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Scope

• Investigate Bipolar Plate Interactions with Cathode Materials

• Develop new Diesel Reforming Catalysts
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Why do we need new Diesel reforming 
catalysts?

• Nickel on alumina and Rhodium on oxide support evaporate 
and consolidate

• Nickel, and to a lesser extend, Rhodium adsorb sulfur 
compounds and deactivate

• Poly-aromatic compounds in Diesel react more slowly and 
block the catalytic sites
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Approach
• The Perovskite Matrix…

- Does not adsorb sulfur compounds. 
- Is stable under high temperature & redox environment.
- Can exchangeable A & B site elements 

A 
B Perovskite ABO3 Structure CxHy CO, CO2

H2

e- e-

H2H2O, O2

Conductivities of both e- and VO¨ of perovskite expand the catalytic active 
site through electron and oxygen vacancy transfers in a redox process. 

Redox Cycle
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B-site doping of LaCrO3 creates effective catalysts
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• Exchanging B site 
with 5% Ru or Rh
significantly 
improves reforming 
efficiency and COx
selectivity.

• New perovskites
approach or exceed 
supported Rh in 
catalytic activity.

Comparison of B-site dope vs. 
non-doped perovskites

benchmark

ATR input
O2/C = 0.5
H2O/C = 2
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Temperature programmed reforming on a LaSrCrRu
catalyst

Ru doped perovskites demonstrate low light-off temperature for 
hydrogen production
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TPR and light-off studies suggest dopant reduction 
as key step in redox process
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H2-TPR study revealed lower reduction 
temperature for PM doped perovskites….

Same catalysts showed lower T-lightoff & 
broader operating window in C4H10 ATR study.
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XANES & EXAFS identify local structure & valance of 
exchanged B-site dopant in perovskites

XANES identified Ru in chromite is in +3 
valance state….

EXAFS found Ru atomically dispersed with 
increased CN at higher calcination temperature.
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Sulfur has a tolerable effect on the catalytic activity
Introducing 50 ppm sulfur in the form of DBT 
temporarily suppress reforming efficiency 
and COx selectivity.

Dibenzothiophene (DBT) and its derivatives 
are difficult to be removed from diesel through 
HDS process …

S
DBT

S

S
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Catalyst re-activates after S is removed from fuel. 
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Stable reforming observed during 100-Hr aging test 
with 50 ppm S in DBT

Excellent catalytic stability was observed during 100 hour 
aging test with S contaminated fuel 
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Reforming of a Surrogate Diesel Fuel
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Future plans for catalyst development

• Conduct 1000 hour life test
• Test catalyst on actual Diesel fuel
• Explore sequential recycling of vent gas
• Extend single site catalysis concept to other compounds
• Transfer technology to vertical teams
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Chromium Oxyhydroxide Formation

Interconnect Alloy 

Scale

2Cr +1.5O2 CrCr22OO33

CrCr22OO33 + O+ O2(g)2(g) +H+H22OO(g)(g) 2CrO2CrO22(OH)(OH)2(g)2(g)



Electronically Conducting Cathodes
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Mixed Conducting Cathodes
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Summary of Cell Tests with Crofer
• Cr content highest at cathode/electrolyte 

interface

• Cr throughout the LSF and LSFsub

• Cr content correlates with oxygen ion vacancy 
concentration
- LSM < LSF < LSFsub

2CrO2CrO22(OH)(OH)2(g)2(g)+ 6e+ 6e-- + 3V+ 3Voo
•••• CrCr22OO33 + 3O+ 3Ooo

xx +2H+2H22OO
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Where is the chromium coming from?

SOFCSOFC

Manifold (Manifold (InconelInconel))

Cathode Cathode (LSM)(LSM)
Electrolyte Electrolyte (8YSZ)(8YSZ)

CrCr22OO33 + O+ O2(g)2(g) +H+H22OO(g)(g) 2CrO2CrO22(OH)(OH)2(g)2(g)

Interconnect Interconnect 
(E(E--BriteBrite))

2Cr +1.5O2Cr +1.5O22 CrCr22OO33



18

Pioneering 
Science and
Technology

Office of Science
U.S. Department 

of Energy

Where is the chromium coming from?

Cathode
Electrolyte

Interconnect
CrCr22OO33 + O+ O2(g)2(g) +H+H22OO(g)(g) 2CrO2CrO22(OH)(OH)2(g)2(g)

2CrO2CrO22(OH)(OH)2(g)2(g)+ 6e+ 6e-- + 3V+ 3Voo
•••• CrCr22OO33 + 3O+ 3Ooo

xx +2H+2H22OO

CrOCrO22(OH)(OH)2(g)2(g)

OO2(g)2(g), H, H22OO(g)(g)
2Cr +1.5O2Cr +1.5O22 CrCr22OO33
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Conceivable Chromia Depositions
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Future plans for chromium interactions

• Operate lab scale cells with ribbed current collectors
• Look for chromia deposits in cathode along flow-channels and 

under ribs
• Co-operate with PNNL on defining sources of chromium
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Schematic of a Fixture with ribbed Flowfield
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