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Centrifugal Compressor Operating Map
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Surge is a 
potentially 
damaging 
instability. 
Surge limits 
low flow 
operations. 
Current 
controls 
results in 
unnecessary 
recycle flow. 



Objectives 

To develop an internal surge control 
sensor and an associated surge control 
system that will allow reduced surge 
margins, increased range and flexibility of 
operation, and safe minimization of the 
energy and costs of avoiding surge in 
pipeline centrifugal compressors.
To meet the needs of the natural gas 
industry for improved surge control.



What happens before and during surge?

In some, but not all cases, surge is preceded by 
unsteady pulsation and vibrations due to stall. 
In other cases, there are no vibrations, pulsation, 
or warnings and surge occurs suddenly. 
Surge is a complete collapse of compressor flow 
and results in gas travelling backwards through a 
forward spinning impeller.
Surge is energetic and can cause damage to 
thrust bearings, seals, impellers, etc. 
A flow re-circulation occurs at the impeller inlet as     

identified by previous GMRC research



Industry Specifications - General

The sensor is to be simple, rugged, 
sensitive, cost effective, manufacturable, 
installable, and able to detect the 
nearness of surge in a useful manner. 
The controller is to use the nearness to 
surge signal and incorporate algorithms 
to control the compressor in a flexible 
manner, with a minimum safe surge 
margin, and increased efficiency in 
response to the operating requirements. 



Design Process and Typical Drag Probe

• Size probe for max 
and min velocity & 
force 

• Size bending beam 
for support & strain 
sensitivity

• Predict & avoid vortex 
& mech. natural 
frequencies

• Design probe holder 
& wire way

• Iterate on design 
until all is OK



Flow Test Results for a Drag Probe 
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Flow Test Results as Force vs. Strain
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Flow calibrations are not necessary for every probe 



A Finding from the Test Program

Direct Surge Control in the present 
implementation with a probe at the impeller 
inlet is applicable for modern 3D impellers and 
not for older units with 2D impellers where the 
blades are recessed from the inlet. 
It is estimated that between 66 and 80 percent 
of pipeline centrifugal compressors in use are of 
the modern 3D design. 



Laboratory Compressor Test at Low Speed 
Axial & Tangential Strain with Scaled Flow
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Laboratory Compressor Test at High Speed 
Axial & Tangential Strain with Scaled Flow 
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Increased Range on the Laboratory Unit 
Map with Use of Direct Surge Detection 
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Plot of Axial Strain Changes as a Function 
of Flow Coefficient for Laboratory Tests
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Diagram of Flow Vectors as Surge is 
Approached with a Drag Probe Location
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Requirements for Direct Surge Detection

The route of the wire within and leaving 
the compressor must be protected and 
secure.  Solid core wires in a quality 
compression fitting are needed.
The output of the strain gauge bridge from 
the probe must be stable and repeatable. 
The strain gauge circuit should 
automatically balance when a compressor 
is shut down for a period of time.



Long-Term Stability of Strain Signals 
with Operational Changes
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Field Test B - Axial and Tangential 
Strain at Low Pressure & Low Speed
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Test B, approaching surge at low pressure & low speed



Field Test C - Axial and Tangential 
Strain at Low Pressure & Low Speed
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Field Test E - Axial and Tangential 
Strain at Low Pressure & Low Speed
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Plot of Strain Difference as a Function of 
Nominal Flow for Lab and Field Tests
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Axial and Tangential Strain Changes During a 
Rapid Approach to Surge
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Axial and Tangential Strain During a High 
Pressure High Speed Approach to Surge 
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Trends is Strain as the Field 
Compressor Approached Surge
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Field Compressor Performance Map 
with Direct Surge Control  
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CFD Modeling of Impeller Inlet Flows

To determine if CFD analysis can be used 
to predict re-circulation zones. 
To explain the differences between 2D and 
3D impeller results. 
Undertaken as a result of improved 
modeling capability and better 
understanding of geometric and 
operational flow effects on re-circulation. 



Cross-Section of the Modeled 
Impeller Inlet Flow Path



CFD Models of 3D and 2D Impellers



CFD Results at Design Flow (1037 ACFM) 



CFD Results at Surge Line (685 ACFM)



CFD Results at Near Actual Surge 



CFD Results for 2D Impeller at Low Flow 



Steps for Implementation of Direct 
Surge Control - Part 1

1. Determine that the compressor is a modern, 
single-stage machine with a 3D impeller.

2. Calculate the flow velocity and gas density 
ranges at the impeller inlet (area required).

3. Size the drag body (start of an iteration).
4. Calculate the forces acting on the drag body 

for the full range of flows. (CD = 0.5)
5. Determine the probe’s bending beam width 

(square) and length for strength and 
sensitivity.



Steps for Implementation of Direct 
Surge Control - Part 2

6. Calculate the strain expected from gauges due to 
maximum and near surge flows. 

7. Calculate the mechanical natural and vortex 
shedding frequencies. Check that these do not 
coincide with compressor or other frequencies. 

8. Design the probe holder to secure the probe in 
the correct location at the impeller inlet.  Check 
the location relative to the expected re-circulation 
using a CFD analysis. 

9. Check that the final design is properly sized, 
rugged (strong), sensitive, and vibration free.  If it 
is not, return to Step 3 to adjust variables. 



A Drag Probe Resulting from Design 
Steps and Ready for Installation



Steps for Implementation of Direct 
Surge Control - Part 3

10. Arrange for the signal wires to pass through 
internal dividers, in conduits, and a pressure 
fitting to the outside of the compressor case.

11. Connect the probe wires to an amplifier and a 
surge controller to monitor axial and tangential 
strain signals, filter (avg.), and process the 
strain indications of approaching surge.

12. Tune the balance, gain, filter, and algorithms to 
control the compressor to minimize recycle flow 
and achieve stable, wider, and efficient 
operation. 



The Surge Controller should;

Accommodate two half bridge amplifiers for the strain 
signals with ±5 volt outputs. 
Sample data at 80 to 240 Hz to follow flow changes 
but not high frequency noise or disturbances.  
Satisfy Class I, Div. 2, Group D in a NEMA panel.
Monitor compressor speed, pressure, temperature, & 
flow as a convenience for display and recording.
Filter by short averaging and process the strain 
signals through a selected algorithm such as the 
difference of axial and tangential strain and provide 
an output when the signal drops below a set limit.



Conclusions

Surge is a potentially damaging flow instability that 
limits the low-flow operation of centrifugal 
compressors and is usually avoided by wasteful and 
inefficient recycling of flow. 
Early GMRC research identified flow recirculation 
along the outer wall of a compressor inlet as a 
surge precursor and a potential control signal that 
can be sensed with a drag type probe. 
A step-by-step design procedure for direct surge 
control drag probes and controllers is defined by 
this research and given in the report. 



Conclusions - continued a

Surge probes designed per the procedures and 
fabricated per specifications need to be checked 
functionally but not calibrated or flow tested. 
Test results show that for sensitive near surge 
detection, with the current methods the impellers 
must be a modern 3D design. 
Flow changes along the outer wall of a centrifugal 
impeller inlet do produce re-circulating flows, 
which cause axial and tangential strain changes on 
a drag probe that indicate the approach of surge.



Conclusions – continued b

A control algorithm based on comparing the 
difference between the axial and tangential strains 
is less sensitive in installation details and can be 
used as a surge control method. 
Operational tests show an increase in low flow 
range of up to 25 percent for compressors with 
direct surge control. A potential savings of 10 to 24 
MSCF or $50 to $120 per hour of operation is 
expected.  The possible industry wide saving is $50 
to $85 million per year. 
CFD modeling can be used to check the location of 
a direct surge control probe in the re-circulation. 



Demonstration and Commercialization 
of Direct Surge Control
The direct surge control system is successful as a 
prototype but needs to be demonstrated as a 
commercial product in a pipeline compressor. 
SwRI, along with the GMRC advisors, will identify 
and interview a number of potential application 
contractors and will help to select one. 
The interest of all parties, DOE, Siemens Energy & 
Automation, Solar Turbines, others, and particularly 
the user companies, will be considered. 
A demonstration project led by an application 
contractor will install a system in a member’s 
pipeline compressor & operate it for all to see. 



Tasks in the Demonstration and 
Commercialization Project

Task A. Identify and select an application 
contractor or contractor alliance. 
Task B. Transfer the technology for design 
and installation of direct surge probes and 
controller interfaces to the application 
contactor. 
Task C. Conduct a field demonstration of 
the commercial direct surge control system 
led by the contractor with oversight from 
SwRI & GMRC.



Companies to Consider as Potential 
Application Contractors

Demag Delaval – A compressor division of Siemens.
Petrotech Inc. – An experienced control system supplier. 
Alotronic - An experienced control system supplier.
Cooper Compressor – A manufacturer of integral geared 
compressors. 
Solar Turbines – A manufacturer of pipeline compressors.
Metrix – An instrument manufacturer.
Compressor Controls Corp. – A controls supplier.
Rosemount – An instrument company.
Many Others 



SwRI’s Actions at the Start of the Project

Contact each company to discuss the technology 
and needs and to determine who is interested 
With the oversight committee, develop a selection 
criteria and what we need from the contractor.
Request a proposal from the interested parties.
Evaluate the proposal and with industry select one.
Start the transfer of technology to the contractor.
Plan for and monitor the demonstration test. 
Report to the GMRC at all stages in the project and 
on the final report. 
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