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Project Objectives

 Perform a proof-of-concept study aimed at generating 
process engineering and scale-up data to help advance a 
post-combustion CO2 capture process to a pilot-scale 
demonstration level within three years

 ISGS/UIUC team:  Lab- and bench-scale tests to generate  
thermodynamic and kinetic data of major unit operations  

CCS, LLC team: Risk mitigation analysis and techno-
economic studies
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Project Duration and Budget

 Project duration: 1/1/2011 – 3/31/2014

 BP1: 1/1/2011 - 12/31/2011

 BP2: 1/1/2012 - 3/31/2013 (3-month extension)

 BP3: 4/1/2013 - 3/31/2014
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Budget, $
DOE/NETL 1,291,638
ICCI cost share 201,000
Other cost share (in kind) 182,070

Total 1,674,708



Technical background
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77

Hot Carbonate Absorption Process with High Pressure Stripping 
Enabled by Crystallization (Hot-CAP)

 Absorption at 60−80C 
 Working capacity of 40wt% K2CO3/KHCO3 (PCB) solution: 15-20% to 40-45% 

carbonate-to-bicarbonate (CTB) conversion
 Crystallization at near room temperature (30-40C)
 Stripping of bicarbonate slurry at  6 bar
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Major Reactions
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Advantages of Hot-CAP over Traditional Amine Solutions

MEA Hot-CAP
Solvent 30wt% MEA 40wt% K2CO3

Solvent degradation Y Less
Corrosion Y Less

Absorption temperature 40-50C 60-80C
Stripping temperature 120C 140-200C
Stripping pressure 1.5-2 bar  6 bar
Phase change with absorption and 
stripping

N Crystallization

FGD required Y Reduced Size
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 Lower heat of Rx, stripping heat, sensible heat (smaller Cp), compression work
 Less solvent degradation
 Less corrosion



Project Technical Risks

A. Is CO2 absorption rate into 40wt% PCB comparable with 5M MEA?
B. Can CO2 stripping operate at a high pressure (e.g.  10 bar)?
C. Can fouling on surfaces of heat exchangers and crystallizers caused by 

KHCO3 crystallization be prevented?
D. Is crystallization rate fast enough (e.g., a residence time < 1 hr)?
E. Can stripper be designed to handle slurry and operate at a high pressure?
F. Can SO2 removal be combined in Hot-CAP?
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Executive Summary

 Major reactions and unit operations are technical feasible
 CO2 absorption rates into promoted PCB at 70 C 2x greater than MEA at 50 

C (Task 2)
 Crystallization of KHCO3 is kinetically fast and completed in 15 min (Task 3)
 Fouling of heat exchangers and crystallizers can be prevented through the 

use of multi-continuous stirred tank reactor configuration (Tasks 3 and 6)
 Stripping system operated at pressures up to 12 bar (Task 4)
 Optimum operating pressure 6 to 8 bar - mitigates concern of operating 

stripper at high pressures (Tasks 4 and 6)
 Combined SO2 removal and CO2 capture is feasible (Task 5)

 Hot-CAP is cost competitive over MEA (Task 6)
 26% lower parasitic power loss than MEA
 12% lower capital cost than MEA, O&M cost slightly lower
 Increase in LCOE over non-capture case is 60% (vs. 85% for MEA)
 Increase in LCOE is 29% lower than MEA
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Major Activities and Research Findings



Major Tasks
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Task 1. Project planning & management 
Task 2. Kinetics of CO2 absorption 
• Promoter screening 
• Absorption column testing
Task 3. Kinetics of crystallization
• Bicarbonate crystallization testing
• Crystallizer sizing calculation
Task 4. Phase equilibrium & kinetics of high-pressure CO2 stripping 
• VLE measurement
• Stripping column testing
Task 5. Feasibility of sulfate reclamation for SO2 removal
Task 6. Techno-economic analysis
• Risk mitigation analysis
• Process simulation
• Economic evaluation
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Task 2. Kinetics of CO2 absorption



CO2 Absorption into PCB: Promoter Screening
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CO2 Absorption into 40 wt% PCB with Amine 
Promoters

 Rates into PCB40-20 with 1M PZ, AMP, or HDA at 70 C comparable with 5M 
MEA at 50 C

piperazine (PZ), aminomethyl propanol (AMP), hexamethylenediamine (HDA), diethanolamine (DEA), hexylamine (HA)
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CO2 Absorption into PCB: Column Testing

17

Specification 
Column height, m 3
Packed bed height, m 2
Absorber diameter, cm 10
Height of packing element, cm 10
Diameter of packing element, cm 10
Specific surface area (a), m2/m3 800
Void fraction (ε) 0.66
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Comparison of CO2 Absorption into 40wt% PCB vs. 5M MEA

 CO2 removal efficiency by 40wt% PCB with a promoter at 70C:
 1-3 times > 5M MEA at 50C (under lean or rich conditions)
 3-7 times > PCB without a promoter
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(70ºC ab. in 40wt% PCB and 50 ºC in 5M MEA; inlet 14vol% CO2, L/G=4.0 L/m3)
(30% CO2 removal efficiency equivalent to ~11% increase in CTB thru the column) 
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Effect of Precipitation in Packed-Bed Column
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 Precipitation occurred with feed PCB of 40% CTB conversion, but didn’t 
noticeable affected CO2 removal

 PZ > AMP > DEA for promoting CO2 removal in PCB 
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Task 3. Kinetics of crystallization



Studies of Bicarbonate Crystallization: 
Mixed Suspension-Mixed Product Removal (MSMPR) Reactor

21

 1-liter calorimetric CSTR (Syrris Atlas), precise temperature control  (-20140 C)

 In-situ turbidity detection

 Operation controlled by software

 Two peristaltic pumps (feed and discharge)

 Sampling at steady state, filtered for crystal size distribution (CSD) analysis 
(Horiba LA-950)



Experiment Conditions for Bicarbonate Crystallization 

 Simulating CO2-rich solution from Hot-CAP absorber: 
 Crystallization temperature: 

 70-55°C → 55-45°C → 45-35°C to simulate a multiple-CSTR  
crystallization process

 Data used to develop a kinetic model for crystal growth and nuclearation
22



Kinetic Model Developed for Crystallizer Sizing

 Crystallizer size was estimated by:

: residence time, LM : mass median size; 
Gav (m/s): average growth rate over an entire particle size range 
(a correlation with operating conditions regressed based on experimental data)
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)67.3/( avM GL

Unit 
no.

Average growth 
rate Gav (m/s)

Total nucleation 
rate BTOT (1/sm3)

Residence 
time  (s)

Crystallizer 
volume V (m3)

1 6.89E-08 1.33E+08 108 555
2 5.92E-08 1.25E+08 126 633
3 5.70E-08 1.10E+08 131 644
4 5.46E-08 0.97E+08 137 660
5 4.83E-08 0.89E+08 154 734

Total 656 (11 min) 3,226
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Task 4. Phase equilibrium & 
kinetics of high-pressure CO2 stripping 



Vapor-Liquid Equilibrium Measurement at High 
Temperatures
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 40-60wt% KHCO3/K2CO3 slurry at 120-200C
 Gas analysis using a GC-based method (N2 as a trace gas)
 Liquid analysis using a back-titration method



VLE Data for 40, 50, 60wt% PCB at 140-200C
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 High stripping pressures attained at high CTB conversions and 
temperatures (e.g., P = 31 bar and PH2O /PCO2 = 0.16:1 for 50wt% PCB 
with 83% CTB conversion at 200C)

 Lower PH2O/PCO2 ratios attained at higher CTB conversion or higher PCB 
concentration



CO2 Stripping Tests: Bench-Scale System

 Stripping column: 7-ft high by 1-in ID; 3 kW electrically heated reboiler
 Slurry supply tank: 10-gallon vol., 5 kW electrical heater
 Control panel and monitoring (T, P, rpm, flow rate, etc.)
 System rated at 200 C and 500 psia
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Effect of Stripping Temperature

 More PCB regeneration and higher 
P achieved at higher T

 CO2/H2O ratio decreased slightly 
with increasing stripping T
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Effect of PCB Concentration
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 Increasing PCB concentration 
increased PCB regeneration, P, 
and CO2/H2O ratio
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Effect of CO2 Loading in Feed Solution
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 Higher CO2 loading in feed solution 
resulted in more PCB 
regeneration, higher P,  and higher 
CO2/H2O ratio
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Heat Duty for CO2 Stripping
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 Heat duty decreased with increasing 
feed CTB, PCB concentration, and T

 Heat duty for PCB at 160 oC (best 
1,791 kJ/kg CO2 including heat of 
crystallization) was 2-3 times < 5M 
MEA (best 4,300 kJ/kg for lean loading 
of 0.37-0.2 mol CO2/mol MEA)
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Task 5. Feasibility of sulfate reclamation for SO2
removal



Reclamation of Sulfate for SO2 Removal in Hot-CAP
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SO2 absorption into PCB 

Reclamation process
 Reclamation of K2SO4 using lime

 Two competitive reactions

(Solubility products differ by 4 orders of magnitude)
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CaCO3 precipitation:
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A Modified Process I for SO2 Removal in Hot-CAP

 Calcite/vaterite (CaCO3)  dominant in precipitates with 0.2 M PCB and at 50 C
 Process modified to use:

 A dilute PCB ( 0.2 M and CTB > 40%) in a separate scrubber, and lime to 
reclaim K2SO4 (similar to a dual-alkali FGD)

 T < 50 C and a high-pressure CO2 gas 

34

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Lime 
Hydration 

Solution 
acidification 

Liquid/solid 
Separation 

CO2 
Absorption 

CO2 
Desorption 

CO2 Drying/ 
Dehydration 

Lime
Gypsum Compressed 

CO2  

SO2 lean 
solution

Heat
exchanger

Flue 
gas 

Clean 
flue gas 

High P CO2

CO2 lean
solution

CO2 rich
solution 

CO2/H2O 
stream 

Flash 

Condenser &
Vacuum pump

CO2 

Steam 
from LP

Water 
condensate to 
power plant

K2SO4 
Reclamation 

SO2 
scrubbing SO2 rich 

solution

Compressor 

PC makeup



A Modified Process II for SO2 Removal in Hot-CAP
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Absorption: 2K2CO3 + SO2 +H2O  K2SO3 + H2CO3

2KHCO3 + SO2 +H2O  K2SO3 + 2H2CO3

Oxidation: K2SO3 + ½ O2  K2SO4

Reclamation: K2SO4 + Ca(OH)2  2KOH + CaSO4

K2SO4 slurry
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Equilibrium Composition of Sulfide Oxidation

Feasibility demonstrated by:
 Precipitates from PCB20-40 contained 100 wt% K2SO4

 Precipitates from PCB40-40 contained ~70 wt% K2SO4 and ~30 wt% KHCO3
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Task 6. Techno-economic analysis



Techno-Economic Analysis
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 A 773 MWe (w/o CO2 capture) Illinois #6 coal-fired power plant

 With Hot-CAP

 With MEA (550 MWe net)  DOE/NETL Case 10

 Process simulation and equipment sizing 

 ProTreat software used for absorber and stripper sizing

 Measured crystallization kinetics for crystallizer sizing

 Measured VLE data incorporated in the simulation  

 Cost analysis

 DOE/NETL methodology used for capital and O&M cost estimation

 A Nexant study was referred



Process Mass and Energy Balances
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Design and Sizing of Crystallizers
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 Configuration of five consecutive 
crystallizers 

 Facilitates heat recovery

 Reduces T to ~5°C 

 Concrete tank crystallizers with 
submerged coils

Stage 1st 2nd 3rd 4th 5th Total
Total cooling duty, MWth 88.6 143.9 127.7 123.6 159.3 643.1

by mother liquor, MWth 74.5 73.4 101.7 0.0 0.0 249.6
by cooling water, MWth 14.1 70.4 26.1 123.6 159.3 393.5

Crystallizer volume, m3 555 633 644 660 734 3,226
Mean residence time, sec 108 126 131 137 154 656
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Plant Performance Summary Case 10 with MEA Case 10 with Hot-CAP
Consumables:

As-Received Coal Feed, kg/hr 278,956 278,956
Thermal Input, kWth 2,102,643 2,102,643

Power Generation Summary, kW:
Steam Turbine Gross Power 672,700 722,695

Auxiliary Load Summary, kW:
Cooling Water Circulation Pumps 11,190 8,693
Cooling Tower Fans 5,820 4,521
Transformer Losses 2,350 2,600
CO2 Capture Plant Auxiliaries 22,400 26,541
CO2 Compression 48,790 39,307
Others 32,190 32,190
Total Auxiliaries, kW 122,740 113,852

Net Power Export, kW 549,960 608,843
Net Plant Efficiency, % HHV 26.2% 29.0%

Energy Use Performance: Hot-CAP vs. MEA

 PC w/o capture: 773 MW
 PC plant with Hot-CAP: 609 MWe net output vs. 550 MWe with MEA
 26.4% reduction in parasitic power losses



LCOE Comparison between Hot-CAP and MEA
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Subcritical PC
w/o CO2 Capture

Case Number Case 9 Case 10 This Study
Type of CO2 Capture Technology N/A Econoamine Hot CAP
Capital Cost Year 2007 2007 2007
CO2 Capture 0% 90% 90%
Power Production, MW

Gross Power 583 673 723
Net Power 550 550 609

Cost
Total Plant Cost, 2007$/kW 1,662 2,942 2,518
Total Overnight Cost, 2007$/kW 1,996 3,610 3,085

Bare Erected Cost 1,317 2,255 1,946
Home Office Expenses 124 213 183
Project Contingency 182 369 311
Process Contingency 0 105 78
Owner's Costs 374 667 567

Total Overnight Cost, 2007$ x 1000 1,098,124 1,985,432 1,878,100
Total As Spent Capital, 2007$/kW 2,264 4,115 3,517
COE (mills/kWh, 2007$) 59.4 109.6 94.8

CO2 TS&M Costs 0.0 5.8 5.2
Fuel Costs 15.2 21.3 19.3
Variable costs 5.1 9.2 8.1
Fixed Costs 7.8 13.1 11.2
Capital Costs 31.2 60.2 51.0

LCOE (excld. CO2 TS&M), mills/kWh 75.3 139.0 120.3
% of Case 9 LCOE - Compare to 2007 100% 185% 160%

Postcombustion Case Description
Subcritical PC
w/ CO2 Capture



Cost Performance: Hot-CAP vs. MEA
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 LCOE is 120.3 mills/kWh, a 60% increase over PC w/o CO2 capture
 LCOE increase by Hot-CAP is 29% lower than MEA
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Cost Sensitivity 

 LCOE very sensitive to absorber capital (+6.4 mills/kWh if capital doubles)
 LCOE sensitive to addition of a new polishing scrubber (+4.6 mills/kWh) and crystallization 

power use (+2.5 mills/kWh if power doubles)
 LCOE not sensitive to K2CO3 price, crystallizer capital, and stripping pressure increase 44
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Main Conclusions

 Major reactions and unit operations are technical feasible
 Rates of CO2 absorption into PCB+PZ at 70 C were 2-3 times > MEA at 50 C 
 Crystallization of KHCO3 was kinetically fast and completed within 15 min; 

Presence of PZ accelerated KHCO3 crystallization.
 High stripping pressure and high CO2/H2O ratio attained with high CO2 loading 

in feed and high PCB concentration
 Heat duty for 160 C stripping with 30-50 wt% PCB feed of 80% CTB 

conversion was 2-3 times less than those for 5M MEA at 120 C stripping
 A process concept for combined SO2 removal and CO2 capture was 

demonstrated to be feasible

 Hot-CAP is cost competitive over MEA 
 26% lower parasitic power loss than MEA
 Increase in LCOE over non-capture case is 60% (vs. 85% for MEA)
 Increase in LCOE is 29% lower than MEA
 Cost more sensitive to absorber capital and addition of a SO2 polisher than 

other variables
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Plan for Future Work

 Process improvement

 Absorber improvement

 New PCB-based solvents

 Recovery of heat of crystallization

 New stripper configuration 

 Scale-up testing of an integrated system 

 Using a slipstream flue gas

 Investigating operational reliability issues such as slurry handling

 Testing of effects of SOx, NOx, and other contaminants in flue gas
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Intrinsic Rates of Absorption: PCB vs. Amines 
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 Rates into PCB vs. amines

 Intrinsic rate into 40wt% PCB at 70C is ~6 times lower than 5M MEA

 CO2 solubility (Henry’s law constant) at 70C  is ~4 times lower than 25C

Reactant Rate constant k, 
L/mol/s

Concentration, 
mol/L

Rate (k [Reactant]), 
1/s

OH- 1.57x106 (at 70C) 4.33×10-3 k1 [OH] = 6,820

MEA* 7,600  (at 25C) 5 k2 [MEA] = 38,000

MDEA 4.3 (at 25C) 5 k3 [MDEA] = 21.5

][MDEA][COkr:rateHCONHRRCHOHNRRCHCO

][MEA][COkr:rateCOORNHHRNHCO

]][OH[COkr:rateHCOH

23333
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


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CO2 Absorption into 40wt% PCB with Catalysts

 Two inorganic catalysts, CAT1 and CAT2, identified more effective than
other inorganic catalysts

 Addition of 4 wt% CAT1 or CAT2 increased rates by ~2 times at 60, 70,
80C

49

0.E+0

2.E-3

4.E-3

6.E-3

8.E-3

0 5 10 15

Ab
so

rp
tio

n 
ra

te
 (m

ol
/m

2s
)

CO2 partial pressure (psia)

60oC, PC40-20 60oC, PC+4% CAT1
70oC, PC40-20 70oC, PC+4% CAT1
80oC, PC40-20 80oC, PC+4% CAT1

0.0E+0

2.0E-3

4.0E-3

6.0E-3

8.0E-3

0 5 10 15

Ab
so

rp
tio

n 
ra

te
 (m

ol
/m

2s
)

CO2 partial pressure (psia)

60oC, PC40-20 60oC, PC+4% CAT2
70oC, PC40-20 70oC, PC+4% CAT2
80oC, PC40-20 80oC, PC+4% CAT2



CO2 Absorption into 40wt% PCB with Amine Acid Salt 
Promoters

 Rates into 3M K-glycine, K-sacrosine and K-proline solutions at 70 ºC 
higher than or comparable to 5M MEA at 50 ºC

 Rates into PCB promoted by K-glycine and K-sacrosine increased by 3-
11 times but still < MEA
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Morphology and Composition of Crystal Particles

 Kalicinite (KHCO3) was the only phase formed in all tests (w or w/o 
absorption promoter) 

 Hexagonal prism morphology
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Parametric Effects on KHCO3 Crystallization Kinetics

 Higher , milder 
agitation and longer 
resulted in larger crystals

 High , mild agitation 
and short  favored fast 
crystal growth

 Low , vigorous agitation 
and short  favored fast 
nucleation

 Presence of PZ 
accelerated KHCO3
crystallization
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PCB40-40+PZ, 70-55C, 
350 rpm,15 min

(: supersaturation
: mean residence time)



Separation Efficiency of Crystal Particles

 Mean particle size of KHCO3: 233 - 455 µm 
( =15, 30, 45 min, crystallization T= 55, 45, 35C)
 Crystal size large enough for conventional liquid-solid separation
 Crystallization  15 min is sufficient
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Source: Monredon et al. Int. J. of Mineral Process. 1992, 35: 65-83.

Grade efficiency 
in a hydrocyclone

(10.47 wt% 
limestone)



VLE Data for 40, 50, 60wt% PCB at 140-200C
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Compositions of Precipitates Produced

 Gypsum/syngenite dominant in precipitates with 0.2 M PCB and at 50 C
 Gypsum/syngenite favored by increasing mixing, [K2SO4], or reaction time
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Design and Sizing of Absorber and Stripper

 Two absorption columns, each with:

13-m in height (effective packing)

14.8-m in diameter

 One stripping column:

10-m in height

7.3-m in diameter
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