /J2

– 1 /(x(,)2 + y(,)2) (8-4n)

where the mapping functions x(,), y(,), ,  and  are known.  Stable
approximation methods for “( /– 2  /+  /) /J2” have been
discussed earlier in this book and are used here.  The negative nature of the
additional term “– 1 /(x2 + y2)” increases the numerical stability of the schemes
by increasing diagonal dominance.

All spatial derivatives are approximated by second-order accurate central
difference formulas.  The convective term v/r vz / in Equation 8-4m is also
evaluated by central differences although several intermediate transformations
are required.  For example, note that in the cylindrical coordinate derivation
underlying Equation 8-4m, we can re-express / as / = – y /x + x /y.
Thus, in general curvilinear coordinates, it follows that

vz / = – y vz/x + x vz/y (8-4o)

= – y(,) {x vz/ + x vz/) + x(,) {y vz/ + y vz/)

In rotating flows, the combination “p/z + v/r vz /” serves as an “effective
axial pressure gradient” that depends on the azimuthal coordinate  by way of
solutions to the equation for v.  Computations for steady rotating flows show
that the location of maximum axial velocity at the wide side of eccentric annuli
is displaced azimuthally with displacements increasing with rotational speed in a
manner consistent with Escudier et al. (2000).  Again, our method applies to
transient non-Newtonian flow in arbitrary eccentric annuli.  The unsteady
boundary conditions possible with this extension include general axial
reciprocation coupled with arbitrary transient rotation.  Thus, it is possible to
simulate the effects of drillstring axial vibration and torsional stick-slip on
annular fluid flow characteristics.
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Discussion 8-3.  Transient, three-dimensional. non-Newtonian
flows with miscible mixing in long eccentric annular ducts

with pipe or casing rotation and reciprocation.

For presentation purposes, we introduced the general modeling ideas
starting with unsteady, three-dimensional, Newtonian flow, miscible mixing
problems without rotation and then considered transient, two-dimensional, non-
Newtonian, single-phase problems with rotation.  With these ideas developed,
we now present their obvious combination in order to treat the complicated
problem indicated in the section title.  It is clear that we replace the axial flow
momentum description in Equation 8-4c by the approximation

(C)(vz /t + v/r vz / ) =
= – p/z + 1/r (r Szr)/r + 1/r Sz / + Szz /z (8-5a)

while the azimuthal flow statements in Equations 8-4b and 8-4l are replaced by

(C)(v /t + v/r v /)  1/r (r Sr)/r + 1/r S /  0 (8-5b )

where again C is the concentration function.  However, the left-hand operator
“C/t + u C/z” in Equation 8-2, or “C/t + vz C/z” in the present
nomenclature, must be replaced by “C/t + v/r C / + vz C/z,” so that

C/t + v/r C / + vz C/z =  (2C/x2 + 2C/y2 + 2C/z2)  (8-5c)

The new term models the addition of fluid convection in the azimuthal direction.
Boundary conditions for velocity and concentration have been given previously.

The numerical strategy for solving Equations 8-5a to 8-5c is
straightforward.  As suggested previously, all three equations are first expressed
in Cartesian x, y, and z coordinates.  Then, the curvilinear coordinate
transformations derived in Chapter 3 are used to map the system to convenient
computational (,,z) coordinates.  Ideally, the transient equations are integrated
implicitly using newer alternating-direction-implicit equation methods allowing
mixed partial derivatives.  However, for simplicity, an explicit scheme is used
for which concentric flow validations indicate reasonable accuracy.

An important question which arises is the approximation for the stress
tensor, S, used.  Again recall that the general rheology model involves the
Herschel-Bulkley parameters n, K, and 0.  It is tempting to assume to fit each of
these to linear functions of C, e.g., n(C) = (nright – nleft) C + nleft so that n = nleft

when C = 0 at the left inlet and n = nright when C = 1 at the right outlet.
However, this approach is not desirable because the physical consequences of
this curve-fit are unclear.  Instead, at each spatial node (for a fixed time step),
the apparent viscosity function based on the extended Herschel-Bulkley formula
is first calculated to give values for Nleft and Nright.  Then, a local weighted
average of the viscosity, N, based on the Todd-Longstaff formula using these
two inputs is taken in Equation 8-4e.  This alternative approach, dealing with
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apparent viscosities directly, is physically satisfying.  Consistently with the use
of an explicit time integration scheme, we neglect spatial derivatives of apparent
viscosity although, of course, the apparent viscosity function used is definitely
variable throughout the field of flow barring a perfectly Newtonian fluid.

For the local mass density, , appearing in both axial and azimuthal
momentum equations, the linear interpolation (C) = (right – left) C + left (so
that  = left when C = 0 at the left inlet and  = right when C = 1 at the right
outlet) is reasonable and thus used.  We do emphasize that the apparent viscosity
does not directly appear in the concentration equation, which shows an explicit
diffusion coefficient (C) at the right side.  However, viscosity and density enter
through the velocities in the convection terms “v/r C / + vz C/z” which are
directly affected by the two parameters.

A second question that arises is the functional form of the shear rate
expression needed to evaluate local apparent viscosities.    In Chapter 2, we
indicated that  = {(r d(v/r)/dr)2 + (dvz/dr)2}1/2 = {(r d/dr)2 + (dvz/dr)2}1/2

where the usual rotational rate is defined by  = v/r, applies when flow
variations in the streamwise direction are small.  This expression, which strictly
applies to concentric flows, also holds eccentrically for most practical flows, as
computations show.  This usage importantly enhances numerical stability.  As
before, the expression in cylindrical coordinates must be recast in Cartesian
coordinates for subsequent transformation to general curvilinear coordinates.  To
provide some indication of Fortran source code complexity, we have duplicated
several lines from the apparent viscosity update carried out for each point at the
end of an integration time step, that is,
C
      UX = YETA(I,M,N)*((UTN(I,M+1,N)-UTN(I,M-1,N))/TDPSI)/GAKOB(I,M,N)
     1    -YPSI(I,M,N)*((UTN(I,M,N+1)-UTN(I,M,N-1))/TDETA)/GAKOB(I,M,N)
      UY = XPSI(I,M,N)*((UTN(I,M,N+1)-UTN(I,M,N-1))/TDETA)/GAKOB(I,M,N)
     1    -XETA(I,M,N)*((UTN(I,M+1,N)-UTN(I,M-1,N))/TDPSI)/GAKOB(I,M,N)
C
      OMEGAX = YETA(I,M,N)*(OMEGA(I,M+1,N)-OMEGA(I,M-1,N))
     1        -YPSI(I,M,N)*(OMEGA(I,M,N+1)-OMEGA(I,M,N-1))
      OMEGAY = XPSI(I,M,N)*(OMEGA(I,M,N+1)-OMEGA(I,M,N-1))
     1        -XETA(I,M,N)*(OMEGA(I,M+1,N)-OMEGA(I,M-1,N))
      OMEGAX = OMEGAX/(2.*GAKOB(I,M,N))
      OMEGAY = OMEGAY/(2.*GAKOB(I,M,N))
      RDWDR  = XACTUAL(I,M,N)*OMEGAX + YACTUAL(I,M,N)*OMEGAY
C
      ARG = UX**2 + UY**2 + RDWDR**2

The terms to the right of UX and UY (that is, U/x and U/y) are expressions
in the computation coordinates (,,z).  The second code block provides results
for  /x and /y.  Finally, ARG captures the argument term in the shear
rate function.



Cement and Mud Transient Displacements     323

Discussion 8-4.  Subtleties in non-Newtonian convection modeling.

The axial momentum equation contains a pressure gradient term p/z that
drives the flow.  In steady flow, one formulation specifies its value, computes
the velocity field and then integrates to obtain the total volumetric flow rate, Q.
If Q is specified, the steady formulation is solved repeatedly using guessed
values of p/z.  These are refined iteratively using a half-step procedure until
the target flow rate is achieved.  Although the method is iterative, the final
converged solution for the velocity field is exact.

For transient flows where Q(t) is specified, no such simple procedure
exists.  It is possible, in principle, to similarly determine p/z within each time
step in order to fulfill the target flow rate; however, such a procedure would be
extremely computation intensive.  This method is therefore unacceptable for
practical use.  The partial differential equation nonetheless requires some value
of p/z for numerical time-marching to proceed; the question, of course, is
which approximate pressure gradient value to use.

A Newtonian fallacy.  Some investigators have approached the non-
rotating problem with a seemingly clever solution, which turns out to be
incorrect.  We explain this technique so that others will not repeat it.  The
method first determines a pressure gradient associated with an equivalent
Newtonian flow based, say, on average shear rate for the annular cross-section
or some other physical criterion for the assumed volumetric flow rate.  The
steady axial velocity field associated with this p/z is then used in the
concentration partial differential equation and standard time integrations are
performed.   For constant Q, transient solutions for axial velocity generally
varied with time, as expected – a “warm” feeling although, of course, the
correctness of the solutions could not be verified.  However, the space-time
solution for concentration would not vary from run to run even when input
viscosities were substantially changed.

No explanation or fix for this “bug” was ever obtained nor could it be.  The
answer is clear from simple physical arguments.  For steady, two-dimensional
Newtonian flows, whether they apply to pipes or complicated annular
geometries, the axial velocity field and the corresponding total volumetric flow
rates can be generally written as vz(,) = 1/ p/z G(,) and Q = 1/ p/z H,
where the function G(,) and the constant H both depend exclusively on
geometry.  Now, the two relationships can be combine to give vz(,) = (Q/H)
G(,), which is completely independent of the viscosity.  In other words, two
problems (without rotation) having very different viscosities but the same flow
rate, Q, and geometry will have identical velocity fields vz(,) and hence
identical space-time histories for concentration.  This is clear because setting v
= 0 in Equation 8-5c leaves the left-side unchanged and obviously incorrect
physically.  The reason is apparent: steady Newtonian approximations must not
be used locally to simplify the mathematics whatever the physical justification.
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Correct physical solution.  In determining total pressure drops for
managed pressure drilling or cementing, the foregoing approach leads to grave
mistakes.  This method illustrates the dangers lurking in “engineering recipes”
that may appear physically justifiable when they in fact lead to incorrect
mathematics.  For the general problem considered in Chapter 9, illustrated in
Figure 9-2-1 and reproduced here as Figure 8-1, each “slug” containing non-
Newtonian fluid at any particular time tn with flow rate Q(tn) is represented by
the exact pressure gradient obtained from our “Steady 2D” and “Transient 2D”
solvers (The latter solver is used for rotating flow.).   A fluid slug with higher
average apparent viscosities will have a stronger pressure gradient than one with
lower viscosities.  When a very viscous fluid displaces a less viscous slug,
neighboring pressure gradients can vary substantially in magnitude depending
on rheology.  This is the actual situation physically, and the challenge in solving
for the complete miscible mixing field is stable numerical solution in the
presence of strong discontinuous axial pressure gradients.  The results of
Chapter 9 show that such stability can in fact be achieved in practical
displacement problems in which contiguous fluids can differ substantially.

Mud
pump

z1 z2 z3 z4 z5

Z1Z2Z

L

Z5

Pipe or
casing

Annulus

z

End

Figure 8-1.  General pumping schedule with non-Newtonian flow.
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Discussion 8-5.  Simple models for multiple non-Newtonian
fluids with mixing.

The multi-fluid mixing problem in the drillpipe-annulus represented in
Figure 8-1 is in general difficult to formulate and solve with any degree of
accuracy unless certain conditions (introduced later) are met.  A theoretical
discussion is given in Bird, Stewart and Lightfoot (2002) where the equations of
change for multi-component systems are derived and their solutions outlined.
Basically, one postulates a mixture velocity function applicable at a point which
applies to a weighted average for all of the fluids.  The momentum equation for
this velocity is solved and used as the convection driver to solve multiple sets of
concentration differential equations for Cm applicable to the different fluid
species.  This process must be repeated in time and involves substantial
numerical work.  If this method can be accurately formulated and solved, then
the space-time diffusion history at fluid interfaces can be determined.  For
instance, one could in principle determine diffusion zone thicknesses as they
varied throughout the cross-section and monitor their evolution in time.  That
this can be done with any precision, however, is unclear when fluid slug lengths
are comparable to cross-sectional diameters because empirical mixing laws must
be introduced to augment local details of the physical flow.

Although it is not explicitly stated, this approach is implicit in the recent
multi-fluid model of Savery, Darbe and Chin (2007).  The uncertainties
associated with such methods, fortunately, are not problematic when fluid slug
lengths greatly exceed typical cross-sectional diameters, as is the case in all
drilling and cementing problems.  For such applications, the maximum diffusion
thickness in the streamwise direction will always be much shorter than a typical
slug length.  Consequently, its effect on the overall pressure field is minimal.
This observation allows us to solve for the pressure field first, ignoring diffusion
effects associated with the coefficients m .  As suggested in the prior section and
demonstrated in Chapter 9, the positions of all fluid interfaces can be determined
on a kinematic volumetric flow rate basis.  The actual pressure gradient
applicable to a particular fluid slug at any time tn would be obtained from the
“Steady 2D” or “Transient 2D” solvers discussed in Chapters 1-7.  Once the
complete pressure profile is found on this basis, the mixing details between any
two contiguous fluids can be obtained by solving a single concentration equation
which supports two different pressure gradients without the need to solve a
complete system of coupled concentration equations.  In a sense, the method just
outlined takes into account the disparate physical length scales present in the
problem and substantially reduces the computational work needed to find
practical solutions.  At the same time, the results are obviously easier to interpret
and do not require any analysis of highly mixed fields like those that result from
methods outlined in Bird, Stewart, and Lightfoot (2002) or in Savery, Darbe and
Chin (2007) for cementing applications.
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Our method, in a sense, draws upon “boundary-layer like” simplifications,
allowing us to “zoom in” after-the-fact, not unlike classical boundary layer
methods, which permit inviscid pressure determination over an airfoil first,
followed by similar after-the-fact calculations for viscous drag effects that are
confined to narrow zones near solid boundaries.  As will be demonstrated in
Chapter 9, time-dependent interfacial details associated with mixing zone
growth and convection are given in Figure 9-2-8, reproduced as Figure 8-2
below, where the vertical mixing scale is shown greatly exaggerated.

Figure 8-2.  Propagating and diffusing front in time, constructed
from movie frames for viscosity history using exaggerated diffusion.
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9
Transient, Three-Dimensional,

Multiphase Pipe and Annular Flow

In this chapter, we consider the general problems for managed pressure
drilling and cementing flow simulation posed as objectives in this book.  All of
the “building block” tools captured in the “Steady 2D” and “Transient 2D”
simulators are brought to bear in the transient, three-dimensional, multiphase
applications considered here.  Again, we will address the computation of
pressure profiles along the borehole and particularly at the drillbit for all times
when a general pumping schedule is allowed at the mud pump.  The problem
models the complete system, that is, (1) surface pumping of general fluids with
user-defined time schedules, (2) non-Newtonian flow down the drillpipe, (3)
capture of pressure losses through the drillbit, and (4) flow up the borehole
annulus.  For both pipe and annulus, fluid mixing is permitted via the
introduction of coupled momentum and concentration equations.  For the
borehole, general annular eccentricity is allowed.  Once the  basic setup work is
undertaken, that is, defining fluid interface positions and completing the
pressure gradient entries in Figure 1-4e-3 using pressure solvers provided, the
calculation of borehole pressure profiles at any instant in time requires just
minutes of hand calculation (this process will be automated in the future).  For
cementing applications, the degree to which contiguous fluids mix or do not mix
is important to zonal isolation.  Here, detailed calculations for interfacial mixing
yield details related to diffusion zone geometry and time scales for mixing.
These calculations, which are not required for managed pressure drilling
applications, may require anywhere from minutes to an hour, depending on
numerical stability requirements dictated by fluid density, apparent viscosity and
rotational rate parameters (The controlling variable is , where  is density,
 is rotational rate, and  represents an average apparent viscosity.). With these
preliminaries said, we now present detailed calculated validations and results.
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Discussion 9-1.  Single fluid in pipe and borehole system –
calculating total pressure drops for general non-Newtonian fluids.

The general problem considered is shown in Figure 1-1e (Our analysis
applies to open and closed systems.).  A positive displacement mud pump forces
drilling fluid or cement into a drillpipe centralized in a concentric annulus. This
vertical hole turns into a deviated or horizontal borehole with an eccentric
annulus through an intermediate (possibly, eccentric) section with radius of
curvature, R.  Note that Figure 1-1e is used to establish conventions and a frame
of reference for discussion only.  In fact, our “vertical concentric section” may
represent another deviated or horizontal one with an eccentric cross-section, and
the turning section (however unlikely) may be concentric, if desired.  Length
scales may be assigned arbitrarily and out-of-plane sections are permissible.
Thus, the geometry considered here is quite general.

Pressure Psurf(t)
at surface choke

Drillbit Pbit(t)

Mud

Multi-fluid
transient pump

schedule

RCD rotating
control device

Vertical
concentric
section

Horizontal or deviated well
and eccentric annulus

Turning
section

Tripping in or outPipe rotation

Figure 1-1e.  Managed pressure system simulation.

We emphasize here “single” in the section title.  When only a single fluid
is considered, the problems are two-dimensional because the flows in the pipe
and annulus are unchanged with time in the axial direction.  Only the flow rate
changes.  For any given flow rate, a single calculation determines what happens
in the drillpipe entirely and similarly for the annulus.  When multiple fluids are
introduced at the inlet with different slug lengths, a three-dimensional transient
model is obviously required that supports moving interfaces.  Net pressure drops
will vary with time since the fluid system is constantly changing.  Significant
complications arise which are studied in the remainder of this chapter.
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Discussion 9-2.  Interface tracking and total pressure drop for
multiple fluids pumped in drillpipe and eccentric borehole system.

In this example, we will consider a centered or eccentered drillpipe (with
cross-sectional area Apipe) located in a borehole annulus whose geometry is
unchanged along its length.  The annular area is Aannulus.  Note that while pipe
area is simply available from “Rpipe

2,” the same is not true for the annulus if the
cross-sectional contours from two initially eccentered circles have been edited to
incorporate washouts, cuttings beds or fractures.  If so, the “Steady 2D”
simulator automatically computes and displays total cross-sectional area by
summing incremental trapezoidal areas constructed from the curvilinear grid.

Now, mud progresses down the drillpipe, then out through the drillbit, and
finally, flows upward in the return annulus.  At the outset t = 0, a single initial
fluid with Herschel-Bulkley properties (n0, K0, 0,0) is assumed to exist in the
pipe and annular system (n is the fluid exponent, K is the consistency factor, and
0 is the yield stress).  The initial fluid may be flowing or quiescent.  At t = 0+,
the mud pump starts to act according to a user-defined schedule with piecewise
constant rates.   At t = t0 = 0+, Fluid “1” with properties (n1, K1, 0,1) is pumped
into the pipe at the volumetric flow rate of Q1, while at t = t1, a second Fluid,
“2,” with properties (n2, K2, 0,2) is pumped at rate Q2, and so on.  In fact –

 Fluid “1” pumped at rate Q1: t0  t < t1

 Fluid “2” pumped at rate Q2: t1  t < t2

 Fluid “3” pumped at rate Q3: t2  t < t3

 Fluid “4” pumped at rate Q4: t3  t < t4

 Fluid “5” pumped at rate Q5: t  t4

The overall pumping process is illustrated at the top of Figure 9-2-1.  Here,
fluid introduced at the far right into the drillpipe travels to the left, then turns at
the drillbit (not shown), and finally progresses to the very far right.  The middle
diagram shows five interfaces (starting at t0, t1, t2, t3 and t4) associated with the
onset of each pump action.  The location “z1” (using the “little z” left-pointing
coordinate system shown) describes the interface separating the initial fluid
ahead of it with Fluid “1” just behind it.  Similarly, “z2” separates Fluid “1”
ahead of it and Fluid “2” behind it.  The last Fluid “5” is a single fluid that is
pumped continuously without stoppage with flow rate Q5 for t  t4.  While more
interfaces are easily handled programming-wise, a limit of five (which models
six fluid slugs) to enable rapid modeling and job prototyping, was assumed,
since this number suffices for most rig site planning purposes.  Once the first
interface reaches the end of the drillpipe, shown with length L, that is, z1 = L, it
turns into the borehole annulus and travels to the right.  Similar descriptions
apply to the remaining interfaces.  Annular interfaces are described by the “big
(as in capital) Z” right-pointing coordinate system at the bottom in Figure 9-2-1.
When Z1 = L, the first fluid pumped will have reached the surface.
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Figure 9-2-1.  General pumping schedule.

Figure 9-2-1 provides a “snapshot” obtained for a given instant in time.  At
different times, the locations of the interfaces will be different, and pressure
profiles along the borehole (and hence, at the drillbit) will likewise be different.
Also, while our discussion focuses on drilling applications with distinct mud
interfaces, it is clear that all of our results apply to cement-spacer-mud systems.

Now, we wish to determine the locations of z1,2,3,4,5 and Z1,2,3,4,5 as functions
of time.  In general, this is a difficult problem if the fluids are compressible, or if
significant mixing is found at fluid interfaces, or both.  However, if the lengths
of the fluid slugs are long compared to the annular diameter (so that mixing
zones are not dynamically significant), and further, if the pump acts
instantaneously and transient fluid effects reach equilibrium quickly, interface
tracking can be accomplished kinematically.  Once the locations of all interfaces
are known for any instant in time, pressure drop calculations (for each fluid
slug) proceed using the  non-Newtonian flow models developed previously.

Two output tables are provided by our “interface tracker.”  The
calculations are performed almost instantaneously by the software model.  The
two are, respectively, “Drillpipe Fluid Interfaces vs Time” and “Annular Fluid
Interfaces vs Time,” as shown in Figures 9-2-2 and 9-2-3.  The numbers
assumed for these tables are obviously not realistic, and for this reason, the units
shown in the headings should be ignored for now.  They were chosen so that all
results fit on the printed page, with all values allowing convenient visual
checking and understanding of the computer output.
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       ELAPSED TIME    FLOW       Drillpipe Fluid Interface (feet)
   Minutes  Hours   GPMs     z(1)    z(2)    z(3)    z(4)    z(5)

       0       0.      1       0       0       0       0       0
       1       0.      1       1       0       0       0       0
       2       0.      1       2       0       0       0       0
       3       0.      1       3       0       0       0       0
       4       0.      1       4       0       0       0       0

       5       0.      2       5       0       0       0       0
       6       0.      2       7       2       0       0       0
       7       0.      2       9       4       0       0       0
       8       0.      2      11       6       0       0       0
       9       0.      2      13       8       0       0       0

      10       0.      3      15      10       0       0       0
      11       0.      3      18      13       3       0       0
      12       0.      3      21      16       6       0       0
      13       0.      3      24      19       9       0       0
      14       0.      3      27      22      12       0       0

      15       0.      4      30      25      15       0       0
      16       0.      4      34      29      19       4       0
      17       0.      4      38      33      23       8       0
      18       0.      4      42      37      27      12       0
      19       0.      4      46      41      31      16       0

      20       0.      5      50      45      35      20       0
      21       0.      5      55      50      40      25       5
      22       0.      5      60      55      45      30      10
      23       0.      5      65      60      50      35      15
      24       0.      5      70      65      55      40      20
      25       0.      5      75      70      60      45      25
      26       0.      5      80      75      65      50      30
      27       0.      5      85      80      70      55      35
      28       0.      5      90      85      75      60      40
      29       0.      5      95      90      80      65      45
      30       0.      5     100      95      85      70      50
      31       1.      5       0     100      90      75      55
      32       1.      5       0       0      95      80      60
      33       1.      5       0       0     100      85      65
      34       1.      5       0       0       0      90      70
      35       1.      5       0       0       0      95      75
      36       1.      5       0       0       0     100      80
      37       1.      5       0       0       0       0      85
      38       1.      5       0       0       0       0      90
      39       1.      5       0       0       0       0      95
      40       1.      5       0       0       0       0     100
      41       1.      5       0       0       0       0       0

Figure 9-2-2.  “Drillpipe Fluid Interfaces vs Time.”

Note that 0’s at early times along a z column indicate absence of the
particular fluid in the drillpipe.  Also, once the interface has reached the position
“100,” the end of the borehole in this illustration, the subsequent 0’s are no
longer meaningful and are used only to populate the table.  Note that the very
small annular area of Aannulus selected later was designed only so that we can
“watch fluid move” in the table of Figure 9-2-3.
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  ELAPSED TIME    FLOW        Annular Fluid Interface (feet)
   Minutes  Hours   GPMs     Z(5)    Z(4)    Z(3)    Z(2)    Z(1)

       0       0.      1       0       0       0       0       0
       1       0.      1       0       0       0       0       0
       2       0.      1       0       0       0       0       0
       3       0.      1       0       0       0       0       0
       4       0.      1       0       0       0       0       0

       5       0.      2       0       0       0       0       0
       6       0.      2       0       0       0       0       0
       7       0.      2       0       0       0       0       0
       8       0.      2       0       0       0       0       0
       9       0.      2       0       0       0       0       0

      10       0.      3       0       0       0       0       0
      11       0.      3       0       0       0       0       0
      12       0.      3       0       0       0       0       0
      13       0.      3       0       0       0       0       0
      14       0.      3       0       0       0       0       0

      15       0.      4       0       0       0       0       0
      16       0.      4       0       0       0       0       0
      17       0.      4       0       0       0       0       0
      18       0.      4       0       0       0       0       0
      19       0.      4       0       0       0       0       0

      20       0.      5       0       0       0       0       0
      21       0.      5       0       0       0       0       0
      22       0.      5       0       0       0       0       0
      23       0.      5       0       0       0       0       0
      24       0.      5       0       0       0       0       0
      25       0.      5       0       0       0       0       0
      26       0.      5       0       0       0       0       0
      27       0.      5       0       0       0       0       0
      28       0.      5       0       0       0       0       0
      29       0.      5       0       0       0       0       0
      30       0.      5       0       0       0       0       0
      31       1.      5       0       0       0       0      10
      32       1.      5       0       0       0      10      20
      33       1.      5       0       0       0      20      30
      34       1.      5       0       0      10      30      40
      35       1.      5       0       0      20      40      50
      36       1.      5       0       0      30      50      60
      37       1.      5       0      10      40      60      70
      38       1.      5       0      20      50      70      80
      39       1.      5       0      30      60      80      90
      40       1.      5       0      40      70      90     100
      41       1.      5      10      50      80     100       0
      42       1.      5      20      60      90       0       0
      43       1.      5      30      70     100       0       0
      44       1.      5      40      80       0       0       0
      45       1.      5      50      90       0       0       0
      46       1.      5      60     100       0       0       0
      47       1.      5      70       0       0       0       0
      48       1.      5      80       0       0       0       0
      49       1.      5      90       0       0       0       0
      50       1.      5     100       0       0       0       0
      51       1.      5       0       0       0       0       0

Figure 9-2-3.  “Annular Fluid Interfaces vs Time.”
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To facilitate visual interpretation, we have assumed that Apipe = 1 and
Aannulus = 0.5, so that the nominal linear displacement speeds in the pipe and
annulus are Upipe = Q/Apipe and Uannulus = Q/Aannulus.  The borehole length is
assumed for clarity to be 100.  At the same time, we pump according to the
schedule

 Fluid “1” at a rate of Q1 = 1:   0 = t0  t < t1= 5
 Fluid “2” at a rate of Q2 = 2:   5 = t1  t < t2= 10
 Fluid “3” at a rate of Q3 = 3: 10 = t2  t < t3= 15
 Fluid “4” at a rate of Q4 = 4: 15 = t3  t < t4= 20
 Fluid “5” at a rate of Q5 = 5: t  t4= 20

where our five interfaces originate at t0, t1, t2, t3 and t4.  We next explain Figure
9-2-2.  The left column provides elapsed minutes, while the second provides
elapsed hours.  The volumetric flow rate is given in the third column.  The
corresponding drillpipe fluid interfaces z1,2,3,4,5 are given in the five remaining
columns.   Also, each change in flow rate (associated with a new interface) is
separated by a single horizontal line spacing to enhance clarity.  Consider the
result for z1.  In the first time block with Upipe = 1/1 = 1, the interface advances
at a rate of “1.”  In the second block with Upipe = 2/1, the interfaces advances at
the rate “2.”  As time increases, the easily recognized rate increments are 3, 4,
and 5 following the above pump schedule.

The z1 interface starts moving at t = 0.  Now we turn to the second
interface and study the column for z2 results.  At t = 5, the second interface starts
moving.  Because we are already in the second time block, the interface moves
at the rate “2.” Subsequent speeds are 3, 4 and 5.  Similarly, z3 starts at t = 10
and rate increments with 3, followed by 4 and 5, and so on.  We have described
Figure 9-2-2 from the perspective of tracking individual fronts. However, the
table is important for pressure calculations.  Let us consider the results obtained
at t = 26 (These are shown in bold font for emphasis.).  In particular, we have

       ELAPSED TIME    FLOW       Drillpipe Fluid Interface (feet)
   Minutes  Hours   GPMs     z(1)    z(2)    z(3)    z(4)    z(5)

      26       0.      5      80      75      65      50      30

This printout indicates that, at t = 26, the front z1 is located at z = 80, while
the last front z5 is located at z = 30.  The drillpipe thus contains six distinct fluid
slugs at 100 > z > 80, 80 > z > 75, 75 > z > 65, 65 > z > 50, 50 > z > 30, and 30
> z > 0 where “100” refers to the assumed borehole length.  In fact –

100 > z > 80 contains “initial fluid” with properties (n0, K0, 0,0)
        80 > z > 75 contains Fluid “1” with properties (n1, K1, 0,1)
        75 > z > 65 contains Fluid “2” with properties (n2, K2, 0,2)
        65 > z > 50 contains Fluid “3” with properties (n3, K3, 0,3)
        50 > z > 30 contains Fluid “4” with properties (n4, K4, 0,4)
        30 > z >   0 contains Fluid “5” with properties (n5, K5, 0,5)
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If a non-Newtonian 2D flow model for a Herschel-Bulkley fluid in a
circular pipe were available that gave the pressure gradient (P/z)pipe,n for any
of the given fluid slugs “n” flowing at rate Q with a pipe radius (Apipe/)1/2, then
the total drillpipe pressure drop is simply calculated from (100 – 80) (P/z)pipe,0

+ (80 – 75) (P/z)pipe,1 + (75 – 65) (P/z)pipe,2 + (65-50) (P/z)pipe,3 + (50 – 30)
(P/z)pipe,4 + (30 – 0) (P/z)pipe,5.  The flow rate, Q, used would be the one
applicable at the time the snapshot was taken, in this case, Q = 5 at t = 26 (A
single rate applies to all slugs at any instant in time.).  Now, at time t = 26,
Figure 9-2-3 shows, as indicated by “0’s,” that none of the pumped fluids have
arrived in the annulus, that is –

    ELAPSED TIME    FLOW        Annular Fluid Interface (feet)
   Minutes  Hours   GPMs     Z(5)    Z(4)    Z(3)    Z(2)    Z(1)
      26       0.      5       0       0       0       0       0

Thus, the only fluid residing in the annulus is the initial fluid.  If the pressure
gradient obtained from a 2D eccentric flow analysis is (P/z)annulus,0, then the
pressure drop in the annulus is just (100 – 0) (P/z)annulus,0.  If we further denote
by  the pressure drop through the drillbit, then the total pressure drop through
the entire pipe-bit-annulus system is obtained by summing the prior three
results, that is, (100 – 80) (P/z)pipe,0 + (80 – 75) (P/z)pipe,1 + (75 – 65)
(P/z)pipe,2 + (65-50) (P/z)pipe,3 + (50 – 30) (P/z)pipe,4 + (30 – 0) (P/z)pipe,5

+  + (100 – 0) (P/z)annulus,0, which is the pressure (additive to the surface
choke pressure, PSURF) required at the mud pump to support this multi-slug flow.

The software that creates Figure 9-2-2 also provides the times at which
fluid interfaces in the drillpipe enter the borehole annulus.  These are obtained
from the table in Figure 9-2-2 by noting the “100” marker.  In this case, we have

Borehole total length L, is:    100 ft.
Fluid “1” enters annulus at:     30 min.
Fluid “2” enters annulus at:     31 min.
Fluid “3” enters annulus at:     33 min.
Fluid “4” enters annulus at:     36 min.
Fluid “5” enters annulus at:     40 min.

We next consider another time frame, say t = 36, for which our drillpipe
interfaces have entered the annulus, and explain how annular pressure drops are
determined, e.g., see Figure 9-2-4.  For this time frame, Figure 9-2-3 gives

    ELAPSED TIME    FLOW        Annular Fluid Interface (feet)
   Minutes  Hours   GPMs     Z(5)    Z(4)    Z(3)    Z(2)    Z(1)

          36       1.      5       0       0      30      50      60

This indicates that three interfaces exist in the annulus, with Z1 located at the far
right Z = 60, followed by Z2 at Z = 50 and Z3 at Z = 30.  Since the fluid ahead of
Z1 is the “initial fluid,” the total annular pressure drop is calculated from the sum
(100 – 60) (P/z)annulus,0 + (60 – 50) (P/z)annulus,1 + (50 – 30) (P/z)annulus,2 +
(30 – 0) (P/z)annulus,3 where subscripts denote fluid type for the annular model.
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Figure 9-2-4.  Example annular interface distribution.

We note that the actual pressure PBIT at the drillbit in the formation is
obtained by adding the total annular pressure drop to the pressure PSURF obtained
at the surface choke.  The value of PSURF is in itself a “boundary condition,” and,
importantly, the pressure, PBIT, at the bottom of the annulus in the formation
does not depend on the pressure drop  through the drillbit.  On the other hand,
the pressure required at the pump to move the system includes pipe, bit and
annular losses, as shown in Figure 9-2-5 for one interface configuration.
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Figure 9-2-5.  Complete drillpipe-drillbit-annulus system.
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Interface tracking and example.  Here we describe the software module
that has been implemented to track multiple fluid interfaces, leading to results
such as those in Figures 9-2-2 and 9-2-3.  For clarity, we previously did not
work in physical units, choosing (unrealistic) numerical inputs whose results
were simple to visualize and understand and parameters that allowed complete
tables to fit on single printed pages.  Here we return to physical units and work
with a more realistic example.  Our “Interface Tracker” is executed from the
user screen in Figure 9-2-6, which shows default run parameters.  Actual run
parameters span many ranges and combinations of different numbers.  For
instance, pump rates will typically vary over 100 – 1,500 gpm and time
schedules will vary up to days.  Borehole lengths may vary from 5,000 to 30,000
feet.  Pipe and annular areas are very different from run to run.  In order to
provide meaningful tabulations that are reasonable in file size, time increments
are therefore expressed in minutes.  To execute this program, click “Run.”
When a blue status screen appears and instructs the user the click “Answer,”
results analogous to Figures 9-2-2 and 9-2-3 are provided.  For completeness,
we perform our calculations now and explain the outputs at selected instants in
time.  These calculations require approximately five seconds.

Figure 9-2-6.  “Interface Tracker” with default inputs.
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The output file reproduced below contains a summary of all input
parameters.  Again note that for interface tracking, provided that our fluid slugs
are long compared to the annular diameter and interfacial mixing is confined to
a small axial extent, the tracking process can be performed kinematically (using
the pumping schedule and overall geometric parameters alone) and does not
depend on the dynamics or rheologies of the fluids (These are used after-the-fact
for pressure calculations as explained previously.).  We now explain selected
entries at various times.  At the present writing, interface positions must be
inferred from tabular results; however, this process (together with integrated
color graphics) will be automated in the near future.

 Pump Schedule, Interface Tracking ...

  100 gpm:    0 min < T <   60 min

  200 gpm:   60 min < T <  120 min

  300 gpm:  120 min < T <  180 min

  400 gpm:  180 min < T <  240 min

  500 gpm:            T >  240 min

 Drillpipe area (ft^2):  0.250E+00

 Annular area   (ft^2):  0.500E+00

 Borehole length  (ft):  0.500E+04

 Time simulation (min):        600

     ELAPSED TIME    FLOW       Drillpipe Fluid Interface (feet)

    Minutes  Hours   GPMs     z(1)    z(2)    z(3)    z(4)    z(5)

        0      0.0    100       0       0       0       0       0

        1      0.0    100      53       0       0       0       0

        2      0.0    100     106       0       0       0       0

        3      0.1    100     160       0       0       0       0

        4      0.1    100     213       0       0       0       0

        5      0.1    100     267       0       0       0       0

        6      0.1    100     320       0       0       0       0

        7      0.1    100     374       0       0       0       0

        8      0.1    100     427       0       0       0       0

        9      0.2    100     481       0       0       0       0

       10      0.2    100     534       0       0       0       0

       11      0.2    100     588       0       0       0       0

       12      0.2    100     641       0       0       0       0

       13      0.2    100     695       0       0       0       0

       14      0.2    100     748       0       0       0       0

       15      0.2    100     802       0       0       0       0

       16      0.3    100     855       0       0       0       0

       17      0.3    100     909       0       0       0       0

       18      0.3    100     962       0       0       0       0

       19      0.3    100    1015       0       0       0       0
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This first table tracks fluid interfaces in the drillpipe or casing.  At t = 20
min, the first interface is located at 1,069 ft (Refer to coordinate system in the
middle diagram of Figure 9-2-1.).  By t = 25 min, it has traveled to 1,336 ft.  No
other fluid has entered the pipe.  This means that the initial fluid is located in the
range 5,000 > z > 1,336 while the first fluid pumped is found in 1,336 > z > 0.

       20      0.3    100    1069       0       0       0       0

       21      0.3    100    1122       0       0       0       0

       22      0.4    100    1176       0       0       0       0

       23      0.4    100    1229       0       0       0       0

       24      0.4    100    1283       0       0       0       0
       25      0.4    100    1336       0       0       0       0

       26      0.4    100    1390       0       0       0       0

       27      0.4    100    1443       0       0       0       0

       28      0.5    100    1497       0       0       0       0

       29      0.5    100    1550       0       0       0       0

       30      0.5    100    1604       0       0       0       0

       31      0.5    100    1657       0       0       0       0

       32      0.5    100    1711       0       0       0       0

       33      0.6    100    1764       0       0       0       0

       34      0.6    100    1818       0       0       0       0

       35      0.6    100    1871       0       0       0       0

       36      0.6    100    1925       0       0       0       0

       37      0.6    100    1978       0       0       0       0

       38      0.6    100    2031       0       0       0       0

       39      0.6    100    2085       0       0       0       0

       40      0.7    100    2138       0       0       0       0

       41      0.7    100    2192       0       0       0       0

       42      0.7    100    2245       0       0       0       0

       43      0.7    100    2299       0       0       0       0

       44      0.7    100    2352       0       0       0       0

       45      0.8    100    2406       0       0       0       0

       46      0.8    100    2459       0       0       0       0

       47      0.8    100    2513       0       0       0       0

       48      0.8    100    2566       0       0       0       0

       49      0.8    100    2620       0       0       0       0

       50      0.8    100    2673       0       0       0       0

       51      0.9    100    2727       0       0       0       0

       52      0.9    100    2780       0       0       0       0

       53      0.9    100    2834       0       0       0       0

       54      0.9    100    2887       0       0       0       0

       55      0.9    100    2940       0       0       0       0

       56      0.9    100    2994       0       0       0       0

       57      0.9    100    3047       0       0       0       0

       58      1.0    100    3101       0       0       0       0

       59      1.0    100    3154       0       0       0       0

       60      1.0    200    3208       0       0       0       0

       61      1.0    200    3315     106       0       0       0

       62      1.0    200    3422     213       0       0       0
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       63      1.0    200    3529     320       0       0       0

       64      1.1    200    3636     427       0       0       0

       65      1.1    200    3743     534       0       0       0

       66      1.1    200    3850     641       0       0       0

       67      1.1    200    3956     748       0       0       0

       68      1.1    200    4063     855       0       0       0

       69      1.1    200    4170     962       0       0       0

At t = 70 min, the first interface has reached 4,277 ft, while the second
interface is located at 1,069 ft.  This means that the initial fluid is located in the
region 5,000 > z > 4,277.  The first fluid is found in 4,277 > z > 1,069, while the
second appears in 1,069 > z > 0.

       70      1.2    200    4277    1069       0       0       0

       71      1.2    200    4384    1176       0       0       0

       72      1.2    200    4491    1283       0       0       0

       73      1.2    200    4598    1390       0       0       0

       74      1.2    200    4705    1497       0       0       0

       75      1.2    200    4812    1604       0       0       0

At approximately t = 76 min the first interface is located at 4,919 ft, while
the second is found at 1,711 ft.  Recall that the borehole length is assumed to be
5,000 ft.  At t = 77 min, the first interface has been flushed out of the pipe and it
has flowed into the annulus.  This is noted in remarks at the end of this table,
i.e., “Fluid "1" enters annulus at: 77 min.”  From the t = 77 line,
the second interface is located at 1,818 ft.  Thus, the first fluid is to be found in
the region 5,000 > z > 1,818 while the second fluid is located in 1,818 > z > 0.

       76      1.3    200    4919    1711       0       0       0

       77      1.3    200       0    1818       0       0       0

       78      1.3    200       0    1925       0       0       0

       79      1.3    200       0    2031       0       0       0

       80      1.3    200       0    2138       0       0       0

       81      1.4    200       0    2245       0       0       0

       82      1.4    200       0    2352       0       0       0

       83      1.4    200       0    2459       0       0       0

       84      1.4    200       0    2566       0       0       0

       85      1.4    200       0    2673       0       0       0

       86      1.4    200       0    2780       0       0       0

       87      1.5    200       0    2887       0       0       0

       88      1.5    200       0    2994       0       0       0

       89      1.5    200       0    3101       0       0       0

       90      1.5    200       0    3208       0       0       0

       91      1.5    200       0    3315       0       0       0

       92      1.5    200       0    3422       0       0       0

       93      1.5    200       0    3529       0       0       0

       94      1.6    200       0    3636       0       0       0

       95      1.6    200       0    3743       0       0       0

       96      1.6    200       0    3850       0       0       0

       97      1.6    200       0    3956       0       0       0
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       98      1.6    200       0    4063       0       0       0

       99      1.6    200       0    4170       0       0       0

At t = 100 min the second interface is located at 4,277 ft.  This means that
the first fluid is found in 5,000 > z > 4,277 and the second is in 4,277 > z > 0.

      100      1.7    200       0    4277       0       0       0

      101      1.7    200       0    4384       0       0       0

      102      1.7    200       0    4491       0       0       0

      103      1.7    200       0    4598       0       0       0

      104      1.7    200       0    4705       0       0       0

      105      1.8    200       0    4812       0       0       0

      106      1.8    200       0    4919       0       0       0

      107      1.8    200       0       0       0       0       0

      108      1.8    200       0       0       0       0       0

      109      1.8    200       0       0       0       0       0

      110      1.8    200       0       0       0       0       0

      111      1.9    200       0       0       0       0       0

      112      1.9    200       0       0       0       0       0

      113      1.9    200       0       0       0       0       0

      114      1.9    200       0       0       0       0       0

      115      1.9    200       0       0       0       0       0

      116      1.9    200       0       0       0       0       0

      117      2.0    200       0       0       0       0       0

      118      2.0    200       0       0       0       0       0

      119      2.0    200       0       0       0       0       0

      120      2.0    300       0       0       0       0       0

      121      2.0    300       0       0     160       0       0

      122      2.0    300       0       0     320       0       0

      123      2.0    300       0       0     481       0       0

      124      2.1    300       0       0     641       0       0

      125      2.1    300       0       0     802       0       0

      126      2.1    300       0       0     962       0       0

      127      2.1    300       0       0    1122       0       0

      128      2.1    300       0       0    1283       0       0

      129      2.2    300       0       0    1443       0       0

At t = 130 min the third interface is located at 1,604 ft.  This means that the
second fluid is located in 5,000 > z > 1,604, while the third fluid is found in
1,604 > z > 0.

      130      2.2    300       0       0    1604       0       0

      131      2.2    300       0       0    1764       0       0

      132      2.2    300       0       0    1925       0       0

      133      2.2    300       0       0    2085       0       0

      134      2.2    300       0       0    2245       0       0

      135      2.2    300       0       0    2406       0       0

      136      2.3    300       0       0    2566       0       0

      137      2.3    300       0       0    2727       0       0

      138      2.3    300       0       0    2887       0       0
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      139      2.3    300       0       0    3047       0       0

      140      2.3    300       0       0    3208       0       0

      141      2.3    300       0       0    3368       0       0

      142      2.4    300       0       0    3529       0       0

      143      2.4    300       0       0    3689       0       0

      144      2.4    300       0       0    3850       0       0

      145      2.4    300       0       0    4010       0       0

      146      2.4    300       0       0    4170       0       0

      147      2.5    300       0       0    4331       0       0

      148      2.5    300       0       0    4491       0       0

      149      2.5    300       0       0    4652       0       0

At t = 150 min the third interface is located at 4,812 ft.  Since the pipe
length is 5,000 ft, it is about to be flushed out of the end of the pipe.  In the next
thirty minutes, approximately, there are no interfaces in the pipe.  The “all 0”
printout indicates that the only fluid in the pipe is the third fluid.

      150      2.5    300       0       0    4812       0       0

      151      2.5    300       0       0    4972       0       0

      152      2.5    300       0       0       0       0       0

      153      2.5    300       0       0       0       0       0

      154      2.6    300       0       0       0       0       0

      155      2.6    300       0       0       0       0       0

      156      2.6    300       0       0       0       0       0

      157      2.6    300       0       0       0       0       0

      158      2.6    300       0       0       0       0       0

      159      2.7    300       0       0       0       0       0

      160      2.7    300       0       0       0       0       0

      161      2.7    300       0       0       0       0       0

      162      2.7    300       0       0       0       0       0

      163      2.7    300       0       0       0       0       0

      164      2.7    300       0       0       0       0       0

      165      2.8    300       0       0       0       0       0

      166      2.8    300       0       0       0       0       0

      167      2.8    300       0       0       0       0       0

      168      2.8    300       0       0       0       0       0

      169      2.8    300       0       0       0       0       0

      170      2.8    300       0       0       0       0       0

      171      2.8    300       0       0       0       0       0

      172      2.9    300       0       0       0       0       0

      173      2.9    300       0       0       0       0       0

      174      2.9    300       0       0       0       0       0

      175      2.9    300       0       0       0       0       0

      176      2.9    300       0       0       0       0       0

      177      3.0    300       0       0       0       0       0

      178      3.0    300       0       0       0       0       0

      179      3.0    300       0       0       0       0       0

      180      3.0    400       0       0       0       0       0
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Now, the fourth interface has entered the pipe.  The third fluid is located in
the range 5,000 > z > 213 while the fourth fluid is found in 213 > z > 0.

      181      3.0    400       0       0       0     213       0

      182      3.0    400       0       0       0     427       0

      183      3.0    400       0       0       0     641       0

      184      3.1    400       0       0       0     855       0

      185      3.1    400       0       0       0    1069       0

      186      3.1    400       0       0       0    1283       0

      187      3.1    400       0       0       0    1497       0

      188      3.1    400       0       0       0    1711       0

      189      3.2    400       0       0       0    1925       0

      190      3.2    400       0       0       0    2138       0

      191      3.2    400       0       0       0    2352       0

      192      3.2    400       0       0       0    2566       0

      193      3.2    400       0       0       0    2780       0

      194      3.2    400       0       0       0    2994       0

      195      3.2    400       0       0       0    3208       0

      196      3.3    400       0       0       0    3422       0

      197      3.3    400       0       0       0    3636       0

      198      3.3    400       0       0       0    3850       0

      199      3.3    400       0       0       0    4063       0

      200      3.3    400       0       0       0    4277       0

At t = 201 min the fourth interface has migrated to 4,491 ft.  The third fluid
is located in the region 5,000 > z > 4,491, while the fourth fluid occupies almost
the entire length of the pipe in 4,491 > z > 0.  By t = 204 min the fourth interface
will have left the pipe and turned into the annulus.  Then the fourth fluid
completely occupies the pipe.

      201      3.3    400       0       0       0    4491       0

      202      3.4    400       0       0       0    4705       0

      203      3.4    400       0       0       0    4919       0
      204      3.4    400       0       0       0       0       0

      205      3.4    400       0       0       0       0       0

      206      3.4    400       0       0       0       0       0

      207      3.5    400       0       0       0       0       0

      208      3.5    400       0       0       0       0       0

      209      3.5    400       0       0       0       0       0

      210      3.5    400       0       0       0       0       0

      211      3.5    400       0       0       0       0       0

      212      3.5    400       0       0       0       0       0

      213      3.5    400       0       0       0       0       0

      214      3.6    400       0       0       0       0       0

      215      3.6    400       0       0       0       0       0

      216      3.6    400       0       0       0       0       0

      217      3.6    400       0       0       0       0       0

      218      3.6    400       0       0       0       0       0

      219      3.7    400       0       0       0       0       0

      220      3.7    400       0       0       0       0       0
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      221      3.7    400       0       0       0       0       0

      222      3.7    400       0       0       0       0       0

      223      3.7    400       0       0       0       0       0

      224      3.7    400       0       0       0       0       0

      225      3.8    400       0       0       0       0       0

      226      3.8    400       0       0       0       0       0

      227      3.8    400       0       0       0       0       0

      228      3.8    400       0       0       0       0       0

      229      3.8    400       0       0       0       0       0

      230      3.8    400       0       0       0       0       0

      231      3.8    400       0       0       0       0       0

      232      3.9    400       0       0       0       0       0

      233      3.9    400       0       0       0       0       0

      234      3.9    400       0       0       0       0       0

      235      3.9    400       0       0       0       0       0

      236      3.9    400       0       0       0       0       0

      237      4.0    400       0       0       0       0       0

      238      4.0    400       0       0       0       0       0

      239      4.0    400       0       0       0       0       0

      240      4.0    500       0       0       0       0       0

      241      4.0    500       0       0       0       0     267

      242      4.0    500       0       0       0       0     534

      243      4.1    500       0       0       0       0     802

      244      4.1    500       0       0       0       0    1069

      245      4.1    500       0       0       0       0    1336

      246      4.1    500       0       0       0       0    1604

      247      4.1    500       0       0       0       0    1871

      248      4.1    500       0       0       0       0    2138

      249      4.2    500       0       0       0       0    2406

At t = 250 min the fifth interface is located at 2,673 ft.  This means that the
fourth fluid is found in 5,000 > z > 2,673, while the fifth fluid is found in the
region 2,673 > z > 0.

      250      4.2    500       0       0       0       0    2673

      251      4.2    500       0       0       0       0    2940

      252      4.2    500       0       0       0       0    3208

      253      4.2    500       0       0       0       0    3475

      254      4.2    500       0       0       0       0    3743

      255      4.2    500       0       0       0       0    4010

      256      4.3    500       0       0       0       0    4277

      257      4.3    500       0       0       0       0    4545

      258      4.3    500       0       0       0       0    4812

At t = 259 min the fifth interface has left the pipe, and the fifth fluid now
completely occupies the pipe as indicated by the “all 0” data below.  Note that
while, in Figure 9-2-6, we have allowed for a total of 600 minutes of simulation,
the printout here terminates at t = 259 min because nothing of dynamical
significance occurs beyond this time (The only fluid in the pipe will be the fifth
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fluid, and this printout is eliminated for convenience.).  The Fortran simulator
used to calculate interfaces permits up to 10,000 minutes of rig-time modeling,
or, approximately one week, of continuous pumping with six different fluids.

      259      4.3    500       0       0       0       0       0

    Borehole total length L, is:   5000 ft.

    Fluid "1" enters annulus at:     77 min.

    Fluid "2" enters annulus at:    107 min.

    Fluid "3" enters annulus at:    152 min.

    Fluid "4" enters annulus at:    204 min.

    Fluid "5" enters annulus at:    259 min.

The summary above is printed for convenience and is obtained by
interrogating the tabular pipe data.  Now that we have completed the tracking of
all five interfaces in the pipe, the software algorithm turns to interface tracking
in the annulus.  The middle diagram in Figure 9-2-1 used a “left-pointing, little
z” coordinate system for pipe flow with the origin at the far right, but now, as
shown in the bottom diagram of Figure 9-2-1, we use a “right-pointing, big Z”
convention for annular flow with an origin at the far left.  Also note that the
tabular interface headings for pipe flow took the form z(1), z(2), …, z(5).
However, for annular flow, we reverse the order of the tabulation to Z(5), Z(4),
…, Z(1) as shown below.  The reason for this will be obvious.  From the above
summary, the first interface does not enter the annulus until t = 77 min.  Thus,
prior to t = 77 min only the initial fluid exists in the annulus.  For this reason, the
annular table below contains 0’s everywhere until approximately t = 78 min.
We will continue our discussion at the t = 78 min time entry.

     ELAPSED TIME    FLOW        Annular Fluid Interface (feet)

    Minutes  Hours   GPMs     Z(5)    Z(4)    Z(3)    Z(2)    Z(1)

        0      0.0    100       0       0       0       0       0

        1      0.0    100       0       0       0       0       0

        2      0.0    100       0       0       0       0       0

        3      0.1    100       0       0       0       0       0

        4      0.1    100       0       0       0       0       0

        5      0.1    100       0       0       0       0       0

        6      0.1    100       0       0       0       0       0

        7      0.1    100       0       0       0       0       0

        8      0.1    100       0       0       0       0       0

        9      0.2    100       0       0       0       0       0

       10      0.2    100       0       0       0       0       0

       11      0.2    100       0       0       0       0       0

       12      0.2    100       0       0       0       0       0

       13      0.2    100       0       0       0       0       0

       14      0.2    100       0       0       0       0       0

       15      0.2    100       0       0       0       0       0

       16      0.3    100       0       0       0       0       0

       17      0.3    100       0       0       0       0       0
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       18      0.3    100       0       0       0       0       0

       19      0.3    100       0       0       0       0       0

       20      0.3    100       0       0       0       0       0

       21      0.3    100       0       0       0       0       0

       22      0.4    100       0       0       0       0       0

       23      0.4    100       0       0       0       0       0

       24      0.4    100       0       0       0       0       0

       25      0.4    100       0       0       0       0       0

       26      0.4    100       0       0       0       0       0

       27      0.4    100       0       0       0       0       0

       28      0.5    100       0       0       0       0       0

       29      0.5    100       0       0       0       0       0

       30      0.5    100       0       0       0       0       0

       31      0.5    100       0       0       0       0       0

       32      0.5    100       0       0       0       0       0

       33      0.6    100       0       0       0       0       0

       34      0.6    100       0       0       0       0       0

       35      0.6    100       0       0       0       0       0

       36      0.6    100       0       0       0       0       0

       37      0.6    100       0       0       0       0       0

       38      0.6    100       0       0       0       0       0

       39      0.6    100       0       0       0       0       0

       40      0.7    100       0       0       0       0       0

       41      0.7    100       0       0       0       0       0

       42      0.7    100       0       0       0       0       0

       43      0.7    100       0       0       0       0       0

       44      0.7    100       0       0       0       0       0

       45      0.8    100       0       0       0       0       0

       46      0.8    100       0       0       0       0       0

       47      0.8    100       0       0       0       0       0

       48      0.8    100       0       0       0       0       0

       49      0.8    100       0       0       0       0       0

       50      0.8    100       0       0       0       0       0

       51      0.9    100       0       0       0       0       0

       52      0.9    100       0       0       0       0       0

       53      0.9    100       0       0       0       0       0

       54      0.9    100       0       0       0       0       0

       55      0.9    100       0       0       0       0       0

       56      0.9    100       0       0       0       0       0

       57      0.9    100       0       0       0       0       0

       58      1.0    100       0       0       0       0       0

       59      1.0    100       0       0       0       0       0

       60      1.0    200       0       0       0       0       0

       61      1.0    200       0       0       0       0       0

       62      1.0    200       0       0       0       0       0

       63      1.0    200       0       0       0       0       0

       64      1.1    200       0       0       0       0       0

       65      1.1    200       0       0       0       0       0

       66      1.1    200       0       0       0       0       0
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       67      1.1    200       0       0       0       0       0

       68      1.1    200       0       0       0       0       0

       69      1.1    200       0       0       0       0       0

       70      1.2    200       0       0       0       0       0

       71      1.2    200       0       0       0       0       0

       72      1.2    200       0       0       0       0       0

       73      1.2    200       0       0       0       0       0

       74      1.2    200       0       0       0       0       0

       75      1.2    200       0       0       0       0       0

       76      1.3    200       0       0       0       0       0

       77      1.3    200       0       0       0       0       0

At t = 78 min we find that the first interface (under the Z(1) heading) is
located at Z = 53 ft.  Thus, the first fluid is found in 0 < Z < 53, while the initial
fluid is found in 53 < Z < 5,000 (again, “5,000” represents the surface).

       78      1.3    200       0       0       0       0      53

       79      1.3    200       0       0       0       0     106

       80      1.3    200       0       0       0       0     160

       81      1.4    200       0       0       0       0     213

       82      1.4    200       0       0       0       0     267

       83      1.4    200       0       0       0       0     320

       84      1.4    200       0       0       0       0     374

       85      1.4    200       0       0       0       0     427

       86      1.4    200       0       0       0       0     481

       87      1.5    200       0       0       0       0     534

       88      1.5    200       0       0       0       0     588

       89      1.5    200       0       0       0       0     641

       90      1.5    200       0       0       0       0     695

       91      1.5    200       0       0       0       0     748

       92      1.5    200       0       0       0       0     802

       93      1.5    200       0       0       0       0     855

       94      1.6    200       0       0       0       0     909

       95      1.6    200       0       0       0       0     962

       96      1.6    200       0       0       0       0    1015

       97      1.6    200       0       0       0       0    1069

       98      1.6    200       0       0       0       0    1122

       99      1.6    200       0       0       0       0    1176

      100      1.7    200       0       0       0       0    1229

      101      1.7    200       0       0       0       0    1283

      102      1.7    200       0       0       0       0    1336

      103      1.7    200       0       0       0       0    1390

      104      1.7    200       0       0       0       0    1443

      105      1.8    200       0       0       0       0    1497

      106      1.8    200       0       0       0       0    1550

      107      1.8    200       0       0       0       0    1604

      108      1.8    200       0       0       0      53    1657

      109      1.8    200       0       0       0     106    1711

      110      1.8    200       0       0       0     160    1764

      111      1.9    200       0       0       0     213    1818
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      112      1.9    200       0       0       0     267    1871

      113      1.9    200       0       0       0     320    1925

      114      1.9    200       0       0       0     374    1978

      115      1.9    200       0       0       0     427    2031

      116      1.9    200       0       0       0     481    2085

      117      2.0    200       0       0       0     534    2138

      118      2.0    200       0       0       0     588    2192

      119      2.0    200       0       0       0     641    2245

      120      2.0    300       0       0       0     695    2299

      121      2.0    300       0       0       0     775    2379

      122      2.0    300       0       0       0     855    2459

      123      2.0    300       0       0       0     935    2539

      124      2.1    300       0       0       0    1015    2620

      125      2.1    300       0       0       0    1096    2700

      126      2.1    300       0       0       0    1176    2780

      127      2.1    300       0       0       0    1256    2860

      128      2.1    300       0       0       0    1336    2940

      129      2.2    300       0       0       0    1417    3021

      130      2.2    300       0       0       0    1497    3101

      131      2.2    300       0       0       0    1577    3181

      132      2.2    300       0       0       0    1657    3261

      133      2.2    300       0       0       0    1737    3342

      134      2.2    300       0       0       0    1818    3422

      135      2.2    300       0       0       0    1898    3502

      136      2.3    300       0       0       0    1978    3582

      137      2.3    300       0       0       0    2058    3662

      138      2.3    300       0       0       0    2138    3743

      139      2.3    300       0       0       0    2219    3823

      140      2.3    300       0       0       0    2299    3903

      141      2.3    300       0       0       0    2379    3983

      142      2.4    300       0       0       0    2459    4063

      143      2.4    300       0       0       0    2539    4144

      144      2.4    300       0       0       0    2620    4224

      145      2.4    300       0       0       0    2700    4304

      146      2.4    300       0       0       0    2780    4384

      147      2.5    300       0       0       0    2860    4464

      148      2.5    300       0       0       0    2940    4545

      149      2.5    300       0       0       0    3021    4625

At t = 150 min the first interface is approaching the surface, since it is
located at 4,705 ft. (the surface location is 5,000 ft).  The second Z(2) interface
is found at 3,101 ft.  Thus, the initial fluid is found in 4,705 < Z < 5,000, while
the first fluid is in 3,101 < Z < 4,705.  The second fluid is located in 0 < Z <
3,101.

      150      2.5    300       0       0       0    3101    4705

      151      2.5    300       0       0       0    3181    4785

      152      2.5    300       0       0       0    3261    4865

      153      2.5    300       0       0      80    3342    4946
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Now, the first interface has left the annulus and entered the mud tank at the
surface.  The second interface is located at 3,422 ft. while the third interface is
found at 160 ft.  Thus, the first fluid is found in 3,422 < Z < 5,000, while the
second is found in 160 < Z < 3,422.  The third fluid is located in 0  < Z < 160.

      154      2.6    300       0       0     160    3422       0

      155      2.6    300       0       0     240    3502       0

      156      2.6    300       0       0     320    3582       0

      157      2.6    300       0       0     401    3662       0

      158      2.6    300       0       0     481    3743       0

      159      2.7    300       0       0     561    3823       0

      160      2.7    300       0       0     641    3903       0

      161      2.7    300       0       0     721    3983       0

      162      2.7    300       0       0     802    4063       0

      163      2.7    300       0       0     882    4144       0

      164      2.7    300       0       0     962    4224       0

      165      2.8    300       0       0    1042    4304       0

      166      2.8    300       0       0    1122    4384       0

      167      2.8    300       0       0    1203    4464       0

      168      2.8    300       0       0    1283    4545       0

      169      2.8    300       0       0    1363    4625       0

At t = 170 min the second interface is located at 4,705 ft. while the third is
found at 1,443 ft.  Thus, the first fluid is located in 4,705 < Z < 5,000, while the
second is found in 1,443 < Z < 4,705.  The third fluid is found in 0 < Z < 1,443.
At approximately t = 173 min the second interface leaves the annulus and
completely disappears from the system.  Then, the second fluid is found in the
region 1,684 < Z < 5,000, while the third is located in 0 < Z < 1,684.

      170      2.8    300       0       0    1443    4705       0

      171      2.8    300       0       0    1523    4785       0

      172      2.9    300       0       0    1604    4865       0
      173      2.9    300       0       0    1684    4946       0

      174      2.9    300       0       0    1764       0       0

      175      2.9    300       0       0    1844       0       0

      176      2.9    300       0       0    1925       0       0

      177      3.0    300       0       0    2005       0       0

      178      3.0    300       0       0    2085       0       0

      179      3.0    300       0       0    2165       0       0

      180      3.0    400       0       0    2245       0       0

      181      3.0    400       0       0    2352       0       0

      182      3.0    400       0       0    2459       0       0

      183      3.0    400       0       0    2566       0       0

      184      3.1    400       0       0    2673       0       0

      185      3.1    400       0       0    2780       0       0

      186      3.1    400       0       0    2887       0       0

      187      3.1    400       0       0    2994       0       0

      188      3.1    400       0       0    3101       0       0

      189      3.2    400       0       0    3208       0       0
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      190      3.2    400       0       0    3315       0       0

      191      3.2    400       0       0    3422       0       0

      192      3.2    400       0       0    3529       0       0

      193      3.2    400       0       0    3636       0       0

      194      3.2    400       0       0    3743       0       0

      195      3.2    400       0       0    3850       0       0

      196      3.3    400       0       0    3956       0       0

      197      3.3    400       0       0    4063       0       0

      198      3.3    400       0       0    4170       0       0

      199      3.3    400       0       0    4277       0       0

At t = 200 min, the third interface is located at 4,384 ft.  Thus, the second
fluid is found in 4,384 < Z < 5,000 while the first appears in 0 < Z < 4,384
(Recall that, at t = 173 min, the second interface has left the annulus.).  By now,
the interpretation process for both pipe and annulus should be apparent.  We turn
finally to t = 296 min.

      200      3.3    400       0       0    4384       0       0

      201      3.3    400       0       0    4491       0       0

      202      3.4    400       0       0    4598       0       0

      203      3.4    400       0       0    4705       0       0

      204      3.4    400       0       0    4812       0       0

      205      3.4    400       0     106    4919       0       0

      206      3.4    400       0     213       0       0       0

      207      3.5    400       0     320       0       0       0

      208      3.5    400       0     427       0       0       0

      209      3.5    400       0     534       0       0       0

      210      3.5    400       0     641       0       0       0

      211      3.5    400       0     748       0       0       0

      212      3.5    400       0     855       0       0       0

      213      3.5    400       0     962       0       0       0

      214      3.6    400       0    1069       0       0       0

      215      3.6    400       0    1176       0       0       0

      216      3.6    400       0    1283       0       0       0

      217      3.6    400       0    1390       0       0       0

      218      3.6    400       0    1497       0       0       0

      219      3.7    400       0    1604       0       0       0

      220      3.7    400       0    1711       0       0       0

      221      3.7    400       0    1818       0       0       0

      222      3.7    400       0    1925       0       0       0

      223      3.7    400       0    2031       0       0       0

      224      3.7    400       0    2138       0       0       0

      225      3.8    400       0    2245       0       0       0

      226      3.8    400       0    2352       0       0       0

      227      3.8    400       0    2459       0       0       0

      228      3.8    400       0    2566       0       0       0

      229      3.8    400       0    2673       0       0       0

      230      3.8    400       0    2780       0       0       0

      231      3.8    400       0    2887       0       0       0

      232      3.9    400       0    2994       0       0       0
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      233      3.9    400       0    3101       0       0       0

      234      3.9    400       0    3208       0       0       0

      235      3.9    400       0    3315       0       0       0

      236      3.9    400       0    3422       0       0       0

      237      4.0    400       0    3529       0       0       0

      238      4.0    400       0    3636       0       0       0

      239      4.0    400       0    3743       0       0       0

      240      4.0    500       0    3850       0       0       0

      241      4.0    500       0    3983       0       0       0

      242      4.0    500       0    4117       0       0       0

      243      4.1    500       0    4251       0       0       0

      244      4.1    500       0    4384       0       0       0

      245      4.1    500       0    4518       0       0       0

      246      4.1    500       0    4652       0       0       0

      247      4.1    500       0    4785       0       0       0

      248      4.1    500       0    4919       0       0       0

      249      4.2    500       0       0       0       0       0

      250      4.2    500       0       0       0       0       0

      251      4.2    500       0       0       0       0       0

      252      4.2    500       0       0       0       0       0

      253      4.2    500       0       0       0       0       0

      254      4.2    500       0       0       0       0       0

      255      4.2    500       0       0       0       0       0

      256      4.3    500       0       0       0       0       0

      257      4.3    500       0       0       0       0       0

      258      4.3    500       0       0       0       0       0

      259      4.3    500       0       0       0       0       0

      260      4.3    500     133       0       0       0       0

      261      4.3    500     267       0       0       0       0

      262      4.4    500     401       0       0       0       0

      263      4.4    500     534       0       0       0       0

      264      4.4    500     668       0       0       0       0

      265      4.4    500     802       0       0       0       0

      266      4.4    500     935       0       0       0       0

      267      4.4    500    1069       0       0       0       0

      268      4.5    500    1203       0       0       0       0

      269      4.5    500    1336       0       0       0       0

      270      4.5    500    1470       0       0       0       0

      271      4.5    500    1604       0       0       0       0

      272      4.5    500    1737       0       0       0       0

      273      4.6    500    1871       0       0       0       0

      274      4.6    500    2005       0       0       0       0

      275      4.6    500    2138       0       0       0       0

      276      4.6    500    2272       0       0       0       0

      277      4.6    500    2406       0       0       0       0

      278      4.6    500    2539       0       0       0       0

      279      4.7    500    2673       0       0       0       0

      280      4.7    500    2807       0       0       0       0

      281      4.7    500    2940       0       0       0       0
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      282      4.7    500    3074       0       0       0       0

      283      4.7    500    3208       0       0       0       0

      284      4.7    500    3342       0       0       0       0

      285      4.8    500    3475       0       0       0       0

      286      4.8    500    3609       0       0       0       0

      287      4.8    500    3743       0       0       0       0

      288      4.8    500    3876       0       0       0       0

      289      4.8    500    4010       0       0       0       0

      290      4.8    500    4144       0       0       0       0

      291      4.8    500    4277       0       0       0       0

      292      4.9    500    4411       0       0       0       0

      293      4.9    500    4545       0       0       0       0

      294      4.9    500    4678       0       0       0       0

      295      4.9    500    4812       0       0       0       0

At t = 296 min the Z(5) interface is located at 4,946 ft, very close to the
surface, located at 5,000 ft.  Thus, the fifth fluid is found in 0 < Z < 4,946, while
the fourth fluid is found in 4,946 < Z < 5,000.  The computation of pressures in
the annulus and in the pipe follow the general discussions given previously.  For
documentation purposes, we refer to both tables and their included explanations
as “Figure 9-2-7.”

      296      4.9    500    4946       0       0       0       0

      297      4.9    500       0       0       0       0       0

Figure 9-2-7.  Pipe and annular interface position table.

On real interfaces.  In the above calculations, we speak of interfaces as
being located at “z = …” or “Z = …,” that is, “interfaces are flat.”  This
description suffices from the macroscopic perspective.  If we require details
about the mixing zone between two contiguous fluids, we then “zoom” in to
perform boundary-layer type calculations using pressure gradient information
obtained as discussed above.  Typical mixing zones, shown in Figure 9-2-8, are
clearly not planar in the detailed description.

Figure 9-2-8.  Propagating and diffusing front in time, constructed
from movie frames for viscosity history using exaggerated diffusion.
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Discussion 9-3.  Calculating annular and drillpipe pressure loss.

Discussion 9-2 describes our “interface tracker,” an important modeling
tool that determines where our six fluids are at any instant in time.  Once the
length of a particular “fluid slug” is available, the volumetric pump rate Q at that
instant is used to determine the pressure gradient applicable to the non-
Newtonian fluid in question.  The pressure loss associated with this slug is
simply the product of length and pressure gradient.   This idea was illustrated
using both drillpipe and annular examples in the previous discussion.  For the
sake of completeness, we now summarize key analytical results available for
non-Newtonian pipe flows and also recapitulate our new simulation capabilities
for eccentric annular flows.  Note that our pump schedule is transient, with Q’s
that vary in time; however, within a defined time interval, the Q in question is
constant.  In mathematics, this is known as a “piecewise constant” specification.
This approach makes it is possible to use steady-state models within the
framework of transient pumping.

Newtonian pipe flow model.  Several exact, closed form, analytical
solutions are available in the literature for different types of rheologies in flow
in circular pipe.  We will review these results and offer key formulas without
proof.  Figure 9-3-1 illustrates straight, axisymmetric, pipe flow, where the axial
velocity, u(r) > 0, depends on the radial coordinate r > 0.  With these
conventions, the “shear rate,” du/dr < 0, is negative, that is, u(r) decreases as r
increases.  Very often, the notation d/dt = - du/dr > 0 is used.  If the viscous
shear stress, , and the shear rate are linearly related by

 = -  du/dr > 0 (9-3-1a)

where  is the viscosity, a constant or temperature dependent quantity, then two
simple relationships can be derived for pipe flow.

r

Note, du/dr < 0

u(r) > 0

Figure 9-3-1.  Axisymmetric pipe flow.

Let p > 0 be the (positive) pressure drop over a pipe of length L, and R be
the inner radius of the pipe.  Then, the radial velocity distribution satisfies

u(r) = [p /(4 L)] (R2 – r2) > 0   (9-3-1b)
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Note that u is constrained by a “no-slip” velocity condition at r = R.  If the
product of “u(r)” and the infinitesimal ring area “2r dr” is integrated over (0,R),
we obtain the volumetric flow rate expressed by

Q = R4p /(8 L) > 0 (9-3-1c)

Equation 9-3-1c is the well-known Hagen-Poiseuille formula for flow in a
pipe.  These solutions do not include unsteadiness or compressibility.  These
results are exact relationships derived from the Navier-Stokes equations, which
govern viscous flows when the stress-strain relationships take the linear form in
Equation 9-3-1a.  We emphasize that the Navier-Stokes equations apply to
Newtonian flows only, and not to more general rheological models.

Note that viscous stress (and the wall value w) can be calculated from
Equation 9-3-1a, but the following formulas can also be used,

 (r) = r p/2L > 0 (9-3-2a)

w = R p/2L > 0 (9-3-2b)

Equations 9-3-2a,b apply generally to steady laminar flows in circular pipes, and
importantly, whether the rheology is Newtonian or not.  But they do not apply to
ducts with other cross-sections, nor to annular flows, even concentric ones,
whatever the fluid.

Bingham plastic pipe flow.  Bingham plastics satisfy a slightly modified
constitutive relationship, usually written in the form,

 = 0 -  du/dr (9-3-3a)

where 0 represents the yield stress of the fluid.  In other words, fluid motion
will not initiate until stresses exceed yield; in a moving fluid, a “plug flow”
moving as a solid body is always found below a “plug radius” defined by

Rp = 20 L /p (9-3-3b)

The “if-then” nature of this model renders it nonlinear, despite the (misleading)
linear appearance in Equation 9-3-3a.  Fortunately, simple solutions are known,

u(r) = (1 /) [{p /(4L)} (R2 – r2) – 0 (R – r)], Rp  r  R  (9-3-3c)

u(r) = (1 /) [{p /(4L)} (R2 – Rp
2) – 0 (R – Rp)], 0  r  Rp (9-3-3d)

Q/(R3) =  w /(4)] [1 – 4/3 (0 /w) + 1/3 (0 /w) 
4 ]   (9-3-3e)

Power law fluids in pipe flow.  Power law fluids without yield stress
satisfy Equation 9-3-4a, and the rate solutions in Equations 9-3-4b,c.

 = K ( - du/dr) 
n    (9-3-4a)

u(r) = (p/2KL) 
1/n

 [n/(n+1)] ( R 
(n+1)/n - r 

(n+1)/n ) (9-3-4b)

Q/(R3) = [Rp/(2KL)] 
1/n

 n/(3n+1)       (9-3-4c)
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Newtonian, parabolic profile

Power law, n = 0.5

Power law, n >> 1

Bingham plastic, plug zone

Figure 9-3-2.  Typical non-Newtonian velocity profiles.

Herschel-Bulkley pipe flow model.  This model combines Power law
with yield stress characteristics, with the result that,

 = 0 + K ( - du/dr) 
n    (9-3-5a)

u(r) = K 
-1/n

 (p/2L) 
-1

 {n/(n+1)} (9-3-5b)

[(Rp/2L  - 0) 
(n+1)/n - (rp/2L  - 0) 

(n+1)/n], Rp  r  R

u(r) = K 
-1/n

 (p/2L) 
-1

 {n/(n+1)} (9-3-5c)

[(Rp/2L  - 0) 
(n+1)/n - (Rpp/2L  - 0) 

(n+1)/n], 0  r  Rp

Q/(R3) = K 
-1/n

 (Rp/2L) 
-3

 (Rp/2L  - 0) 
(n+1)/n  (9-3-5d)

 [(Rp/2L  - 0)
2

 n /(3n+1) + 2 0 (Rp/2L - 0) n /(2n+1) + 0
2

 n/(n+1)]

where the plug radius Rp is again defined by Equation 9-3-3b.
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Ellis fluids in pipe flow.  Ellis fluids satisfy a more complicated
constitutive relationship, with the following known results,

 = - du/dr /(A + B
) (9-3-6a)

u(r) = A p (R2 – r2)/(4L) + B(p/2L) 
 ( R 

 - r 
)/( + 1) (9-3-6b)

Q/(R3) = Aw /4 + Bw


 /(+3) (9-3-6c)

= A(Rp/2L)  /4 + B(Rp/2L) 


 /(+3)

Dozens of additional rheological models appear in the literature, but the most
common ones used in petroleum engineering are those given here.  Typical
qualitative features of the associated velocity profiles are shown in Figure 9-3-2.

Annular flow solutions.  We next discuss annular flow solutions.  As
noted earlier in this book, annular flow solutions that are useful in petroleum
engineering are lacking.  The only known exact, closed form, analytical solution
is a classic one describing Newtonian flow in a concentric annulus.  Let R be the
outer radius, and R be the inner radius, so that 0 <  < 1.  Then, it can be
shown that,

u(r) = [R2p /(4L)]

[ 1 - (r/R)2 + (1- 2 ) loge (r/R) / loge (1/) ]   (9-3-7a)

Q = [R4p /(8L)] [ 1 - 4 - (1- 2 )2  / loge (1/) ] (9-3-7b)

For non-Newtonian flows, even for concentric geometries, numerical procedures
are required, e.g., see Fredrickson and Bird (1958), Bird, Stewart, and Lightfoot
(1960), or Skelland (1967).

Analytically based  treatments for eccentric annuli formed from circles are
available through bipolar coordinate formulations.  These are ultimately
numerical in nature and require significant amounts of algebra in their
development.  Because the methods are limited to circles, and not generalizable
to practical geometries with cuttings beds, washouts, and other borehole
anomalies, they are not discussed in this book.

The mappings we have developed, we emphasize, can and have been
extended to three-dimensional applications that allow changes of cross-sectional
geometry along the borehole.  Moreover, the effects of multiphase flow with
diffusive mixing have been incorporated in the author’s models.  Recent
publications describing these specialized efforts appear in Savery, Darby, and
Chin (2007); Deawwanich, Liew, Nguyen, Savery, Tonmukayakul, and Chin
(2008); Nguyen, Deawwanich, Tonmukayakul, Savery, and Chin (2008);
Savery, Chin, and Babu Yerubandi (2008); and Savery, Tonmukayakul, Chin,
Deawwanich, Liew, and Nguyen (2008).  We note that the algorithms developed
in this book are faster and more stable than the models just referenced,
particularly in handling spatial derivatives of apparent viscosity and the coupling
of rotating flows to axial effects.  We next review the eccentric annular flow
capabilities with respect to their use in total pressure drop in Discussion 9-2.
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Review of steady eccentric flow models.  As noted, models do not
presently exist for non-Newtonian yield stress fluids in arbitrary eccentric
annuli, either for steady or transient flow, with or without pipe rotation, except
for those developed in this book.  Only those software models that are fast and
numerically stable are discussed and offered for general dissemination. We take
this opportunity to summarize these methods now because Discussion 9-2
importantly describes the roles played by our steady-state “building block”
modules.  From that discussion, we noted how the pressure profile in the
drillpipe and borehole system (as a function of time) requires computations that
look something like “(100 – 80) (P/z)pipe,0 + (80 – 75) (P/z)pipe,1 + (75 – 65)
(P/z)pipe,2 + (65-50) (P/z)pipe,3 + (50 – 30) (P/z)pipe,4 + (30 – 0) (P/z)pipe,5

+  + (100 – 0) (P/z)annulus,0,” where pipe flow equations are succinctly given
above and the annular pressure drops require our sophisticated computational
modeling tools.

Figure 9-3-3.  MPD Flow Simulator, “Steady 2D.”

First, we emphasize the importance of our steady flow simulator, whose
user interface is shown in Figure 9-3-3.  This computes all flow properties for
eccentric non-rotating annular flows (allowing washouts, cuttings beds and other
geometric anomalies), assuming general Herschel-Bulkley fluids, importantly in
the “volumetric flow rate specified” mode in which the required pressure
gradients are automatically calculated without user intervention.  Here, the size
and shape of all plug zones are calculated naturally using an extended Herschel-
Bulkley model.  The model includes borehole radius of curvature effects, should
Figure 9-2-1 incorporate turns from vertical to horizontal.
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Figure 9-3-4.  MPD Flow Simulator, “Steady 2D” utilities.

Our steady two-dimensional simulator also includes analytical solutions for
concentric annuli, as shown in Figure 9-3-4.  These are “Newtonian, non-
rotating, axial pipe motion,” “Herschel-Bulkley, no rotation or pipe movement,”
and “Power law, rotating, no axial pipe movement.”   For eccentric flows, when
detailed spatial plots for physical properties are not required, the fast mode
shown in Figure 9-3-5 gives numerous pressure gradient results in one or two
minutes of computing time.  Our steady 2D eccentric solver assumes zero pipe
rotation.

Figure 9-3-5.  Rapid calculation of multiple flow solutions.
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Figure 9-3-6.  “Transient 2D” solver.

As noted elsewhere in this book, the computation of steady flows with pipe
rotation within the framework of a purely steady formulation is an unstable
numerical process at the present time.  This is not to say that steady flows with
rotation cannot be computed.  They can, as indicated in Figure 9-3-6, provided
we treat the unsteady problem and carry out our computations for large times
until steady conditions are reached. This often requires one minute or less for
fluids with low specific gravity, and sometimes, as many as three minutes for
heavy weight muds or cements.  Figure 9-3-6 shows how steady-state pressure
gradients can be obtained for given flow rates.  Once the target flow rate is
given, the search for the required pressure gradient may take several intelligent
guesses.  In closing, we have summarized all of the methods we have devised to
obtain pressure gradients when target flow rates are specified.
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Discussion 9-4.  Herschel-Bulkley pipe flow analysis.

As noted, the calculation of pressure at the drillbit (in the formation) and
pressure along the borehole is completely determined by the distribution of
pressure gradient in the hole and the value of pressure at the surface choke.  If,
however, the pressure needed at the mud pump to support the flow is required,
also needed are the pressure loss through the drillbit as well as the pressure drop
in the drillpipe.  For non-rotating pipe flow, exact, closed form, circular pipe
flow solutions for radial velocity distribution and total volumetric flow rate are
available for Herschel-Bulkley fluids from Equations 9-3-5a,b,c,d.  Thus, the
same properties for the subsets including Newtonian, Power law and Bingham
plastic fluids are also available.

The general mathematical solution has been incorporated into two software
programs for convenience.  The first, shown in Figure 9-4-1a, solves the
Equation 9-3-5d for pressure gradient when the flow rate is given.  Note that this
represents a nonlinear algebraic equation for the unknown.  The example given
here applies to a 10 cp Newtonian fluid.  For the parameters shown, the required
pressure gradient is about – 0.001 psi/ft.  In Figure 9-4-1b, we introduce yield
stress to this fluid, so that it now acts as a Bingham plastic.  We expect that the
pressure gradient should steepen becausee there is greater difficulty in moving
the fluid.  In fact, the pressure gradient is now about – 0.015 psi/ft.  Finally, in
Figure 9-4-1c, we change the fluid exponent from 1.0 to 0.8, so that the fluid is
now of a Herschel-Bulkley type.  In this case, the pressure gradient is obtained
as – 0.014 psi/ft.  It is interesting how the presence of yield stress introduces
large changes to pressure gradient over Newtonian flows.

Figure 9-4-1a.  Newtonian fluid, flow rate given.
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Figure 9-4-1b.  Bingham plastic, flow rate given.

Figure 9-4-1c.  Herschel-Bulkley fluid, flow rate given.

In Figure 9-4-2a, we demonstrate our second use of Equations 9-3-5a,b,c,d,
namely, computing total flow rate and radial velocity distribution for any
Herschel-Bulkley fluid.  Here, a Newtonian fluid is assumed, and the classic
paraboloidal velocity profile is obtained.  In Figure 9-4-2b, we illustrate this
capability with a Herschel-Bulkley fluid.  The graph clearly indicates the
presence of a plug zone.  The plug radius is also given in the output.
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Figure 9-4-2a.  Newtonian fluid, pressure gradient given.

Figure 9-4-2b.  Herschel-Bulkley fluid, pressure gradient fluid given.
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Discussion 9-5.  Transient, three-dimensional, eccentric
multiphase flow analysis for non-rotating Newtonian fluids.

Here we introduce multiphase flow computations for a special limit of the
general problem, one assuming Newtonian mixtures in concentric or eccentric
annuli (with possible cross-sectional changes in the axial direction), however,
without pipe or casing rotation.  Later, we remove our Newtonian, non-rotating
flow restrictions and consider general non-Newtonian fluids in eccentric annuli
with steady pipe rotation.  Software for the present limit was developed because
the solution process could be automated and Newtonian applications do exist.
But our purposes are two-fold: first, to illustrate basic flow concepts, and
second, to demonstrate that our formulation, solution and software foundation
for subsequent development are sound and correct.

Example 1.  We first show that our exact, steady, concentric Newtonian
flow solution and the transient numerical model under consideration are
consistent in the concentric single-phase flow limit.  This is intended to validate
the software architecture, which is complicated and which forms the basis for
other models.  The simulator for our exact solution is launched from the earlier
”Steady 2D” menu in Figure 9-5-1, leading to the applications program in
Figure 9-5-2.  Note how the assumed parameters yield a flow rate of 947.1 gpm.

Figure 9-5-1.  General “Steady 2D” menu.

Figure 9-5-2.  Exact two-dimensional Newtonian flow solution.
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Next, we launch the “Transient 3D, Multiphase, Newtonian, Non-
Rotating” flow simulator in Figure 9-5-3.  For multiphase problems, it is not
meaningful to specify pressure gradients as in single-phase calculations; these
gradients vary with space and time as local fluids mix and it is impossible to
state clearly what they are.  One is therefore forced to specify total flow rate, at
least approximately, and this specification must be used when dealing with
multiphase applications.  Our simulator operates in a “specify flow rate” mode.

In order to be completely consistent with Figure 9-5-2, we assume a 1 cp
viscosity for both “left” and “right” fluids, zero pipe speed, plus identical
geometries.  We also assume identical small specific gravities; low mechanical
inertias allow larger time steps and reduce integration times needed for
convergence.  Internal to the software, C = 0 means left properties, i.e., left and
left, while C = 1 means right; since left and right properties are identical, the
choice Cleft = Cright = 1 ensures that C = 1 continuously throughout and the fluid
is homogeneous.  Note that, in Figure 9-5-3, we have entered 947.1 as the target
flow rate.  Once numerical integrations begin, the imposed motion must
overcome “nonuniformities” associated with the uniform (unsheared) flow used
to initialize the calculation, plus, of course, the effects of inertia.  After some
time, the calculations converge, e.g., Figure 9-5-4 gives a flow rate of 949.1
gpm for an error of 0.2 percent.  For the 10,000 time steps shown, the computing
time is about five minutes for this three-dimensional run.  We have used the
transient, three-dimensional, two-phase flow solver to reproduce an exact
steady, two-dimensional, single-phase flow result. In general, single phase flows
can be calculated this way, although this is obviously sub-optimal.  However,
the example was designed to show that the numerical model is basically correct.

Figure 9-5-3.  Consistent transient simulation parameters.
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Figure 9-5-4.  Example 1, smoothly convergent flow rate history.

Transient flow subtleties.  Again, we remind the reader of certain
difficulties encountered in transient flow modeling.  In steady flow analysis,
whether concentric or eccentric, computations for flow rate (when pressure
gradients are given) are very rapid and vice-versa.  For linear Newtonian flows,
these are especially fast.  If (P/z)1 corresponding to Q1 is known from just one
eccentric or concentric calculation or experiment, then the identity (P/z)2/Q2 =
(P/z)1/Q1 allows us to immediately obtain (P/z)2 when Q2 is given or Q2

when (P/z)2 is given.  For non-Newtonian flows, the nonlinearity of the
pressure gradient and flow rate relationship disallows this simple rescaling.
However, the “Specify volumetric flow rate” option in Figure 9-5-1 does use a
rapidly convergent half-step method to guess the pressure gradient
corresponding to a target flow rate to within 1 percent accuracy.

In transient calculations, one can in principle specify total volumetric flow
rate at each instant in time. However, to achieve the required solution, numerous
trial and error attempts using different pressure gradients will have to be made at
each time step.  When this is repeated for the entire range of time integration,
the computations needed are voluminous and require hours or overnight runs.
This is particularly unacceptable if, say during the calculations, instabilities are
encountered – then, all of the numerical effort expended will be wasted.  Thus,
we ask if there is an acceptable compromise, that is, “Is there an approximate
pressure gradient we can use in a constant flow rate process?”
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For Newtonian, non-rotating flows, the answer is “Yes.”  We recall from
our theoretical discussion for steady single-phase flow that volumetric flow rate
is directly proportional to the pressure gradient P/z and inversely related to the
viscosity .  If “1” and “2” now denote two positions along the three-
dimensional channel (at a fixed instant in time) without area changes, then
constancy of flow rate implies that (P/z)1/1 = (P/z)2/2.  Suppose that the
volumetric flow rate at the (left) inlet and the starting viscosity are specified.
Then, the pressure gradient required for the eccentric Newtonian flow can be
obtained from the “Steady 2D” solver in Figure 9-5-1.  As the fluid at the inlet
flows downstream, it mixes with “right” fluid and local concentrations will
change.  The underlying viscosity will consequently change, in a manner
consistent with an assumed mixing relationship (taken, again, as the Todd-
Longstaff law).  If the local viscosity is now 2, then the corresponding pressure
gradient is (P/z)2 = (P/z)12 /1, showing correctly, for instance, that an
increase in viscosity will require an increase in pressure gradient.  This
procedure has been programmed into the solver of Figure 9-5-3 – there is no
need to operate the simulator in Figure 9-5-1 because the procedure has been
completely automated.  Again, starting pressure gradients are obtained from
inlet conditions and local values are obtained by concentration-dependent
rescaling.  This automation is only convenient for Newtonian mixtures where
there is no pipe rotation – the “(P/z)1/1 = (P/z)2/2” law does not apply to
eccentric problems with rotation, although it remains valid for concentric
rotating flow because axial and azimuthal modes decouple.  For more
complicated problems, a more complete approach applies, with different degrees
of complexity depending on the nature of the underlying flow.  The general
problem will be considered in a separate discussion.

Figure 9-5-5.  Example 2 calculation.
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Figure 9-5-6.  Example 3 calculation.

Examples 2 and 3.   For our second calculation, we repeat the above
simulation except that we double the inlet-outlet viscosity and density ratios as
shown in Figure 9-5-5.  Note that, in order to track two different phases, the
concentrations at the inlet and outlet are set to 0 and 1, respectively.  The
calculation yields almost identical flow rates and flow rate history curves.
Why?  This occurs because, in Newtonian mixtures, the ratio of density to
viscosity controls the dynamics and not either parameter alone; there is,
however, an effect associated with the ratio of density to diffusion coefficient,
which need not always be small.  Thus, the effects of the doubling almost
cancel.  In our third simulation, we set our inlet-outlet viscosity and density
ratios to 5 and 2, respectively.  Figure 9-5-6 shows that the volumetric flow rate
history changes somewhat, with the predominant effect being the time required
to reach equilibrium.

Detailed description of the simulator appears in Discussion 9-6.  The
reader should study the description since many of its software features are
shared by the more general solver introduced in Discussion 9-7.  This
discussion, “Transient, 3D, eccentric multiphase analysis for general rotating
non-Newtonian fluids – simulator description,” deals with real two-phase flows
in which the mixing of non-Newtonian fluids, in the presence of rotation, is
addressed.  Mixing is controlled by numerous factors: convection, diffusion,
annular geometry, rheology, flow rate, and initial conditions.  This complexity
means that general conclusions are difficult to formulate and that each flow
solution must be interpreted on a case-by-case basis.  Predictions should be
substantiated by laboratory experiment and field data whenever possible.
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Discussion 9-6.  Transient, 3D, eccentric multiphase analysis
for non-rotating Newtonian fluids – simulator description.

Here we describe in detail the operation of our “Transient 3D, Multiphase,
Newtonian, Non-Rotating” flow simulator in Figure 9-6-1.  Again, this stand-
alone module was developed because the model could be rigorously formulated
and fully automated – it is also, of course, useful as a planning tool in itself.  We
emphasize that the module applies to highly eccentric annuli and does allow
limited cross-sectional geometric modification along borehole axis.  Many of the
user features described here are also incorporated in our more general
multiphase solver for non-Newtonian rotating flow.  The upper left text boxes of
Figure 9-6-1 host the annulus definition function common to all of our
simulators, with “Create Grid” displaying the curvilinear grid chosen to host the
eccentric annulus at run time – this feature provides needed error checking to
ensure that circles do not cross over.  Clicking “Create Grid,” in this case, leads
to Figure 9-6-2.  The “Conventions” button provides explanations on azimuthal
grid numbering conventions needed to select cross-section plots for run-time
interactive displays and movies.

Figure 9-6-1.  Basic user interface with default parameters.
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Figure 9-6-2.  Curvilinear grid used in present example.

Our annular fluid flows from left to right, with the inlet at the left and the
outlet at the right.  Fluid properties are inputted in the lower left menu.  We have
selected default run inputs that will provide a good “fast start” user experience –
simply uncheck the “Interactive Display” box, click “Simulate,” and allow the
simulation to run to completion (This process that requires less than one
minute.), and finally, click “Movie.”  A movie showing computed results, e.g.,
see Figure 9-6-12, automatically launches, showing the evolution of the
convection and mixing process.  The inputs in Figure 9-6-1 show a heavier,
more viscous fluid as the displacing fluid.  The diffusion coefficient used is
unusually large, only to provide viewable results (such as those in Figure 9-6-
12), because the graphical displays used at the present time are capable of
providing twelve colors only.  For actual use, diffusion coefficients available in
the environmental or chemical engineering literature should be entered, or those
obtained in laboratory studies.  Detailed numbers are outputted for plotting using
commercial software, and the manner in which these are accessed is described
later.

Figure 9-6-3.  Curvilinear grid for main eccentric annulus created.

Figure 9-6-4.  Starting pressure gradient computed using “Steady 2D” solver.
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Once the annular geometry and run-time inputs are entered, clicking
“Simulate” leads to the status box shown in Figure 9-6-3, indicating that the
main curvilinear grid for the eccentric annulus just inputted has been computed.
Clicking “Yes” prompts the simulator to solve (using the grid just created) a
steady, two-dimensional “Specify volumetric flow rate” problem for the inlet
conditions and target low rate prescribed, a process that requires up to 2-3
seconds.  When this is completed, the status box in Figure 9-6-4 appears.
Clicking “Yes” leads to the query in Figure 9-6-5.  If this query is answered
affirmatively, the sub-menu and message box in Figure 9-6-6 appears.  This
allows the user to redefine a portion of the main annulus, whose axial index “i”
for the spatial coordinate zi varies from 1 to 90.  For the example shown, the
main grid parameters repeated in Figure 9-6-5 are altered so that they are
replaced by the concentric annulus in Figure 9-6-7.  Clicking “Apply” leads to
the display in Figure 9-6-8.  For the present example, we repeat our steps but do
not alter the main annulus – while the numerical engine is presently set up the
correctly calculate the effects of this change, the graphical displays are still
being developed at this time (The annulus modification feature is usable except
for this graphical limitation.).

Figure 9-6-5.  Option to alter annulus for limited axial extent.

Figure 9-6-6.  Perturbation annulus definition.
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Figure 9-6-7.  Concentric annulus defined in 45 < I < 55.

Figure 9-6-8.  Concentric annulus re-definition.

We next explain the gridding system used.  Axial zi grid control is
provided for in the central portion of the menu in Figure 9-6-1 (cross-sectional
grid densities are hardcoded as suggested Figures 9-6-2 and 9-6-8).  The main
grid is indexed from i = 1 at the inlet to i = 90 at the outlet, again, with the flow
moving from the left inlet to the right outlet.  Initially, two fluids are permitted,
the left with a concentration C = 0 and the right with C = 1.  The initial (flat)
interface is assumed at i = iface entered by the user.  The finest z mesh length, or
“Minimum DZ grid,” is centered at this initial interface location and is defined
by the user.  The mesh amplification rate, or “DZ growth rate,” is a number that
equals or exceeds one.  A geometrically varying mesh is generated internally
and used together with our curvilinear cross-sectional grid to provide three-
dimensional simulation capabilities.  If we had chosen to modify the main
annular geometry, the cross-sectional metrics would have been automatically
changed internally.  While the gridding and display options presented here are
somewhat awkward, we note that users with more computing resources have
extended the algorithm and developed their own gridding and display
capabilities.  In one case, a fully three-dimensional grid was created which
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varied continuously in the z direction and which could be updated in real-time
with borehole caliper measurements.  Users interested in such capabilities
should discuss their needs with the developers.  Also note that, while we have
discussed the initial condition for two phases, it is also straightforward to
perform single-phase flow studies, i.e., if there is an interest in modeling single-
phase flow in an annulus with internal cross-sectional changes as noted above.
In this case, the left and right concentrations can be set entirely to 0 or to 1, and
solutions to the concentration equations will be entirely 0 or 1 (thus suppressing
any internal variations to fluid properties).  The time step shown in Figure 9-6-1
is large.  Generally speaking, it needs to be much smaller to provide the needed
physical resolution.  These steps are constant during the simulation.  The total
time simulated is simply the product of “time step” and “number of steps.”

Figure 9-6-9.  Simulation to commence.

Having made preliminary comments, we continue the simulation process.
The final status box in Figure 9-6-9 appears.  If interactive displays are desired,
the box in “Interactive Display” should be checked.  Because our fully three-
dimensional simulators at the present time do not allow true three-dimensional
color displays, we offer the limited options available in the option box.  First, we
can display fluid properties in any single azimuthal “m = constant” plane (click
“Conventions” for definitions).  And second, we can give cross-sectional plots at
any single “i = constant” location.  Users with special requirements can contact
the developers for source code access or other support.  If the interactive display
box is not checked, a simple status box showing time and “percent complete”
appears on screen.  Upon run termination, all results are written to text output
files and movie displays for the time evolution of axial velocity, and
concentration-dependent viscosity and fluid density are available.  If interactive
displays are required at periodic user-defined intervals, multiple screens appear,
the first being that shown in Figure 9-6-10.  All three diagrams have flow
moving downward.  The left diagram, here for “m = 19,” gives the axial
velocity.  Blue represents low (zero) speeds at the pipe and annular surfaces,
while the uniform red display indicates a high uniform velocity in the annular
space.  The middle and right diagrams show displacement of one fluid by a
second, starting near “i = 10.”  These are accompanied by velocity plots in
Figure 9-6-11.  Closing these windows allows the simulation to continue.
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Figure 9-6-10.  Axial velocity, viscosity and density at m = 19.

Figure 9-6-11.  Velocity graph and cross-section plot in background.

Plots like those in Figure 9-6-10 are automatically generated internally
(whether or not interactive displays are selected) and are assembled to create
movies available for user access by clicking “Movie.”  Example frames are
shown in Figure 9-6-12.  The complete output menu is shown in Figure 9-6-13.
The buttons labeled “Axial Velocity,” “Azimuthal Velocity,” “Concentration,”
“Viscosity,” “Density” and “Reynolds Number” provide spreadsheet style
numerical output for the respective quantities (Azimuthal velocities are
identically zero for the present Newtonian flow simulator, but generally need not
be.).  Figure 9-6-14 shows numerical output in the case of concentrations, for
azimuthal location m = 19, where the axial index “i” varies from 1 to 90 and the
radial-like index varies from 1 at the pipe surface to 11 at the annular wall.
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Figure 9-6-12.  Movie frames at different times showing mixing.
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Figure 9-6-13.  Output menu.

Figure 9-6-14.  Tabulated numerical output (for concentration shown).
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Discussion 9-7.  Transient, 3D, eccentric multiphase analysis
for general rotating non-Newtonian fluids – simulator description.

Here, we give a brief qualitative description for the transient, three-
dimensional, multiphase flow model considered in this book.  Again, general
rheologies are permitted, together with highly eccentric borehole annular cross-
sections.  Figure 9-7-1 illustrates the rotating flow problem considered here, but
for simplicity, displays only two contiguous non-Newtonian fluids.  At the top,
we have an initial condition in which a flat fluid interface is located arbitrarily in
the flow domain.  The situation shown at the bottom is a diffused interface, not
necessarily planar nor uniform in thickness, encountered at a later instant in
time.  Our objective, of course, is to model the dynamics of this problem.

Upipe

Zinterface
Z



Fluidleft

Z Zinterface

Fluidright

PZright from steady
or transient 2D solvers
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or transient 2D solvers

Upipe



Diffusion zone

UZright = 0UZleft = 0

Cleft = 1 Cright = 0

t = 0

t > 0

Q(t) > 0

Figure 9-7-1.  Mathematical problem formulation.

The work in the remainder of this chapter demonstrates how transient,
three-dimensional, multiphase flow fields can be obtained computationally.
Figures 9-7-2a,b illustrate, for instance, “movies” (with time increasing
downward) in which a purely eccentric annulus which does not vary axially is
considered followed by a mixed geometry having concentric and eccentric
sections.  These movies can be accessed from the “Start” menu for the
“Transient 3D multiphase” solver shown in Figure 1-4b.
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Figure 9-7-2a.  Purely eccentric annulus.

Figure 9-7-2b.  Mixed concentric-eccentric flow.

Note:  The above plots were created using Tecplot 360TM software described in the company website
at www.tecplot.com.
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Discussion 9-8.  Transient, 3D, eccentric, multiphase analysis
for general rotating non-Newtonian fluids with axial pipe movement

– Validation runs for completely stationary pipe.

Here, we will start with simple examples and graduate to more complicated
ones, demonstrating first, that the three-dimensional algorithm is correct.

Figure 9-8-1a.  General “Transient 3D Multiphase” menu.

Validation 1 – Concentric, single-phase Newtonian flow.  In this
example, we wish to demonstrate that our transient, three-dimensional simulator
is correct in a limit where an exact solution is available.  In particular, we refer
to the concentric Newtonian flow solver in Figure 9-8-1d.  For the parameters
shown, the exact volumetric flow rate given in the bottom shaded box is 947.1
gpm.  We ask,, “Can we solve a transient, three-dimensional problem for a long
annulus with the same cross-section and obtain the above flow rate in the steady
asymptotic limit?”  To answer this question, we select the simulation option
indicated in Figure 9-8-1a.  This launches two screens, the main module in
Figure 9-8-1b and the pump schedule and fluid properties menu in Figure 9-8-
1c.  In Figure 9-8-1c, we have populated both inlet and outlet boxes with
Newtonian fluid parameters consistent with Figure 9-8-1d and assumed a
pressure gradient of – 0.0001 psi/ft. everywhere.  A low value of specific gravity
is used to minimize mechanical inertia so that convergence to steady state can be
accelerated (Larger values will yield the same answers except that they require
greater computing.).  It is important next to click “Save.”  In the simulator of
Figure 9-8-1b, we have entered the foregoing concentric geometry and assumed
suitable computational parameters noting, in particular, a somewhat large time
step size of 0.5 sec.  Clicking “Simulate” leads to a picture of the assumed
annulus and grid Figure 9-8-1e, provided for error checking, and the set-up
menus in Figure 9-8-1f.  Intermediate results (as requested in Figure 9-8-1b) are
displayed in Figure 9-8-1g.  Similar results appear at periodic intervals in
simulations and we will not duplicate them.  On completion of the simulation,
the volumetric flow rate versus time history is given as shown in Figure 9-8-1h,
and a final value of 927.6 gpm is calculated.  This is to be compared with the
exact value of 947.1 gpm, and it is seen that the two simulators are consistent to
within an acceptable 2 percent error.  Of course, solving a steady, two-
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dimensional problem with an unsteady, three-dimensional solver is not an
efficient use of computing resources.  Our only purpose here is in validating the
three-dimensional code logic which, as we have explained, involves a great deal
of subtlety.  The ultimate purpose is adaptation of the software platform to
handle problems that are truly transient and three-dimensional, namely, those
which involve convection and diffusive mixing.

Figure 9-8-1b.  Main simulation menu.

Figure 9-8-1c.  Pump schedule and fluid properties definition.
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Figure 9-8-1d.  Exact concentric Newtonian solution.

Figure 9-8-1e.  Geometry displayed for error checking.

Figure 9-8-1f.  Set-up menu status.
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Figure 9-8-1g. Intermediate axial velocity displays requested by user,
cross-section color plot and line plot at given azimuthal station.

Figure 9-8-1h.  Volumetric flow rate history at end of simulation.
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Validation 2 – Concentric, two-phase Newtonian flow.  In this example,
we extend our discussion of Validation 1 and ask how the previous setup can be
modified to handle the displacement of a thin fluid by a thicker one.  For
illustrative purposes, let us assume that the displaced (right) fluid is identical to
the one treated in the earlier example, while the displacing fluid is ten times
more viscous.  While we can certainly use the calculator in Figure 9-8-1d, we
need not do so.  For Newtonian fluids, which satisfy linear pressure gradient and
flow rate relationships, we need to simply enter the increased inlet viscosity and
pressure gradient as indicated in Figure 9-8-2a.  The corresponding simulation
menu is shown in Figure 9-8-2b.  Use of the 0.5 sec. time step in Validation 1
will lead to computational instabilities.  Thus, a smaller 0.05 sec. is taken for
this example; nonetheless, total computing time is just seconds.  In Figure 9-8-
2c, we importantly find that the specification of discontinuous pressure gradients
within the field of flow (where the interface is moving) leads to stable
computations and to the identical 927.6 gpm obtained earlier.  However, the
intermediate results are of greater interest.  Figures 9-8-2d,e show results at time
steps 150 and 300, while in Figure 9-8-2f we re-ran the simulation to 2,000 time
steps (requiring about one minute of computing).  These plots show the velocity
and viscosity mixing thickness.

Figure 9-8-2a.  Viscosity and pressure gradient increased ten-fold.
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Figure 9-8-2b.  Simulation menu, with reduced time step,
note displays selected at azimuthal station m = 19 and axial location i = 10.

Figure 9-8-2c.  Volumetric flow rate history.



Transient 3D Multiphase Pipe and Annular Flow     383

Figure 9-8-2d.  Result at 150 time steps.

Figure 9-8-2e.  Result at 300 time steps.

Figure 9-8-2f.  Result at 2,000 time steps (requiring one minute)
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Validation 3 – Concentric, single-phase Herschel-Bulkley flow.  Here,
we repeat the example of Validation 1, except that instead of a Newtonian fluid,
we consider a Herschel-Bulkley fluid with non-vanishing yield stress.  Checking
the “Herschel-Bulkley” box in the “Pump Schedule” menu automatically
launches our exact solver for concentric, non-rotating, Herschel-Bulkley flow.
In fact, we run this solver with the inputs and results shown in Figure 9-8-3a
noting, in particular, the 471.9 gpm computed for this problem.  The
corresponding transient, three-dimensional calculation is performed in Figure 9-
8-3b, in which a steady flow rate of about 487 gpm is shown, for a modest 3
percent error.  Again, we have obtained an exact solution using our three-
dimensional computational logic and demonstrated its correctness.  We do
emphasize that in all of our yield stress work, our “extended Herschel-Bulkley”
model is not the same as the “conventional Herschel-Bulkley” offered in the
literature since a smooth (but rapid) transition from sheared to plug flows is
allowed.  Thus, agreement will not always be found and discrepancies can be
significant for “small n” flows.  This, we emphasize, is to be expected.

Figure 9-8-3a.  Exact, steady, two-dimensional Herschel-Bulkley solution.
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Figure 9-8-3b.  Transient, three-dimensional flow.

Validation 4 – Concentric, two-phase Herschel-Bulkley flow.  Here we
repeat Validation 2 except that extended Herschel-Bulkley flow is considered.
In fact, we will displace water with the Herschel-Bulkley fluid analyzed
previously.  In Figure 9-8-4a, we run our exact, two-dimensional, concentric
model for Newtonian flow in the annulus shown to give a flow rate of 471.5
gpm.  As evident from the line plot, the transient, three-dimensional solver leads
to the same flow rate as required (actually, it is 462 gpm, for an error of less
than 2 percent). In Figure 9-8-4b, we have set up the problem so that our thick
Herschel-Bulkley fluid is displacing water at the 472 gpm flow rate (An actual
rate of 486 gpm is successfully obtained, for an error of less than 3 percent,
again noting that our extended Herschel-Bulkley model is not the conventional
one.). Of interest is the mixing result obtained at the end of the calculations,
shown in Figure 9-8-4c.  Computation times in both three-dimensional runs are
less than one minute.

Figure 9-8-4a.  Newtonian flow validation (exact steady solution).
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Figure 9-8-4a.  Newtonian flow validation, continued.

Figure 9-8-4b.  Displacement calculation setup.
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Figure 9-8-4c.  Mixing solutions for axial velocity, viscosity and density.

Validation 5 – Eccentric, single and multiphase, non-Newtonian flow.
Here we consider the challenging problem dealing with transient displacement
and convective-diffusive mixing of Herschel-Bulkley fluids in highly eccentric
three-dimensional annuli.  We also address some subtleties of the formulations
employed in this book and deal with practical simulation ideas.  These
discussions are given to promote well considered, and not blind, use of our
simulation models.  We will discuss the issues as they arise in the simulations.

First we examine the eccentric annulus defined in Figure 9-8-5a.  Here, the
“Steady 2D” simulator is operated in “Volumetric flow rate specified” mode
with a target flow rate of 500 gpm.  The result of the iterative calculation gives a
pressure gradient of – 0.002881 psi/ft.  The computed velocity field and
curvilinear grid used are shown in Figure 9-8-5b.

Figure 9-8-5a.  “Steady 2D” menu calculation with target 500 gpm flow rate.
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Figure 9-8-5b.  Computed velocity field and curvilinear grid used.

Next, we run our transient, three-dimensional, non-Newtonian flow
simulator with the – 0.002881 psi/ft. gradient specified throughout, as shown in
Figure 9-8-5c below, in order to replicate results consistent with Figure 9-8-5b.
However, the line graph shows an asymptotic flow rate of 430 gpm and not the
500 gpm assumed previously.  What happened?  What is the simulation doing?
Are there errors in the formulation?

Figure 9-8-5c.  The “wrong” answer (subject to explanation given).

Fortunately, the result is not incorrect – in order to understand the boxed
entries, it is important to understand the underlying algorithm.  The “500” in
Figure 9-8-5c is not, in any sense, a boundary condition: it is only used to
provide starting velocities to initialize the time integration – its effect dampens
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out with time and, in fact, one could have taken “1234” and the steady flow rate
computed would be the same.  The driving terms of dynamical significance
insofar as the differential equations are concerned are the applied pressure
gradients.  Then, one might ask why the “ – 0.002881 psi/ft” did not lead to 500
gpm.  The reason lies in the formulations used.  In “Steady 2D,” the
computations are exact in the sense that the variable apparent viscosity function
N(x,y,x), and all of its spatial derivatives are included.  In “Transient 3D” this is
not the case.  While N(x,y,z) itself is included, its derivatives are not; this
approximation is consistent with the use of Landau’s ad hoc concentration
model.  The approach is not unlike the use of significant digits in data
interpretation, e.g., there is no reason to keep three decimal place accuracy if
some effects are only known to two places.  The problem does not arise in
Newtonian fluids, as we have shown by example earlier, since derivatives of the
constant viscosity vanish identically.

All of this does not mean that simulations are not possible.  Knowing now
how the code is structured, we simply ignore the “500” in Figure 9-8-5d and,
through trial and error, determine the pressure gradient that will yield “500” in
the final line graph for flow rate.  For the present example, the author obtained
the “– 0.00335 psi/ft” shown after four tries, requiring about five minutes of
desktop effort.

Figure 9-8-5d.  Hand calculation result for target 500 gpm.

Now, let us turn to our second fluid, which we assume for simplicity as
Newtonian.  For the same eccentric annulus, running the exact “Steady 2D”
solver in “Volumetric flow rate specified” mode with a target 500 gpm flow rate
leads to a pressure gradient of – 0.00003281 psi/ft. as shown in Figure 9-8-5e.
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Figure 9-8-5e.  “Steady 2D” menu calculation for second fluid.

As suggested earlier, there is no problem replicating the above result using
the transient, three-dimensional solver for Newtonian fluids.   As shown in
Figure 9-8-5f below, a flow rate of 490 gpm is computed, which differs from
500 gpm by only 2 percent (The “minus” signs in the pressure gradient boxes do
not appear because they have scrolled to the left, but they are entered.).  In
summary thus far, we have obtained the pressure gradients for two different
fluids in the same eccentric annulus needed to achieve a flow rate of 500 gpm.
In order to model the displacement of the second fluid by the first, plus the
convection and diffusive mixing process, we combine the pressure gradients and
fluid properties as shown in Figure 9-8-5g.

Figure 9-8-5f.  Newtonian flow model set-up.
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Figure 9-8-5g.  Two-fluid displacement and mixing flow set-up.

Figure 9-8-5h.  “Wide side” axial velocity and fluid mixing.
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For the two-fluid system assumed in Figure 9-8-5g, we have inputted
strongly discontinuous axial pressure gradients that differ by two orders of
magnitude.  This difference is needed because the two fluids have contrasting
rheological properties.  Moreover, the discontinuous pressure gradients are
applied to the fluid system while it is moving and diffusing – the plots in Figure
9-8-5h give sectional properties at the azimuthal index “m = 19” (for the wide
side of the annulus) with time increasing as the figures progress downward.  The
flow is moving from top to bottom.  The left axial velocity plot correctly shows
a uniformly lower “blue speed” for the non-Newtonian fluid while the displaced
Newtonian fluid is more colorful, with blues, yellows, oranges and reds being
indicative of the parabolic shape we expect.  The viscosity plot, in fact, clearly
shows how the mixing interface moves downward with time and widens.

Discussion 9-9.  Transient, 3D, concentric, multiphase analysis
for rotating Power law fluids without axial pipe movement.

In the present calculation, we demonstrate how the foregoing procedures
apply when the host pressure solver is the host model for Power law fluids in
concentric annuli.  Figures 9-9a and 9-9b show two calculations for pressure
gradient with identical volumetric flow rates and rotational speeds.  The
differences between the two are fluid properties.  The pressure gradients shown
at the bottoms of the respective text output screens differ by a factor of ten.

Figure 9-9a.  Pressure gradient for “thin” Power law fluid.
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Figure 9-9a.  Pressure gradient for “thin” Power law fluid (cont’d).

Figure 9-9b.  Pressure gradient calculation for “thick” Power law fluid.



394   Managed Pressure Drilling: Modeling, Strategy and Planning

Figure 9-9b.  Pressure gradient calculation for “thick” Power law fluid (cont’d).

Calculated results are shown in Figures 9-9c and 9-9d.  Here it is important
to note that the input 100 gpm in the software screens of Figures 9-9a and 9-9b
are not replicated in the line graph shown although the “84” is not significantly
different.  The reason for this discrepancy lies in the nature of the simulator in
Figures 9-9a and 9-9b.  Reference to the mathematics in Example 5-6 will show
that simplifications to boundary condition implementation were made to enable
closed form analytical solutions that can be rapidly evaluated by computer.
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Figure 9-9c.  Mixing calculation setup and results.

Figure 9-9d.  Diffusion solutions in problem with 100 rpm rotation.
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Discussion 9-10.  Transient, 3D, eccentric, multiphase analysis
for general rotating non-Newtonian fluids with axial pipe movement

– Validation runs for constant rate rotation and translation.

In this example, we consider a very complicated annular flow problem
typical of those encountered in field operations.  We study the highly eccentric
annulus in Figure 9-10b.  The pipe or casing is moving in the direction of flow
at 10 in./sec. and simultaneously rotating at 100 rpm.  The total volumetric flow
rate is 100 gpm.  A Herschel-Bulkley fluid, again, one with non-zero yield
stress, is entering at the inlet and displacing a 10 cp Newtonian fluid that is
partially present in the annulus.  The fluid system is initially quiescent.  We wish
to calculate the time-dependent axial and azimuthal velocities and apparent
viscosity fields along with the position and mixing zone history associated with
the fluid interface undergoing transient movement.  Following the strategy
developed in this chapter, we first calculate the (very different) pressure
gradients present near the inlet and outlet and which flow in single-phase
manner.  This is accomplished using our exact, transient, two-dimensional
solvers, a process that requires only seconds.  Then, both pressure gradients are
used in the combined problem addressing convective and diffusive mixing to
solve the questions posed in this paragraph.  The two-dimensional solutions are
fast, taking only seconds in computing time.  We summarize our calculations.

Steady, rotating, non-Newtonian, single-phase, eccentric flow solution.
Again, we remind the reader that solutions for rotating eccentric flow problems
using purely steady flow formulations are presently numerically unstable for
parameters of drilling and cementing interest.  However, solutions are possible
by solving the transient problem asymptotically for large times.  This is possible
using the “Transient 2D” simulator developed in this book.  As noted in prior
discussions, it is not possible to specify volumetric flow rate and obtain pressure
gradient in a single pass for mathematical reasons.  But because the two-
dimensional solver is extremely fast, requiring only seconds or up to a minute
per computation, we can determine pressure gradient by trial and error, entering
various test values and “hand converging” the solutions for the targeted 100
gpm.  For the problem at hand, the author was able to complete the complete
example in about fifteen minutes of desk time.  The input assumptions are
shown in Figure 9-10a.  For the targeted flow rate of 100 gpm, the required axial
pressure gradient is – 0.00016 psi/ft as indicated in Figures 9-10a and 9-10c.
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Figure 9-10a.   Non-Newtonian, single-phase flow set-up.

Figure 9-10b.  Eccentric annulus.

Figure 9-10c.  Volumetric flow rate history for non-Newtonian fluid.
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Steady, rotating, Newtonian, single-phase, eccentric flow solution. For
our Newtonian (zero yield stress) fluid with a 10 cp viscosity, the unsteady
formulation in Figure 9-10d leads to a pressure gradient of – 0.000026 psi/ft. for
the 100 gpm target (The minus signed has scrolled to left.).  Entries hidden by
the graph are all zero as in Figure 9-10a.   The axial velocity field is shown in
Figure 9-10e, with high (red) velocities at the pipe because the pipe velocity
exceeds those in the annulus.  There is no symmetry about the vertical line
passing through the center because rotation destroys the symmetry.  The
azimuthal picture is similar to this one because the rotational speeds are highest
at the pipe and vanish at the annular wall.

Figure 9-10d.  Newtonian flow formulation and solution.

Figure 9-10e.  Axial velocity profile in rotating flow.
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Mixing problem.   Now, we solve the problem for the combined fluids
using the “Zoom3D” solver shown at the top of Figure 9-10f.  The target flow
rate of 100 gpm is achieved with a 2 percent error.  For parameters indicated,
about one minute of computing time is required.  To create the color profiles
shown in Figures 9-10g, the 10,000 step run selected requires about ten minutes.
In the screen captures given, time increases downward from frame to frame;
each snapshot displays the “m = 19” azimuthal solution selected in Figure 9-10f
shows axial velocity and apparent viscosity in the “streamwise-radial” plane.
The initial position index of the interface is 10 out of a maximum 90 grids in the
direction of flow.  In these snapshots, the flow moves downward and the
interface is seen progressing downward.  As expected, diffusion causes this
interface to widen with time.

Clicking the right-side buttons in Figure 9-10f leads to numerical output
captured in text files, as shown in Figures 9-10h,i,j,k, that can be captured for
external spreadsheet analysis.

Figure 9-10f.  Transient, 3D, two-phase mixture formulation.
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Figure 9-10g.  Axial velocity (left), apparent viscosity (right), flow moving
downward in each frame, time increases downward from frame to frame.
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Figure 9-10g.   Axial and apparent viscosity solutions (cont’d).
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Figure 9-10h.  Apparent viscosity for “constant m” or azimuthal angle.

Figure 9-10i.  Axial velocity solution.
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Figure 9-10j.  Azimuthal velocity solution.

Figure 9-10k.  Reynolds number solution.

Note that the very low Reynolds numbers in Figure 9-10k indicate fluid
stability on a single-phase flow basis.  The interface in Figure 9-10g is seen to
widen gradually as it convects downward.  Our analysis does not include
computations for interfacial stability, an extremely difficult problem is
formulated and solved rigorously.  Finally, in closing, we emphasize that large
diffusion coefficients were assumed only for visualization purposes so that fluid
movement could be seen using our somewhat crude twelve-color plotter.  Also,
very small specific gravities were taken in order for our transient results to
approach steady conditions quickly.  In general, smaller time steps will be
required for higher fluid densities and rotational rates.
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10
Closing Remarks

In this book, and particularly in Chapter 9, the objectives of our flow
simulation efforts, focusing on the complete system for drilling and cementing
shown in Figure 10-1, were brought to closure.  In broad terms, the technical
objectives are easily expressed: finding pressures everywhere, allowing a
general pump schedule for non-Newtonian fluids, supporting pipe and casing
that may be rotating or moving axially in any transient combination, permitting
real-world rheologies that may lead to all-important plug flows that are
associated with yield stress fluids, and finally, if need be, determining interfacial
mixing details for applications like cementing in which diffusion and miscible
mixing can be significant.  Operational objectives include “managed pressure
drilling,” where pressures along the borehole and especially at the drillbit are
required as functions of time, and cementing and completions, in which mixing
details are needed to assess potential problems with zonal isolation.

The overall problem strategy devised was simple conceptually: develop
fundamental “building blocks” which, in themselves, represent useful simulation
tools, but when assembled, address the transient, three-dimensional, multiphase
problem in a general manner.  First, we developed a “Steady 2D” capability that
permits exact numerical modeling of single-phase, non-Newtonian flow in
general eccentric annular cross-sections.  This required us to use boundary-
conforming curvilinear grids to model the annulus, refining the ideas first
reported by the author in Borehole Flow Modeling (1992) and Computational
Rheology (2001).  Also, stable and highly accurate methods were designed to
handle apparent viscosity, in particular, its spatial derivatives, and “extended
Herschel-Bulkley” constitutive relationships were employed to reach across and
into plug zones for fluids with yield stress, allowing complete determination of
plug zone size, shape and location for accurate pressure drop analysis.  In
addition, new modeling capabilities included axial pipe movement, centrifugal
effects due to borehole axis curvature, and finally, pressure gradient versus flow
rate specification, all handled without approximation.
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The fast and robust “Steady 2D” building block simulator was augmented
with integrated color graphics which displayed field properties like axial
velocity, apparent viscosity, shear rate, and viscous stress automatically,
quantities which have proven useful for engineering correlation in specific
applications.  Substantial effort was expended to design a simulation interface
that was easy to use, requiring no mathematics or computational expertise, and
which enabled fast, accurate solutions, the first time and every time.  The
methods provided new ways to accurately study swab-surge, hole cleaning and
pressure drop analysis.

Pressure Psurf(t)
at surface choke

Drillbit Pbit(t)

Mud

Multi-fluid
transient pump

schedule

RCD rotating
control device

Vertical
concentric
section

Horizontal or deviated well
and eccentric annulus

Turning
section

Tripping in or outPipe rotation

Figure 10-1.  General system for drilling and cementing.

Our second “building block” is encapsulated in the “Transient 2D”
simulator.  Aside from its obvious transient applications, e.g., fully unsteady
axial reciprocation, pipe rotation, and pumping rate taken in any combination,
and helical cuttings transport, the method provides the first generally available
means to study the effects of pipe rotation in eccentric annuli with non-
Newtonian flow.  Importantly, this capability implies more than academic
interest.  We demonstrated the role of eccentricity in pressure control while
rotating.  For instance, when pressure gradient is fixed, shear-thinning in
concentric flows leads to increased flow rate while new convective terms that
appear in eccentric problems usually lead to decreased throughput.
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The foregoing results, demonstrated in numerous calculations and
consistent with laboratory and field observations for concentric and eccentric
applications, indicate that drillpipe rotation can be used for real-time pressure
control in managed pressure drilling.  Presently, three means are typically
employed: (1) change in pump rate to affect dynamic friction, a method that may
be dangerous since strong transients are involved, (2) altering mud rheology and
weight, a slow process that may not be responsive to danger indicators, and
finally, (3) direct choke control to adjust background pressures.  Drillpipe
rotation now provides a fourth means, an easy-to-implement procedure that can
be modeled conveniently and whose slower transients are unlikely to induce
fracturing or rapid influx or outflux.

In addition to the “Steady 2D” and “Transient 2D” building blocks, we
developed many “utilities” addressing flows in more idealized geometries for
rapid and accurate pressure analysis.  These include analytical solutions for
rotating Power law flows in concentric annuli, exact Hershel-Bulkley concentric
solutions for flows with stationary boundaries, Newtonian solutions for fluid
flow past concentric annuli with axial pipe movement, recirculating flow in the
presence of barite sag, and others.  Taken together, a broad collection of
simulators was developed and all were assembled for multiple applications.

Figure 10-2.  Multiphase flow visualization experimental setup.

Figure 10-3.  Typical eccentric flow mixing (time increases left to right).
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Importantly, in Chapters 8 and 9, we demonstrated how the foregoing
building blocks can be used to model the fully transient flow of multiple non-
Newtonian fluids down the drillpipe following a general pump schedule.  We
studied both pressures along the borehole and at the drillbit as a function of
time, and showed how, when required, interfacial details related to diffusion and
flow convection can be obtained with fully coupled momentum and species
concentration models in a reasonable amount of computing time.

Validation questions invariably arise with simulator use.  Engineers ask,
“How have computed results been validated?”  Insofar as math is concerned, our
simpler utility models were used to validate more complicated models.  In fact,
in areas of common overlap, models developed under different general
assumptions and solved with contrasting numerical methods often differed by no
more than 2 to 3 percent without “fudging.”  Solutions for simple geometries
were used to check curvilinear coordinate approaches, two-dimensional
solutions validated three-dimensional ones, and steady curvilinear grid solutions
were shown to be in agreement with transient ones in the limit of large time.

Our efforts at validation did not end with mathematics – computational
consistency was merely the beginning.  Starting with Borehole Flow Modeling
(1992) and Computational Rheology (2001), detailed analyses for cuttings
transport data obtained in laboratory flow loops, spotting fluid results in jarring
applications, vortex formation in flows with barite sag, long boreholes with
bends, and others, were performed, with careful observation being the single and
only final arbiter.  A major accomplishment of the present research is accurate
modeling of pipe or casing rotation in eccentric geometries.  Consistency with
field observation, e.g., see Figure 2-2-1, provides a high degree of credibility.

Our multiphase efforts were also validated through experiment.  Lab setups
and results, for instance, duplicated in Figures 10-2 and 10-3, are reported in
detail in Deawwanich, Liew, Nguyen, Savery, Tonmukayakul, and Chin (2008);
Nguyen, Deawwanich, Tonmukayakul, Savery, and Chin (2008); and Savery,
Tonmukayakul, Chin, Deawwanich, Liew, and Nguyen (2008).  The math model
in these papers applied to general transient, multiphase three-dimensional flow.
Our newer work expands on the earlier method by providing fast means to
calculate borehole pressures using our “Steady 2D” and “Transient 2D” building
blocks, the latter providing the first mathematically rigorous approach dealing
with rotating pipe flows.  In addition, newer “zoom” capabilities for interfacial
mixing stably and accurately model the suddenly changing pressure gradients
acting on contiguous fluids without using cruder approximations.

Needless to say, our modeling efforts will not end here.  In any research,
more questions are raised than are answered, and we are no exception.  By
reporting our work in complete mathematical and numerical detail and making
the simulators available for wide dissemination, we hope that the experiences
and comments of users will help us accelerate our progress in addressing a very
challenging and interesting technical and operational problem.
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Laboratory validation, 5-6, 16, 58-59,
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296, 366, 368, 406-407
Landau-Lifschitz model, 315, 389
Laplace equation, 50, 79, 82, 85, 87,
131, 272

M

Mass conservation, 30, 49, 53, 55,
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Metrics, 70, 106, 279, 316, 370
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