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Project Overview
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Award number #: DE-FE0001124
Project period: 9/15/09 to 9/14/11
Funding: $950k DOE; $150k MTR and $ 90k Tetramer Technologies
DOE program manager: Richard Dunst
Project team:
MTR --- membrane and process development

Tetramer Technologies --- specialty polymer synthesis
Southern Company NCCC --- field test

Project scope: The goal of this project is to develop a new polymer membrane 
and membrane separation process that will provide cost-effective CO2
management in future coal-based IGCC power plants.  
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Tetramer



Project Objectives

Membrane development
• High-temperature stable polymers for use in H2/CO2 

• Composite membranes that have H2/CO2 >10 and H2 permeance 
>200 gpu at syngas cleanup temperatures (100-200oC)

Membrane performance evaluation
• Evaluate membrane performance and lab-scale membrane 

modules using simulated syngas

• Evaluate membrane stamps in the field using coal-fired syngas

Process design analysis
• Optimize membrane process designs and assess the optimal 

integration of a membrane system

• Perform a cost analysis of the polymer membrane process vs. 
current cleanup technologies, e.g., Selexol3
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Membrane Options for Syngas Cleanup

• Hot syngas cleanup membranes offer the potential for process intensification
• Warm/cool syngas cleanup membranes offer fewer operating challenges
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1. Ciferino, J. and Marano, J, “Novel Integration of Gas Separation Membranes for CO2 Capture from IGCC Power Plants,”
presented at AIChE New Orleans, April 2008.
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Pros and Cons of Membranes 
for Syngas Cleanup

Advantages:

• Simple design; small footprint

• Energy efficient compared to sorption processes

• No water used; no leakage or disposal of chemical solvents

Challenges:

• Membrane reactor for hot/warm gas cleanup --- difficult 
operating conditions, stability in presence of contaminants

• Inorganic membranes --- lack of reproducible, low-cost module 
fabrication technology

• Polymer membranes --- thermal stability of membrane 
materials for hot/warm gas cleanup
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New high-temperature membranes show 
promising performance

1. O’Brien K. et al., “Fabrication and Scale-Up of PBI - Based Membrane System for Pre-Combustion Capture of Carbon Dioxide,” DOE 
NETL project fact sheet 2009.

2. Low, B.T., et al., “Simultaneous Occurrence of Chemical Grafting, Cross-linking, and Etching on the Surface of Polyimide Membranes 
and Their Impact on H2/CO2 Separation,” Macromolecules 41(4),1297-1309 (2008).

Permeance conversions:

1 gpu = 10-6 cm3(STP)/(cm2 s cmHg)

1 ft3(STP)/(h ft2 psi) = 1,600 gpu

10-6 mol/(m2 s Pa) = 3,000 gpu

10-2 mol/(m2 s bar) = 300 gpu
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Membrane performance has improved 
significantly
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Key objectives are to
• Examine membrane performance with real syngas, including gases difficult to 

study in the lab (CO, H2S)

• Investigate the membrane performance, stability and, if degradation occurs, try to 
identify mechanisms

Two types of membranes were tested
• CO2-selective Polaris modules (tested at 40°C, 165 -190 psia)

• H2-selective Proteus membranes (tested at 120°C or 135°C, 165 – 190 psia)

Total of three field tests to date; each test lasted 3 to 6 weeks
• November 2009, April 2010 and August 2010

Two types of syngas streams were provided 
• Unshifted syngas: 10%H2, 69%N2, 1%CH4, 7%CO, and 13%CO2

• Shifted syngas: 13%H2, 69%N2, 1%CH4, 2%CO, 15%CO2 and 780ppm H2S.

Field Tests at the 
National Carbon Capture Center (NCCC)



MTR Test Unit at NCCC
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NCCC Results 1: 
Stable Performance with Desulfurized Syngas

 Tests were conducted on membrane stamps (area = 30.2 cm2) with a coal-derived 
syngas mixture at 150 psig and 135°C.  Average H2 permeance = 260 gpu and H2/CO2
selectivity = 16.
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NCCC Results 2: 
Stable Performance with High Sulfur Syngas
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 Tests were conducted on membrane stamps (area = 30.2 cm2) with a coal-derived shifted syngas 
mixture at 175 psig and 120°C or135°C. 

 H2 content was enriched from ~10% to ~60 – 80%.
 H2/gas selectivities (CH4, N2, CO and H2S) are higher than H2/CO2.



Current membranes show potential to 
approach the DOE LCOE target
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Milestones
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 Confirmed that composite membranes made from novel polymers give 
hydrogen permeances of at least 200 gpu and H2/CO2 selectivities of 
greater than 10 in bench-scale tests as well as in field tests. 

 Completed scale up of composite membranes on a commercial coater.

 Identified the membrane performance requirement in order to meet the 
DOE program targets. Determined the overall technical and economic 
competitiveness of the proposed process as compared to alternative 
technologies. 

 Develop bench-scale membrane modules and demonstrate module 
performance and lifetime consistency with small-scale membrane stamp 
studies.



Lab-scale module development is on-going
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 Lab-scale prototype module: 12’’ length with a membrane area of 0.14 m2

 Module components were stable after cycling from 20 to 160°C

Module housing

Lab-scale prototype module



Project timeline: original

Sept 2009 Sept 2010 Sept 2011

Composite membrane development

Membrane process design and optimization

Membrane optimization and scale up

Lab-scale module development

Stamp field test @ Southern
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Sept 2009 Sept 2010 Sept 2011

Composite membrane development

Membrane process design

Lab-scale module development

Stamp field test @ Southern

Membrane optimization scale-up

Project Timeline: update

Module development

Module field test @ Southern

Improve membrane selectivity

All milestones achieved18



Next Steps toward Commercialization
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 Improve membrane performance

 Develop commerical-scale modules

 Evaluate long-term high 
temperature stability

 Test membrane modules

at NCCC in 2011

→ 50 lb/h syngas run 

→  500 lb/h syngas run 



Summary

 Bench and field tests show that the performance of MTR 
Proteus™ membranes exceeds the project targets.

 NCCC field results demonstrate the membrane 
performance is stable at high temperature treating coal-
derived syngas containing up to 780 ppm H2S.

 Average field performance gives a mixed-gas H2/CO2
selectivity of 15-25, and a hydrogen permeance of 150-
300 gpu at 120-150°C. 

 Current membrane performance yields an increase in 
LCOE of ~15%. Higher H2/CO2 selectivity and higher H2
permeance are both needed to achieve DOE LCOE 
targets. 
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