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Budget:

DOE contribution:

Year 1. $ 691,955
Year 2: $ 847,672
Year 3: $ 847,006
Total:  $2,386,633 (79%)

Cost Share Partners:

GE Energy: $ 420,000
Algenol Biofuels: $ 183,900
Southern Company: $ 33,147
Total: $ 637,047 (21%)

Total Budget: $3,023,680

Project Performance Dates — October 2011 to September 2014
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Key ldea:

Combine:
(1) state-of-the-art supported amine
adsorbents, with
(1) a new contactor tuned to
address specific weaknesses of
amine materials,

to yvield a novel process strategy
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Hollow Fiber Contactor:

Sorbent sites, supported by

porous fiber wall _
Cooling water

Adsorbate/Carrier sweep

Bundle of 40 fibers in a
1.5 module at GT

g 0~
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RTSA Qualitative Cycle:

Flue gas
CO,/N, Cooling water + 60's

sorption enthalpy
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Hollow Fiber Contactor:

Key Experimental Tasks:

1) Spinning of high solid content (50-66 volume%), flexible hollow fibers, using low
cost commercial polymers (e.g. cellulose acetate, Torlon®).

2) Incorporating amines into composite polymer/silica hollow fibers.

3) Building and demonstrating RTSA systems for CO, capture from simulated flue
gas.

4) Assessing the impact of operating conditions on deactivation via (i) oxidation, (ii)
SOx exposure, (iii) NOx exposure.

5) Constructing a barrier lumen layer in the fiber bore, allowing the fibers to act as a
shell-in-tube heat exchanger.

6) Demonstrating steady-state cycling of multi-fiber module with heating/cooling.
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Post-Spinning Infusion:

1) Spinning of high solid content (50-66 volume%), flexible hollow fibers
2) Incorporating amines into composite polymer/silica hollow fibers.
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SOx/NOx Experiments:

4) Assessing the impact of operating F. Rezaei et al., Industrial &
conditions on deactivation via (i) Engineering Chemistry Research,
oxidation, (i) SOx exposure, (iii) NOx 2013, 52, 12192-12201.
exposure.

F. Rezaei et al., Industrial &
-- conditions whereby oxidation via Engineering Chemistry Research,
residual oxygen in flue gas can be 2014, in press.
avoided identified

-- equilibrium and dynamic sorption
measurements of NO, NO,, SO,
completed

-- single component and
multicomponent sorption studies

SOx/NOx studies facilitated by support of Southern Company.
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SOx/NOx Experiments:

4) Assessing the impact of operating
conditions on deactivation via (i)
oxidation, (i) SOx exposure, (iii) NOx
exposure.

-- NO,, SO, adsorb strongly, but have
modest impact at low concentration

-- saturation capacity loss observed

-- high concentration of gases (200
ppm) cause significant capacity loss

-- deactivated fibers can be stripped of
amine and recharged in the field for full

capacity regeneration
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Hollow Fiber Contactor as Heat Exchanqger:

5) Constructing a barrier lumen layer in the fiber bore, allowing the fibers to act as a
shell-in-tube heat exchanger.

Two approaches:

(i) Post-treatment: Flow of a polymeric, Neoprene ® latex and cross-linker through
fibers

Sample He permeance (GPU)
CA/Silica 72,200 (25 psi)
CA/Silica/Neoprene®/TSR-633 3.4

-- Large decrease in mass flux from bore to shell
with lumen layer = good barrier layer

Y. Labreche et al., ACS Applied Materials & Interfaces, 2014, submitted.
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Hollow Fiber Contactor as Heat Exchanqger:

5) Constructing a barrier lumen layer in the fiber bore, allowing the fibers to act as a
shell-in-tube heat exchanger.

Two approaches:

(i) Post-treatment: Flow of a polymeric, Neoprene ® latex and cross-linker through
fibers
- Disadvantage — fibers can become clogged by latex, requires careful
handling of latex

(i) Dual layer fiber spinning — spin the lumen layer when initial fiber formed

- Advantage — highly scalable synthesis when poly(amide-imide)
like Torlon® employed

- Main fiber: porous Torlon® containing 50-60 wt% silica;
Lumen layer: dense Torlon®; post-treatment with PDMS gives excellent
barrier properties
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Hollow Fiber Contactor as Heat Exchanqger:

Lab scale heat capture efficiency during
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Fiber Cycling — Model and Realistic Conditions:

6) Demonstrating steady-state cycling of multi-fiber module with heating/cooling.

| Hollow fiber .
| module T
I
T=35-150"C |} —m e i
: ; “Gas outlet| Mass spec =n, g | 36 inch
| f | d ' Hiber mod
Water Outlet

Flue gas composition: 35°C, 1 atm
~ 13% CO,, ~13% He (Inert tracer),
6% H,O, balance gas N,
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CO2 Sorption in Uncooled Generation 2 Fibers:

o —oo, o o
S 1} 8t — 22207 * Estimated
E . thermal
.5 8r CO, breakthrough curves 8 excugspn IS
8 54T Thermal wave moved ~63°Cin full
5 | along Z direction size module
(@]
é 0 b q, 1.10 mmol/g OJS
oI | 200 200 600 0 200 200 600
Time (s) Time (s)
14T g, remains ~ 1.1 mmol/g over 50 cycles
12t
= 1.0}
o
c 0.8
£ 06
o 0.4
0.2
0.0
9 10 20 30 40 50
Georgialhstituie
off Tech nelogy Cycles

== School of Chemical & Biomolecular Engineering



Generation 3 Fibers:

Dynamic process modeling and system technoeconomic analysis suggest
there are several factors to lowering costs:

() Improved sorption capacities [pseudo-equilibrium (q,.),
breakthrough (q,), swing capacities (q.)]

(i) Improved process configuration allowing for enhanced heat
management without integrating with power plant
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Generation 3 Fibers:

Dynamic process modeling and system technoeconomic analysis suggest
there are several factors to lowering costs:

() Improved sorption capacities [pseudo-equilibrium (q,.),
breakthrough (q,), swing capacities (q.)]

(i) Improved process configuration allowing for enhanced heat
management without integrating with power plant

(mol/kg fiber) Ope dy, s
Generation 1 fibers: 1.1 0.5 0.30
Generation 2 fibers: 1.5 1.1 0.65
Generation 3 fibers: 2.0 1.3 0.75
Georgialnstitute (260% increase in g, In 2 years)
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Model Development (Single Gen 2 Fiber Modeling):
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Process Improvement from Modeling : Effect of Sorbent Size:
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Model predicts increase in breakthrough

capacity due to decrease of mass transfer

resistance

Smaller silica particles to be employed
experimentally.
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Overall approach:

Cycle Design on Single

Fiber (GT)

Cooling
35seconds

Cycle Model Validation
and Scale Up to Module
Level (GT and Trimeric)

Adsorption
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DOE Metric Calculation. Feedback to
single fiber design and optimization
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Process Flow Diagram - Cycle Steps:
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CO2 Balance:

CO, purity of 95% and recovery of 90% per pass

1% 7%

29% Cooling

7 3%
’ Self

sweeping

Year 2 N2 sweeping

0
Year 3 20%

60%
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Technoeconomic Evaluation Methodoloqy:

The current technoeconomic evaluation employs a similar methodology to
the first and second year:

 Outputs from cyclic steady state fiber model (e.g., tempered water flow
rates and temperatures) were abstracted and used as inputs to steady-
state process model

- Heat and material balances were used to size and select equipment

« Capital costs, operating costs, and technoeconomic metrics were
calculated according to DOE methodology

Equipment pricing was improved over year 1.

« Equipment cost curves were developed to accommodate more rapid
evaluation of process options by overall modeling team.

« Aspen In-plant Cost Estimator replaced PDQ$ as the equipment cost
estimating software.

Year 2, CO, recovery target (93%) was met, but CO, purity was not (82%).
Year 3, CO, recovery (90%) and purity targets met, (95%).

Georgialhstituie
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DOE Design Basis:

o Specified in solicitation, similar but not identical to DOE
baseline reports

e 550 MWe net, 90% CO, capture
e Supercritical steam cycle
* Inlet flue gas conditions and composition
e QOutlet CO, at 95% purity and 15272 kPa (2215 psia)
« Cooling water supply, return, and approach temperatures
e Steam delivery conditions:
— IP/LP crossover
— 395 C (743 F) and 1156 kPa (168 psia)
— Thermal energy penalty of 0.0911 kWh/lb
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Enerqy and Escalation Results Year 3:

Description
Escalation Factor
Energy

Sorption enthalpy

Sensible heat
Total enthalpy per sorption or desorption step

Main heater duty

Main cooler duty

Intraprocess heat recovery
Steam usage
Derate

Direct Electrical Derate

Steam Derate

Steam Turbine Energy Recovery

Total Derate for CO, Capture

Georgialhstituie
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Units

MWsth

MWth
MWsth

MWith
MWth
%
kg/h

MWe
MWe
MWe
MWe

Value
1.532

183.2

1006
1190

550
-563

819000

110.8

252.6

-71.0
292
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Escalated Capital Costs:

Description
Total purchased equipment
costs (PEC)

Fibers

CO, capture

CO, compression
Process Plant Cost (PPC)

Total Plant Cost (TPC)

Total Plant Investment (TPI)

Total Capital Requirement
(TCR)

Annual Capital Charge

Georgialhstituie
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Units

MM$
MM$
MM$
MM$

MM$

MM$

MM$

MM$

MM$/year

Year 3

221.6
135.9

57.6
28.1

641.5

1078.5

1142.6

1175.3

205.7

Comments

1850 modules
450,000 fibers/module

PPC = PEC + Direct Costs

TPC = PPC + Engineering +
Process Contingency + Project
Contingency (30%)

TPl = TPC + Interest and Inflation

TCR = TPI + Startup + Initial Fill +
Working Capital + Land + Others



Technoeconomic Metrics Escalated Case:

Description Units Year 3 Q3

Levelized Costs of Electricity and Steam
Levelized cost of electricity mills/kWh 154
Levelized cost of steam $/1,000 Ib 14.0
Cost of CO, Capture
Total Annual Cost of CO, Capture MM$/year 303

Impact of CO, Capture on Plant Efficiency

Net Plant Efficiency without CO, Capture (HHV) % 39.3
Net Plant Efficiency with CO, Capture (HHV) % 25.6
Change in Net Plant Efficiency % -11.2

Metrics were calculated using simplified equations specified in the solicitation.
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Summary & Future Work:

 Rapid Temperature Swing Adsorption (RTSA) enabled by a new contactor
combined with solid amine sorbents.

» Cycle allows quasi-isothermal adsorption with significant sensible heat
recovery due to nanoscopic shell-tube heat exchanger design.

* Refined Technoeconomic analysis suggests targets for improvement.
-- Current parasitic load, Gen 2 fibers (1.53 escalation factor)

« Refinement Approaches:
-- Gen 3 fibers = 1.43 escalation factor

-- Gen 3 fibers (VTSA, 0.33 bar desorption pressure)
Lower bound steam savings = 30% less heat used

-- Gen 3 fibers (VTSA, 0.33 bar desorption pressure)
Upper bound steam savings = 50% less heat used

-- Multi-bed adsorption
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