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1. EXECUTIVE SUMMARY 
We examine the potential economic implications of using vehicle batteries to store grid 

electricity generated at off-peak hours for off-vehicle use during peak hours.  Ancillary services 
such as frequency regulation are not considered here because only a small number of vehicles 
will saturate that market. Hourly electricity prices in three U.S. cities were used to arrive at daily 
profit values, while the economic losses associated with battery degradation were calculated 
based on data collected from A123 Systems LiFePO4/Graphite cells tested under combined 
driving and off-vehicle electricity utilization. For a 16 kWh (57.6 MJ) vehicle battery pack, the 
maximum annual profit with perfect market information and no battery degradation cost ranged 
from ~$140 to $250 in the three cities.  If the measured battery degradation is applied, however, 
the maximum annual profit (if battery pack replacement costs fall to $5,000 for a 16 kWh 
battery) decreases to ~$10-$120. It appears unlikely that these profits alone will provide 
sufficient incentive to the vehicle owner to use the battery pack for electricity storage and later 
off-vehicle use. We also estimate grid net social welfare benefits from avoiding the construction 
and use of peaking generators that may accrue to the owner, finding that these are similar in 
magnitude to the energy arbitrage profit. 

Current generation facilities have the potential to support electrification of personal 
transportation in the two RTO/ISOs examined, PJM and NYISO, if some sort of smart charging 
method to minimize the negative effects of adding load in an uncontrolled manner is employed.  
The increase in emissions associated with smart charging (as compared to uncontrolled charging) 
depends on the current generation mix and utilization rates.  If coal generators are used to 
provide baseload generation during the night before electric vehicles are added to the load, 
adding vehicles is likely to result in natural gas or other facilities powering on to provide for 
charging load.   
 

2. INTRODUCTION 

Legislation enacted in 2008 provides a subsidy in the form of tax credits for purchasers of 
plug-in-hybrid electric vehicles (PHEVs) to increase market acceptance [1].  Subsidies may be 
economically justified if they support private investments that have social benefits. One 
suggested benefit has been that PHEVs could provide services to the electricity sector (vehicle-
to-grid or V2G services) [2].  Benefits discussed in the literature include peak load shifting, 
smoothing variable generation from wind and other renewables, and providing distributed grid-
connected storage as a reserve against unexpected outages. Hybrid electric vehicles, battery 
electric vehicles, and plug-in hybrid electric vehicles (PHEVs) rely on batteries located in the 
vehicle to store energy.   

One of the fundamental properties of electricity markets is the lack of cost-effective 
storage [3].  Without storage, meeting peak demand requires underutilized investment in 
generators and transmission lines.  Because of the costs of meeting peak demand, the difference 
between daily peak and off-peak costs can greatly vary throughout the year (wholesale markets 
see this as a price difference; a small but increasing number of retail customers also see this as a 
price difference).  If the difference is small on a given day, single purpose storage facilities either 
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make minimal revenue or sit unused and depreciating.  Single purpose battery energy storage 
facilities have not proven economical except in niche applications such as delaying a distribution 
system upgrade [4].  V2G relies on dual purpose batteries where the capital cost of the battery is 
not assigned to the off-vehicle electricity use because the battery was purchased for driving.  If 
load shifting or peak shaving is not economical the only wasted expenditures are the small cost 
of the controllers and converters, some of which will likely be installed in any case to enable off-
peak charging.  This possibility, along with quick battery reaction times, has made V2G 
applications to stabilize or slow fluctuations from intermittent sources (such as wind or solar) a 
subject of research interest [5].  V2G has the potential to diminish the need for rapid ramping of 
following generators to match variable power sources.  Rapidly ramping generators may not be 
the lowest cost generators, and ramping can lead to increases in pollution [6]. 

 

3. CHARACTERIZING LITHIUM BATTERIES FOR GRID 
ENERGY STORAGE IN PHEVS 

Here we examine the net revenue that a vehicle owner could receive from V2G energy 
sales to estimate whether this would provide an attractive incentive for owners to participate in 
V2G operations as a dual use for the battery pack whose capital cost has been largely justified by 
transportation. V2G services could be sold in an organized market as ancillary services (spinning 
reserve and regulation), as energy sales to the grid (running the meter backwards), or their value 
could be captured as avoided grid electricity purchases (running the meter slower).  The first two 
incur transaction costs and grid costs, while the third does not; it is the third we examine here. 
Net revenue, as used in this report, is the net of avoided grid energy purchases from using the 
energy stored in the vehicle battery pack less the cost of grid electricity used to charge the 
battery pack and the cost associated with shortening the battery pack's lifetime by cycling for 
such energy use. 

3.1 TESTING OF USEABLE CAPACITY VS. BATTERY LIFETIME 

 To determine the financial and technical feasibility of these applications, it is essential to 
quantify the effect of this kind of usage on battery degradation and performance.  Most previous 
measurements have indicated that Li-ion battery capacity decreases as a result of cycling, and the 
magnitude of this loss is dependent on both the number of cycles and the depth of discharge 
(DoD) that the battery is subjected to during these cycles[7].  While these characteristics are well 
understood for the LiC(Ni)O2/graphite based cells used in the consumer electronics market (as 
well as for lead acid and  NiMH systems), there is far less published data for the current and next 
generation of high rate cells that may see wide adoption in PHEV and BEV battery packs.  Those 
data that have been published indicate it is possible to make Li-ion cells with much less capacity 
fade and dependence on depth of discharge than is commonly assumed [8].  However, these 
results are insufficient to determine the economics of V2G energy sales because they are from 
cycling that is not representative of battery use for driving and battery use for grid energy.  

To provide more representative data, we examined the battery degradation of a battery cell 
already being implemented in the PHEV Hymotion battery pack (an aftermarket PHEV 
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conversion), the A123 Systems ANR26650M1 cell.  We have examined the response of multiple 
sets of these cells (from different lots) to gauge their behavior in both simulated driving and 
combined driving/V2G energy sales modes.  Our goal is to determine the performance and 
financial costs associated with cycling for V2G energy use in combination with a typical PHEV 
driving duty cycle.  Simulating the actual discharge pattern also has enabled us to determine if 
there is a difference between dynamic discharge (representing the driving) and constant 
discharge (energy arbitrage) using statistical analyses. 

3.1.1 National Household Travel Survey (NHTS) Data   

The energy arbitrage potential of a vehicle battery depends on both the usable capacity 
and the fraction of the pack used for daily driving, while the lifetime cost of performing energy 
arbitrage will depend on how the pack degrades as a function of use mode. To experimentally 
quantify this, a nominal urban driving + V2G power profile and correlated battery test regime 
was derived by combing several common data sets.  A representative urban commute driving 
duty cycle was constructed, using data from the 2001 National Household Travel Survey 
(NHTS) of 70,000 households [9].  To do this, we created a dataset from the NHTS day trip file 
tabulating the daily trip profile of a vehicle.  The day trip file contains “data about each trip the 
person made on the household’s randomly-assigned travel day” [10].  These trips include 
walking, taking public transportation, driving, or any other means of travel.  We extracted only 
the trips taken by vehicles owned by households and eliminated trips taken at the same time by 
different members of the household in the same vehicle.  This resulted in a new data set that 
tabulates the daily vehicle trips, instead of those of individual household members.  The number 
of vehicles owned by the household is included in the day trip files, and only vehicles that were 
driven were used in the trip calculation.    

The vehicle information dataset was then cross-referenced to append vehicle-specific 
information, such as the age, fuel economy, and other relevant information.  Vehicle-specific 
information was used to check for potential trends that might indicate that the NHTS data would 
not apply to PHEVs; none were found.  Three cities in the Northeastern quadrant of the United 
States were selected: Boston (BOS), Philadelphia (PHL), and Rochester NY (ROC).  These cities 
were chosen because they are located in three different electricity markets and because they each 
had a high number of NHTS participants.  The median number of trips taken on a given day by 
vehicles driven in each of the three cities was four (the mean was 4.46 for cities combined).  For 
this reason, only vehicles which took four trips were thereafter considered in the determination 
of the representative profile.  The median start time, duration, velocity, and distance of each trip 
in the three cities are listed in table 1. Because the three cities had similar median trips, the data 
from all three cities were combined to make a single trip profile (figure 1).  The total distance 
traveled was 29 km (original data in miles) when combining all four trips.  This is similar to the 
result obtained if the same analytical steps are applied to the entire NHTS dataset (total distance 
of 29 km; however trip start times and velocities vary). 
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Table 1 

Trip characteristics for 3 cities modeled and combined data used for battery testing 
City Trip Start Time Duration (min) Average Trip 

Velocity (kph) 
Distance (km) 

1 8:48 14 38.6 7.2 
2 12:28 14.5 33.9 8.0 
3 15:00 10 32.2 6.4 

BOS 

4 17:30 14.5 32.2 6.4 
1 9:00 15 38.6 6.4 
2 12:04 11 38.6 6.4 
3 15:15 10 32.2 6.4 

PHL 

4 17:00 15 32.2 8.0 
1 8:43 15 45.1 9.7 
2 12:30 12 38.6 8.0 
3 15:40 10 38.6 6.4 

ROC 

4 17:30 15 41.4 8.0 
1 8:45 15 38.6 8.0 
2 12:16 12 38.6 6.4 
3 16:30 10 34.8 6.4 

Combined 

4 17:20 15 38.6 8.0 
 

 

Figure 1 –The daily driving profile used in cell testing.  This profile is an aggregate of data 
taken from all 3 cities included in study. (Horizontal portions show when vehicle is parked, 

while diagonal portions represent driving). 
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3.1.2 Urban Driving Dynamometer Schedule (UDDS) and Driving Energy Use Model 

To determine the quantity and rate of energy transferred to and from a battery during 
driving conditions, we constructed a simple physics model that computed the energy needed to 
propel a typical vehicle through the NHTS trip profile. As an input to this model, the vehicle 
distance/velocity profile  in each trip was created by sampling the Urban Dynamometer Driving 
Schedule (UDDS) and overlaying these segments into the average NHTS distance vs. time 
profile [11].  The 1370 second-long UDDS profile was doubled in length to allow contiguous 
selections to span from the end of original UDDS profile to the beginning.  These selections 
were portions of the UDDS profile, and significant fractions were repeated multiple times (figure 
2). 

 
Figure 2 - Portions of urban dynamometer driving schedule (UDDS) were chosen to closely 

match driving profile shown in figure 1 in terms of duration and average velocity. 
To calculate the power vs. time battery duty cycle needed to achieve this 

velocity/acceleration profile, the vehicle was assumed to have the physical characteristics of a 
2008 Toyota Camry; the mass was 1588kg (3500 lbs), coefficient of drag of 0.28 and a frontal 
area of 2.7m2.  Rolling resistance of the tires was assumed to be 0.01 [12]. The efficiency of 
power transfer from regenerative braking to batteries was assumed to be 40%, the efficiency 
from battery to wheels was assumed to be 80% [13]. The battery pack energy capacity was 
assumed to be 16 kWh (as in Chevrolet's proposed Volt) [14]. The density of air was taken from 
the US standard atmosphere at sea level.   

An 800 watt constant load was added to account for the power needed for all activities 
unrelated to movement such as heater, air conditioner, radio, lights and other accessories [15].   
The total load every second was therefore obtained by adding the 800 watt load to the power 
necessary to achieve the velocity defined in the UDDS.  The force needed as a function of time 
to achieve the UDDS target speed is a summation of the forces listed in table 2.   
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Table 2 

Forces considered when calculating energy use for PHEV in charge depleting mode 

Force Considered Equation 
Example: 

Velocity=10 m/s 
Acceleration=1m/s2 

Acceleration F = ma 1590kg*1=1590N 

Air resistance Far =  ½ ρv2CdA ½*1.23 3m
kg *

2

s
m10 ⎥⎦
⎤

⎢⎣
⎡ 0.28*2.67m2=45.8N

Rolling Resistance Frr = Crrmg 0.01*1590kg*9.8m/s2=156N 
 

If the acceleration is sufficiently negative (indicating braking), that its absolute value is 
greater than air resistance and rolling resistance combined, then regenerative braking is occurring 
and the power values for motion are given by equation 1.  The regenerative value will be 
therefore be negative and indicates battery charging.  Equation 2 describes the necessary power 
for cases where no regenerative braking occurs. 

power = ( ) tvmgCACvma rrd Δ++ **4.0* 2/1 2ρ     (1) 

power = 
( )

8.0
**  2/1 2 tvmgCACvma rrd Δ++ ρ

    (2) 

Using this model, we compute that the vehicle would use 31% of its battery pack capacity 
to drive the derived 4-trip profile, with 0.28 kWh/mile being withdrawn from the battery on 
average. This value appears reasonable; the Electric Power Research Institute’s (EPRI) hybrid 
electric working group suggests 0.26 kWh/mile for a compact sedan [16].   

 

3.1.3  Cell Test Cycle  

The duty cycle profile derived from this model is used here as power-based "C-rate", the 
discharge power rate of a battery normalized to the total energy content.  For example, for a 16 
kWh battery a 16 kW load would be defined as having a discharge power with a 1 C-rate, 32 kW 
would be a 2 C-rate, etc. (in this case we are using power instead of the more common electronic 
current in Amps and Ah, for ease of calculation during economic analyses).  By normalizing to 
cell energy and using a C-rate to determine power/current loads, the testing cycle can be run on 
any individual cell.  

Under regenerative braking conditions, the battery pack will be charged if the 
deceleration provides more power than used by the constant base load (figure 3). The cumulative 
distribution of power levels over a 24 hour period was calculated to illustrate the amount of time 
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during the test cycle that the battery was under various loads (figure 4).  The near-vertical 
portion is due to the base load that is constant when there is nearly no force required for motion.  
As a result of the relatively large energy-to-power ratio for a battery pack of this size, the 
absolute value of the C-rate imparted to the battery exceeds 1 only 20% of the time.  The 
maximum absolute C-rate value was 2.85.  This value is modest compared to the demonstrated 
rate capability of the tested cells, which are qualified by the vendor to a C-rate of at least 20 C 

 
Figure 3 - Example of relationship between acceleration (red) and power required  (in C-
rate, blue) for trips 1 and 4.  A negative C-rate corresponds to discharge rate from pack.  

Deceleration can lead to regenerative braking if it is significant - in this case, around 7% of 
the energy is regained via regenerative braking. 

 
Figure 4 - Cumulative distribution function of power requirements for daily driving (all 4 
trips).  Given large pack size the current rates are low most of the time.  The near-vertical 
portion is a result of times when velocity and acceleration are low and the base load to run 

accessories dominates the power needs for vehicle. 
Thirteen cells were purchased at three separate times, and came from four different 

fabrication lots.   Due to equipment limitations, testing start dates were staggered as new 
equipment became available.  All testing was conducted with Arbin BT2000 series battery 
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cyclers.  The inception of testing of the first 4 cells (lot 1) was followed after 3 months by 4 
more cells (lots 2 & 3), in turn followed by 5 more cells (lot 4) after another 4 months.  Cells 
from lot 1 underwent 2400 cycles, lot 2 and 3 completed 2000 cycles and lot 4 had reached 1000 
cycles when this paper was submitted.  Again, each cycle in this case represents a single driving 
day, so some of these cells were tested the equivalent of at least 5 driving years. 

The cells were not thermally controlled and were kept at the lab ambient temperature, 
which varied from 24˚ to 27˚C, but was most commonly approximately 25˚C.  Data published by 
the manufacturer indicating good cell stability and uniformity up to at least 40˚C imply that the 
cell temperatures used in this testing were not high enough to cause excess degradation, nor were 
they variable enough to significantly affect the data. [17]  A thermocouple was connected to one 
cell and temperature was monitored though several full driving cycles; the cell temperature did 
not increase significantly, as expected from these cells, which have been engineered for high rate 
applications and so do not heat up significantly under the nominally low C rates experienced. 

The cells were subjected to one of five different driving day testing cycles.  Test cycle 1 
corresponded to driving only and is shown in figure 5, while each of the other 4 cycles consisted 
of the same daily duty cycle, with varying amounts of additional V2G discharge in the afternoon 
hours..  The V2G discharge consisted of a specific time at a galvanostatic C/2 rate (1.15 A in this 
case), and in and a cutoff voltage of 2.5 V was used to avoid over-discharge.  A C/2 discharge 
rate was chosen to represent V2G simulation because it scales to an approximate 8 kW rate of 
withdrawal from the 16 kWh pack.  The rate might be forced lower depending on the 
infrastructure available in the home; a 240V, 30A circuit could maintain only 7.2 kW of energy 
transfer.  This implies the rate of discharge will likely be below C/2 slightly unless a special 
circuit is installed.  Each cycle began with a 1 C galvanostatic charge of 2.3 A until cells reached 
a voltage of 3.6 V followed by a 5 minute rest.  Then trips 1-3 were executed with 5 minute rests 
between each.  The V2G discharge then was conducted.  The driving only cells had no V2G 
discharge (3 cells, one each from lots 1, 2, and 4).  Test cycle 2 had one V2G discharge of 1.15 A 
for 995 s (3 cells, one each from lots 1, 2, and 4).  Test cycle 3 had one V2G discharge lasting 
1715 s (3 cells, one each from lots 1, 2, and 4).  Test cycle 4 had 2 V2G discharges and was the 
same as test cycle 3 with an additional V2G discharge after trip 4 held until the cell voltage 
dropped to 3.2 V (3 cells, one each from lots 1, 3 and 4).  Test cycle 5 extended the second V2G 
discharge until 2.5 V (1 cell from lot 4).    This test regimen is indicated in table 3. 
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Figure 5 - Test current profile used to simulate driving day for cells showing all trips. The 

times after trips 3 and 4 when V2G discharge was simulated are indicated. 
 

Table 3 

Testing regimens used on cells 

Test cycle Length of first V2G 
Discharge (s) 

Voltage at end of second 
V2G discharge 

1 0 NA 
2 995 NA 
3 1715 NA 
4 1715 3.2 
5 1715 2.5 

The duration of the rest period the end of each driving day simulation was adjusted such 
that each test case, regardless of the degree of V2G discharge, lasted 3 hours.  This regimen was 
repeated for 100 cycles, and then the cells were put through a C/2 charge/discharge 
“measurement” cycle to 100% state of charge/discharge to measure cell capacity.  This started 
with charging the cell 1.15 A until it reached a voltage of 3.6V.  Then the voltage was held 
constant until the current tapered to 0.01A to ensure the cells were fully and equally charged.  
After a 5-minute rest the cells were discharged at 1.15 A rate until voltage fell below 2.5 V (i.e. 
100% DoD).  The capacity measured through this discharge was defined as the cell capacity at 
that point in the testing.  To avoid biasing the results with differing rest periods between test 
cycle and baseline cycle the baseline check automatically began 5 minutes after completion of 
the 100 test cycles. 
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3.1.4 Cell Testing Results and Discussion 

The cells from different lots did not behave identically.  Lot 1 showed a significant 
degree of variation in capacity retention as the cells were cycled (figure 6 a-b), with cells 
increasing and decreasing in capacity as they were cycled, although the overall trend was 
downward.  Lots 2 - 4 showed remarkable consistency in degradation (figure 6c).  It is possible 
that the unusual scatter observed in the data from lot 1 is somehow linked to the integrity of the 
BT2000 test unit used for these cells (on which only these 4 cells have been tested), though such 
a link has not been quantified.  For this reason they are not used in the final statistical analysis. 
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Figure 6 - Degradation of cells versus driving days simulated (a) full range, (b) same 

information zoomed, (c) with highly variable cells from lot 1 dropped. 
Because the cells from different lots might have undergone different formation (at the 

factory)  before testing started it was necessary to find a way to determine an initial capacity in a 
consistent manner.  One common approach is to measure capacity after a specific number of 
identical low rate cycles.  We considered this unsuitable because we felt it was desirable to avoid 
running a large number of cycles on the battery in an attempt to normalize them and thus 
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decrease capacity by an unknown amount.  The next alternative we considered was to measure 
the capacity after an arbitrary number of cycles, but with 5 different possible test cycles this was 
also unsatisfactory.  Instead, we performed a linear regression on each cell data set to back-
predict their initial capacity in terms of cycles tested.  This capacity was then used to determine 
the relative loss as a function of cycles instead of using a numerical value for the total energy 
content.  A linear regression of relative capacity degradation vs. cycles was then used to predict 
when the cell would reach 80% of original capacity.  This information was used to predict the 
cycle life vs. DoD/cycle.   

Overlaying the values on the VARTA Automotive plot shows that DoD/cycle appears to 
have a smaller effect on degradation with these cells compared to those reported previously, 
particularly given that a single “cycle” in this case was representative of an entire day’s worth of 
driving. This appears to indicate that the portion of a cell's capacity used, or the ultimate depth of 
discharge, is not as important with A123 systems based cells as with the cells on VARTA plot 
labeled old LiIon and NiMH (figure 7), where DoD is a key variable [18].  As the degree of 
discharge per driving day increases, the predicted cycle life does not fall as rapidly as 
conventional data analysis commonly predicts.  For example, in cells discharged to 95% DoD 
per cycle, our measurements predict that 5300 cycles will be needed before reaching 80% of 
initial capacity instead of around 1500 cycles as indicated by the VARTA data.  Also, daily 
cycles with shallower DoD values do not appear to increase cycle life as significantly as those 
indicated from the VARTA analyses.  This suggests that a greater portion of the cell capacity 
could be used during each cycle than would be suggested by the VARTA plot if applied to this 
chemistry. 

 
Figure 7 - Laboratory results overlaid onto VARTA curves illustrating more linear 

response in cycle life as a function of depth of discharge for the cells tested. 
Figure 8 shows data for a C/2 discharge of the same cell (from lot 3) after 0, 1000, and 

2000 simulated driving days.  The potential profile in the voltage plateau region was essentially 
unchanged after 2000 cycles, indicating that internal resistance did not change significantly, as 
the differential in cell polarization under discharge before and after the 2000 cycles was 
imperceptible.  The decrease in delivered capacity after cycling is manifested as a departure from 
the discharge plateau after 1.82 Ah of discharge for the heavily cycled cell, vs. 1.91 Ah for the 
uncycled cell (figure 8b).   
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Figure 8 - Voltage profiles of a cell that reached an ultimate DoD value of 73% each 

driving day.  The initial, 1000th and 2000th baseline discharge curves are shown. 
The test profiles used on these cells were very different from those typically published 

(i.e. potential-limited galvanostatic charge/charge at intermediate rates), so a different approach 
is used here to quantify the capacity fade as a function of battery use. Simple accounting for the 
%DoD at end of cycle DoD does not accurately represent the amount of energy processed by a 
cell per cycle.  For example, the ratio of charging from regenerative braking to discharging 
produced by the model was 0.076; if 100% energy efficiency is assumed, then at least 14% more 
energy is exchanged during a driving cycle beyond the energy associated with the indicated DoD 
value. To this end, percent initial capacity was related to the total capacity (in Ah) processed by 
each cell, a value that included the discharge for driving, charging from regenerative braking, 
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charging during the evening to recharge the battery for the next day, baseline check.  This value 
can be directly related to the moles of Lithium ions transferred between the electrodes during 
use.   

Data collected from cell lot 1 showed inconsistencies, again, consistent with the capacity 
versus cycle life for these cells.   However, the second set of cells, lots 2 – 4, showed a high level 
of consistency in degradation with respect to integrated Ah processed; the cells appear to degrade 
in response almost exclusively to capacity processed as opposed to the number of cycles, or the 
DoD per cycle (figure 9a).  The sample analysis based on energy processed (in Wh) showed 
marginally better results and were more directly applicable to modeling the energy arbitrage 
potential of the cells (figure 9b).  There appeared to be a slight difference in slope between cells.  
Those with greater energy arbitrage discharge appeared to degrade slightly slower.  Comparing 
two specific cells from lot 2 over a similar range of energy processed shows a different but 
statistically insignificant slope (at the 95% level) (figure 10).  Adding cells from lot 4 tightens 
the 95% confidence interval lessening the overlap of the two slopes, at the 95% level, but they 
are still not statistically different. 
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Figure 9 - Degradation as a function of (a) capacity (Ah) processed by cell or (b) energy 
(Wh) processed by cell for all but lot 1 cells.  Both appear linearly related, as expected 

given the nominally linear discharge profile of the LiFePO4/graphite system.   
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Figure 10 - Capacity degradation as a function of energy processed for two cells tested with 

contrasting end-of-cycle depth of discharge values (35% and 73% DoD). The slight 
observed difference would indicate less degradation for higher DoD/cycle cell, however the 

95% confidence interval of slopes overlaps for these fits, so they are not statistically 
discernable. 

To investigate this further, a multiple linear regression was conducted to relate the 
degradation of the cells to the type of cycling incurred.  The first step was to break the total Wh 
processed by each cell in different categories of charge and discharge.  It was assumed that these 
different cycling regimes could be represented by driving discharge, driving recharge (from 
regenerative braking), energy arbitrage discharge, and recharge.  The first two are dynamic, 
while the last two categories are constant rate.  The values were normalized to the initial capacity 
of each cell to remove variation from differing initial capacity.  Regenerative braking recharge 
was highly correlated with the driving discharge because the simulation had a specific ratio of 
regenerative braking to driving discharge as defined by the UDDS.  Therefore, regenerative 
braking was dropped from the multiple linear regression analysis. Only driving discharge and 
energy arbitrage discharges were considered for the multiple linear regression, because the other 
values could be almost perfectly predicted if these values were known.  The errors of the 
resulting regression appear to follow the assumption of normality, as shown in figure 11, which 
indicates that a multiple linear regression can be used without fear that the errors follow a pattern 
that would indicate some hidden underlying process [19]. 
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Figure 11 - Q-Q plot shows errors are normally distributed for multiple linear regression.  

The line represents expected values for a normal distribution. 
The resulting regression appeared linear (adjusted R2=0.96).  The relative size of the 

coefficients implies that the battery usage associated with driving causes more loss in cell 
capacity per Wh processed than usage associated with V2G load shifting (lower rate, more 
controlled discharges) (table 4).  The confidence intervals are small enough that there is no 
overlap as indicated by the high absolute value of the t-stat.  The regression relates percent 
capacity loss to energy discharged driving, energy discharged for arbitrage, and initial capacity.  
An example is shown in table 5, where we illustrate how a given quantity of energy processed in 
a particular mode can be used to predict the percent capacity loss.  Because all cells underwent 
the same cycling associated with driving, the differences in these coefficients relates not just to 
the difference in degradation from dynamic discharge versus constant discharge, but also to other 
hidden variables such as cell aging, which is thought to be minimal over the approximately 12 
months of testing performed for this study [20].   

Table 4 

Example using results of multiple linear regression to 
calculate battery capacity degradation 

Coefficient Value Normalized 
Multiplied 

by 
Coefficient 

Wh discharged 
driving 3000 Wh 462 -0.027 

Wh discharge 
arbitrage 1500 Wh 231 -0.0062 

Initial Capacity 6.5 Wh 1  

Capacity Remaining 97% 
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The composition of a test “cycle” is important when quantifying battery degradation, and 
using depth of discharge (DoD) per cycle as an independent variable when studying capacity 
fade can be misleading in cases where each cycle is laden with rapid discharge and charge 
events.  Analyses performed here show that the strongest indicator of capacity fade for the type 
of cell tested (A123Systems M1 Cell) was the integrated capacity or energy processed, 
regardless of the DoD experienced.   Furthermore, statistical analyses show that using a PHEV 
battery for V2G energy incurs approximately half the capacity loss per unit energy processed 
compared to that associated with more rapid cycling encountered while driving, and DoD was 
not important in either case except as a reflection of energy processed. The percent capacity lost 
per normalized Wh or Ah processed is quite low: -6.0x10-3 % for driving support and -2.70x10-3 

% for V2G support.  These values show that several thousand driving/V2G driving days incur 
substantially less than 10% capacity loss regardless of the amount of V2G support used.  
However, V2G modes that are more intermittent in nature will lead to more rapid battery 
capacity fade and should be avoided to minimize battery capacity loss over many years of use. 

3.2 ECONOMIC MODELS OF SALES STRATEGIES IN THREE 

ISO/RTOs 

We examine energy arbitrage (buying low cost power to charge the battery pack and 
discharging the battery pack at high power price times) with PHEVs assuming that electricity 
sold will be replenished from the grid later in the evening so the battery pack is be full in the 
morning.  Hourly historical locational marginal pricing (LMP) data was obtained for three 
different cities: Boston (BOS), Rochester NY (ROC) and Philadelphia (PHL). Each city is in a 
different electricity market and good data from the 2001 National Household Travel Survey 
(NHTS) of 70,000 households [21] are available to construct driving profiles in each of these 
metropolitan areas.  LMP data are available for the years from 2003 to 2008 for Rochester and 
Philadelphia; the first full year of Boston data is 2004.  The LMPs (plus a transmission and 
distribution charge) provided the cost for buying the electricity, and the maximum potential 
profits for avoiding electricity purchase, or for selling the electricity in the absence of transaction 
costs.  We model a vehicle with a 16 kWh battery pack, as used in Chevrolet's proposed Volt 
[22]. 
 We model energy arbitrage by owners to offset their own electricity consumption during 
high priced periods.  According to the EIA average residential customers consume 936 
kWh/month or just over 30kWh/day, thus a 16 kWh battery has the potential to provide just over 
half a day’s energy needs[23].  This simplifies consideration of transaction costs.  On the other 
hand, it ignores possible social benefits such as increased rates of utilization of utility 
investments or other benefits that might accrue to society if PHEV owners used their vehicles in 
a widespread fashion for energy arbitrage.  Thus, it is an analysis of the economic benefits to 
individuals providing energy arbitrage services, although we use coarse estimates of the net 
social welfare to bound additional revenue below.   
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3.2.1 Sales Strategy Models 

We use a sell-before-buy model. The battery pack begins a day fully charged. The time 8 
AM to 4:59 PM is reserved exclusively for driving (the driving profiles used are given in section 
2.1 of [11]). Discharging for household electricity and charging are allowed in other hours. The 
battery pack is fully charged at the lowest cost hours (charging requires 2.2 hours for a fully 
discharged 16 kWh battery pack using the infrastructure constraint discussed below). No 
discharge is permitted between the time charging finishes and the start of the 8 AM driving 
window. The appendix contains details of the model. 

To estimate the portion of battery pack capacity a profit-maximizing consumer would 
choose to devote to energy arbitrage on a given day, we use two different methods.  The first 
method uses perfect information to find an upper bound on profit.  In this model, owners know 
what the RTP will be in the future; they pick the most expensive LMP hour to use the battery 
pack for home energy use ("sell") and the cheapest hour after to recharge.  When the amount of 
energy to exchange exceeds the capability of the assumed 240V single-phase, 30A circuit 
infrastructure (7.2 kWh/h exchanged) the use is restricted to 7.2 kW per unit time available.  
Then the next least or most expensive hour is considered in steps until the battery pack is 
completely discharged or it is no longer profitable to use the vehicle for energy arbitrage.  The 
vehicle is fully charged before 8 AM each morning. 

The second method uses knowledge of the real time prices in the previous two weeks to 
predict the hours that would be least expensive to recharge; this estimates a reasonable lower 
bound on profit. The predicted price in each hour of the coming day is the average price seen in 
that hour over the previous 14 days. Using this prediction for the cost of recharge and knowledge 
of the actual RTP in an hour when selling is contemplated; the model determines whether selling 
in a given hour would be profitable. If so, it uses battery pack energy for home energy use. Of 
course, it sometimes mispredicts the cost of recharging, and the net revenue is less than if perfect 
information were available. The profit is then calculated as the revenue less cost to charge and 
less the additional battery degradation cost from energy arbitrage.   

3.2.2 Private Benefits of Grid Sales 

We calculate the revenue from energy arbitrage based on LMP data from the PECO, 
Genesee, and Boston nodes of PJM, NYISO, and ISO-NE.  These nodes serve Philadelphia, 
Rochester, and Boston, respectively.  LMP data from 2003-2008 are used to calculate the 
maximum revenue possible from energy arbitrage (2004-2008 for Boston).  For this model, we 
assume the PHEV owner is under a real time pricing (RTP) tariff. We add a transmission and 
distribution (T&D or TND) cost of 7 ¢/kWh [24] to the hourly nodal price to estimate the RTP.  
The net effect of the T&D costs is small given high round trip efficiency (RTE).  We use an RTE 
of 85% as our base case.   The discharge efficiency (DCHeff) and charge efficiency (CHeff) were 
both assumed to be equal and the square root of 0.85 so that they result in 85% RTE (our 
laboratory measurements showed DC-DC energy efficiency of cells only in excess of 95% for 
discharge/charge cycles).  It is assumed the PHEV owner is a price taker.  The results therefore 
estimate the incentive for owners, in a RTP scenario, to choose to use their PHEV for energy 
arbitrage.   
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 We estimated the profit possible from energy arbitrage by subtracting the degradation 
cost and the cost of buying electricity from that of selling it to offset the owner's use and 
multiplying by the number of kWhs transacted and adjusting for efficiency. 
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The kWh transacted by a profit-maximizing PHEV owner depends on the percent of the 

battery pack energy available after driving, the battery pack size, and the marginal cost of 
degradation associated with additional withdrawal from the battery pack.  The variable cost of 
battery degradation depends on the amount of energy withdrawn.  Thus, the objective function 
for the transaction optimization considers revenue and variable costs (battery degradation), but 
not fixed costs necessary for using a PHEV for energy arbitrage because the capital cost of the 
battery pack and charging station are considered here to be sunk costs. 

Degradation cost was calculated based on the multiple linear regression based on 
laboratory data from cycling LiFePO4 cells described in [25].  The cost associated with using 
energy from the battery pack is given in equation 4.  Note that the V2G degradation coefficient is 
negative. 

edBattery Us ofPercent *
1)-(0.8

DegV2G *Costt ReplacemenCostn Degradatio =
       

(4) 

Estimates of the current price of the Chevy Volt's battery pack range from $5,000 to 
$11,000 [26]. However, it is a different battery chemistry from the battery we tested.  We used a 
value of $5,000 ($312/kWh) and performed sensitivity analyses using the range $2,500 to 
$20,000.  With a $5,000 replacement cost, our laboratory measurements predict a degradation 
cost of 4.2¢/kWh served.    
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3.2.3 Results 

The yearly profits from the years of 2003-2008 using perfect information, a $5,000 
battery pack cost, and our measured battery degradation are shown below (table 5).  The 
maximum annual profit ($118) occurred in the Philadelphia area in 2008.  A vehicle owner in 
Boston, even with perfect information, would have see profits of $12 to $48, depending on the 
year. 

Table 5 

Upper bound annual profits for each area over years listed with perfect 
information and $5000 battery replacement cost for a 16kWh battery 

Area 
PHL  ROC  BOS Year 

Profit kWh  Profit kWh  Profit kWh 
2003 $22 1,286  $25 474  N/A N/A 
2004 $17 1,120  $19 451  $12 252 
2005 $110 2,458  $71 1,157  $19 1,119 
2006 $58 1,471  $46 1,037  $48 667 
2007 $95 2,223  $69 1,210  $39 625 
2008 $118 2,264  $107 1,650  $15 1,128 

 

The lower bound of profit estimated without perfect information resulted in profits that 
reached their maximum in Philadelphia in 2005 (table 6).  Even with perfect information the 
maximum annual profit was $118 per year. The 2007 profit in the more realistic lower bound 
case represents 5%, 2%, and 0.5% of the average residential customer's yearly electricity bill in 
2007 in RHL, ROC, and BOS, respectively [27]. Profit would not increase greatly with a larger 
battery because the limitation of the local circuit infrastructure (240 V, 30 A) would curtail the 
rate at which power could be used (sold) during high priced periods. 

 

 

Table 6 

Lower bound annual profits for each area over years listed using 14 day backcasting 
averaging method and $5000 battery replacement cost for a 16kWh battery 

Area 
PHL  ROC  BOS Year 

Profit kWh  Profit kWh  Profit kWh 
2003 $10 1,123  $13 395  N/A N/A 
2004 $6 1,009  $7 415  $10 267 
2005 $72 2,169  $33 978  $18 865 
2006 $38 1,384  $25 862  $28 508 
2007 $57 1,889  $28 988  $6 514 
2008 $67 1,998  $14 1,202  $15 897 
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3.2.4 Sensitivity Analysis 

We performed sensitivity analyses on the effect of battery pack replacement cost on 
profit (Figures 12 - 13). The median value and yearly maximum and minimum for the period 
2003-2008 are shown for upper and lower bound scenarios.   

 
Figure 12 - V2G energy arbitrage profit sensitivity to battery pack replacement cost with 
perfect information in the three cities studied. The symbol indicates the median annual 

profit for the years studied and the range indicates the most and least profitable years. The 
profit in each city is calculated for battery replacement costs of $0, $2,500, $5,000, $10,000, 

and $20,000. 

 
Figure 13 - V2G energy arbitrage profit sensitivity to battery pack replacement cost with 
14 day backcasting method in the three cities studied. The symbol indicates the median 
annual profit for the years studied and the range indicates the most and least profitable 
years. The profit in each city is calculated for battery replacement costs of $0, $2,500, 

$5,000, $10,000, and $20,000. 
Profit drops rapidly with increasing battery pack cost until replacement cost reaches 

$10,000 then becomes asymptotic near zero profit.  With the battery pack replacement cost set to 
zero, the cost of degradation is also zero.  This yields the maximum profit given no marginal cost 
of degradation.  The median for the six years is $200 in the most profitable city (Philadelphia), a 
17% decrease in the average Pennsylvania annual electricity bill.  In the least profitable (Boston), 
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the profit in the median year represents 10% of the average Massachusetts electric bill.  The 
difference in buying and selling LMPs necessary for profitable arbitrage is a function of battery 
pack replacement price and the buying LMP.  The response of profit to varying battery 
degradation costs thus is reflective of the distribution of LMPs in the various RTOs.  The 
difference between peak and off peak is higher in PJM than the other RTOs, but the lower value 
in Philadelphia at high battery replacement costs reflects fewer extremely high price events in 
PJM that would justify use of the battery pack if replacement costs were high.  In the lower 
bound Boston becomes more profitable than Rochester for this reason. 

T&D costs and RTE had a small effect on annual profits.  Lower round-trip efficiency 
incurs extra T&D costs; at 100% RTE, the T&D charges cancel out completely.  Sensitivity 
analysis of RTE shows that it reduces profit in an approximately linear fashion (figures 14-15).  
The perfect information annual profit decreases more rapidly than the backcasting model.  RTE 
(the AC-DC conversion efficiency) is important because it occurs twice for energy arbitrage.  An 
increase in efficiency of AC-DC conversion of 2.7% would increase the RTE from 85% to 90% 
average annual profits by $33 over the 6 year period for PHL and ROC.  T&D had a similar 
though smaller effect over the range of values tested (figures 16-17).  It was similar in range of 
values, and in rate of change of those values, but the rate does appear slightly lower. 

 
Figure 14 - V2G energy arbitrage profit sensitivity to round trip efficiency (RTE) with 
perfect information in the three cities studied. The symbol indicates the median annual 

profit for the years studied and the range indicates the most and least profitable years. The 
profit in each city is calculated for RTE of 0.75, 0.80, 0.85, 0.90, and 0.95. 

 



Vehicle to Grid Systems 

27 

 
Figure 15 - V2G energy arbitrage profit sensitivity to RTE with 14 day backasting method 

in the three cities studied. The symbol indicates the median annual profit for the years 
studied and the range indicates the most and least profitable years. The profit in each city 
is calculated for RTE of 0.75, 0.80, 0.85, 0.90, and 0.95. 

 

 
Figure 16 - V2G energy arbitrage profit sensitivity to Transmission and Distribution 

(T&D) charges with perfect information in the three cities studied. The symbol indicates 
the median annual profit for the years studied and the range indicates the most and least 

profitable years. The profit in each city is calculated for T&D charges of 0, 0.05, 0.07, 0.09, 
and 0.11 ¢/kWh. 
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Figure 17 - V2G energy arbitrage profit sensitivity to T&D charges with 14 day 

backcasting method in the three cities studied. The symbol indicates the median annual 
profit for the years studied and the range indicates the most and least profitable years. The 

profit in each city is calculated for T&D charges of 0, 0.05, 0.07, 0.09, and 0.11 ¢/kWh. 
 

Whether vehicle owners will make their energy available for sale on a particular day is of 
interest to grid operators. Given the base case assumptions ($5,000 battery replacement cost and 
85% RTE, 7.2 kW infrastructure wiring), it was profitable in the Philadelphia area to participate 
in energy arbitrage 56% of the days in the years 2003-2008 (figure 18).   

 
Figure 18 - Percent of days in Philadelphia area of PJM that energy arbitrage is profitable 

given different battery replacement costs and perfect information 
This decreases to 38% if battery pack replacement cost is $10,000.  The difference 

between perfect information and the more realistic backcasting method does not affect the 
number of kWh discharged as strongly as profit (figures 19-20).  On average for all replacement 
costs and locations the number of kWh offered for arbitrage based on backcasting method was 
89% of the number offered based on perfect information (we note that backcasting profit was 
only 51% of that for perfect information).  
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Figure 19 - V2G energy arbitrage quantity sensitivity to battery pack replacement cost 
with perfect information in the three cities studied. The symbol indicates the median 

annual kWh discharged for the years studied and the range indicates the most and least 
kWh discharged. The arbitrage in each city is calculated for battery replacement costs of 

$0, $2,500, $5,000, $10,000, and $20,000. 

 
Figure 20 - V2G energy arbitrage quantity sensitivity to battery pack replacement cost 

with 14 day backcasting method in the three cities studied. The symbol indicates the 
median annual kWh discharged for the years studied and the range indicates the most and 
least kWh discharged. The arbitrage in each city is calculated for battery replacement costs 

of $0, $2,500, $5,000, $10,000, and $20,000. 
 

  

3.2.5 Summary 

The results suggest that vehicle owners are not likely to receive sufficient incentives from 
electricity arbitrage to motivate large-scale use of car batteries for grid support.  The maximum 
annual profit even with perfect market information and no battery degradation cost is $142-$249 
in the three cities considered due to the relatively small variation present in LMPs, 230 V 30A 
infrastructure, and the size of the battery pack.  With degradation included, the maximum annual 
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profit (even if battery replacement costs fall to $5000 for a 16 kWh battery pack) is $12-$118; in 
the more realistic lower bound profit case, the annual profit is $6 - $72. If the difference between 
high and low LMPs grows in the future the value of energy arbitrage will increase, providing 
greater incentive to individuals or a hypothetical aggregator. However, any growth in electricity 
arbitrage will lower the gain, since vehicle owners will increase the presently low night demand 
and decrease peak demand, lowering the LMP spread. 

Ancillary services such as frequency regulation are not discussed here because only a 
small number of vehicles will saturate those markets (for California, less than 200,000 vehicles 
for regulation and a comparable number for spinning reserve) [28]. While first movers in these 
markets may receive revenues much larger than the energy revenues discussed here, the number 
of vehicles that can benefit is typically less than 1% of the total.  

 

4. ANALYZING THE EFFECTS OF PHEVS AND EREVS ON 
PJM AND NYISO GRIDS 

Given the long lead-time for new generation, it is important for grid operators and planners 
to have an idea of changes in load patterns associated with integration of large numbers of 
PHEVs, EREVs, and EVs.   We used publically available data on heat rates and fuel prices to 
create short-run marginal cost (SRMC) generation dispatch curves, and used these to help bound 
the effect of vehicles that will be plugged into the grid.  These curves allow predictions about 
differences in load to be converted to estimates of differences in carbon emissions and generator 
energy payments. 

4.1 GENERATOR DISPATCH ORDER CURVES 

We created short-run marginal costs for generators and ordered the generators into 
generator dispatch order curves using the Emissions & Generation Resource Integrated Database 
(eGRID) 2007, which contains data from 2005 [29].  We combined that with regionally 
appropriate fuel cost and quality data from the same year [30].  A dispatch order curve was 
created for PJM and NYISO (figures 21-22) using the 2005 data and reported annual generator 
availability.   

 We modeled the effect of a CO2 price using the CO2 emissions data included in the 
eGRID database.  Adding a CO2 price increases the short run marginal cost (SRMC) of 
generators with listed CO2 emissions and can change the dispatch order slightly.  The change is 
more noticeable in PJM where a large part of the generation mix is low cost coal than in NYISO.  
We also modeled the effect of a CO2 price on dispatch mixes where the coal generators are 
replaced with coal generators that capture 80% of their CO2 and sequester it. The effects of the 
plant use of electric power for capture, compression, pipeline shipment, and injection of the 
carbon dioxide were modeled by de-rating the plant output by 20% of current nameplate 
generation capacity.  We assume there are no forced or unforced outages, and no constraints due 
to NOx seasonal shutdowns to simplify modeling. 
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Figure 21- PJM modeled generator dispatch order curves for 2005 using eGRID data.  The 

three dispatch curves represent the status quo, a $50/ton CO2 price, and adding CCS to 
coal plants in the hypothetical CO2 price scenario. 

 

 
Figure 22– NYISO modeled generator dispatch order curves for 2005 using eGRID data.  
The three dispatch curves represent the status quo, a $50/ton CO2 price, and adding CCS 

to coal plants in the hypothetical CO2 price scenario. 
The eGRID database does not appear to have CO2 emissions consistently reported for 

biomass generators.  Many of the generators co-fire coal or natural gas but are reported as having 
zero carbon emissions.  It is possible that this is because there are disagreements on how to count 
carbon emissions from biomass, but it will affect the dispatch order in a carbon price scenario.  
Given the small amount of biomass generation it is not a large problem, but if the share of 
biomass generation increases it will be important to include carbon emissions.  Other dual fuel 
plants were rated based on the percent of fuel of each type used in the year (according to eGRID 
database). 

4.1.1 Dispatch Changes Due to PHEVs and EREVs 

Four levels of PHEV market penetration were modeled in PJM and NYISO, to examine 
grid effects from the early adoption stage to a stage in which a majority of vehicles are PHEVs.  
We estimated the number of vehicles in PJM and NYISO by scaling the number of vehicles in 
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the United States by the ratio of electricity retail sales in each area to the electricity retail sales in 
the entire US1.  These numbers were then rounded (table 7).   

Table 7 

Region Number of PHEVs 
PJM 170,000 2,500,000 12,000,000 25,000,000 

NYISO 40,000 600,000 3,000,000 6,000,000 
Approximate 

Percent of Vehicles 0.38% 5.8% 29% 58% 

 

We used the analysis of Lemoine et al. [31] as a starting point. They did not use trip survey data, 
but rather assumed that each vehicle requires 4.1 kWh each time it is charged (twice a day). We 
modified their procedure as follows: the charge rate is increased to 7.2 kWh so that it is 
comparable to the battery testing described in section 1.  For this reason each vehicle can be 
recharged in less than one hour.  Reducing the charging time increases the peak load added by 
PHEVs.    

For each scenario of PHEV penetration, three different charging strategies were modeled.  
The first modeled charging strategy termed “Evening Charging” charges one third of the vehicles 
every hour between the hours of 6pm and 8pm.  This models a case in which vehicles arrive 
home in a staggered pattern and are immediately plugged in.  In the second charging scenario 
(the modified Lemoine et al. “Double Charging”), owners plug their PHEVs, assumed to be 
depleted by the morning commute, in when they get to work in the hours of 8-9 am then again 
when they get home between 6 pm and 8 pm to recharge  for another 4.1 kWh.  

The final charging scenario (“Smart Charging”) is designed to smooth out the valley of 
the load curve by charging a variable number of vehicles to different hours in the night.  This is 
based on the yearly average for each hour of the 24 hour day.  An example of "smart charging" is 
shown for PJM in figure 232.   

                                                 

 
1 Finding the number of registered vehicles in PJM is challenging because PJM is not defined by political 
boundaries of states.   
2 It should be emphasized that figure 23 represents a custom charging scenario not based on the yearly average as 
with the program described in section 2.  Given a yearly average as a basis, the load curve will not appear 
completely flat while vehicles are charging. 
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Figure 23 – PJM load curve for July 23, 2008.  The base load curve is shown with 

modifications resulting from smart charging various numbers of PHEVs. 
The smart charging scenario excluded hours during the workday (7 am to 8 pm), but none of the 
modeled numbers of PHEVs attempted to charge in those hours so this constraint did not bind.  It 
is possible that if the fleet moved to 100% PHEVs then this constraint might increase nightly 
load enough to create a small peak where the valley was on certain days.   

Changes in CO2 emissions refer only to the electricity sector, not net emissions.  Thus, 
savings in CO2 emissions from not using gasoline are not accounted for.  The focus instead is on 
how charging strategies effect emissions.  Generator energy payments are estimated by taking 
the SRMC of the last MW delivered in a given hour and multiplying by the number of MWh 
delivered in that hour. 

Once the charging strategies were complete, we added the load from PHEVs as described 
above to the hourly reported load for the entire ISO/RTO through the 2005 year.  The program 
cycles through all 8760 hours and adds the appropriate load on the given hours to reflect the 
charging scenarios.  These new loads are then combined with the generator dispatch order curves 
to predict the SRMC every hour in the year for each of PHEV charging scenarios.  The CO2 
emissions are also recorded for each plant.  The final output includes the modeled load, SRMC, 
and CO2 emissions for each scenario in every hour of the year.   

4.1.1.1 Integration of PHEVs with no Carbon Price 

We added PHEVs to the grid with no CO2 price in this scenario.  Only the number of 
vehicles is varied to determine the effect on load, estimated yearly generator energy payments, 
generation mix and CO2 emissions (Tables 8 and 9).  It is important to note double charging 
results in twice the additional load so increases are not directly comparable to evening charging 
and smart charging.   
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Table 8 

Load characteristics in PJM 2005 with no carbon price 

Charging 
Strategy 

Number 
of 

PHEVs 

Yearly Energy 
Million MWh 

Estimated Yearly 
Generator Energy 

Payments Billion $

Yearly 
Million 

Tons CO2 

Estimated Added 
Yearly Generator 
Energy Payments 

Million $ 
None 0 685 18.4 372 N/A 

175k 685 18.4 372 44 
2.5M 692 19.1 379 700 
12M 720 23.3 407 5,000 

Double 
Charging 

25M 759 33.1 437 15,000 
175k 685 18.4 372 30 
2.5M 688 18.8 375 450 
12M 703 21.0 389 2,700 

Evening 
Charging 

25M 722 26.2 404 7,800 
175k 685 18.4 372 700 
2.5M 688 18.5 376 110 
12M 703 19.0 390 610 

Smart 
Charging 

25M 722 20.0 409 1,600 

 
Table 9 

Load characteristics in NYISO 2005 with no carbon price 

Charging 
Strategy 

Number 
of 

PHEVs 

Yearly Energy 
Million MWh 

Estimated Yearly 
Generator Energy 

Payments Billion $

Yearly 
Million 

Tons CO2 

Estimated Added 
Yearly Generator 
Energy Payments 

Million $ 
None 0 166 8.94 46.4 N/A 

40k 166 8.95 46.5 17 
600k 168 9.19 47.5 250 
3M 175 10.3 51.5 1,300 

Double 
Charging 

6M 184 11.6 57.6 2,700 
40k 166 8.95 46.4 8.4 
600k 167 9.06 46.9 130 
3M 171 9.59 48.9 660 

Evening 
Charging 

6M 175 10.3 52.0 1,300 
40k 166 8.94 46.4 5.1 
600k 167 9.02 47.3 85 
3M 171 9.27 49.2 330 

Smart 
Charging 

6M 175 10.4 54.2 1,500 
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The percentage change is helpful in comparing values more easily.  Tables 10 and 11 
show the percentage change from the case with no PHEVs3.  The changes in load are very 
similar in PJM and NYISO.  There are significant differences in yearly generator energy 
payments.  It appears that, without smart charging, large numbers of PHEVs will significantly 
change the price of electricity in PJM.  However, with smart charging the increase in NYISO is 
greater than in PJM.   This most likely reflects a greater difference in pricing between on and off 
peak in PJM as compared to NYISO.  NYISO also shows a greater increase in yearly CO2 
emissions with PHEV penetration (PHEVs do not cause a large enough change in demand to 
require large amounts of new generation, so the current generation mix is used). 

Table 10 

Percentage change in load characteristics in PJM 2005 no carbon price 

Charging 
Strategy 

Number 
of 

PHEVs 

Yearly 
Energy  

Estimated Yearly 
Generator Energy 

Payments 

Yearly Tons 
CO2 

175k 0.07% 0.24% 0.13% 
2.5M 1.1% 3.8% 2.0% 
12M 5.3% 27% 9.4% 

Double 
Charging 

25M 11% 81% 17% 
175k 0.04% 0.17% 0.07% 
2.5M 0.55% 2.5% 0.96% 
12M 2.6% 14% 4.5% 

Evening 
Charging 

25M 5.5% 42% 8.8% 
175k 0.04% 0.04% 0.07% 
2.5M 0.55% 0.58% 1.0% 
12M 2.6% 3.3% 4.8% 

Smart 
Charging 

25M 5.5% 8.7% 10% 

 

                                                 

 
3 The load change is not identical because rounding in the number of PHEVs made it so that it was not a perfect ratio 
between PJM and NYISO.   



Vehicle to Grid Systems 

36 

 

Table 11 

Percentage change in load characteristics in NYISO 2005 no carbon price 

Charging 
Strategy 

Number 
of 

PHEVs 

Yearly 
Energy  

Estimated Yearly 
Generator Energy 

Payments 

Yearly Tons 
CO2 

40k 0.07% 0.19% 0.15% 
600k 1.1% 2.8% 2.3% 
3M 5.4% 15% 11% 

Double 
Charging 

6M 11% 30% 24% 
40k 0.04% 0.09% 0.06% 
600k 0.54% 1.4% 1.0% 
3M 2.7% 7.4% 5.4% 

Evening 
Charging 

6M 5.4% 15% 12.2% 
40k 0.04% 0.06% 0.12% 
600k 0.54% 0.95% 1.9% 
3M 1.9% 3.7% 6.1% 

Smart 
Charging 

6M 5.4% 17% 17% 

 

The generation mix for each scenario is shown in tables 12 and 13.  In PJM where there 
is a great deal of coal generation it is possible that the percent of coal used to meet load can 
increase in certain scenarios.  Using smart charging uses more coal during the night.  
Hydroelectric, wind and solar are assumed to have a SRMC of $0 so they are always used first to 
the fullest extent possible.   

Table 12 

Generation mix in PJM 2005 with no carbon price  

Charging 
Strategy 

Number 
of 

PHEVs 
Renewable Nuclear Coal Gas Oil Biomass

None 0 8.0% 32.1% 54.2% 2.8% 2.8% 0.2% 
175k 8.0% 32.1% 54.2% 2.8% 2.8% 0.2% 
2.5M 7.9% 31.7% 54.5% 2.8% 2.8% 0.2% 
12M 7.6% 30.5% 55.4% 3.4% 2.8% 0.3% 

Double 
Charging 

25M 7.2% 28.9% 54.3% 5.9% 3.2% 0.5% 
175k 8.0% 32.1% 54.2% 2.8% 2.8% 0.2% 
2.5M 7.9% 31.9% 54.3% 2.8% 2.8% 0.2% 
12M 7.8% 31.3% 54.6% 3.3% 2.9% 0.3% 

Evening 
Charging 

25M 7.6% 30.4% 54.2% 4.4% 3.0% 0.4% 
175k 8.0% 32.1% 54.2% 2.8% 2.8% 0.2% 
2.5M 7.9% 31.9% 54.4% 2.8% 2.8% 0.2% 
12M 7.8% 31.3% 55.2% 2.8% 2.7% 0.2% 

Smart 
Charging 

25M 7.6% 30.4% 56.3% 2.8% 2.7% 0.2% 
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Table 13 

Generation mix in NYISO 2005 with no carbon price  

Charging 
Strategy 

Number 
of 

PHEVs 
Renewable Nuclear Coal Gas Oil Biomass

None 0 31.6% 28.4% 19.9% 17.4% 1.3% 1.4% 
175k 31.5% 28.4% 19.9% 17.4% 1.3% 1.4% 
2.5M 31.2% 28.1% 19.9% 18.0% 1.4% 1.4% 
12M 29.9% 27.0% 19.2% 20.2% 2.3% 1.5% 

Double 
Charging 

25M 28.5% 25.6% 18.2% 21.2% 5.1% 1.4% 
175k 31.5% 28.4% 19.9% 17.4% 1.3% 1.4% 
2.5M 31.4% 28.3% 19.8% 17.7% 1.4% 1.4% 
12M 30.7% 27.7% 19.4% 18.7% 2.1% 1.4% 

Evening 
Charging 

25M 29.9% 27.0% 18.9% 19.2% 3.6% 1.3% 
175k 31.5% 28.4% 20.0% 17.4% 1.3% 1.4% 
2.5M 31.4% 28.3% 20.2% 17.4% 1.3% 1.4% 
12M 31.0% 27.9% 20.8% 17.6% 1.3% 1.4% 

Smart 
Charging 

25M 29.6% 26.7% 16.5% 25.0% 1.5% 0.7% 

 

 

4.1.1.2 Potential PHEV Effects on Dispatch Stacks With $50/ton CO2 Price 

In this scenario, the PHEVs are added to the grid with a $50/ton CO2 price.  The 
percentage change is in relation to the values in the first lines of table 14 and 15 for PJM and 
NYISO, not to the “no carbon price” scenario described in the previous section.  The load 
remains unchanged, as it is not modeled as responsive to price.  Only the estimated energy 
payments and the tons of CO2 emitted change in response to changes in the dispatch order curves 
(figures 21 and 22). 
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Table 14 

Load characteristics in PJM 2005 with carbon price of $50/ton 

Charging 
Strategy 

Number 
of 

PHEVs 

Yearly Energy 
Million MWh 

Estimated Yearly 
Generator Energy 

Payments Billion $ 

Yearly 
Million 

Tons CO2 

Estimated Added 
Yearly Generator 
Energy Payments 

Million $ 
None 0 685 51.6 347 N/A 

175k 685 51.6 347 62 
2.5M 692 52.5 354 980 
12M 720 57.4 381 5,800 

Double 
Charging 

25M 759 67.3 411 16,000 
175k 685 51.6 347 34 
2.5M 688 52.1 350 540 
12M 703 54.6 363 3,100 

Evening 
Charging 

25M 722 59.9 379 8,400 
175k 685 51.6 347 20 
2.5M 688 51.9 350 310 
12M 703 53.1 365 1,600 

Smart 
Charging 

25M 722 55.2 385 3,600 
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Table 15 

Load characteristics in NYISO 2005 with carbon price of $50/ton 

Charging 
Strategy 

Number 
of 

PHEVs 

Yearly Energy 
Million MWh 

Estimated Yearly 
Generator Energy 

Payments Billion $

Yearly 
Million 

Tons CO2 

Estimated Added 
Yearly Generator 
Energy Payments 

Million $ 
None 0 166 14.6 34.2 N/A 

40k 166 14.6 34.3 19 
600k 168 14.9 35.5 300 
3M 175 16.3 40.7 1,700 

Double 
Charging 

6M 184 18.1 47.5 3,600 
40k 166 14.6 34.3 10 
600k 167 14.7 34.8 160 
3M 171 15.5 37.5 900 

Evening 
Charging 

6M 175 16.4 40.9 1,900 
40k 166 14.6 34.2 9.2 
600k 167 14.7 34.7 150 
3M 171 15.1 36.1 540 

Smart 
Charging 

6M 175 16.1 41.6 1,600 
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Table 16 

Percentage change in load characteristics in PJM 2005 with carbon price of $50/ton 

Charging 
Strategy 

Number of 
PHEVs 

Yearly 
Energy 

Estimated Yearly 
Generator Energy 

Payments 
Yearly Tons CO2 

175k 0.07% 0.12% 0.15% 
2.5M 1.1% 1.91% 2.1% 
12M 5.3% 11% 9.8% 

Double 
Charging 

25M 11% 31% 19% 
175k 0.04% 0.07% 0.07% 
2.5M 0.55% 1.1% 1.0% 
12M 2.6% 6.0% 4.8% 

Evening 
Charging 

25M 5.5% 16% 9.3% 
175k 0.04% 0.04% 0.08% 
2.5M 0.55% 0.61% 1.1% 
12M 2.6% 3.1% 5.2% 

Smart Charging 

25M 5.5% 7.0% 11% 

Table 17 

Percentage change in load characteristics in NYISO 2005 with carbon price of $50/ton 

Charging 
Strategy 

Number of 
PHEVs Yearly Energy 

Estimated Yearly 
Generator Energy 

Payments 
Yearly Tons CO2 

40k 0.07% 0.13% 0.24% 
600k 1.1% 2.0% 3.7% 
3M 5.4% 12% 19% 

Double 
Charging 

6M 11% 24% 39% 
40k 0.04% 0.07% 0.12% 
600k 0.54% 1.1% 1.8% 
3M 2.7% 6.2% 9.6% 

Evening 
Charging 

6M 5.4% 13% 20% 
40k 0.04% 0.06% 0.09% 
600k 0.54% 1.1% 1.4% 
3M 1.9% 3.7% 5.7% 

Smart 
Charging 

6M 5.4% 11% 21% 

 

The carbon price decreases the difference in on- and off-peak prices in PJM, and thus 
makes the charging strategy less important.  It would still be quite costly not to use smart 
charging, but the energy payments increase by only 13% with evening charging vs. 11% with 
smart charging in the 25M case.  With no carbon price that same comparison is 9% vs. 42%.   

PJM shows little change in dispatch mix with a $50 carbon price.  Some gas and biomass 
generators have displaced coal plants, but otherwise the pattern appears very similar to the 
previous section.  In NYISO there is a greater change in the dispatch mix.  Gas plants displace 
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more coal, or a greater proportion of coal.  It is likely that this is because fuel for coal plants is 
cheaper in PJM than in NYISO while gas prices are similar and it is easier for gas plants with 
similar fuel costs to underbid coal generators paying a relatively higher CO2 price. We 
emphasize that these results are for the current generation capital stock, since the added demand 
of PHEVs in even the majority penetration scenario is low. 

Table 18 

Generation mix in PJM 2005 with $50/ton CO2  
Charging 
Strategy 

Number  
of PHEVs Renewable Nuclear Coal Gas Oil Biomass

None 0 8.0% 32.1% 51.4% 4.7% 2.8% 1.0% 
175k 8.0% 32.1% 51.5% 4.7% 2.8% 1.0% 
2.5M 7.9% 31.7% 51.8% 4.8% 2.8% 1.0% 
12M 7.6% 30.5% 52.6% 5.6% 2.8% 1.0% 

Double 
Charging 

25M 7.2% 28.9% 51.8% 8.1% 3.0% 1.0% 
175k 8.0% 32.1% 51.4% 4.7% 2.8% 1.0% 
2.5M 7.9% 31.9% 51.6% 4.8% 2.8% 1.0% 
12M 7.8% 31.3% 51.9% 5.2% 2.8% 1.0% 

Evening 
Charging 

25M 7.6% 30.4% 51.5% 6.5% 2.9% 1.0% 
175k 8.0% 32.1% 51.4% 4.7% 2.8% 1.0% 
2.5M 7.9% 31.9% 51.7% 4.7% 2.8% 1.0% 
12M 7.8% 31.3% 52.6% 4.6% 2.7% 1.0% 

Smart 
Charging 

25M 7.6% 30.4% 53.9% 4.5% 2.7% 1.0% 

 
Table 19 

Generation mix in NYISO 2005 with $50/ton CO2  
Charging 
Strategy 

Number 
 of PHEVs Renewable Nuclear Coal Gas Oil Biomass

None 0 31.6% 28.4% 12.2% 25.9% 1.2% 0.7% 
175k 31.5% 28.4% 12.2% 25.9% 1.2% 0.7% 
2.5M 31.2% 28.1% 12.4% 26.3% 1.3% 0.7% 
12M 29.9% 27.0% 12.9% 27.4% 2.0% 0.7% 

Double 
Charging 

25M 28.5% 25.6% 12.6% 27.9% 4.6% 0.8% 
175k 31.5% 28.4% 12.2% 25.9% 1.2% 0.7% 
2.5M 31.4% 28.3% 12.3% 26.1% 1.3% 0.7% 
12M 30.7% 27.7% 12.5% 26.6% 1.8% 0.7% 

Evening 
Charging 

25M 29.9% 27.0% 12.3% 26.8% 3.3% 0.8% 
175k 31.5% 28.4% 12.2% 25.9% 1.2% 0.7% 
2.5M 31.4% 28.3% 12.3% 26.1% 1.2% 0.7% 
12M 31.0% 27.9% 12.7% 26.6% 1.2% 0.7% 

Smart 
Charging 

25M 29.6% 26.7% 13.8% 28.0% 1.2% 0.7% 
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4.1.1.3 Potential PHEV Effects on Dispatch Stacks Including Low Carbon Coal Generators 

In this section, we model coal generators with carbon capture and sequestration (CCS) 
systems.  This, in combination with a $50/ton CO2 price, is used to construct a new generation 
order dispatch stack for PJM and NYISO (figures 21-22).  We model that retrofitting coal plants 
with CCS would involve a 20% derating of the current nameplate capacity and capture 80% of 
CO2 emissions.   

Table 20 

Load characteristics in PJM 2005 with carbon price of $50/ton and CCS on coal generators 

Charging 
Strategy 

Number 
of 

PHEVs 

Yearly Energy 
Million MWh 

Estimated Yearly 
Generator Energy 

Payments Billion $ 

Yearly 
Million 

Tons CO2 

Estimated Added 
Yearly Generator 
Energy Payments 

Million $ 
None 0 685 38.9 81.8 N/A 

175k 685 38.9 82.0 92 
2.5M 692 40.4 84.0 1,500 
12M 720 48.4 94.7 9,600 

Double 
Charging 

25M 759 64.8 119 26,000 
175k 685 38.9 81.9 52.8 
2.5M 688 39.7 83.1 840 
12M 703 44.0 88.9 5,100 

Evening 
Charging 

25M 722 52.6 99.7 14,000 
175k 685 38.9 81.9 16 
2.5M 688 39.1 82.6 270 
12M 703 40.6 85.6 1,700 

Smart 
Charging 

25M 722 43.5 89.8 4,600 
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Table 21 

Load characteristics in NYISO 2005 with carbon price of $50/ton and CCS on coal generators 

Charging 
Strategy 

Number 
of 

PHEVs 

Yearly Energy 
Million MWh 

Estimated Yearly 
Generator Energy 

Payments Billion $

Yearly 
Million 

Tons CO2 

Estimated Added 
Yearly Generator 
Energy Payments 

Million $ 
None 0 166 13.6 18.3 N/A 

40k 166 13.6 18.4 24 
600k 168 14.0 19.2 360 
3M 175 15.6 23.1 2,000 

Double 
Charging 

6M 184 17.5 29.5 3,900 
40k 166 13.6 18.4 12 
600k 167 13.8 18.8 190 
3M 171 14.6 21.0 1,000 

Evening 
Charging 

6M 175 15.6 24.2 2,000 
40k 166 13.6 18.3 8.7 
600k 167 13.7 18.6 120 
3M 169 14.1 19.2 460 

Smart 
Charging 

6M 177 15.7 22.1 2,100 

 
Table 22 

Percentage change in load characteristics in PJM 2005 with carbon price of $50/ton and 
CCS on coal generators 

Charging Strategy 
Number 

of 
PHEVs 

Yearly Energy 
Estimated Yearly 
Generator Energy 

Payments 
Yearly Tons CO2 

175k 0.07% 0.24% 0.16% 
2.5M 1.1% 3.9% 2.7% 
12M 5.3% 25% 16% Double Charging 

25M 11% 67% 44% 
175k 0.04% 0.14% 0.10% 
2.5M 0.55% 2.2% 1.5% 
12M 2.6% 13% 8.7% Evening Charging 

25M 5.5% 35% 22% 
175k 0.04% 0.04% 0.06% 
2.5M 0.55% 0.69% 0.95% 
12M 2.6% 4.4% 4.6% Smart Charging 

25M 5.5% 12% 9.8% 
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Table 23 

Percentage change in load characteristics in NYISO 2005 with carbon price of $50/ton and 
CCS on coal generators 

Charging Strategy Number 
of PHEVs

Yearly 
Energy 

Estimated Yearly 
Generator Energy 

Payments 
Yearly Tons CO2 

40k 0.07% 0.18% 0.00% 
600k 1.1% 2.6% 0.29% 
3M 5.4% 14% 4.5% Double Charging 

6M 11% 28% 26% 
40k 0.04% 0.08% 61% 
600k 0.54% 1.4% 0.16% 
3M 2.7% 7.3% 2.7% Evening Charging 

6M 5.4% 15% 14% 
40k 0.04% 0.06% 32% 
600k 0.54% 0.89% 0.08% 
3M 1.9% 3.4% 1.3% Smart Charging 

6M 6.6% 15% 4.6% 

 

With CCS-retrofitted coal plants in the smart charging scenario the CO2 emissions 
decline with the maximum number of PHEVs in comparison to evening charging.  This reflects 
the use of other generators during the evening to charge that do not capture emissions.  Smart 
charging uses a mix of renewable, nuclear, and low carbon coal in these cases. 

Retrofitting coal generators with CCS makes them more competitive under a carbon 
price, and increases the use of coal generators, but it also decreases their nameplate capacity.  
Thus, even if they are less expensive to dispatch than other generators their percent in the 
generation mix will still decline when load surpasses their derated nameplate capacity. 
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Table 24 

Generation mix in PJM 2005 with $50/ton CO2 price and CCS on coal Generators 

Charging 
Strategy 

Number 
of 

PHEVs 
Renewable Nuclear Coal Gas Oil Biomass

None 0 8.0% 32.1% 51.5% 5.2% 2.9% 0.3% 
175k 8.0% 32.1% 51.5% 5.3% 2.9% 0.3% 
2.5M 7.9% 31.7% 51.7% 5.4% 2.9% 0.3% 
12M 7.6% 30.5% 51.5% 7.0% 3.0% 0.4% 

Double 
Charging 

25M 7.2% 28.9% 49.3% 10.5% 3.6% 0.5% 
175k 8.0% 32.1% 51.5% 5.3% 2.9% 0.3% 
2.5M 7.9% 31.9% 51.5% 5.4% 2.9% 0.3% 
12M 7.8% 31.3% 51.3% 6.2% 3.0% 0.4% 

Evening 
Charging 

25M 7.6% 30.4% 50.3% 8.1% 3.3% 0.4% 
175k 8.0% 32.1% 51.5% 5.2% 2.9% 0.3% 
2.5M 7.9% 31.9% 51.7% 5.2% 2.9% 0.3% 
12M 7.8% 31.3% 52.7% 5.1% 2.9% 0.3% 

Smart 
Charging 

25M 7.6% 30.4% 53.7% 5.2% 2.8% 0.4% 

 
Table 25 

Generation mix in NYISO 2005 with $50/ton CO2 price and CCS on coal Generators 

Charging 
Strategy 

Number 
of 

PHEVs 
Renewable Nuclear Coal Gas Oil Biomass

None 0 31.6% 28.4% 15.6% 22.3% 1.5% 0.6% 
175k 31.5% 28.4% 15.6% 22.3% 1.5% 0.6% 
2.5M 31.2% 28.1% 15.6% 22.8% 1.6% 0.7% 
12M 29.9% 27.0% 15.1% 24.8% 2.6% 0.7% 

Double 
Charging 

25M 28.5% 25.6% 14.3% 25.5% 5.3% 0.7% 
175k 31.5% 28.4% 15.6% 22.3% 1.5% 0.6% 
2.5M 31.4% 28.3% 15.5% 22.6% 1.6% 0.6% 
12M 30.7% 27.7% 15.2% 23.4% 2.3% 0.7% 

Evening 
Charging 

25M 29.9% 27.0% 14.8% 23.8% 3.8% 0.7% 
175k 31.5% 28.4% 15.6% 22.3% 1.5% 0.6% 
2.5M 31.4% 28.3% 15.8% 22.4% 1.5% 0.7% 
12M 31.0% 27.9% 16.1% 22.9% 1.5% 0.7% 

Smart 
Charging 

25M 29.6% 26.7% 16.5% 25.0% 1.5% 0.7% 
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4.1.2 Effect of Carbon Price on Dispatch Stacks 

The previous sections did not explore the change in baseline load characteristics for 
different carbon scenarios.  This section focuses on the percent change in estimated generator 
energy payments and CO2 emissions, created by a carbon price and CCS. 

Table 26 

Load characteristics in PJM 2005 with carbon scenarios and no PHEVs 

Carbon Scenario Estimated Yearly Generator 
Energy Payments ($) 

Yearly Tons 
CO2 

$50/ton CO2 Price 181% -6.8% 
$50/ton CO2 Price and 

CCS 112% -78.0% 

PJM contains a large number of coal generators.  Even with a $50/ton CO2 price, these 
generators are still dispatched before most natural gas generators.  Thus, there is only a small 
effect on carbon emissions, but a large change in the SRMC of the last dispatched generator 
throughout the year.  Adding CCS to coal plants (for example, encouraged by a carbon 
performance standard) has a far greater effect on CO2 emissions than simply adding a carbon 
price.   

Table 27 

Load characteristics in NYISO 2005 with carbon scenarios and no PHEVs 

Carbon Scenario Estimated Yearly Generator 
Energy Payments ($) 

Yearly Tons 
CO2 

$50/ton CO2 Price 63% -26% 
$50/ton CO2 Price and 

CCS 52% -60% 

 NYISO has a smaller percentage of coal generators in the dispatch stack so adding CCS 
does not have as dramatic an effect on the SRMC or the CO2 emissions in comparison to a 
carbon price.   The patterns in CO2 emission reductions are similar for large numbers of PHEVs.  
The change in estimated yearly generator energy payments is also similar when the carbon 
scenario changes. 

4.2 POTENTIAL FOR REDUCED GRID LOAD  

This section attempts to bound the capacity of PHEVs to reduce peak grid load.  According 
to NHTS data, over 30% of vehicles are not driven on a given day.  When only vehicles 5 years 
and newer are included, the number of undriven vehicles still exceeds 20%.  For this reason, we 
assumed that on any given day 20% of PHEVs would not be driven.  Because the capacity of 
energy storage in PHEVs is quite large in relation to load only the 6% of vehicles being PHEVs 
was considered (600k in NYISO and 2.5M in PJM).   

For a lower bound estimate it was assumed that the entire fleet was made up of vehicles 
with 4 kWh batteries (the lowest amount of storage that currently qualifies for a federal subsidy).  
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The fleet vehicles were allowed to discharge 75% of the energy in their batteries.  This reflects 
the assumption that vehicle manufacturers will recommend that the owner deplete batteries 
completely for fear of excess degradation.  This means 3 kWh could be discharged for driving, or 
peak shaving (versus 4.1 kWh assumed in the prior section).  The round trip efficiency (RTE) of 
energy to and from battery was assumed to be 85%, with the charging efficiency the square root 
of the RTE.  This means the load from driving vehicles was reduced over the cases described in 
the previous sections, because there are less vehicles driving (20% less) and the batteries in the 
vehicles are smaller.   The daily energy needed to recharge a fleet as described here is roughly 
1600 MWh in NYISO and 6500 MWh in PJM (compared to 2,500 and 10,000 MWh in the 
previous sections). 

 It was assumed that any vehicle driven was completely depleted and unable to contribute 
to energy arbitrage.  The remaining 20% of the fleet were allowed to contribute 75% of the 
energy in their batteries.    Because of the RTE, for every 1 kWh received by the grid 1.18 kWh 
must be withdrawn later in the evening.  Leveling grid load is not achievable in the “double 
charging" or "evening charging" scenarios.  Thus, this analysis considers only smart charging.  
This analysis also discharges only in the most expensive hour (averaged for the year for each 
ISO/RTO).  This lowered the SRMC in that hour, but increased it later in the night when the 
vehicles were recharged. 

The upper bound assumed the vehicle fleet was made up of vehicles with 16 kWh battery 
packs.  It also assumes that 4.1 kWh are used driving on average (as in the previous sections).  
This means that the 80% of vehicles that were driven can also contribute to reducing peak load.  
Other constraints remain as in the lower bound case. 

Table 28 

Potential for reduced grid peak load in PJM 2005  

Carbon 
Scenario 

V2G 
Scenario 

Yearly 
Energy 
Million 
MWh 

Estimated Yearly 
Generator Energy 

Payments Billion $ 

Yearly 
Million 

Tons CO2 

Estimated Added 
Yearly Generator 
Energy Payments 

Million $ 
None 685 18.4 372 N/A 
Lower 
Bound 687 18.4 374 20 Status Quo 
Upper 
Bound 689 18.1 376 -280 

None 685 51.6 357 N/A 
Lower 
Bound 687 51.7 359 180 $50/ton 

CO2 Price Upper 
Bound 689 51.6 361 82 

None 685 38.9 81.8 N/A 
Lower 
Bound 687 39.0 82.3 100 

$50/ton 
CO2 Price 
and Coal 

CCS Upper 
Bound 689 38.6 82.2 -230 
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In PJM it appears using PHEVs to reduce the peak load reduces the estimated yearly 
generator energy payments for the upper bound case except when a carbon price is set.  The 
change in price is a reflection of the dispatch curve.  Where there are steep drops in the SRMC if 
the energy arbitrage pushes the load past this point there is potential for savings.  The lack of 
difference with smaller use of PHEVs and a carbon price means that the hours chosen do not 
have sufficient differences in SRMC to overcome the 15% RTE energy penalty associated with 
energy arbitrage.    

In NYISO it does not appear that load shifting with PHEV energy arbitrage is effective at 
reducing estimated yearly generator payments.  This likely occurs because of the shape of the 
NYISO dispatch curve with CCS and a carbon price.  There is a jump at around 17,000 MW.  
Apparently involving vehicles in energy arbitrage reduces the load enough that it falls off the 
shoulder a significant number of days in the year.  This shoulder is not as noticeable in the other 
carbon scenarios and thus reducing the peak is not as effective at changing the SRMC.  The lack 
of savings when using vehicles implies that a better algorithm should be applied to determine the 
number of vehicles to use, and the amount to discharge.  This also represents only 6% integration 
of PHEVs.  If the 29% PHEV integration was used it could displace all load over an hour period.   

Table 29 

Potential for reduced grid peak load in NYISO 2005  

Carbon 
Scenario 

V2G 
Scenario 

Yearly 
Energy 
Million 
MWh 

Estimated Yearly 
Generator Energy 

Payments Billion $ 

Yearly 
Million 

Tons CO2 

Estimated Added 
Yearly Generator 
Energy Payments 

Million $ 
None 166 8.94 46.4 N/A 
Lower 
Bound 167 8.98 47.0 48 Status Quo 
Upper 
Bound 167 8.97 47.7 34 

None 166 14.6 34.2 N/A 
Lower 
Bound 167 14.7 34.5 93 $50/ton 

CO2 Price Upper 
Bound 167 14.8 34.7 180 

None 166 13.6 18.3 N/A 
Lower 
Bound 167 13.7 18.4 66 

$50/ton 
CO2 Price 
and Coal 

CCS Upper 
Bound 167 13.6 18.3 37 

 

4.3 NET SOCIAL WELFARE 

Could some of the grid's contribution to social welfare from battery storage (change in 
consumer surplus less producer surplus) justify subsidies to provide sufficient incentives for the 
owner to use PHEV and BEV batteries for grid support?  Sioshansi and co-authors [32] estimate 
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the net social welfare of energy storage in PJM during 2007 to be equivalent to $8/vehicle/year 
(for 4 GWh of total storage, about 380,000 16 kWh vehicles using 2/3 of their battery pack 
capacity for electricity).  Walawalkar and co-authors find that the effect of demand response in 
PJM gives similar low net social welfare per kWh [33]. It is possible that the net social welfare 
provided by energy storage may increase at high levels of variable renewable power generation. 
Various estimates of the integration cost of variable renewable power to 15-25% of total 
generation indicate costs on the order of 0.5 to 1 cent per kWh [34]. Suppose 25% of total U.S. 
generation were wind or solar, 1012 kWh. Then the integration cost mitigation would be $20 - 
$40/vehicle/year if all 250 million vehicles participated in grid support and all integration costs 
could be mitigated by vehicle storage. Of course, not all vehicles would participate, so the 
amount available per participating vehicle may be proportionally higher. In that case, there may 
be opportunities to transfer some of that benefit to the vehicle owner. However, not all the 
integration cost would be captured by battery owners.  

The largest potential grid benefit is the avoided cost of new generation plants to meet 
peak demand. The battery/wiring system is capable of meeting 7.2 kWh of load in a peak hour. A 
simple cycle natural gas turbine that is used 100 hours per year has fixed costs of approximately 
$50/kW, or 50¢/kWh. Add to that 10¢/kWh for fuel, for a total of 60¢/kWh, or $432 over the 100 
hours the peaker would have run.  A specific vehicle owner would not be able to help the grid 
avoid all $432, since those 100 hours are likely to be in 4 hour blocks on only 25 days and the 
vehicle's battery would discharge for only a bit less than 2 hours. Thus, the vehicle owner might 
be able to avoid ~$200 of peaking costs. In states with traditional regulated electricity, the public 
utility commission might elect to avoid paying the utility to install and run a peaker, instead 
giving some of the avoided cost to V2G owners. In restructured states, the ISO/RTO may pay an 
aggregator to provide V2G power instead of paying a generator a capacity payment; the 
aggregator would then pay some of their revenue to the vehicle owner. In the absence of such 
incentives, it is unlikely that large-scale grid energy storage in PHEVs will be attractive to 
vehicle owners.  

Capturing the full benefit will require the more sophisticated planning outlined in section 
2.2 instead of the more simplistic model outlined in section 3.2.  Still it is clear that PHEVs have 
the potential to store vast amounts of energy. 

4.4 SUMMARY 

Significant electrification of the transportation fleet is possible with generating assets.  
Smart charging can reduce generator energy payments considerably.  It is important that as the 
fleet of vehicles charging expands smart charging is used.  This will help contain cost increases.  
Increases in CO2 emissions from charging during low load periods do not increase greatly over 
uncontrolled charging in PJM.  In NYISO there is a greater sensitivity to smart charging.   A 
carbon price without CCS technology increases costs significantly and depending on the 
generation mix may not reduce CO2 emissions by a similar rate.  It is likely that including 
demand response to increased prices for electricity would reduce CO2 emissions more than 
changes in generation mix due to new prices for running plants.  Using vehicles for peak shaving 
will be possible, but a simple average yearly methodology will not yield worthwhile results. 
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5. RECOMMENDATIONS FOR RESEARCH TARGETED AT 
MINIMIZING ENVIRONMENTAL AND COST TRADEOFFS 
A fruitful area for future research is finding a better smart charging algorithm.  This will 

minimize the base rate cost increases associated with integrating a large number of PHEVs.  The 
estimates used here, for when PHEVs will be charged without a smart charging strategy, are not 
necessarily precise.  Using actual data describing driving patterns could provide greater insight 
into the effect of large numbers of PHEVs on the grid.  Adding CCS to coal power plants, and 
ensuring that replacements for old plants have CCS, has the potential to greatly reduce CO2 
emissions and the SRMC with a carbon price.  These changes are capital intensive and benefit-
cost analysis comparing a broader scope than this report would be useful in making decisions.  
Analysis using a changing generation capital stock with the PHEV penetrations discussed here 
would also be useful. 
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